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Abstract  8 
Proteins are the building blocks for almost all the functions in cells. Understanding the molecular 9 
evolution of proteins and the forces that shape protein evolution is an essential step in 10 
understanding the basis of function and evolution. Previous studies have shown that adaptation 11 
occurs frequently at the protein surface, such as in genes involved in host-pathogen 12 
interactions. However, it remains unclear whether adaptive sites are distributed randomly or at 13 
regions that are associated with particular structural or functional characteristics across the 14 
genome, since many of the proteins lack structural or functional annotations. Here, we seek to 15 
tackle this question by combining large-scale bioinformatic prediction, structural analysis, 16 
phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. 17 
By estimating and comparing the rate of adaptive substitutions at protein and residue level, we 18 
showed that adaptation is more relevant to function-related rather than structure-related 19 
properties. Among the function-related properties, we found that molecular interactions in 20 
proteins contribute to adaptive evolution, and putative binding residues exhibit higher rates of 21 
adaptation. We observed that physical interactions might play a role in the co-adaptation of fast-22 
adaptive proteins. We found that strongly differentiated amino acids in protein coding genes are 23 
mostly adaptive, which may contribute to the long-term adaptive evolution. Our results suggest 24 
important roles of intermolecular interactions and co-adaptation in the adaptive evolution of 25 
proteins both at the species and population levels. 26 
  27 

Introduction 28 
Natural selection plays an important role in molecular evolution of protein sequences. Recent 29 
advances in genome sequencing and reliable inference methods at both phylogenetic and 30 
population levels have enabled fast and robust estimation of evolutionary rates and adaptation 31 
driven by natural selection. In addition, the increased availabilities of structural and functional 32 
data of proteins have made it possible to study how structural and functional constraints affect 33 
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protein sequence evolution and adaptation. It is now well established that different proteins and 34 
different sites within a protein have varying rates of evolution and adaptation due to both 35 
structural and functional constraints (Echave et al., 2016; Kosiol et al., 2008; Lindblad-Toh et al., 36 
2011; Zhang and Yang, 2015). For example, genes that are highly expressed or perform 37 
essential functions are under strong purifying selection and tend to evolve slowly (Drummond et 38 
al., 2005; Moutinho et al., 2019; Pál et al., 2001; Zhang and He, 2005; Zhang and Yang, 2015); 39 
genes involved in host-pathogen interactions, e.g., immune responses and antivirus responses, 40 
show exceptionally high rates of adaptive changes (Enard et al., 2016; Nielsen et al., 2005; 41 
Obbard et al., 2009; Palmer et al., 2018; Sackton et al., 2007; Sironi et al., 2015; Uricchio et al., 42 
2019); and residues that are intrinsically disordered or at the protein surface are fast evolving 43 
and has been proved to be hotspots of adaptive evolution (Afanasyeva et al., 2018; Goldman et 44 
al., 1998; Lin et al., 2007; Moutinho et al., 2019; Ramsey et al., 2011). More recently, 45 
Slodkowicz & Goldman (Slodkowicz and Goldman, 2020) employed genomic-scale integrated 46 
structural and phylogenetic evolutionary analysis in mammals and showed that positively 47 
selected residues are clustered near ligand binding sites, especially in proteins that are 48 
associated with immune responses and xenobiotic metabolism. 49 

Although evidence have shown that adaptation is more likely to occur at intrinsically 50 
disordered regions and clustered at the surface of proteins, the functional properties of 51 
adaptation in the genomic scale remains unclear. Moreover, due to lack of structural and 52 
functional information of many proteins in the genome, the underlying mechanism derived from 53 
current studies might be incomplete. Here, we systematically investigated the evolution and 54 
adaptation of protein-coding genes in Drosophila melanogaster by comparing it to its closely 55 
related species, in order to distinguish the main factors that impact the evolution and adaption at 56 
the protein-coding level. We applied large-scale bioinformatic and structural analysis to obtain 57 
structural and functional properties of proteins. We then classified residues into different 58 
structural and functional sites. By comparing rates of sequence evolution and adaptation 59 
between different proteins and different sites, we were able to locate hotspots of adaptation at 60 
genome scale. We showed that, for D. melanogaster proteins, adaptation is more sensitive to 61 
functional properties rather than structural ones. Interestingly, we found that putative binding 62 
regions including allosteric sites at protein surface show higher rates of adaptation than other 63 
sites. For proteins that are under fast-adaptive evolution, we showed that they tend to interact 64 
with each other more frequently than random expectations and are often associated with 65 
reproduction, immunity, and environmental information processing in D. melanogaster. In 66 
addition, we showed that interacting proteins in D. melanogaster might undergo co-adaptive 67 
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evolution. Furthermore, we hypothesize that molecular interactions or physical interactions 68 
might be an important mechanism that contribute to the adaptive and co-adaptive evolution in D. 69 
melanogaster genome. At last, we showed that the accumulation of short-term adaptation to 70 
local environments could be a possible genetic mechanism that contribute to long-term adaptive 71 
evolution. 72 
 73 

Results 74 

Impact of gene properties on evolution of protein-coding genes in D. melanogaster 75 
To uncover the main factors that impact the evolutionary rates of genes, we analyzed 13528 76 
protein-coding genes in D. melanogaster using genome data from melanogaster subgroup 77 
species and D. melanogaster population genomics data from 205 inbred lines from 78 
Drosophila Genetic Reference Panel, Freeze 2.0, DGRP2 (Huang et al., 2014). We applied a 79 
maximum likelihood method (Yang, 2007) to compute dN/dS ratio (ω) using the protein-coding 80 
sequences of five closely related melanogaster subgroup species (D. melanogaster, D. 81 
simulans, D. sechellia, D. yakuba and D. erecta). We estimated the proportions of adaptive 82 
changes (α) in each gene by applying an extension of MK test named asymptotic MK (Messer 83 
and Petrov, 2013; Uricchio et al., 2019) using D. simulans as outgroup. We then calculated the 84 
rate of adaptive changes (ωa) of each gene by multiplying ω to α (ωa = αω) (Moutinho et al., 85 
2019) using D. yakuba as the outgroup species (See methods). The rate of nonadaptive 86 
changes can be further calculated by ωna=ω-ωa. Finally, we successfully assigned ω to 12118 87 
protein coding genes and ωa and ωna to 7192 genes.  88 

For each of D. melanogaster genes subjecting the same pipeline of analysis, we further 89 
obtained 17 different structural or functional properties (see Methods), which can be further 90 
divided into two categories: structure-related properties and function-related properties. 91 
Specifically, structure-related properties include ratio of secondary structures (helix ratio, sheet 92 
ratio, helix+sheet ratio, coil ratio), intrinsic structural disorder (ISD), relative solvent accessibility 93 
(RSA); while function-related properties include gene pseudo-age, protein length, number of 94 
protein-protein interactions (PPI numbers), ratio of protein-binding sites (PPI-site ratio), ratio of 95 
DNA-binding sites (DNA-site ratio) and gene expression patterns such as male expression level, 96 
female expression level, mean expression level, male specificity and tissue specificity. The 97 
properties along with gene-specific protein evolution (ω, ωa and ωna) are available in 98 
supplementary file S1. 99 

Molecular interactions contribute to the variations of protein sequence evolution 100 
and adaptation. In order to identify the determinants that drive protein evolution (ω, ωa and 101 
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ωna), we calculated the Pearson’s correlations of ω, ωa and ωna with all the structure- and 102 
function-related properties. The correlation coefficient (r) and corresponding p-values (p) of 103 
each of the properties were listed in Table 1. Interestingly, we observed that for structure-related 104 
properties (secondary structure ratios, ISD, and RSA), variation of ω is dominated by 105 
nonadaptive changes (ωna) (Figure S1). Taking RSA as an example, we observed that RSA 106 
strongly correlates with both ω (r=0.16, p=1e-73) and ωna (r=0.15, p=3e-35), while weakly 107 
correlates with ωa (r=0.06, p=1e-6). These correlations suggest that, under the constraints of 108 
structure-related properties, relaxation of purifying selection may play a more important role in 109 
determine protein evolution. These are in line with previous studies that proteins with less 110 
structural constraints, i.e. those harboring more disordered, exposed sites display faster 111 
evolutionary and nonadaptive evolutionary rate (Afanasyeva et al., 2018; Moutinho et al., 2019)  112 

However, for function-related properties (gene pseudo-age, protein length, PPI number, 113 
PPI-site ratio, DNA-site ratio and gene expression patterns), the importance of ωa in shaping 114 
protein evolution begin to emerge (Figure S1). For example, when considering tissue specificity, 115 
the correlation efficient (r) of ω is 0.30 (p=2e-205), while r of ωa and ωna are 0.16 (p=3e-35) and 116 
0.17 (p=2e-42), respectively. In such cases, the correlations of ωa and ωna almost contributed 117 
equally to the variation of protein sequence evolutionary rates, ω. Interestingly, among the 118 
function-related properties, we found that molecular interactions, i.e., protein interactions, 119 
strongly positively correlates with ω, ωa and ωna (Table 1). We also noticed that for molecular 120 
interactions, compared to other function-related properties, variations of ωa contributes slightly 121 
to variations of ω. This could be a result of intercorrelations of molecular interactions and ISD or 122 
RSA (Table S1), since disordered regions and exposed regions are often responsible for 123 
interacting with other molecules (Keskin et al., 2008; Van Der Lee et al., 2014). These results 124 
highlight the non-neglected contributions of functional constraints, including molecular 125 
interactions, on the adaptive evolution of protein-coding sequence. 126 

Complex correlations of protein length and male expression level with protein 127 
evolutionary rates. To better clarify and visualize the correlations of ω, ωa, and ωna with gene 128 
properties in a refined fashion, we divided D. melanogaster genes into 15 groups according to 129 
the ascending orders of ω values and compared these properties of different gene groups, while 130 
ensuring that each gene group contains the same total number of amino acids (Figure S2). 131 
Overall, for most of the properties being investigated, we observed similar correlations as shown 132 
in Table 1. For example, fast evolving genes are relatively young, short, lowly expressed, male 133 
or tissue specific, abundant of disordered, exposed residues, excluded in protein-protein 134 
network center hubs, and abundant of protein and DNA binding sites.  135 
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In contrast to previous observations, we found complex (nonlinear) correlations of ω 136 
gene groups with protein length and gene expression levels (Figure 1). For protein length, our 137 
Pearson correlation analysis (Table 1) and a number of previous studies have suggested a 138 
strong negative correlations with ω (Lipman et al., 2002; Moutinho et al., 2019). However, we 139 
observed that some proteins with the slowest evolutionary rates, i.e. with the smallest ω values, 140 
are significantly shorter than other gene groups with intermediate evolutionary rates (Fig. 1A). 141 
These include highly conserved genes such as eIF1A (ω=0.0001,148 a.a), rala (ω=0.0001, 201 142 
a.a.), ctp (ω=0.0001, 89 a.a.), and Mlc-c (ω=0.0001, 153 a.a.).  143 

Similar complex correlations were also observed in male expression level and mean 144 
expression level (Fig. 1BC). We found that, when checking male expression level and mean 145 
expression level, the gene group that shows the largest mean ω has higher expression than 146 
those with intermediate ω. Such U-shape correlations were not observed in female expression 147 
levels. Although protein length and mean expression levels of genes are known to be strongly 148 
correlated with protein evolutionary rates as listed in Table 1 and also in other references 149 
(Drummond et al., 2005; Lipman et al., 2002; Zhang and Yang, 2015), fast evolving genes can 150 
also be moderately or highly expressed, especially in male D. melanogaster. For example, 151 
many seminal fluid proteins show high ω values and are highly expressed, such as Sfp60F 152 
(ω=0.77, 82 a.a.), EbpII (ω=0.68, 66 a.a), Acp36DE (ω=0.68, 912 a.a.,), and Dup99B (ω=0.63, 153 
54 a.a.). These proteins evolve at very fast rates (Begun and Lindfors, 2005; Swanson et al., 154 
2001), contain various range of amino acids (54 in Dup99B to 912 in Acp36DE), and are 155 
moderately or highly expressed in male D. melanogaster (TPM ranging from 440 for Acp36DE 156 
to 3189 for Sfp60F), lowly expressed in female (TPM all around 1, presumably in spermatheca). 157 
We listed all the genes and protein length and expression levels in each ω gene group, which 158 
can be found in supplementary file S2.  159 

Since tissue specificity and male specificity both strongly correlates with ω, ωa, and ωna 160 
(Table 1), we asked whether male specificity would be a redundant property compared to tissue 161 
specificity to indicate protein evolution due to the complex correlations of male expression 162 
levels. To answer this question, we classified D. melanogaster genes into 15 groups according 163 
to ascending values of male specificity. We then did similar classification to classify all the 164 
genes into 15 groups according to ascending values of tissue specificity (Figure 1). As 165 
expected, we found that tissue specificity positively correlates with ω, ωa and ωna (Fig. S3). 166 
However, we observed complex correlations for male specificity gene groups. Specifically, gene 167 
group with the lowest male specificity show significantly higher ω, ωa and ωna than its following 168 
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gene group (Fig. S3). This could be a result of fast evolving female-biased genes (Yang et al., 169 
2016) included in this gene group. 170 
 171 
Putative molecular interaction sites are hotspots for protein adaptive evolution 172 
Having established that molecular interactions positively correlates with the adaptation of 173 
protein sequence, we next investigate whether residues involved in molecular interactions are 174 
targets for adaptive evolution. To tackle this question, we predicted protein-protein interaction 175 
sites (PPI-sites) and DNA binding sites (DNA-sites) for each of D. melanogaster protein 176 
sequence (see Methods). In addition, we characterized allosteric residues as surface and 177 
interior critical residues with STRESS model (Clarke et al., 2016) for all the structural models.  178 
We also extracted putative binding sites from STRESS Monte Carlo (MC) simulations. We 179 
calculated ω, ωa and ωna for residues in each of the putative molecular interaction category. 180 
Strikingly, we observed that residues involved in protein-protein interactions, DNA binding and 181 
ligand binding exhibited higher rates of adaptive evolution compared to their corresponding null 182 
sites (Fig. 2A-C). In addition, allosteric residues at protein surface showed higher adaptation 183 
rates than allosteric residues at protein interior or residues that are not involved in ligand binding 184 
from STRESS simulations (Fig. 2C).  185 

Since we observed significant positive intercorrelations between PPI and DNA binding 186 
with ISD and RSA (Table S1), we next asked whether the increase of ωa in protein-protein 187 
interactions sites or DNA binding sites was caused by the increase of disorder or site exposure. 188 
We calculated and compared ω, ωa and ωna for putative PPI and DNA binding sites with 189 
different levels of ISD or RSA. Remarkably, we found that ωa of these putative binding sites 190 
remains similar among different levels of ISD or RSA (Fig. S4, left column). The results suggest 191 
that putative PPI or DNA binding events in proteins can result in elevated adaptation rates 192 
regardless their structural disorder or site exposure. While for residues that are not associated 193 
with putative PPI or DNA binding, we also observed increase in ωa when increasing ISD or RSA 194 
(Fig. S4, right column), which could be the result of some other yet unknown underlying 195 
mechanisms or inaccuracy of putative binding sites predictions. 196 

In order to gain better understanding of adaptation in molecular interaction sites, we 197 
further visualized positive selections that are associated with molecular interactions. We first 198 
investigated whether adaptive evolution is associated with particular protein structures or protein 199 
families. To do this, we looked into fast-adaptive proteins with the largest ~15% rates of 200 
adaptation (ωa > 0.15) that are linked to high quality structural models. Interestingly, among 201 
these proteins, we found 45 enriched as trypsin-like cysteine/serine peptidase domain and 17 202 
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7TM chemoreceptors, suggesting widespread adaptive evolution acting on these protein 203 
families or protein domains in D. melanogaster (Table S2). Many of the 7TM chemoreceptors 204 
are olfactory and gustatory genes, which shows adaptive evolution in various species such as 205 
Drosophila and mosquito (Hill et al., 2002; Lawniczak and Begun, 2007; McBride, 2007; Wu et 206 
al., 2009). In addition to these two protein families, recurrent positive selections acting on some 207 
other fast-adaptive proteins were identified in previous studies in Drosophila and mammals, and 208 
the possible adaptive evolution mechanisms have been linked to exogenous ligand binding, for 209 
example, serine protease inhibitors (serpin), Toll-like receptor 4 (TLR-4), and cytochrome P450 210 
(Jiggins and Kim, 2007; Slodkowicz and Goldman, 2020). 211 

In order to visualize the link between adaptive evolution and molecular interactions in the 212 
two protein families with frequent adaptive evolution, we showed significant positive selections 213 
and molecular interactions in two representatives: CG10232 and Or67a, each for trypsin-like 214 
cysteine/serine peptidase domain and 7TM chemoreceptors, respectively. We observed that in 215 
both cases, positively selected sites highly overlapped with predicted or inferred binding pockets 216 
(Fig. 2D-E). Specifically, in CG10232, we found clusters of positive selected sites around NAG 217 
binding sites that are inferred from a crystal structure of serine protease (PDB code: 2XXL) (Fig. 218 
2D), while in Or67a, positively selected sites expand around the putative odorant binding 219 
channel formed by helices S1-S6 in extracellular regions (Butterwick et al., 2018) (Fig. 2E).  220 

Except for these examples that are associated with exogenous ligand or exogenous 221 
peptide binding, we also identified two previously not described examples where adaptive 222 
evolution might be linked to endogenous protein binding: Spaztle (spz, Fig. 2F) and Cul6 (Fig. 223 
2G). Spaztle can bind to Toll-like receptors (TLR) and trigger humoral innate immune response. 224 
We built the missing loop in Spaztle in the crystal structure of Toll/Spaztle complex (PDB code 225 
4BV4) according to the dimeric crystal structure of Spaztle (PDB code 3E07). In this complex 226 
structural model, we observed several positively selected sites in Toll-4/Spaztle interfaces (Fig. 227 
2F). Cul6, another example, is a protein in cullins family in D. melanogaster. The cullins protein 228 
family are known as scaffold proteins that assemble multi-subunit Cullin-RING E3 ubiquitin 229 
ligase by forming SCF complex with F box and RING-box (Rbx) proteins (Zheng et al., 2002). 230 
We constructed the putative Cul6 contained SCF complex by superimposition to the crystal 231 
structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex (Zheng et al., 2002). In 232 
the structural model, we observed positive selected sites in Cul6 clustered around the binding 233 
sites of RING-box protein, Rbx1, and F-box protein, Skp1 (Fig. 2G). 234 
 235 
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Frequent adaptive evolution and co-adaptative evolution in genes involved in 236 
reproduction, immune system and environmental information processing  237 
To find out whether specific biological functions were associated with fast-adaptive genes, we 238 
applied DAVID Go analysis with genes that have largest ~15% rates of adaptation (ωa > 0.15). 239 
The significant Go terms are frequently linked to serine-type endopeptidase activity, 240 
reproduction, protein lysis, chemosensory and other related biological functions (Table S3). As 241 
these fast-adaptive genes tend to be enriched in similar biological functions, we asked whether 242 
these genes are evolved co-adaptively, i.e., whether these proteins are interacting with each 243 
other frequently. To test this possibility, we obtained PPI of D. melanogaster from STRING 244 
database (Szklarczyk et al., 2019) and analyzed protein-protein interactions among fast-245 
adaptive proteins. We found that fast-adaptive proteins tend to interact with each other more 246 
frequently than expected (PPI enrichment p-value < 1.0e-16). In the PPI network of fast-247 
adaptive proteins, we observed 7 strongly connected sub-clusters with at least 5 members (Fig. 248 
3A, Table S4). Proteins in these sub-clusters are enriched in biological processes such as 249 
reproduction, immune response, defense response to bacterium and virus, RNA interference, 250 
chitin metabolic, etc., which are in line with the Go analysis of fast-adaptive genes (Table S5-251 
S10). 252 

We next asked whether co-adaptation plays a role in the adaptive evolution of interacting 253 
proteins to a broader extend, including both fast- and slow-adaptive proteins. To address this 254 
question, we analyzed and compared adaptation rates of all PPIs available in STRING database 255 
with high confidence in D. melanogaster and we found that protein partners of fast-adaptive 256 
proteins (ωa>0.15) have significantly larger maximum/average ωa compared to slow-adaptive 257 
proteins (Figure 4). We further analyzed and visualized adaptive evolutionary rates of proteins in 258 
PPI networks of 9 different biological pathways extracted from KEGG pathways, including 259 
immune system, xenobiotics biodegradation, response to environment, aging and development, 260 
genetic information processing, sensory system, transport and catabolism, cell growth and 261 
death and metabolism. We observed that, in these PPI networks, proteins with relatively large 262 
ωa tend to interact with each other (Figure S5A, S5B). We also noticed that, for pathways that 263 
are previously known as adaptation-hotspots, e.g., immune system, fast-adaptive proteins can 264 
act as central nodes and are co-adaptively evolved with other fast-adaptive proteins (Figure 265 
S5C). While in pathways such as transport and catabolism, fast-adaptive proteins are mainly at 266 
PPI periphery. In line with these findings, we found that ωa are larger in pathways that harbor 267 
fast-adaptive proteins as central nodes than other pathways (Figure S6).  268 
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Physical interactions contribute to co-adaptation of fast-adaptive genes. Having 269 
established that molecular interactions contribute to adaptive evolution of protein sequence, we 270 
then investigated whether these physical molecular interactions could drive protein-protein co-271 
adaptation. To do this, we looked into interacting fast-adaptive protein pairs that are associated 272 
known or inferred complex structural models. For inferred complex structural models, we 273 
superimposed the structural models of the pair of proteins onto their high resolution homologous 274 
complex structures. Here we observed and illustrated co-adaptation at PPI interface in two 275 
examples: Toll-4/Spatzle and Spn28Db/CG18563 (Figure 3).  276 
Toll-4/Spatzle. Toll-4 is a member of toll-like receptors. Previous studies have shown strong 277 
evidence of adaptive evolution of Toll-4 in Drosophila and mammals (Levin and Malik, 2017; 278 
Slodkowicz and Goldman, 2020). Toll-4 can bind to Spatzle and trigger further innate immune 279 
responses with high confidence (inferred from STRING database). In the previous section, we 280 
showed that several positively selected sites in Spatzle overlap with Toll-Spatzle interfaces. 281 
Here, we further showed that, in Toll-4, considerable number of significant positively selected 282 
sites were located at interface for Spatzle (Fig. 3B), which is in line with a previous study of Toll-283 
4 in D. willistoni (Levin and Malik, 2017). 284 
Spn28Db/CG18563. Spn28Db is one of the serine protease inhibitors in D. melanogaster that 285 
are expressed in male accessory glands, while CG18563 belongs to the protein family of 286 
trypsin-like cysteine/serine peptidase domain. The interactions between the two proteins were 287 
predicted with high confidence from STRING database, and the molecular interactions can be 288 
inferred from existing crystal structure of serpin and bacteria protease complex (PDB code 289 
1EZX).  We observed many positive selected sites at the molecular interface between the two 290 
proteins (Fig. 3C), suggesting that physical interactions might play a role in the co-adaptation of 291 
the two proteins. 292 
 293 
Most clinally differentiated SNPs in protein-coding genes are adaptive  294 
To find out the relations between short-term adaptation to local environments and long-term 295 
adaptive evolution, we extracted residues with significant FST SNPs from clinal variations 296 
(Svetec et al., 2016). We then computed evolutionary rates (ω), adaptation rates (ωa) and non-297 
adaptation rates (ωna) of these residues as in previous section. We observed that these 298 
residues have much higher ratio of adaptation rates over non-adaptation rates than genome-299 
wide random expectations (Figure 5), suggesting that these residues have higher proportions of 300 
adaptive changes, and that they can be hotspots for adaptive evolution. To further characterize 301 
structural and functional properties of short-term genetic variations, we mapped significant 302 
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nonsynonymous FST residues to different structural and functional characteristics, such as ISD, 303 
RSA, PPI-sites, DNA-sites and ligand-binding sites. We found that these nonsynonymous SNPs 304 
follow the patterns of adaptive changes. For example, they were enriched disordered regions 305 
and protein surfaces, and were significantly more likely to be involved in protein-protein 306 
interactions and ligand-binding than expectation (Table S11-S15).   307 
 308 

Discussion 309 

In this study, we systematically studied the impact of structure- and function-related gene 310 
properties on protein sequence evolution and adaptation in D. melanogaster genome. We found 311 
that, compared to protein structure-related properties, such as intrinsic structural disorder (ISD) 312 
and relative solvent accessibility (RSA), function-related properties, such as tissue specificity 313 
and male specificity, contribute more extensively to protein sequence adaptive evolution. 314 
Especially, we noticed that molecular interactions in proteins contribute to the variation of 315 
protein sequence adaptive evolution. In line with this result, we detected that molecular 316 
interaction sites are hotspots for adaptative evolution. We confirmed that proteins that are fast 317 
adaptive are enriched in GO terms that are associated reproduction, immunity and 318 
environmental information processing. Furthermore, we revealed that fast-adaptive proteins 319 
tend to interact with each other frequently and protein partners of these fast-adaptive proteins 320 
tend to have higher adaptation rates, suggesting that co-adaptive evolution might be common in 321 
D. melanogaster. By looking at interacting fast-adaptive proteins, we further demonstrated that 322 
physical interactions may contribute to the mechanisms of co-adaptative evolution of fast-323 
adaptive proteins. 324 

Extensive studies have been conducted to uncover the main drivers that govern protein 325 
sequence evolutionary rate (Zhang and Yang, 2015). Gene expression level was proved to be a 326 
major determinant (Zhang and Yang, 2015) through mechanisms such as the pressure for 327 
translational robustness, i.e., robustness to translational missense errors (Drummond et al., 328 
2005). Here, we showed that caveat exists when we looked at gene expression levels in male 329 
D. melanogaster. Previous studies have revealed that male biased or female biased genes can 330 
be fast evolving (Yang et al., 2016). On the other hand, many male biased genes can be highly 331 
expressed in testis, which results in a complex correlation between protein sequence 332 
evolutionary rate and male expression level or even mean expression level of D. melanogaster. 333 
The unique evolutionary property of these male biased or specific genes could be caused by the 334 
unique transcriptional scanning mechanism in testis (Xia et al., 2020). We propose that tissue 335 
specificity might be a better quantity when considering the impact of gene expression profile on 336 
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protein sequence evolution in D. melanogaster. In addition to male expression level, a similar 337 
complex correlation was observed for protein length. It has been the notion that short proteins 338 
tend to evolve faster than long proteins, which may be biologically relevant or byproduct of other 339 
factors such as selection on buried and exposed sites (Moutinho et al., 2019). Here, we 340 
demonstrated that, in D. melanogaster, although protein length is strongly negatively correlated 341 
with protein sequence evolutionary rate, genes that have the slowest evolutionary rates tend to 342 
be relatively short. This could be caused by the fact that under essential functional constraint, 343 
genes can undergo strong purifying selections, while essential genes such as secreted proteins 344 
are constrained to be smaller, and that essential genes could be shorter than other genes (Chen 345 
et al., 2020). 346 

It has been recognized that protein surface and intrinsic disorder regions are frequent 347 
targets for adaptive evolution and contribute to the variations of protein sequence adaptive 348 
evolution (Afanasyeva et al., 2018; Moutinho et al., 2019). However, the detailed mechanisms 349 
underlying these observations remains unclear. One possible explanation would be that these 350 
regions are frequently linked to intermolecular interactions (Afanasyeva et al., 2018; Moutinho et 351 
al., 2019). For example, Moutinho et al hypothesized that molecular interactions involved in 352 
host-pathogen coevolution were the major driver of protein adaptation (Moutinho et al., 2019). 353 
Here, we further identified that proportions of possible molecular interaction sites inside proteins 354 
contribute to the variations of protein sequence adaptive evolution and that these molecular 355 
interaction sites or regulatory sites at protein surface can be hotspots of protein adaptation. 356 
Indeed, some specific molecular interactions have been linked to adaptive evolution in several 357 
case studies (Bachtrog, 2008; Hughes and Nei, 1988; Levin and Malik, 2017; Schott et al., 358 
2014) and large-scale studies based on proteins with high quality structural models (Slodkowicz 359 
and Goldman, 2020). In the latter study, the authors showed that positive selections in 360 
mammals tend to cluster closer to binding sites of exogenous ligands than expected by chance 361 
(Slodkowicz and Goldman, 2020), suggesting an important role of function important regions in 362 
adaptive evolution. Here, we extend the conclusion to D. melanogaster genome, including 363 
proteins with or without high resolution structural models. We also showed that except for 364 
exogenous ligands, endogenous ligands might also contribution to adaptive evolution, while the 365 
latter might explain why interacting proteins tend to evolve co-adaptively.  366 

Notably, previous studies have revealed that multi-interface proteins tend to be evolving 367 
more slowly than single-interface proteins (Kim et al., 2006), which seems to be contradictory to 368 
our results that proteins with more interaction sites evolve faster and have faster adaptation 369 
rates. Here, we argue that, in our study, we used sequence profile to predict molecular 370 
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interaction sites in proteins at a genomic scale, rather than only looking into proteins with high 371 
resolution structures. In this way, we may capture many weak or transient interactions, which 372 
are thought to be evolving faster than obligate and conserved interactions (Mintseris and Weng, 373 
2005). Meanwhile, we did not exclude intrinsic disordered regions (IDR) or intrinsic disordered 374 
proteins (IDP) in our study, which are widespread in D. melanogaster genome. It has been 375 
suggested that IDR/IDP tend to evolve fast due to lack of structural restraints (Echave et al., 376 
2016). In the functional aspect, IDR/IDP are thought to be promiscuous binders through many 377 
multiple binding mechanisms, including forming static, semi-static, and fuzzy or dynamic 378 
complexes (Uversky, 2019), suggesting that the evolution of IDR/IDP cannot be explained 379 
merely by the lack of structural restraints. Actually, IDP and IDR in human genome were found 380 
to be undergoing extensive adaptive evolution (Afanasyeva et al., 2018). At last, it has been 381 
recognized that, except for allosteric regulations, encounter complexes (Gabdoulline and Wade, 382 
1999) might also play an important role in mediating intermolecular interactions, such as 383 
protein-protein association (Tang et al., 2006) and protein-ligand binding (Re et al., 2019). Since 384 
encounter residues that are responsible for encounter complexes do not reside in conserved 385 
binding interfaces, these residues could be under relaxed purifying selections or even positive 386 
selections, which could be another yet-to-identify mechanism that contribute to protein 387 
sequence adaptive evolution.  388 

In consistent with previous studies in D. melanogaster (Begun and Lindfors, 2005; 389 
Begun and Whitley, 2000; Lazzaro et al., 2004), we showed that fast-adaptive proteins are 390 
enriched in molecular functions such as reproduction, immunity and environmental information 391 
processing. We further demonstrated that fast-adaptive proteins tend to interact with each other 392 
more frequently than random expectations, suggesting co-adaptation might be common among 393 
fast-adaptive proteins. Mechanisms that contribute to the co-adaptation could be: (1) interacting 394 
fast-adaptive proteins are often enriched in similar molecular functions and under similar 395 
selective pressure; (2) interacting fast-adaptive undergo co-evolution through physical 396 
interactions. In this study we showed two examples that adaptive evolution could occur at 397 
protein-protein interface, which suggest that physical interactions could contribute to the co-398 
adaptation of fast-adaptive proteins in D. melanogaster. Moreover, we showed that co-399 
adaptation might exist to a broader extend rather than only among fast-adaptive proteins. 400 
Specifically, proteins that interact with fast-adaptive proteins tend to have higher adaptation 401 
rates. Since molecular interactions contribute to adaptive evolution, it is reasonable to 402 
hypothesize that co-adaptation at this broader extend could be regulated by these interactions. 403 
Actually, it has been suggested that interacting proteins tend to have similar evolutionary rates 404 
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and the possible mechanism would be the co-evolution of physical interactions (Pazos and 405 
Valencia, 2008). 406 

It has been suggested that populations in different local environments can have genetic 407 
variances that result in local adaptations. In this study, we found that loci with significant genetic 408 
variance among populations harbor higher proportions of long-term adaptive changes and these 409 
loci follow similar patterns as adaptive changes, i.e. they are enriched in disordered regions, 410 
protein surfaces, and functionally important regions. These results suggest that population 411 
differentiation of protein-coding genes can be an important basis for long-term adaptive 412 
evolution. Importantly, our results indicate that most of the clinal amino-acid changes are 413 
adaptive, suggesting that non-selective forces play a non-essential role in the SNPs that show 414 
strong geographic differences. Our results also support a large effect of spatially varying 415 
selection on protein sequence and structures (Storz and Kelly, 2008).  416 

It should be noted that studies at the genomic scale that aim to uncover the function- or 417 
structure-related constraints imposed on protein sequence evolution and adaptation share 418 
similar limitations that for most of the proteins or residues, structural or functional information 419 
would be incomplete or even missing. Thus, in this study, we used highly accurate neural-420 
network based tools to predict molecular interactions, secondary structures, intrinsic structural 421 
disorder, relative solvent accessibility for each of the protein in D. melanogaster genome. In this 422 
way we were able to identify key factors that impact protein sequence evolution and adaptation 423 
in a less accurate but rather systematic fashion. We hope that with the availability of more and 424 
more curated structural, functional information and complex structural models of proteins in the 425 
near future, we will be able to uncover the precise role of molecular interactions in protein 426 
sequence adaptive evolution. 427 

 428 
Material and Methods 429 
dN/dS ratio (ω). We used a maximum likelihood method to infer dN/dS ratio (ω) of D. 430 
melanogaster protein-coding genes using the genome sequences of five species in 431 
melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). 432 
The protein-coding sequences were extracted from the alignments of 26 insects, which were 433 
obtained from UCSC Genome Browser (http://hgdownload.soe.ucsc.edu/downloads.html). The 434 
sequences were further processed by GeneWise (Birney et al., 2004) to remove possible 435 
insertions and deletions using the longest isoforms of the corresponding D. melanogaster 436 
protein sequences as references (FlyBase version r6.15) (Thurmond et al., 2019). The 437 
processed sequences were then realigned by PRANK -codon function (Löytynoja, 2014). We 438 
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used codeml in PAML (Yang, 2007) to compute gene-specific ω using M0 model. We removed 439 
sequences that have more than 15% of their nucleotides not aligned (gaps) to D. melanogaster 440 
genes in more than 2 species. To further avoid numeric errors and ensure reasonable 441 
estimations, we only retained relatively divergent sequences that are: (1) divergent with dS 442 
larger than 0.3, (2) less divergent with dS larger than 0.1 and dN smaller than 0.001 (dS>>dN). 443 
At last, there were 12118 genes in total passed all the criteria and were assigned gene specific 444 
ω, containing 6,538,872 amino acids. We also calculated site-specific ω by using likelihood ratio 445 
tests (LRT) comparing M7 model against M8 model (Yang et al., 2005). 446 
Rate of adaptive and nonadaptive changes. We recalled all SNPs of 205 inbred lines from 447 
the Drosophila Genetic Reference Panel (DGRP), Freeze 2.0 (Huang et al., 2014) 448 
(http://dgrp2.gnets.ncsu.edu). We then generated 410 alternative genomes using all monoallelic 449 
and bi-allelic SNP data sets. We extracted the coding sequences of D. melanogaster genes 450 
from the generated alternative genomes, removed all possible insertions and deletions using 451 
GeneWise (Birney et al., 2004) as described above. We then align all the coding sequences to 452 
their corresponding aligned CDS sequences using PRANK -codon function (Löytynoja, 2014). 453 
We removed polymorphisms segregating at frequencies smaller than 5% to reduce possible 454 
slightly deleterious mutations (Charlesworth and Eyre-Walker, 2008). In order to avoid possible 455 
effects of low divergence between D. simulans and D melanogaster (Keightley and Eyre-456 
Walker, 2012), we used D. yakuba as outgroup to estimate nonsynonymous polymorphisms 457 
(Pn), synonymous polymorphisms (Ps), nonsynonymous substitutions (Dn) and synonymous 458 
substitutions (Ds) by MK.pl (Begun et al., 2007; Langley et al., 2012). Similar as Begun et al. 459 
(Begun et al., 2007), we only analyzed genes with at least six variants for each of substitutions, 460 
polymorphisms, nonsynonymous changes and synonymous changes. We used an extension of 461 
MK test, asymptotic MK (Messer and Petrov, 2013; Uricchio et al., 2019), to estimate the 462 
proportions of adaptive changes (α). The rate of adaptive changes (ωa) was then calculated as 463 
ωa = ωα and the rate of non-adaptive changes as ωna = ω - ωa. Details of the asymptotic MK 464 
test were as following: 465 
(1) Classical McDonald–Kreitman test. According to Smith and Eyre-Walker (Smith and Eyre-466 
Walker, 2002), the proportions of adaptive changes for protein-coding genes can be calculated 467 
as following: 468 

𝛼 = 1 −
𝐷𝑠𝑃𝑛
𝐷𝑛𝑃𝑠

 469 

According to this equation, we could estimate the proportion of adaptive changes and carried 470 
out classical MK test by applying Fisher’s exact test. 471 
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(2) Asymptotic estimation of α. A known problem of the classical estimation of α above is the 472 
accumulation of slightly deleterious mutations at low frequencies. We therefore used an 473 
extension of MK test, asymptotic MK test approach (Messer and Petrov, 2013) to estimate the 474 
proportions of adaptive changes. As in original aMK, we defined α(x) as a function of derived 475 
allele frequency (x): 476 

𝛼(𝑥) = 1 −
𝐷𝑠𝑃𝑛(𝑥)
𝐷𝑛𝑃𝑠(𝑥)

 477 

where Pn(x) and Ps(x) are number of non-synonymous and synonymous polymorphisms at 478 
frequency x, respectively. However, the original approach may suffer from numeric errors when 479 
there were very few polymorphic sites, which is quite common in many of D. melanogaster 480 
genes. To make the estimations more robust while preserving the same asymptote, we further 481 
define Pn (x) and Ps(x) as total number of Pn and Ps above frequency x as described in 482 
Uricchio et al (Uricchio et al., 2019). We fitted α(x) to an exponential curve of α(x) ≈ exp(-bx)+c 483 
using lmfit (Newville et al., 2014) and determined the asymptotic value of α at the limit of x, 1.0. 484 
We then estimate the rate of adaptive changes (ωa) as  485 

𝜔! =
𝑁!/𝐿"
𝑑𝑆

=
𝑑𝑁!
𝑑𝑆

=
𝑑𝑁!
𝑑𝑁

∙
𝑑𝑁
𝑑𝑆

= 𝛼𝜔 486 

where Na is the number of adaptive changes and dNa=Na/LN is the number of adaptive changes 487 
per nonsynonymous site. Finally, we calculated the rate of nonadaptive changes (ωna) as 488 
ωna=ω-ωa. The final dataset contains 7192 protein-coding genes, with smallest ωa being 0.00 489 
and largest being 1.29.  490 
Structure-/function- related properties of D. melanogaster proteins. We obtained function-491 
related properties mentioned in main text as following. We derived D. melanogaster gene ages 492 
(Kondo et al., 2017; Zhang et al., 2010) for genes that are specific to Drosophila, and from 493 
GenTree (Shao et al., 2019) for genes that are beyond Drosophila clade. We then assigned a 494 
pseudo-age to each of the genes. Specifically, there are 11 age groups from “cellular 495 
organisms”, assigning to a pseudo age value of 0, to “melanogaster”, assigning a pseudo age 496 
value of 10. We downloaded D. melanogaster protein-protein interaction (PPI) from STRING 497 
database (Szklarczyk et al., 2019). A cut-off of combined score larger than 0.7 was used to 498 
retain high confident PPI for further analysis. We then used BSpred (Mukherjee and Zhang, 499 
2011) to predict protein-protein interaction (PPI) sites and DRNApred (Yan and Kurgan, 2017) 500 
to predict DNA binding sites. For each protein, we calculated ratios of protein interaction 501 
residues (PPI-site ratio) and ratios of DNA binding residues (DNA-site ratio) by dividing total 502 
predicted protein interaction sites and DNA binding sites over protein length, respectively. For 503 
structure-related properties, we used DeepCNF (Wang et al., 2016) to predict these properties 504 
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for each gene, including three-state secondary structures (helix, sheet, and coil), structural 505 
disorder, relative solvent accessibility (RSA). Further, we calculated the ratios of helix, sheet, 506 
helix+sheet, and coil residues of each gene from predicted secondary structures. For each 507 
gene, we computed intrinsic structural disorder (ISD) and relative solvent accessibility (RSA), as 508 
protein-length normalized summations of the probabilities of each residue being disorder and 509 
exposed, respectively. 510 
Gene expression patterns. We downloaded gene expression profile from FlyAtlas2 (Leader et 511 
al., 2018). We converted FPKM to TPM by normalizing FPKM against the summation of all 512 
FPKMs as following: 513 

TPM# =	
FPKM#
∑FPKM$

× 10% 514 

After TPM conversion, we only retained genes with expression level larger than 0.1 TPM for 515 
further analysis. We treated male and female whole-body TPM as male and female expression 516 
levels. We calculated mean expression level by averaging male and female TPM. We used 517 
following Z-score to describe male specificities of D. melanogaster genes: 518 

𝑧𝑠𝑐𝑜𝑟𝑒 = 	
𝑇𝑃𝑀(𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) − 𝑇𝑃𝑀(𝑓𝑒𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
I𝑠𝑑&(𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) + 𝑠𝑑&(𝑓𝑒𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

 519 

We calculated tissue specificities of genes using tau values (Yanai et al., 2005) based on the 520 
expression profiles of 27 different tissues. 521 

High quality 3D structures of D. melanogaster proteins. We downloaded high-quality 522 
structures or structural models of D. melanogaster proteins from protein data bank (PDB) 523 
(Burley et al., 2019), SWISS-MODEL Repository (Bienert et al., 2017), and MODBASE (Pieper 524 
et al., 2011), with descending priorities. For example, if there were 3D structures of a same 525 
protein or protein region in multiple databases, we first considered high-resolution structures 526 
from PDB; if no structures were found in PDB, we then considered SWISS-MODEL Repository; 527 
and at last from MODBASE. In addition, we used blastp (Camacho et al., 2009) to search 528 
homologs of each D. melanogaster protein against all PDB sequences with E-value threshold of 529 
0.001. We further carried out comparative structural modeling using RosettaCM (Song et al., 530 
2013) to model high-quality structural models of proteins or protein regions that were not 531 
available in PDB, SWISS-MODEL Repository and MODBASE. For each RosettaCM simulation, 532 
we used no more than 5 most significant hits from blastp search. For proteins that are in 533 
complex forms, we only extracted monomers for further analysis. At last, we obtained 14543 534 
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high quality structural models, corresponding to 11284 genes. These structural models contain 535 
2,691,913 unique amino acids, 41.2% of all the residues in genes that were assigned ω. 536 
Evolutionary rates of different structural/functional sites. We classified amino acids into 537 
different classes of structural/functional properties. Specifically, we classified three classes for 538 
both ISD and RSA according the probability of residues being disordered or exposed: ordered 539 
or buried (0.00 to 0.33), medium (0.33 to 0.67), disordered or exposed (0.67 to 1.00). For both 540 
PPI and DNA binding, we classified two classes: PPI-site or DNA-site (binding sites), None-PPI 541 
or None-DNA (corresponding null sites for PPI or DNA binding). For residues that have 3D 542 
structures, we used STRESS (Clarke et al., 2016) to predict putative ligand binding sites and 543 
allosteric sites from all the high-quality structures or structural models. The allosteric sites were 544 
further classified as surface critical or interior critical according to their locations. We then 545 
classified these residues into four groups: LIG (ligand binding sites), Surf. Crit. (surface critical 546 
sites), Interior Crit. (interior critical sites) and Others (other sites). For each of the site classes, 547 
we randomly sampled 1,00 sequences, each containing 10,000 amino acids. We computed ω, 548 
ωa, and ωna for the randomly sampled sequences similar as the steps described in the above 549 
sections. 550 
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 742 
Figure 1. Protein length (A), mean (B), male (C) and female expression (D) levels in each gene 743 
groups divided by ascending ω values. Values for each gene group and each gene property 744 
were computed through 1,000 bootstrapping steps. Obvious complex U-shaped correlations 745 
with ω were observed for protein length (A) and male expression level (C). 746 
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  748 
Figure 2. Adaptive evolution in molecular interaction sites. Protein-protein interaction sites (A), 749 
DNA binding sites (B) and putative ligand binding sites (C) show higher adaptation rates than 750 
none binding sites.  Examples of positive selection around molecular interaction sites in high 751 
quality structural models of CG10232 (D), Or67a (E), spz (F), and Cul6 (G). Except for spz 752 
(PDB code 3e07), the other proteins are obtained from SWISS model repository. Putative ligand 753 
binding pockets of CG10232 (D) and Or67a (E) are shown in blue spheres. Ligands including 754 
interacting proteins are shown in cyan or green: NAG of CG10232 in cyan (D), Toll receptor of 755 
spz in cyan (F), RING-box protein in cyan and F-box protein in green for Cul6 (G). The putative 756 
odorant binding channel of Or67a is highlighted in cyan circle (E). The ligand poses in (D, F and 757 
G) are obtained by superimposition from structure 2XXL, 4BV4 and 1LDK, respectively.  758 
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  761 
Figure 3. Co-adaptation of fast-adaptive proteins. (A) Sub-clusters of PPI networks of fast-762 
adaptive proteins. Only proteins with at least one partner were shown. Examples of molecular 763 
interactions that might regulate co-adaptation in fast-adaptive proteins: (B) Toll-4 (gray) and spz 764 
(orange, with green representing the other spz monomer), (C) Spn28Db (gray, serine protease 765 
inhibitor 28Db) and CG18563 (cyan, with Go term “serine-type endopeptidase activity”). A 766 
putative N-terminus (transparent beads) of Toll-4 were built by superimposition from 4LXR, 767 
since the N-terminus were missing in the structural model. Complex structural model of 768 
Spn28Db and CG18563 was inferred from 1EZX. 769 
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 771 
Figure 4. Co-adaptation of PPIs in D. melanogaster. For fast-adaptive proteins, adaptation rates 772 
of their partners (orange box plot) are significantly larger compared to slow adaptive proteins 773 
(blue box plot). Max ωa of protein partners are shown in (A and C) and averaged ωa, of protein 774 
partners are shown in (B and D). PPI from STRING with median confidence (combined score 775 
larger than 0.4) are shown in (A and B), and PPI with high confidence (combined score larger 776 
than 0.7) are shown in (C and D). 777 
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 782 
Figure 5. Adaptive evolution in FST SNPs. The significant SNPs at different FDR cutoffs all 783 
show much higher proportions of adaptation than genome-wide expectation.   784 
 785 
 786 
Table 1. Pearson correlation coefficients between ω, ωa and ωna and gene properties a 787 

Categories Properties ω ωa ωna 

Function-
related 
properties  

Gene age 0.55 (0) 0.34 (7e-154) 0.41 (2e-224) 
Protein length b -0.22 (2e-136) -0.13 (1e-25) -0.30 (2e-142) 
Mean expression b -0.21 (2e-109) -0.11 (2e-18) -0.11 (1e-18) 
Male expression b -0.06 (5e-10) 0.00 (8e-1) -0.03 (6e-2) 
Female expression 
b 

-0.29 (2e-205) -0.17 (2e-42) -0.16 (3e-35) 

Male specificity 0.21 (2e-104) 0.12 (3e-22) 0.10 (3e-14) 
Tissue Specificity 0.30 (4e-226) 0.18 (1e-45) 0.19 (3e-48) 
PPI number b -0.28 (1e-217) -0.14 (4e-29) -0.19 (4e-58) 
PPI-site ratio 0.14 (1e-50) 0.05 (7e-6) 0.10 (2e-16) 
DNA-site ratio 0.25 (8e-164) 0.12 (3e-23) 0.23 (3e-79) 

Structure-
related 
properties 

Helix ratio -0.05 (4e-7) -0.01 (3e-1) -0.05 (4e-5) 
Sheet ratio -0.04 (2e-5) 0.00 (9e-1) -0.01 (3e-1) 
Helix+sheet ratio -0.09 (3e-25) -0.02 (1e-1) -0.07 (1e-9) 
Coil ratio 0.10 (8e-27) 0.01 (2e-1) 0.08 (8e-11) 
ISD 0.17 (8e-82) 0.04 (1e-3) 0.12 (2e-24) 
RSA 0.16 (7e-87) 0.06 (1e-6) 0.15 (3e-35) 

Protein 
evolution 

ω 1.00 (0) 0.65 (0) 0.78 (0) 
ωa 0.65 (0) 1.00 (0) 0.03 (7e-3) 
ωna 0.78 (0) 0.03 (7e-3) 1.00 (0) 

a Pearson correlation coefficient R were listed along with corresponding P-values in 788 
parentheses. 789 
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b To better estimate the correlations for sequence length, expression levels and PPI numbers, 790 
we used logarithmic scales rather than absolute values, which could vary dramatically from near 791 
zero to thousands. 792 
Abbreviations in this table: ISD, intrinsic structural disorder; RSA, relative solvent accessibility; 793 
PPI number, protein-protein interaction number; PPI-site ratio, ratio of protein-protein interaction 794 
sites; DNA-site ratio, ratio of DNA-binding sites. 795 
 796 
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