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Abstract 16 

Genetic correlations between traits are expected to constrain the rate of adaptation by concentrating genetic 17 

variation in certain phenotypic directions, which are unlikely to align with the direction of selection in novel 18 

environments. However, if genotypes vary in their response to novel environments, then plasticity could 19 

create changes in genetic variation that will determine whether genetic constraints to adaptation arise. We 20 

tested this hypothesis by mating two species of closely related, but ecologically distinct, Sicilian daisies 21 

(Senecio, Asteraceae) using a quantitative genetics breeding design. We planted seeds of both species across 22 

an elevational gradient that included the native habitat of each species and two intermediate elevations, and 23 

measured eight leaf morphology and physiology traits on established seedlings. We detected large significant 24 

changes in genetic variance across elevation and between species. Elevational changes in genetic variance 25 

within species were greater than differences between the two species. Furthermore, changes in genetic 26 

variation across elevation aligned with phenotypic plasticity. These results suggest that to understand 27 

adaptation to novel environments we need to consider how genetic variance changes in response to 28 

environmental variation, and the effect of such changes on genetic constraints to adaptation and the evolution 29 

of plasticity.  30 

Keywords: adaptive divergence, additive genetic variance, covariance tensor, evolutionary rescue, genotype-31 

by-environment interactions, G-matrix, novel environments, phenotypic plasticity 32 
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Introduction 34 

Populations maintain resilience in response to novel environments if selection on existing genetic variation 35 

(G) increases fitness over generations to create adaptation (termed 'evolutionary rescue'; Gomulkiewicz and 36 

Holt 1995; Bell and Gonzalez 2009), or if the novel environment induces plastic changes for all genotypes 37 

(E) that can maintain fitness (Via et al. 1995; Charmantier et al. 2008). In understanding population 38 

responses to novel environments, studies often focus on the dichotomy of plasticity versus adaptation for 39 

maintaining fitness and avoiding extinction. However, if genotypes vary in their sensitivity to the 40 

environment, then genotype-by-environment interactions (G×E) underlying plasticity can change the amount 41 

of genetic variation available to selection in novel environments (Wood and Brodie III 2015). Where 42 

plasticity can no longer maintain fitness, the potential to persist in a novel environment will then be 43 

determined by the extent to which G×E underlying plasticity changes genetic variation, and whether rapid 44 

adaptation can ensue (Ghalambor et al. 2007). 45 

The additive genetic variance-covariance matrix (G) describes the genetic architecture underlying 46 

multivariate phenotypes (Lande 1979). Genetic correlations between traits are expected to concentrate 47 

genetic variation in certain directions of the multivariate phenotype. If pleiotropy (or close linkage) underlies 48 

genetic correlations, then any genetic changes in one trait will affect other traits similarly and G will be 49 

stable, which will constrain adaptation when genetic variation lies in directions of the phenotype that differ to 50 

selection (Lande 1980; Cheverud 1984; Arnold 1992; Arnold et al. 2008; Walsh and Blows 2009; Chenoweth 51 

et al. 2010). However, if G changes in response to environmental variation, then G×E can determine the 52 

availability of genetic variation in the direction of selection in novel environments, which will then determine 53 

whether constraints to adaptation arise (Wood and Brodie III 2015), and therefore the potential for 54 

evolutionary rescue. 55 

Although G is expected to remain stable, at least in the short term (Zeng 1988), evidence suggests that G can 56 

change during adaptive divergence (Doroszuk et al. 2008; Eroukhmanoff and Svensson 2011; McGlothlin et 57 

al. 2018; Walter et al. 2018) and in response to environmental variation (Wood and Brodie III 2015; 58 

Johansson et al. 2020). Evidence also suggests that plasticity in novel environments occurs along phenotypic 59 

axes containing large amounts of genetic variation (Noble et al. 2019). However, we do not know whether, or 60 

to what extent, shifts in G are associated with plasticity in novel environments. If plasticity creates changes 61 

in G, then such changes in genetic variance can determine the potential for rapid adaptation to maintain 62 

ecological resilience in novel environments. Therefore, by quantifying whether changes in G occur across 63 

environments, and whether such changes align with plasticity, we can better understand how genetic 64 

variation present in natural populations can respond to novel environments. 65 
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G-matrices can differ in the amount of variance in each trait, as well as in the genetic covariance between 66 

traits. Fig 1a-d presents an example of how G-matrices for a hypothetical population could change across 67 

two environments (A and B). Differences between two matrices can be captured by C = GA - GB, where C is 68 

the matrix representing variance that is unique to each G-matrix (Fig. 1b). Eigenvectors of C then quantify 69 

axes that describe the differences in genetic variance between the two original matrices (Fig. 1c). Using the 70 

eigenvectors of C (i.e. the tensor of two matrices), we can test whether differences in G align with plastic 71 

changes in mean phenotype across environments (Fig. 1d). Such an alignment would provide evidence that 72 

genotype-by-environment interactions underlying plasticity can change G, and determine future evolutionary 73 

responses to novel environments. 74 

 75 

Fig. 1 (a-d) Conceptual diagram demonstrating, for two traits (Z1 and Z2), how differences in G for the same population exposed 76 

to two environments (A and B) can be quantified with a two-matrix tensor, and then related to plasticity (change in mean 77 

phenotype). (a) Hypothetical G-matrices are presented in the inset matrices, and visualised as two-dimensional ellipses (GA in 78 

gray, and GB in black). The G-matrices for the two environments (inset tables) differ in shape due to different variances (along the 79 

diagonal) and differences in covariances (off-diagonal). (b) Differences in G are represented by the gray shading for genetic 80 

variance unique to environment A, and black shading for genetic variance unique to environment B. These differences in genetic 81 

variance can be quantified using � � �� � ��, which has a positive difference in genetic variance in Z1 (0.5) due to greater 82 
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genetic variance in Z1 for environment A. By contrast, Z2 has a negative genetic variance (-0.4) because environment B has 83 

greater genetic variance in Z2. (c) Decomposing C identifies the two major axes (eigenvectors, which in this case are equivalent to 84 

eigentensors), which are presented in the inset tables and represented by the black and gray lines. Each eigenvector describes 85 

genetic variance that differs between the original matrices (eigenvalues represented by λ), with the loadings of the traits describing 86 

how each trait contributes to the differences in genetic variance described by each eigenvector. The first axis (e1) describes a 87 

positive eigenvalue representing differences in genetic variance unique to environment A (gray shading along the gray line). The 88 

second axis (e2) describes negative variance describing differences due to genetic variance unique to environment B (black shading 89 

along the black line). (d) Changes in mean phenotype are represented by arrows and circles. If differences in genetic variance 90 

underlie plasticity, we expect changes in mean phenotype along an axis representing genetic variance unique to either environment 91 

A (point 1 and solid gray arrow), or environment B (point 2 and black arrow). However, if differences in genetic variance are not 92 

associated with plastic responses to the two environments, then changes in mean phenotype would occur along an axis different to 93 

changes in genetic variance (points 3 or 4, and dashed lines with unfilled arrows). (e) An example of a seedling block at 2,000m, 94 

eight weeks after seeds were planted (S. chrysanthemifolius on left). 95 

 96 

To test whether genotype-by-environment interactions create changes in genetic variance, we reciprocally 97 

planted seeds of two ecologically contrasting, but closely related Senecio species across an elevational 98 

gradient. Senecio chrysanthemifolius is a short-lived perennial with dissected leaves that occupies disturbed 99 

habitats in the foothills of Mt. Etna (c.400-1,000 m.a.s.l [metres above sea level]), as well as across Sicily. 100 

Senecio aethnensis is a perennial with entire glaucous leaves endemic to lava flows above 2,000m.a.s.l on 101 

Mt. Etna, where individuals grow back each spring after being covered by snow in winter. The data we 102 

analyse here are derived from an experiment where we mated among individuals within each species using a 103 

quantitative genetics breeding design (Walter et al. 2021). We then reciprocally planted seeds (from each 104 

family in the breeding design) of both species across an elevational gradient representing the home range of 105 

each species, the edge of their range, and conditions outside their range (Fig. 1e). Previously we found 106 

evidence for fitness trade-offs as differences in survival at elevational extremes, indicating specialisation of 107 

each species to their native environment (Walter et al. 2021).  108 

Here, we continue the analysis of the transplant experiment by including data on leaf morphology and 109 

pigment traits, and testing whether genetic variance changes between species and across elevation. 110 

Specifically, we test whether: 1) Seedlings show plasticity in novel environments that moves the phenotype 111 

towards that of the native species, 2) Elevation or species differences are associated with larger changes in G, 112 

and 3) Changes in G for each species aligned with the direction of plasticity as the elevational change in 113 

mean phenotype. 114 

 115 
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Methods and materials 116 

We only briefly describe the field experiment here, but refer the reader to the previous analysis where it is 117 

presented in detail (Walter et al. 2021). We collected cuttings from naturally growing individuals, which we 118 

propagated. We randomly assigned each individual as a sire (male) or dam (female) and mated each sire to 119 

three dams (S. aethnensis n=36 sires, n=35 dams, n=94 full-sibling families; S. chrysanthemifolius n=38 120 

sires, n=38 dams, n=108 full-sibling families).  121 

We then planted 100 seeds from each family at four elevations on Mt. Etna that included the native habitats 122 

of both species (500m and 2,000m) as well as two intermediate elevations (1,000m and 1,500m). We planted 123 

25 seeds at each site, randomised into five experimental blocks (S. aethnensis n=432 seeds/block, n=2,160 124 

seeds/site; S. chrysanthemifolius n=540 seeds/block, n=2,700 seeds/site; Total N=19,232 seeds). To prepare 125 

each experimental block, we cleared the ground of plant matter and debris, and then placed a plastic grid on 126 

the ground with 4cm square cells. We attached each seed to the middle of a toothpick using non-drip super 127 

glue and then pushed each toothpick into the soil so that the seed sat 1-2mm below the soil surface. To 128 

replicate natural germination conditions, we suspended 90% shade-cloth 20cm above each plot and kept the 129 

seeds moist until germination ceased (2-3 weeks). After this shade-cloth was removed and watering reduced. 130 

When >80% of plants had produced ten leaves at each transplant site, we collected the 5th and 6th leaves from 131 

the base of the plant to quantify morphology and leaf pigment content. In total, we measured 6,454 plants 132 

(500m n=2,369; 1,000m n=1,929; 1,500m n=1,030; 2,000m n=1,126), which included more than two 133 

individuals for >90% of the full-sibling families at each elevation (average number of individuals measured 134 

per family: 500m=11.73±5.5[one standard deviation], 1,000m=9.55±3.7, 1,500m=5.10±2.8, 135 

2,000m=5.57±3.1). This meant that all sires were measured at each site, and that mortality should not 136 

influence the estimation of genetic variance. To quantify leaf pigment content, we used a Dualex instrument 137 

(Force-A, France) to estimate the chlorophyll, flavonol and anthocyanin content of each leaf. To measure leaf 138 

morphology, we scanned the leaves (Canoscan 9000F) and quantified morphology using the software Lamina 139 

(Bylesjo et al. 2008), which produced leaf morphology traits that included leaf area, leaf complexity 140 

(
���� ����	�
���

���� ����
), the width of leaf indents, and the number of leaf indents standardised by perimeter. We then 141 

weighed the leaves of each plant and calculated specific leaf area (SLA = 
��� ��

��� ������
). To analyse phenotype 142 

data, we used R (v.3.6.1; R Core Team 2019 ) for all analyses. Prior to analysis, we standardised each trait by 143 

their mean so that traits measured on different scales could be compared (Hansen and Houle 2008). 144 

1. Species differences in plasticity across elevation 145 

To quantify species differences in phenotypic plasticity across the elevational gradient, we used a 146 
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Multivariate Analysis of Variance (MANOVA), which tested for significant differences in mean multivariate 147 

phenotype across elevation. We included all eight phenotypic traits as the multivariate response variable. 148 

Elevation, species and their interaction were included as fixed effects. To visualise how the two species 149 

differed across elevation we first constructed a D-matrix, the covariance matrix representing differences in 150 

mean multivariate phenotype between species and across elevation (see glossary in Table 1). To construct D, 151 

we extracted the Sums of Squares and Cross-Product (SSCP) matrices for each fixed effect (SSCPS = 152 

species; SSCPE = elevation; SSCPS×E = species×elevation) and the error term (SSCPR). We then estimated 153 

SSCPH (SSCP� � SSCP� � SSCP� � SSCP���), which calculates the difference in mean across all elevations 154 

for both species. We calculated Mean Square (MS) matrices by dividing the SSCP matrices by their 155 

corresponding degrees of freedom (MS� �
�����

�
; MS� �

�����

�,���
). We then estimated D using  156 

 � �
��� ���

!�
 , (1) 157 

where nf represents the average number of individuals measured for each species at each elevation, 158 

calculated from equation 9 in Martin et al. (2008). We used the eigenvectors of D to visualise differences in 159 

multivariate phenotype across elevation for both species. 160 

2. Quantifying species and elevational differences in genetic variance 161 

Estimation of additive genetic variance: The additive genetic (co)variance matrix (G) represents the 162 

multivariate genetic variance underlying morphological traits. To calculate G for each species at each 163 

elevation, we used the package MCMCglmm (Hadfield 2010) and implemented the multivariate linear mixed 164 

model 165 

  ��"#� � ��$"% � "$�% � �# � ��$�"#% , (2) 166 

where ��$"% represents the ith sire mated to the jth dam, "$�% the jth dam mated to the ith sire, �#  as the 167 

variance among blocks within a transplant site and ��$�"#% the residual error. The eight normally distributed 168 

phenotypic traits were included as the multivariate response variable (��"#�). We applied equation 2 169 

separately to each species and transplant elevation, resulting in the estimation of eight G-matrices. For each 170 

implementation, we extracted the sire variance component and multiplied it by four to calculate our observed 171 

G-matrices (Lynch and Walsh 1998). 172 

We implemented equation 2 using chains with a burn-in of 300,000 iterations, a thinning interval of 1,500 173 

iterations and saving 2,000 iterations that provided the posterior distribution for all parameters estimated. We 174 

confirmed model convergence by checking that the chains mixed sufficiently well and that autocorrelation 175 
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was lower than 0.05, and that our parameter-expanded prior was uninformative. 176 

To test whether our experimental design captured biologically meaningful estimates of genetic variance, for 177 

each implementation of equation 2, we randomised offspring among sires and dams, and re-applied the 178 

model to the randomised data. To maintain differences among the experimental blocks, we randomised the 179 

parentage of offspring within each block separately. We conducted 1,000 randomisations for each observed 180 

G-matrix, which we used to estimate our randomised G-matrices representing the null distribution for our 181 

estimation of G. Observed estimates of genetic variance that exceed the null distribution provides strong 182 

evidence that our estimates of genetic variance are statistically significant. 183 

Table 1 Glossary of quantitative genetics terms 184 

Term Sym-
bol Definition 

 

D-matrix 
 

D 
 

The variance-covariance matrix of mean phenotype. This 
captures how a group of traits differs in multivariate mean 
among levels of a covariate (e.g., elevation) 

G-matrix G The additive genetic variance-covariance matrix 
underlying a set of traits. Genetic variances on the diagonal 
and genetic covariances among traits off the diagonal 

dmax  The first eigenvector of D, representing the axis along 
which the greatest differences in mean multivariate 
phenotype lie 

gmax  The first eigenvector of G, representing the axis that 
describes the direction containing the greatest amount of 
additive genetic variance 

Sire variance  If a group of randomly selected sires are each mated to 
multiple dams in a breeding design, the variance among the 
sires represents 1/4 of the additive genetic variance after 
accounting for variance among dams and full-siblings 

S-matrix S A symmetric matrix used for a tensor analysis. S describes 
the element-by-element differences among the original 
matrices 

Eigentensor E Orthogonal axes describing differences among the original 
matrices. Eigentensors are constructed by scaling and 
arranging eigenvectors of S 

Eigenvector 
(n) of 
eigentensor 
(p) 

ep,n The set of n eigenvectors that describe the pth eigentensor. 
Trait loadings describe how each trait contributes to 
differences among the original matrices that are captured 
by the eigenvector of an eigentensor. 

Coordinates 
of an 
eigentensor 

  The correlation between the original matrices and each 
eigentensor. Quantifies which matrices contribute to the 
differences among all matrices that are captured by an 
eigentensor. 

 185 
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 186 

Quantifying differences in genetic variance: To quantify differences in G, we used a covariance tensor 187 

approach (see glossary in Table 1). The strength of this approach is that, unlike other methods that focus on 188 

pairwise comparisons, the covariance tensor can simultaneously compare multiple matrices. This simply 189 

extends the two-matrix example (presented in Fig. 1a-c) to three or more matrices. The covariance tensor 190 

quantifies differences among multiple matrices by first quantifying a matrix (the S-matrix) that captures the 191 

raw differences among all matrices, and then identifying how each of the original traits and matrices 192 

contribute to the differences captured by S. We only briefly describe the approach here, and refer readers to 193 

more detailed descriptions in Basser and Pajevic (2007); Hine et al. (2009); Aguirre et al. (2014); Walter et 194 

al. (2018), and a simplified description (Fig. S4). The covariance tensor is based on decomposition (i.e. 195 

eigenanalysis, which is analogous to principal components) of symmetric matrices to construct a set of 196 

orthogonal axes, known as eigentensors, which are used to identify and describe differences in the original 197 

matrices being compared (e.g., elevation). 198 

First, a symmetric matrix (S) is calculated, whose elements represent element-by-element variation among 199 

the original matrices. Decomposing S identifies the orthogonal axes (eigenvectors) along which the original 200 

matrices differ the most. Eigenvectors are scaled and rearranged to calculate the eigentensors, which are used 201 

to identify how the original traits and matrices contributed to differences among all matrices. To identify 202 

whether the observed eigentensors described significant differences in genetic variance, we constructed a null 203 

distribution by randomising sire breeding values among treatments (here, elevations), and calculating a 204 

randomised G-matrix for each MCMC iteration from the observed models. This calculates a null-distribution 205 

based on the structure of the observed G-matrices (Aguirre et al. 2014). However, as suggested by Morrissey 206 

et al. (2019), we also tested for significant eigentensors by randomising the sires among species and 207 

elevations in the original dataset and re-implementing equation 2 on each randomisation. If the observed 208 

eigentensors described greater differences in genetic variance than the eigentensors constructed from the null 209 

distribution, then there is strong evidence for significant differences in our observed G. 210 

To identify how each matrix (in our case, one elevation for a given species) contributes to differences among 211 

all matrices (all elevations for a given species), the matrix coordinates of the eigentensors are calculated. The 212 

coordinates are linear combination scores that are calculated between each eigentensor and the original 213 

matrices, and can be interpreted similarly to a principal components analysis: larger scores indicate a greater 214 

correlation between any given matrix and the differences among matrices described by that particular 215 

eigentensor.  216 
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To identify how the original traits contribute to differences among matrices, each eigentensor is decomposed, 217 

and the eigenvectors interpreted in the same fashion as a principal components analysis. Traits with large 218 

loadings contribute to the differences described by the eigenvector of a particular eigentensor. Traits with 219 

loadings of different signs (positive and negative) describe traits that contribute to the differences in opposite 220 

ways. To identify how strongly each of the original matrices are associated with each eigenvector, we can use 221 

the matrix projection 222 

 V�"# � ��"
& �#��"  , (3) 223 

where the V�"#  quantifies the amount of variance in the G-matrix from the kth elevation that is described by 224 

the jth eigenvector from the ith eigentensor (��,"). Greater values of V�"#  for any given matrix suggest that 225 

differences in that particular matrix underlie the differences in genetic variance captured by that eigenvector 226 

of the eigentensor. 227 

We used the covariance tensor approach to make two comparisons. First, to identify whether elevation or 228 

adaptive divergence (i.e. differences between species) created larger differences in G, we compared the G-229 

matrices of the two elevational extremes for both species. If adaptive divergence (i.e. exposure to different 230 

environments during the process of ecological speciation) created greater changes in G than exposure to 231 

current environmental variation (i.e. to the elevational gradient), then differences between species would be 232 

greater than differences across elevation. Second, to identify the extent of elevational changes in G, we 233 

quantified changes in G across elevation for each species separately.  234 

3. Testing whether elevational changes in genetic variance are associated with plasticity 235 

To test whether elevational changes in G were associated with plasticity (change in mean phenotype), we 236 

compared the eigenvectors of eigentensors (capturing differences in G) with a D-matrix representing 237 

multivariate change in phenotype across elevation. First, we conducted MANOVA as before, but for each 238 

species separately, and including experimental block (within elevation) as the error term, which tests whether 239 

elevational differences in mean multivariate phenotype are significantly greater than differences among 240 

blocks within elevation. We then used the output of the MANOVA to calculate a D-matrix that captured the 241 

elevational change in mean phenotype for each species. Second, we used matrix projection (equation 3), to 242 

project the eigenvectors of eigentensors through the D-matrix for each species separately. We predicted that 243 

if G×E underlying plasticity can change the structure of G, then eigenvectors (of eigentensors) that describe 244 

the largest differences in G would also describe large changes in mean multivariate phenotype. 245 

Estimating G×E across elevation: We tested whether plasticity was associated with G×E as a change in 246 

variance or as changes in rank of sire breeding values across elevation. We calculated the scores for the 247 
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first two eigenvectors of D (from equation 1) and used equation 2 to estimate the genetic variance at each 248 

elevation, and the genetic covariance among elevations. For each random component, we specified random 249 

slopes and intercepts for elevation. To specific the correct residual variance structure, we only estimated the 250 

residual variances at each elevation because two plants were not present at more than one elevation, 251 

preventing the estimation of residual covariance among elevations. 252 

 253 

Results 254 

1. Species differed in their change in mean phenotype across elevation 255 

The MANOVA provided evidence that species (Wilks’ λ = 0.21, F1,6446 = 2940.56, P<0.0001), elevation 256 

(Wilks’ λ = 0.30, F3,6446 = 401.12, P<0.0001) and their interaction (Wilks’ λ = 0.83, F3,6446 = 50.62, 257 

P<0.0001) all showed significant differences in mean multivariate phenotype. Changes in the univariate trait 258 

means are presented in Fig. S2. We used the MANOVA to estimate a D-matrix representing differences in 259 

mean multivariate phenotype between species and across elevation. We found that S. chrysanthemifolius 260 

shows a relatively gradual change in phenotype across elevation (Fig. 2). By contrast, S. aethnensis shows a 261 

sharper change in mean phenotype whereby the highest elevation (i.e., the native elevation) contrasts with all 262 

three lower elevations (Fig. 2). 263 
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 264 

Fig. 2 Phenotypic plasticity creates large changes in mean multivariate phenotype. The first two axes of D together represent 92% 265 

of all change in mean phenotype, with the table inset displaying the trait loadings for each axis (loadings in bold contribute 266 

substantially to each axis). Large coloured circles represent the mean of each species at each transplant site, with the size of the 267 

circle exceeding one standard error. Small circles represent the mean for each full-sibling family. Inset leaves represent a plant near 268 

the mean phenotype of each species for the elevational extremes. 269 

 270 

2. Genetic variance changed more across elevation than between species 271 

We quantified G-matrices for each species and at each elevation (Table S2), and decomposed each matrix to 272 

identify the orthogonal axes (known as eigenvectors) that describe the distribution of genetic variance within 273 

each G-matrix (Table 2). The first four eigenvectors of G together described more than 80% of all genetic 274 

variance (Table 2), and were greater than expected under random sampling (Fig. S2), which suggests that 275 

our matrices captured biologically meaningful genetic variance underlying morphology. G-matrices can 276 

differ in size (the total amount of genetic variance), shape or orientation. If all traits are genetically 277 

independent, all axes of a G-matrix will describe a similar amount of genetic variance, and the matrix will be 278 

spherical. However, the shape of a G-matrix becomes more elliptical when genetic correlations among traits 279 

condense genetic variance into fewer axes (than the number of traits) that contain higher proportions of the 280 
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total genetic variance. Differences in shape arise when matrices are more or less elliptical. Differences in 281 

orientation arise when the linear combination of traits that are used to describe the major axes of genetic 282 

variance differ between matrices. 283 

Compared to the G-matrices estimated at the three lower elevations (500m-1,500m), we found that the G-284 

matrices of both species were smaller (i.e., contained less genetic variance) at the highest elevation (Table 2 285 

and Table S2). Senecio aethnensis showed a similar shape across elevation, whereby three axes consistently 286 

described >80% of the genetic variance at each elevation (Table 2). By contrast, G-matrices of S. 287 

chrysanthemifolius were more elliptical at lower elevations (two axes described >70% of total genetic 288 

variance), and much more spherical at the highest elevation (four axes described 80% of total genetic 289 

variance). For both species the magnitude and sign (positive vs negative) of trait loadings changed across 290 

elevation (Table 2), suggesting that different linear combinations of traits described axes of G at different 291 

elevations. 292 

293 
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Table 2 The first four eigenvectors describing >80% of total genetic variation for each G-matrix estimated at each elevation for: 294 

(a) S. aethnensis, and (b) S. chrysanthemifolius. HPD represents the upper and lower 95% Highest Posterior Density intervals. 295 

‘Proportion’ quantifies the proportion of total genetic variance that each eigenvector describes, and ‘Cumulative’ represents the 296 

cumulative proportion of genetic variance. Trait loadings in bold are greater than 0.2 to aid interpretation of the eigenvectors. 297 

500m 1,000m 1,500m 2,000m 
gmax g2 g3 g4 gmax g2 g3 g4 gmax g2 g3 g4 gmax g2 g3 g4 

(a) S. aethnensis       

Eigenvalues 0.046 0.031 0.020 0.007 0.049 0.020 0.011 0.008 0.050 0.026 0.014 0.008 0.019 0.014 0.009 0.007 

HPDlwr 0.020 0.011 0.008 0.001 0.022 0.008 0.003 0.001 0.019 0.002 0.005 0.001 0.002 0.004 0.003 0.001 

HPDupp 0.076 0.053 0.034 0.017 0.080 0.034 0.022 0.018 0.084 0.064 0.025 0.021 0.038 0.026 0.017 0.020 

Proportion 0.41 0.27 0.18 0.06 0.51 0.20 0.12 0.08 0.45 0.23 0.12 0.07 0.30 0.22 0.15 0.12 

Cumulative 0.41 0.68 0.86 0.92 0.51 0.71 0.83 0.91 0.45 0.68 0.80 0.87 0.30 0.52 0.67 0.79 

Traits:         

Area 0.19 0.33 0.04 -0.12 0.17 0.45 0.67 -0.54 0.20 0.86 -0.44 0.16 0.21 0.29 0.26 0.87 

P2A 0.12 -0.41 0.88 0.07 0.30 -0.83 0.44 -0.08 0.34 -0.52 -0.70 0.32 -0.47 -0.71 0.22 0.30 

Nind -0.51 -0.39 -0.04 -0.33 -0.26 -0.22 -0.29 -0.58 -0.59 0.02 -0.25 -0.05 -0.30 0.01 -0.06 -0.10 

IW 0.47 0.28 0.17 0.27 0.24 0.18 0.25 0.55 0.64 0.03 0.33 -0.01 0.17 -0.08 0.01 0.13 

SLA 0.04 -0.23 -0.23 0.63 0.17 0.15 -0.16 -0.20 -0.03 -0.03 -0.16 -0.53 -0.07 0.20 -0.76 0.20 

Chl 0.00 0.34 0.20 -0.33 -0.13 -0.08 0.06 0.11 0.10 0.00 0.24 0.13 0.48 -0.13 0.16 -0.14 

Flav -0.69 0.50 0.29 0.43 -0.83 -0.04 0.42 0.13 -0.26 0.02 0.24 0.75 0.08 0.27 0.46 -0.27 

Anth -0.03 -0.27 -0.08 0.34 0.15 0.06 0.06 -0.07 -0.05 -0.01 -0.04 0.06 -0.61 0.53 0.23 -0.01 

(b) S. chrysanthemifolius       

Eigenvalues 0.053 0.027 0.016 0.012 0.048 0.023 0.010 0.004 0.022 0.015 0.013 0.010 0.028 0.009 0.005 0.004 

HPDlwr 0.024 0.012 0.007 0.004 0.020 0.011 0.001 0.001 0.005 0.001 0.002 0.001 0.003 0.000 0.000 0.000 

HPDupp 0.087 0.044 0.028 0.022 0.083 0.039 0.023 0.008 0.041 0.035 0.028 0.025 0.058 0.022 0.013 0.013 

Proportion 0.45 0.23 0.14 0.11 0.52 0.25 0.10 0.04 0.29 0.20 0.17 0.14 0.52 0.16 0.09 0.08 

Cumulative 0.45 0.68 0.82 0.93 0.52 0.77 0.87 0.91 0.29 0.49 0.66 0.80 0.52 0.68 0.77 0.85 

Traits:         

Area -0.21 0.74 -0.22 0.57 0.25 -0.07 0.92 0.21 0.43 0.53 -0.05 0.67 -0.03 -0.52 0.74 -0.38 

P2A -0.91 -0.35 0.07 0.16 -0.92 0.02 0.31 -0.23 -0.47 0.64 -0.52 -0.20 -0.97 0.07 0.00 -0.05 

Nind 0.10 -0.30 -0.45 0.11 0.02 0.65 0.04 0.22 0.55 0.11 0.01 -0.38 0.18 0.58 0.38 -0.03 

IW -0.05 0.32 0.65 -0.18 0.07 -0.68 -0.02 -0.07 -0.41 -0.30 -0.03 0.35 0.05 -0.53 -0.34 0.09 

SLA 0.03 0.11 -0.46 -0.07 0.03 -0.01 -0.02 0.01 0.04 0.20 0.08 -0.15 -0.01 0.13 0.23 -0.03 

Chl 0.01 0.07 0.01 -0.16 0.08 0.13 0.08 0.11 0.32 -0.32 -0.73 -0.17 0.09 -0.12 -0.17 -0.27 

Flav 0.34 -0.35 0.32 0.73 0.29 0.23 0.14 -0.91 0.13 0.04 0.14 0.06 0.10 -0.22 0.07 0.09 

Anth -0.01 0.02 0.11 0.18 0.04 -0.21 0.15 -0.13 -0.07 0.24 0.41 -0.43 -0.05 -0.16 0.32 0.87 

 298 

 299 

The first axis of G, gmax, describes the greatest amount of genetic variance. It is expected that gmax will 300 

remain stable due to pleiotropy preventing independent changes in different traits. However, for S. aethnensis 301 

we found that all elevations were nearly orthogonal to the home site (angle between gmax at the home site 302 
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[2,000m] and gmax at: 1,500m=76.2°; 1,000m=77.8°; 500m=79.7°). By comparison, for S. chrysanthemifolius 303 

the angle between the home site (500m) and the other elevations were much lower (1,000m=28.3°; 304 

1,500m=62.2°; 2,000m=20.1°). 305 

G changes more across elevation than between species: To quantify differences in G we used a covariance 306 

tensor approach, which we applied to two separate analyses. To test whether species or elevation created 307 

larger changes in G, we applied a covariance tensor to the G-matrices of both species at the elevational 308 

extremes (both native elevations). Elevational differences in G appear to be substantial for both species (Fig. 309 

3a, Table2 and Fig. S5). Using the covariance tensor to quantify differences in genetic variance, we found 310 

that two (of three) eigentensors described greater differences in genetic variance compared to the null 311 

expectation (Fig. S3a). The coordinates capture how each matrix contributes to the differences described by 312 

an eigentensor. The first eigentensor, which captures 31.9% of all differences among G-matrices, describes 313 

large differences between extreme elevations, but not between species (Fig. 3b). By contrast, the second 314 

eigentensor captures 26.2% of all differences among G-matrices, and describes large differences between 315 

species, but not between elevations (Fig. 3b). Therefore, elevation created larger changes in G than adaptive 316 

divergence between the two species. 317 

 318 

Fig. 3 Differences in G are greater across elevational extremes than between species. (a) Visualising differences between species at 319 

the elevational extremes shows that the two species differ in their G-matrices, and that they respond to elevation differently. (b) 320 

The coordinates quantify how each matrix contributes to differences in genetic variance described by each eigentensor. Credible 321 

intervals represent the 95% HPD (Highest Posterior Density) intervals. The first eigentensor (describing 31.9% of the total 322 

difference in genetic variance) describes differences between the elevational extremes, but not differences between species. By 323 

contrast, the second eigentensor (describing 26.2% of the total difference in genetic variance) describes differences between 324 

species, but not between elevations. The summary of the tensor is located in Table S3a. 325 
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Second, we used the covariance tensor approach to quantify changes in G across elevation for each species 327 

separately. Visualising the G-matrices of the two species suggests large changes across elevation (Fig. 4a). 328 

We found that two eigentensors for S. aethnensis, and one eigentensor for S. chrysanthemifolius capture 329 

greater differences in genetic variance than expected under random sampling (Fig. S3b-c). For S. aethnensis, 330 

the coordinates of the first eigentensor reveal strong differences in G between 2,000m and the lower 331 

elevations, while the second eigentensor quantifies differences between the two upper and lower elevations 332 

(Fig. 4b). Similarly, the first eigentensor captures differences between the upper and lower elevations for S. 333 

chrysanthemifolius (Fig. 4b). Projecting the eigenvectors of eigentensors through the original G-matrices 334 

reveals how each original matrix (i.e. each elevation) contributes to the differences in genetic variance 335 

described by that particular eigenvector. We present only the first four eigenvectors from each eigentensor 336 

because these describe >80% of the differences captured by each eigentensor. Eigenvectors of eigentensors 337 

describe significant differences in genetic variance across elevation (Fig. 4c). 338 

 339 

Fig. 4 Elevation induces changes in G for both species. (a) Visualising G-matrices for both species at all elevations shows how 340 
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they change with the change in mean phenotype. (b) The coordinates show that, for both species, the first two eigentensors 341 

describe elevational differences in genetic variance. Credible intervals represent the 95% HPD intervals. (c) To identify how each 342 

elevation contributes to differences in G captured by the eigenvectors of eigentensors, we use matrix projection. G-matrices that 343 

describe more variance for a given eigenvector (of an eigentensor) contribute to the differences in elevation described by that 344 

particular eigenvector of the eigentensor. We only present the first four eigenvectors because they describe >80% of the difference 345 

in genetic variance captured by each eigentensor. The tensor summaries are located in Table S3b-c. 346 

 347 

3. Changes in genetic variance are associated with changes in mean phenotype 348 

If G×E interactions that change G are associated with plasticity, we predicted that elevational differences in 349 

G would align with plastic changes in mean phenotype. To test this (for each species separately), we 350 

projected the eigenvectors of eigentensors (from Fig. 4c), which capture the greatest differences in G, 351 

through the D-matrix (representing elevational differences in mean multivariate phenotype). If changes in G 352 

were associated with plasticity, then eigenvectors of eigentensors that describe the greatest differences in G 353 

(i.e. the leading eigenvectors of each eigentensor) would also describe more variance in D than expected 354 

under random sampling. We found that for both species, our results supported our predictions, and that this 355 

was particularly strong for S. chrysanthemifolius (Fig. 5). 356 

 357 

Fig. 5 Eigenvectors of eigentensors that describe large differences in G also describe large changes in mean multivariate 358 

phenotype. The first two eigenvectors of each eigentensor capture >90% of the difference in genetic variance described by that 359 

eigentensor. We predicted that if the first two eigenvectors (that capture the greatest difference in genetic variance) describe large 360 

differences in mean multivariate phenotype, then changes in G align with plasticity. Projecting the eigenvectors of eigentensors 361 

e11 e12 e13 e14 e15 e16 e17 e18 e21 e22 e23 e24 e25 e26 e27 e28 e11 e12 e13 e14 e15 e16 e17 e18 e21 e22 e23 e24 e25 e26 e27 e28

0.00

0.25

0.50

0.75

Eigenvector of eigentensor

A
m

ou
nt

 o
f 

ch
an

ge
 in

 m
ea

n 
ph

en
ot

yp
e

(a
m

ou
nt

 o
f 

va
ri

an
ce

 in
 D

)

Data Observed Random

S. aethnensis S. chrysanthemifolius
Eigentensor 1 Eigentensor 2 Eigentensor 1 Eigentensor 2

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.08.430333doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430333


 
18

through the observed D-matrix (black circles) shows that the leading eigenvectors from each eigentensor describe greater 362 

differences in mean phenotype than expected under random sampling (gray circles and credible intervals representing 95% HPD 363 

intervals) and describe the greatest difference in mean phenotype. Therefore, we found evidence that changes in G align with 364 

plastic changes in mean phenotype. 365 

 366 

Changes in G are associated with G×E in plasticity: Estimating the G-matrix for the axis representing the 367 

largest change in mean phenotype (dmax), quantifies the genetic variance at each elevation and the genetic 368 

covariance between elevations. We found evidence of G×E as large changes in genetic variance across 369 

elevation, with much smaller amounts of genetic variance at high elevation for both species (Fig. 6; Table 370 

S4). Genetic correlations between elevations are moderately strong and range from 0.42 to 0.72 (Table S4). 371 

Genetic correlations between elevations of less than one suggest that G×E is also present as a change in sire 372 

rank across elevation (Fig. 6). 373 

 374 

Fig. 6 Sire breeding values for each species at each elevation show how sires change in genetic value relative to each other. 375 

Plasticity (as changes in mean phenotype captured by dmax from Fig. 2) is associated with G×E as a large change in genetic 376 

variance across elevation, as well as changes in sire rank across elevation (crossing of sires between elevations). 377 
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Discussion 379 

We planted seeds from a breeding design of two closely related but ecologically distinct species across an 380 

environmental (elevation) gradient that included each species’ native environment and two intermediate 381 

environments. We found that estimates of plasticity for eight leaf traits suggested that the phenotype of S. 382 

chrysanthemifolius moved towards the phenotype of S. aethnensis at high elevations, while the phenotype of 383 

S. aethnensis moved further away from the phenotype of S. chrysanthemifolius at lower elevations (Fig. 2). 384 

This suggests that S. chrysanthemfolius shows a more appropriate phenotypic response to a novel 385 

environment. Changes in genetic variance across elevation were both significant and stronger than 386 

differences between species (Fig. 3), and were consistent across elevation for both species (Fig. 4). 387 

Elevational differences in genetic variance aligned with plasticity as the change in mean phenotype (Fig. 5), 388 

and were created by patterns of G×E as elevational changes in genetic variance and sire rank (Fig. 6). 389 

Together, these results suggest that changes in genetic variance occur as a result of G×E underlying 390 

phenotypic plasticity in novel environments, which will likely determine the potential for adaptation in novel 391 

environments. 392 

By analysing published studies, Wood and Brodie III (2015) found evidence that G is likely affected by the 393 

environment as much as by evolution, but their results as to why G changed in response to the environment 394 

were inconclusive. We help to resolve this by showing that novel environments not only create larger 395 

changes in G than evolutionary history, but that such changes in G occur in the direction of plasticity as a 396 

consequence of G×E interactions. Our findings not only support an alignment between plasticity and genetic 397 

variation (Noble et al. 2019; Johansson et al. 2020), but suggest that to predict evolutionary responses to 398 

environmental change, we need to better understand how genetic variation responds to environmental 399 

variation. Therefore, future work needs to consider G×E to understand when and how constraints to 400 

adaptation will prevent evolutionary rescue in novel environments, and to identify whether environment-401 

dependent genetic constraints could determine evolutionary trajectories.  402 

Our results show that in order to better understand the potential for evolutionary rescue it will be necessary to 403 

quantify the prevalence of G×E across a species’ range and understand the potential for G×E to maintain 404 

ecological resilience in novel environments. Evolutionary rescue will be possible if sufficient G×E in 405 

plasticity is available, and selection on genetic variation in plasticity increases fitness in novel environments 406 

(Chevin et al. 2010; Chevin and Hoffmann 2017), which can then lead to genetic assimilation of an initially 407 

plastic response (Waddington 1953; Lande 2009). Although selection on plasticity should result in rapid 408 

adaptation that facilitates evolutionary rescue (Charmantier et al. 2008; Wang and Althoff 2019; Walter et al. 409 

2020), we still do not know whether environmental change will be too extreme or rapid to allow evolutionary 410 
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rescue. Furthermore, it is likely that in response to novel environments, not only will selection be for the 411 

appropriate phenotype (i.e. change in mean phenotype), it is likely that selection for new forms of plasticity 412 

that are appropriate to the novel environment (i.e. appropriate fluctuations around the new mean phenotype) 413 

will need to evolve. Given the unpredictable nature of novel environments however, selection for a new form 414 

of plasticity might be difficult (Leung et al. 2020). 415 

The initial resilience of populations exposed to a novel environment will likely depend on how close 416 

plasticity is able to move the population towards a phenotypic optimum. Evidence suggests that plasticity in 417 

novel environments is more often maladaptive (Langerhans and DeWitt 2002; Palacio-López et al. 2015; 418 

Acasuso-Rivero et al. 2019), which means that populations will likely need to rely on rapid adaptation to 419 

maintain fitness and prevent extinction. However, there are two major obstacles for evolutionary rescue. 420 

Firstly, the adaptive potential for novel environments will be greatly diminished if genetic variance in the 421 

direction of selection is low (Walsh and Blows 2009), which can occur if G×E reduces genetic variance in 422 

novel environments. We found that the availability of genetic variance for evolutionary rescue will be 423 

species-specific. Senecio aethnensis showed an increase in genetic variance in the novel environment 424 

(500m), which contrasted with S. chrysanthemifolius, which showed a decrease in genetic variance at 2,000m 425 

(Table 2). These results therefore suggest that despite high elevation species having lowered plasticity 426 

compared to lower elevation species (Gugger et al. 2015; Schmid et al. 2017; de Villemereuil et al. 2018), 427 

selection on increased genetic variation in response to low-elevation (i.e. warmer) conditions could allow 428 

evolutionary rescue. 429 

Secondly, the potential for rapid adaptation to a novel environment will be determined by the amount of 430 

genetic versus phenotypic variance underlying the multivariate phenotype. If plasticity common to all 431 

genotypes creates phenotypic variance that hides beneficial genetic variation from selection, then a 432 

demographic barrier to adaptation will arise because too few individuals will contribute to the following 433 

generation and the populations is more likely to go extinct (Chevin et al. 2013). In other words, if phenotypic 434 

variance is biased towards a direction in multivariate phenotype that is different to genetic variance, then it 435 

will make adaptation difficult because even if there is substantial genetic variation in the direction of 436 

selection, only a small fraction of the population would possess the beneficial alleles and adaptation will be 437 

difficult. Comparing genetic and phenotypic variance with the direction of selection using quantitative 438 

genetics in reciprocal transplant experiments can therefore identify whether evolutionary rescue in novel 439 

environments will be sufficiently rapid to avoid extinction. Such experiments can also be used to predict 440 

evolutionary trajectories during adaptation to novel environments by identifying whether evolutionary rescue 441 

favours adaptation towards the phenotype of species native to the novel environment, or whether adaptation 442 
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favours a different phenotypic optimum. 443 

Although we show that G×E can shift the G-matrix in response to novel environments, whether such shifts 444 

can help to promote evolutionary rescue requires estimates of selection and cross-generational selection 445 

experiments. A bottleneck event that occurs during the colonisation of (or exposure to) novel environments 446 

reduces population size, which can create instability in G (Arnold et al. 2008). Evolutionary rescue can only 447 

occur in small populations if adaptive alleles increase in frequency rapidly enough to allow adaptation before 448 

extinction occurs. Small population sizes can have important consequences for genetic variation by making 449 

G unstable (Jones et al. 2003). Rapid changes to the orientation and size of G can occur when rare alleles 450 

held at mutation-selection balance readily increase in frequency (Jones et al. 2003). If such alleles underlie 451 

G×E interactions that have low benefit in the native environments, but increase fitness in novel environments 452 

(Walter et al. 2020), then the G×E effects of new mutations (Roles et al. 2016) or rare/hidden variants 453 

(Schlichting 2008; Brennan et al. 2019) could facilitate evolutionary rescue. It is then likely that mutation 454 

will determine whether genetic constraints to rapid adaptation can be overcome for small populations. If 455 

pleiotropic mutations that provide beneficial genetic variation in the direction of selection arise readily, then 456 

the orientation of G can change rapidly for small populations, reducing the constraints to adaptation and 457 

making evolutionary rescue more likely (Arnold et al. 2008). Future studies should therefore determine the 458 

effect of mutation accumulation on G×E and the response of G to novel environments. 459 
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