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Abstract  8 
Proteins are the building blocks for almost all the functions in cells. Understanding the molecular 9 
evolution of proteins and the forces that shape protein evolution is an essential step in understanding the 10 
basis of function and evolution. Previous studies have shown that adaptation occurs frequently at the 11 
protein surface, such as in genes involved in host-pathogen interactions. However, it remains unclear 12 
whether adaptive sites are distributed randomly or at regions that are associated with particular structural 13 
or functional characteristics across the genome, since many of the proteins lack structural or functional 14 
annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, 15 
structural analysis, phylogenetic inference, and population genomic analysis of Drosophila protein-coding 16 
genes. Although adaptation is more relevant to function-related rather than structure-related properties, 17 
we observed that physical interactions may play a role in the co-adaptation of fast-adaptive proteins. 18 
Importantly, protein-protein and protein-DNA interaction sites are hotspots for protein adaptive evolution, 19 
regardless of the levels of intrinsic structural disorder or relative solvent accessibility. We found that 20 
strongly differentiated amino acids across geographic regions in protein coding genes are mostly adaptive, 21 
which may contribute to the long-term adaptive evolution. This strongly indicates that a number of 22 
adaptive sites are repeatedly mutated and selected in evolution, in the past, present, and maybe future. Our 23 
results suggest important roles of intermolecular interactions and co-adaptation in the adaptive evolution 24 
of proteins both at the species and population levels. 25 
  26 
Introduction 27 
Natural selection plays an important role in molecular evolution of protein sequences. Recent advances in 28 
genome sequencing and reliable inference methods at both phylogenetic and population levels have 29 
enabled fast and robust estimation of evolutionary rates and adaptation driven by natural selection. In 30 
addition, the increased availabilities of structural and functional data of proteins have made it possible to 31 
study how structural and functional constraints affect protein sequence evolution and adaptation. It is now 32 
well established that different proteins and different sites within a protein have varying rates of evolution 33 
and adaptation due to both structural and functional constraints (Echave et al., 2016; Kosiol et al., 2008; 34 
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Lindblad-Toh et al., 2011; Zhang and Yang, 2015). For example, genes that are highly expressed or 35 
perform essential functions are under strong purifying selection and tend to evolve slowly (Drummond et 36 
al., 2005; Moutinho et al., 2019; Pál et al., 2001; Zhang and He, 2005; Zhang and Yang, 2015); genes 37 
involved in host-pathogen interactions, e.g., immune responses and antivirus responses, show 38 
exceptionally high rates of adaptive changes (Enard et al., 2016; Nielsen et al., 2005; Obbard et al., 2009; 39 
Palmer et al., 2018; Sackton et al., 2007; Sironi et al., 2015; Uricchio et al., 2019); and residues that are 40 
intrinsically disordered or at the protein surface are fast evolving and has been proved to be hotspots of 41 
adaptive evolution (Afanasyeva et al., 2018; Goldman et al., 1998; Lin et al., 2007; Moutinho et al., 2019; 42 
Ramsey et al., 2011). More recently, Slodkowicz & Goldman (Slodkowicz and Goldman, 2020) 43 
employed genomic-scale integrated structural and phylogenetic evolutionary analysis in mammals and 44 
showed that positively selected residues are clustered near ligand binding sites, especially in proteins that 45 
are associated with immune responses and xenobiotic metabolism. However, vast majority of the work 46 
focused on differences at the species level, it is unclear how much of the polymorphic changes within a 47 
species may contribute to long-term evolution. 48 

Although evidence have shown that adaptation is more likely to occur at intrinsically disordered 49 
regions and clustered at the surface of proteins, the functional properties of adaptation in the genomic and 50 
population scale remains unclear. Moreover, due to lack of structural and functional information of many 51 
proteins in the genome, the underlying mechanism derived from current studies might be incomplete. 52 
Here, we systematically investigated the evolution and adaptation of protein-coding genes in Drosophila 53 
melanogaster by comparing it to its closely related species and their own populations, in order to 54 
distinguish the main factors that impact the evolution and adaption at the protein-coding level. We applied 55 
large-scale bioinformatic and structural analysis to obtain structural and functional properties of proteins. 56 
We then classified residues into different structural and functional sites. By comparing rates of sequence 57 
evolution and adaptation between different proteins and different sites, we were able to locate hotspots of 58 
adaptation at the genome scale. Although adaptation is more sensitive to functional properties rather than 59 
structural properties, we found that putative binding regions including allosteric sites at protein surface 60 
show higher rates of adaptation than other sites. For proteins that are under fast-adaptive evolution, we 61 
showed that they tend to interact with each other more frequently than random expectations and are often 62 
associated with reproduction, immunity, and environmental information processing in D. melanogaster. 63 
In addition, we showed that interacting proteins in D. melanogaster might undergo co-adaptive evolution. 64 
Furthermore, we hypothesize that molecular interactions or physical interactions might be an important 65 
mechanism that contribute to the adaptive and co-adaptive evolution in D. melanogaster genome. At last, 66 
we showed that many non-synonymous SNPs contributing to short-term adaptation are overlapped with 67 
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SNPs contributing to long-term adaptive evolution, suggesting that a subset of SNPs on the genomes are 68 
constantly utilized for adaptive purpose. 69 
 70 
Results 71 
Putative molecular interaction sites are hotspots for protein adaptive evolution 72 
To uncover the main factors that impact the evolutionary rates of genes, we analyzed 13,528 protein-73 
coding genes in D. melanogaster using genome data from melanogaster subgroup species and D. 74 
melanogaster population genomics data from 205 inbred lines from Drosophila Genetic Reference Panel, 75 
Freeze 2.0, DGRP2 (Huang et al., 2014). We applied a maximum likelihood method (Yang, 2007) to 76 
compute dN/dS ratio (ω) using the protein-coding sequences of five closely related melanogaster 77 
subgroup species (D. melanogaster, D. simulans, D. sechellia, D. yakuba and D. erecta). We estimated 78 
the proportions of adaptive changes (α) in each gene by applying an extension of MK test named 79 
asymptotic MK (Messer and Petrov, 2013; Uricchio et al., 2019) using D. simulans as outgroup. We then 80 
calculated the rate of adaptive changes (ωa) of each gene by multiplying ω to α (ωa = αω) (Moutinho et 81 
al., 2019) using D. yakuba as the outgroup species (See methods). The rate of nonadaptive changes can be 82 
further calculated by ωna=ω-ωa. Finally, we successfully assigned ω to 12,118 protein coding genes and 83 
ωa and ωna to 7,192 genes. For each of D. melanogaster genes subjecting the same pipeline of analysis, 84 
we further obtained 17 different structural or functional properties (see Methods and supplementary file 85 
S1). We calculated Pearson’s correlations of ω, ωa and ωna with all these properties (Table S1). We 86 
showed that many of these genome-wide correlations were expected according to previous studies 87 
(Supplement Information, section Impact of gene properties on evolution of protein-coding genes in D. 88 
melanogaster, Table S1). Interestingly, among these properties, we found that some previously not 89 
reported properties, fractions of molecular-interaction sites (PPI-site ratio, ratio of residues involved in 90 
protein-protein interactions, and DNA-site ratio, ratio of residues involved in protein-DNA interactions) 91 
strongly positively correlated with ω, ωa and ωna (Supplement Information, section Molecular 92 
interactions contribute to the variations of protein sequence evolution and adaptation, Table S1, Figure 93 
S1). The results indicate that molecular interactions might act as an important factor that drive protein 94 
adaptive evolution in Drosophila genome.  95 

We then investigate whether residues involved in molecular interactions are targets for adaptive 96 
evolution. To tackle this question, we predicted protein-protein interaction sites (PPI-sites) and DNA 97 
binding sites (DNA-sites) for each of D. melanogaster protein sequence (see Methods). In addition, we 98 
characterized allosteric residues as surface and interior critical residues with STRESS model (Clarke et 99 
al., 2016) for all the structural models.  We also extracted putative binding sites from STRESS Monte 100 
Carlo (MC) simulations. We calculated ω, ωa and ωna for residues in each of the putative molecular 101 
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interaction category. Strikingly, we observed that residues involved in protein-protein interactions, DNA 102 
binding and ligand binding exhibited higher rates of adaptive evolution compared to their corresponding 103 
null sites (Fig. 1A-C). In addition, allosteric residues at protein surface showed higher adaptation rates 104 
than allosteric residues at protein interior or residues that are not involved in ligand binding (Fig. 1C).  105 

Since we observed significant positive intercorrelations between PPI and DNA binding with ISD 106 
(intrinsic structural disorder) and RSA (relative solvent accessibility) (Table S2), we next asked whether 107 
the increase of ωa in protein-protein interactions sites or DNA binding sites was caused by the increase of 108 
disorder or site exposure. We calculated and compared ω, ωa and ωna for putative PPI and DNA binding 109 
sites with different levels of ISD or RSA. Remarkably, we found that ωa of these binding sites remains 110 
similar among different levels of ISD or RSA (Fig. S5AC). The results suggest that PPI or DNA binding 111 
events in proteins can result in elevated adaptation rates regardless their structural disorder or site 112 
exposure. While for residues that are not associated with putative PPI or DNA binding, we also observed 113 
increase in ωa when increasing ISD or RSA (Fig. S5BD), which could be the result of some other yet 114 
unknown underlying mechanisms. In addition, there is possibility that binding sites in disordered regions 115 
are not well-predicted. However, given that ISD does not show strong impact to binding sites (Fig. 116 
S5AC), we think the inaccuracy of binding sites may not play a significant role.  117 

In order to gain better understanding of adaptation in molecular interaction sites, we further 118 
visualized positive selections that are associated with molecular interactions. We first investigated 119 
whether adaptive evolution is associated with particular protein structures or protein families. To do this, 120 
we looked into fast-adaptive proteins with the largest ~15% rates of adaptation (ωa > 0.15) that are linked 121 
to high quality structural models. Interestingly, among these proteins, we found 45 enriched as trypsin-122 
like cysteine/serine peptidase domain and 17 7TM chemoreceptors, suggesting widespread adaptive 123 
evolution acting on these protein families or protein domains in D. melanogaster (Table S3). Many of the 124 
7TM chemoreceptors are olfactory and gustatory genes and show adaptive evolution in various species 125 
such as Drosophila and mosquito (Hill et al., 2002; Lawniczak and Begun, 2007; McBride, 2007; Wu et 126 
al., 2009). In addition to these two protein families, previous studies identified recurrent positive 127 
selections acting on some other fast-adaptive proteins in Drosophila and mammals, and the possible 128 
adaptive evolution mechanisms have been linked to exogenous ligand binding, for example, serine 129 
protease inhibitors (serpin), Toll-like receptor 4 (TLR-4), and cytochrome P450 (Jiggins and Kim, 2007; 130 
Slodkowicz and Goldman, 2020). 131 

In order to visualize the link between adaptive evolution and molecular interactions in the two 132 
protein families with frequent adaptive evolution, we showed significant positive selections and 133 
molecular interactions in two representatives: CG10232 and Or67a, each for trypsin-like cysteine/serine 134 
peptidase domain and 7TM chemoreceptors, respectively. We observed that in both cases, positively 135 
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selected sites highly overlapped with predicted or inferred binding pockets (Fig. 1D-E). Specifically, in 136 
CG10232, we found clusters of positive selected sites around NAG binding sites that are inferred from a 137 
crystal structure of serine protease (PDB code: 2XXL) (Fig. 1D), while in Or67a, positively selected sites 138 
expand around the putative odorant binding channel formed by helices S1-S6 in extracellular regions 139 
(Butterwick et al., 2018) (Fig. 1E).  140 

Except for these examples that are associated with exogenous ligand or exogenous peptide 141 
binding, we also identified two previously not described examples where adaptive evolution might be 142 
linked to endogenous protein binding: Spaztle (spz, Fig. 1F) and Cul6 (Fig. 1G). Spaztle can bind to Toll-143 
like receptors (TLR) and trigger humoral innate immune response. We built the missing loop in Spaztle in 144 
the crystal structure of Toll/Spaztle complex (PDB code 4BV4) according to the dimeric crystal structure 145 
of Spaztle (PDB code 3E07). In this complex structural model, we observed several positively selected 146 
sites in Toll-4/Spaztle interfaces (Fig. 1F). Cul6, another example, is a protein in cullins family in D. 147 
melanogaster. The cullins protein family are known as scaffold proteins that assemble multi-subunit 148 
Cullin-RING E3 ubiquitin ligase by forming SCF complex with F box and RING-box (Rbx) proteins 149 
(Zheng et al., 2002). We constructed the putative Cul6 contained SCF complex by superimposition to the 150 
crystal structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex (Zheng et al., 2002). In 151 
the structural model, we observed positive selected sites in Cul6 clustered around the binding sites of 152 
RING-box protein, Rbx1, and F-box protein, Skp1 (Fig. 1G). 153 
 154 
Frequent adaptive evolution and co-adaptative evolution in genes involved in reproduction, 155 
immune system, and environmental information processing  156 
To find out whether specific biological functions were associated with fast-adaptive genes, we applied 157 
DAVID Go analysis with genes that have largest ~15% rates of adaptation (ωa > 0.15). The significant Go 158 
terms are frequently linked to serine-type endopeptidase activity, reproduction, protein lysis, 159 
chemosensory and other related biological functions (Table S4). As these fast-adaptive genes tend to be 160 
enriched in similar biological functions, we asked whether these genes are evolved co-adaptively, i.e., 161 
whether these proteins are interacting with each other frequently. To test this possibility, we obtained PPI 162 
of D. melanogaster from STRING database (Szklarczyk et al., 2019) and analyzed protein-protein 163 
interactions among fast-adaptive proteins. We found that fast-adaptive proteins tend to interact with each 164 
other more frequently than expected (PPI enrichment p-value < 1.0e-16). In the PPI network of fast-165 
adaptive proteins, we observed 7 strongly connected sub-clusters with at least 5 members (Fig. 2A, Table 166 
S5). Proteins in these sub-clusters are enriched in biological processes such as reproduction, immune 167 
response, defense response to bacterium and virus, RNA interference, chitin metabolic, etc., which are in 168 
line with the Go analysis of fast-adaptive genes (Table S6-S11). 169 
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We next asked whether co-adaptation plays a role in the adaptive evolution of interacting proteins 170 
to a broader extend, including both fast- and slow-adaptive proteins. To address this question, we 171 
analyzed and compared adaptation rates of all D. melanogaster PPIs available in STRING database with 172 
high confidence and we found that protein partners of fast-adaptive proteins (ωa>0.15) have significantly 173 
larger maximum/average ωa compared to slow-adaptive proteins (Figure 3). We further analyzed and 174 
visualized adaptive evolutionary rates of proteins in PPI networks of 9 different biological pathways 175 
extracted from KEGG pathways, including immune system, xenobiotics biodegradation, response to 176 
environment, aging and development, genetic information processing, sensory system, transport and 177 
catabolism, cell growth and death and metabolism. We observed that, in these PPI networks, proteins with 178 
relatively large ωa tend to interact with each other (Figure 4AB). We also noticed that, for pathways that 179 
are previously known as adaptation-hotspots, e.g., immune system, fast-adaptive proteins can act as 180 
central nodes and are co-adaptively evolved with other fast-adaptive proteins (Figure 4AC). While in 181 
pathways such as transport and catabolism, fast-adaptive proteins are mainly at PPI periphery. In line with 182 
these findings, we found that ωa are larger in pathways that harbor fast-adaptive proteins as central nodes 183 
than other pathways (Figure S6).  184 
Physical interactions contribute to co-adaptation of fast-adaptive genes. Having established that 185 
molecular interactions contribute to adaptive evolution of protein sequence, we then investigated whether 186 
these physical molecular interactions could drive protein-protein co-adaptation. To do this, we looked into 187 
interacting fast-adaptive protein pairs that are associated known or inferred complex structural models. 188 
For inferred complex structural models, we superimposed the structural models of the pair of proteins 189 
onto their high resolution homologous complex structures. Here we observed and illustrated co-adaptation 190 
at PPI interface in two examples: Toll-4/Spatzle and Spn28Db/CG18563 (Fig. 2BC).  191 
Toll-4/Spatzle. Toll-4 is a member of toll-like receptors. Previous studies have shown strong evidence of 192 
adaptive evolution of Toll-4 in Drosophila and mammals (Levin and Malik, 2017; Slodkowicz and 193 
Goldman, 2020). Toll-4 can bind to Spatzle and trigger further innate immune responses with high 194 
confidence (inferred from STRING database). In the previous section, we showed that several positively 195 
selected sites in Spatzle overlap with Toll-Spatzle interfaces (Fig. 1F). Here, we further showed that, in 196 
Toll-4, considerable number of significant positively selected sites were located at interface for Spatzle 197 
(Fig. 2B), which is in line with a previous study of Toll-4 in D. willistoni (Levin and Malik, 2017). 198 
Spn28Db/CG18563. Spn28Db is one of the serine protease inhibitors in D. melanogaster that are 199 
expressed in male accessory glands, while CG18563 belongs to the protein family of trypsin-like 200 
cysteine/serine peptidase domain. The interactions between the two proteins were predicted with high 201 
confidence from STRING database, and the molecular interactions can be inferred from existing crystal 202 
structure of serpin and bacteria protease complex (PDB code 1EZX).  We observed many positive 203 
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selected sites at the molecular interface between the two proteins (Fig. 2C), suggesting that physical 204 
interactions might play a role in the co-adaptation of the two proteins. 205 
 206 
Most clinally differentiated non-synonymous SNPs in protein-coding genes are adaptive  207 
To find out the relations between short-term adaptation to local environments and long-term adaptive 208 
evolution, we extracted residues with significant FST SNPs from clinal variations (Svetec et al., 2016). We 209 
then computed evolutionary rates (ω), adaptation rates (ωa) and non-adaptation rates (ωna) of these 210 
residues as in previous section. We observed that these residues have much higher ratio of adaptation 211 
rates over non-adaptation rates than genome-wide random expectations (Fig. 5A), suggesting that these 212 
residues have higher proportions of adaptive changes, and that they can be hotspots for adaptive 213 
evolution. To find out whether these SNPs are related with even longer-term adaptive evolution, we 214 
inferred positive selection sites of each protein-coding gene from phylogenic data (see Methods). We 215 
found that the non-synonymous FST SNPs are significantly enriched in long-term positive selections 216 
(Table S12- S13). To further characterize structural and functional properties of short-term genetic 217 
variations, we mapped significant nonsynonymous FST residues to different structural and functional 218 
characteristics, such as ISD, RSA, PPI-sites, DNA-sites and ligand-binding sites. We found that these 219 
non-synonymous SNPs were enriched in disordered regions and protein surfaces and were significantly 220 
more likely to be involved in protein-protein interactions and ligand-binding than expectation (Table S14-221 
S18).  To better visualize the characteristics of these SNPs, we used Toll-4 as an example. We mapped 222 
significant non-synonymous FST SNPs in Toll-4 on to its structural model. We showed that FST SNPs are 223 
either positively selected or being very close to positively selected sites (Fig. 5BC). For example, highly 224 
differentiated sites, N279 (FDR 3e-7) and H431 (FDR 3e-6) were predicted to be positively selected both 225 
at probability at p=0.9. While another highly differentiated site, D424 was close to three positively 226 
selected sites S401 (p=0.8), H431 (p=0.95) and V448 (p=0.8). We also noticed some differentiated sites 227 
that may be located within ligand binding sites, including F297 (FDR 3e-3), S311 (FDR 3e-3), H431 228 
(FDR 3e-6) and H462 (FDR 1e-2). 229 
 230 
Discussion 231 
In this study, we systematically studied the impact of structure- and function-related gene properties on 232 
protein sequence evolution and adaptation in D. melanogaster genome. We found that molecular 233 
interactions in proteins contribute to the variation of protein sequence adaptive evolution. A novel 234 
discovery of this work is that molecular interaction sites including protein-protein interaction sites and 235 
protein-DNA interaction sites are hotspots for adaptative evolution. We revealed that fast-adaptive 236 
proteins tend to interact with each other frequently and protein partners of these fast-adaptive proteins 237 
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tend to have higher adaptation rates, suggesting that co-adaptive evolution might be common in D. 238 
melanogaster. By looking at interacting fast-adaptive proteins, we further demonstrated that physical 239 
interactions may contribute to the mechanisms of co-adaptative evolution of fast-adaptive proteins. 240 

Although our results are in agreement with previous studies on the factors driving protein 241 
sequence evolution (Zhang and Yang, 2015), we showed some complex correlations between ω, ωa and 242 
ωna and protein length and male specificity (Supplement information, section Complex correlations of 243 
protein length and male expression level with protein evolutionary rates, Fig. S2-S4, supplement file S2). 244 
These complex correlations suggest caveat exists when we looked at protein length and gene expression 245 
levels. For example, gene expression level was proved to be a major determinant (Zhang and Yang, 2015) 246 
through mechanisms such as the pressure for translational robustness, i.e., robustness to translational 247 
missense errors (Drummond et al., 2005). Previous studies have revealed that male biased or female 248 
biased genes can be fast evolving (Yang et al., 2016). While on the other hand, many male biased genes 249 
can be highly expressed in testis, which results in a complex correlation between protein sequence 250 
evolutionary rate and male expression level or even mean expression level of D. melanogaster. The 251 
unique evolutionary property of these male biased or specific genes could be caused by the unique 252 
transcriptional scanning mechanism in testis (Xia et al., 2020). We propose that tissue specificity might be 253 
a better quantity when considering the impact of gene expression profile on protein sequence evolution in 254 
D. melanogaster. In addition to male expression level, a similar complex correlation was observed for 255 
protein length. It has been the notion that short proteins tend to evolve faster than long proteins, which 256 
may be biologically relevant or byproduct of other factors such as selection on buried and exposed sites 257 
(Moutinho et al., 2019). Here, we demonstrated that, in D. melanogaster, although protein length is 258 
strongly negatively correlated with protein sequence evolutionary rate, genes that have the slowest 259 
evolutionary rates tend to be relatively short. This could be caused by the fact that under essential 260 
functional constraint, genes can undergo strong purifying selections, while essential genes such as 261 
secreted proteins are constrained to be smaller, and that essential genes could be shorter than other genes 262 
(Chen et al., 2020). 263 

Protein surface and intrinsic disorder regions are frequent targets for adaptive evolution and 264 
contribute to the variations of protein sequence adaptive evolution (Afanasyeva et al., 2018; Moutinho et 265 
al., 2019), however, the detailed mechanisms underlying these observations remains unclear. One 266 
possible explanation would be that these regions are frequently linked to intermolecular interactions 267 
(Afanasyeva et al., 2018; Moutinho et al., 2019). For example, Moutinho et al hypothesized that 268 
molecular interactions involved in host-pathogen coevolution were the major driver of protein adaptation 269 
(Moutinho et al., 2019). Here, we further identified that proportions of possible molecular interaction sites 270 
inside proteins contribute to the variations of protein sequence adaptive evolution and that these 271 
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molecular interaction sites or regulatory sites at protein surface can be hotspots of protein adaptation. 272 
Indeed, some specific molecular interactions have been linked to adaptive evolution in several case 273 
studies (Bachtrog, 2008; Hughes and Nei, 1988; Levin and Malik, 2017; Schott et al., 2014) and large-274 
scale studies based on proteins with high quality structural models (Slodkowicz and Goldman, 2020). In 275 
the latter study, the authors showed that positive selections in mammals tend to cluster closer to binding 276 
sites of exogenous ligands than expected by chance (Slodkowicz and Goldman, 2020), suggesting an 277 
important role of function important regions in adaptive evolution. Here, we extend the conclusion to D. 278 
melanogaster genome, including proteins with or without high resolution structural models. We also 279 
showed that except for exogenous ligands, endogenous ligands might also contribution to adaptive 280 
evolution, while the latter might explain why interacting proteins tend to evolve co-adaptively.  281 

Notably, previous studies have revealed that multi-interface proteins tend to be evolving more 282 
slowly than single-interface proteins (Kim et al., 2006), which seems to be contradictory to our results 283 
that proteins with more interaction sites evolve faster and have faster adaptation rates. Here, we argue 284 
that, in our study, we used sequence profile to predict molecular interaction sites in proteins at a genomic 285 
scale, rather than only looking into proteins with high resolution structures. In this way, we may capture 286 
many weak or transient interactions, which are thought to be evolving faster than obligate and conserved 287 
interactions (Mintseris and Weng, 2005). Meanwhile, we did not exclude intrinsic disordered regions 288 
(IDR) or intrinsic disordered proteins (IDP) in our study, which are widespread in D. melanogaster 289 
genome. It has been suggested that IDR/IDP tend to evolve fast due to lack of structural restraints 290 
(Echave et al., 2016). In the functional aspect, IDR/IDP are thought to be promiscuous binders through 291 
many multiple binding mechanisms, including forming static, semi-static, and fuzzy or dynamic 292 
complexes (Uversky, 2019), suggesting that the evolution of IDR/IDP cannot be explained merely by the 293 
lack of structural restraints. Actually, IDP and IDR in human genome were found to be undergoing 294 
extensive adaptive evolution (Afanasyeva et al., 2018). At last, it has been recognized that, except for 295 
allosteric regulations, encounter complexes (Gabdoulline and Wade, 1999) might also play an important 296 
role in mediating intermolecular interactions, such as protein-protein association (Tang et al., 2006) and 297 
protein-ligand binding (Re et al., 2019). Since encounter residues that are responsible for encounter 298 
complexes do not reside in conserved binding interfaces, these residues could be under relaxed purifying 299 
selections or even positive selections, which could be another yet-to-identify mechanism that contribute to 300 
protein sequence adaptive evolution.  301 

We showed that fast-adaptive proteins are enriched in molecular functions such as reproduction, 302 
immunity and environmental information processing (Begun and Lindfors, 2005; Begun and Whitley, 303 
2000; Lazzaro et al., 2004). We further demonstrated that fast-adaptive proteins tend to interact with each 304 
other more frequently than random expectations, suggesting co-adaptation might be common among fast-305 
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adaptive proteins. Mechanisms that contribute to the co-adaptation could be: (1) interacting fast-adaptive 306 
proteins are often enriched in similar molecular functions and under similar selective pressure; (2) 307 
interacting fast-adaptive undergo co-evolution through physical interactions. In this study we showed two 308 
examples that adaptive evolution could occur at protein-protein interface, which suggest that physical 309 
interactions could contribute to the co-adaptation of fast-adaptive proteins in D. melanogaster. Moreover, 310 
we showed that co-adaptation might exist to a broader extend rather than only among fast-adaptive 311 
proteins. Specifically, proteins that interact with fast-adaptive proteins tend to have higher adaptation 312 
rates. Since molecular interactions contribute to adaptive evolution, it is reasonable to hypothesize that 313 
co-adaptation at this broader extend could be regulated by these interactions. Actually, it has been 314 
suggested that interacting proteins tend to have similar evolutionary rates and the possible mechanism 315 
would be the co-evolution of physical interactions (Pazos and Valencia, 2008). 316 

In this study, we found that loci with significant genetic variance among populations harbor 317 
higher proportions of long-term adaptive changes and these loci follow similar patterns as adaptive 318 
changes, i.e. they are enriched in disordered regions, protein surfaces, and functionally important regions. 319 
These results suggest that population differentiation of protein-coding genes can be an important basis for 320 
long-term adaptive evolution. In other word, many SNPs are repeatedly selected for adaptive process in 321 
evolution. Importantly, our results indicate that most of the clinal amino-acid changes are adaptive, 322 
suggesting that non-selective forces play a non-essential role in the SNPs that show strong geographic 323 
differences. Our results also support a large effect of spatially varying selection on protein sequence and 324 
structures (Storz and Kelly, 2008).  325 

It should be noted that studies at the genomic scale that aim to uncover the function- or structure-326 
related constraints imposed on protein sequence evolution and adaptation share similar limitations that for 327 
most of the proteins or residues, structural or functional information would be incomplete or even 328 
missing. To overcome this, in this study, we used highly accurate neural-network based tools to predict 329 
molecular interactions, secondary structures, intrinsic structural disorder, relative solvent accessibility for 330 
each of the protein. In this way we were able to identify key factors that impact protein sequence 331 
evolution and adaptation in a less accurate but rather systematic fashion. We hope that with the 332 
availability of more and more curated structural, functional information and complex structural models of 333 
proteins in the near future, we will be able to uncover the precise role of molecular interactions in protein 334 
sequence adaptive evolution. 335 

 336 
Material and Methods 337 
dN/dS ratio (ω). We used a maximum likelihood method to infer dN/dS ratio (ω) of D. melanogaster 338 
protein-coding genes using the genome sequences of five species in melanogaster subgroup (D. 339 
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melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). The protein-coding sequences were 340 
extracted from the alignments of 26 insects, which were obtained from UCSC Genome Browser 341 
(http://hgdownload.soe.ucsc.edu/downloads.html). The sequences were further processed by GeneWise 342 
(Birney et al., 2004) to remove possible insertions and deletions using the longest isoforms of the 343 
corresponding D. melanogaster protein sequences as references (FlyBase version r6.15) (Thurmond et al., 344 
2019). The processed sequences were then realigned by PRANK -codon function (Löytynoja, 2014). We 345 
used codeml in PAML (Yang, 2007) to compute gene-specific ω using M0 model. We removed 346 
sequences that have more than 15% of their nucleotides not aligned (gaps) to D. melanogaster genes in 347 
more than 2 species. To further avoid numeric errors and ensure reasonable estimations, we only retained 348 
relatively divergent sequences that are: (1) divergent with dS larger than 0.3, (2) less divergent with dS 349 
larger than 0.1 and dN smaller than 0.001 (dS>>dN). At last, there were 12118 genes in total passed all 350 
the criteria and were assigned gene specific ω, containing 6,538,872 amino acids. We also calculated site-351 
specific ω by using likelihood ratio tests (LRT) comparing M7 model against M8 model (Yang et al., 352 
2005). 353 
Rate of adaptive and nonadaptive changes. We recalled all SNPs of 205 inbred lines from 354 
the Drosophila Genetic Reference Panel (DGRP), Freeze 2.0 (Huang et al., 2014) 355 
(http://dgrp2.gnets.ncsu.edu). We then generated 410 alternative genomes using all monoallelic and bi-356 
allelic SNP data sets. We extracted the coding sequences of D. melanogaster genes from the generated 357 
alternative genomes, removed all possible insertions and deletions using GeneWise (Birney et al., 2004) 358 
as described above. We then align all the coding sequences to their corresponding aligned CDS sequences 359 
using PRANK -codon function (Löytynoja, 2014). We removed polymorphisms segregating at 360 
frequencies smaller than 5% to reduce possible slightly deleterious mutations (Charlesworth and Eyre-361 
Walker, 2008). In order to avoid possible effects of low divergence between D. simulans and D 362 
melanogaster (Keightley and Eyre-Walker, 2012), we used D. yakuba as outgroup to estimate 363 
nonsynonymous polymorphisms (Pn), synonymous polymorphisms (Ps), nonsynonymous substitutions 364 
(Dn) and synonymous substitutions (Ds) by MK.pl (Begun et al., 2007; Langley et al., 2012). Similar as 365 
Begun et al. (Begun et al., 2007), we only analyzed genes with at least six variants for each of 366 
substitutions, polymorphisms, nonsynonymous changes and synonymous changes. We used an extension 367 
of MK test, asymptotic MK (Messer and Petrov, 2013; Uricchio et al., 2019), to estimate the proportions 368 
of adaptive changes (α). The rate of adaptive changes (ωa) was then calculated as ωa = ωα and the rate of 369 
non-adaptive changes as ωna = ω - ωa. Details of the asymptotic MK test were as following: 370 
(1) Classical McDonald–Kreitman test. According to Smith and Eyre-Walker (Smith and Eyre-Walker, 371 
2002), the proportions of adaptive changes for protein-coding genes can be calculated as following: 372 
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𝛼 = 1 −
𝐷𝑠𝑃𝑛
𝐷𝑛𝑃𝑠

 373 

According to this equation, we could estimate the proportion of adaptive changes and carried out classical 374 
MK test by applying Fisher’s exact test. 375 
(2) Asymptotic estimation of α. A known problem of the classical estimation of α above is the 376 
accumulation of slightly deleterious mutations at low frequencies. We therefore used an extension of MK 377 
test, asymptotic MK test approach (Messer and Petrov, 2013) to estimate the proportions of adaptive 378 
changes. As in original aMK, we defined α(x) as a function of derived allele frequency (x): 379 

𝛼(𝑥) = 1 −
𝐷𝑠𝑃𝑛(𝑥)
𝐷𝑛𝑃𝑠(𝑥)

 380 

where Pn(x) and Ps(x) are number of non-synonymous and synonymous polymorphisms at frequency x, 381 
respectively. However, the original approach may suffer from numeric errors when there were very few 382 
polymorphic sites, which is quite common in many of D. melanogaster genes. To make the estimations 383 
more robust while preserving the same asymptote, we further define Pn (x) and Ps(x) as total number of 384 
Pn and Ps above frequency x as described in Uricchio et al (Uricchio et al., 2019). We fitted α(x) to an 385 
exponential curve of α(x) ≈ exp(-bx)+c using lmfit (Newville and Stensitzki, 2018) and determined the 386 
asymptotic value of α at the limit of x, 1.0. We then estimate the rate of adaptive changes (ωa) as  387 

𝜔! =
𝑁!/𝐿"
𝑑𝑆

=
𝑑𝑁!
𝑑𝑆

=
𝑑𝑁!
𝑑𝑁

∙
𝑑𝑁
𝑑𝑆

= 𝛼𝜔 388 

where Na is the number of adaptive changes and dNa=Na/LN is the number of adaptive changes per 389 
nonsynonymous site. Finally, we calculated the rate of nonadaptive changes (ωna) as ωna=ω-ωa. The final 390 
dataset contains 7192 protein-coding genes, with smallest ωa being 0.00 and largest being 1.29.  391 
Structure-/function- related properties of D. melanogaster proteins. We obtained function-related 392 
properties mentioned in main text as following. We derived D. melanogaster gene ages (Kondo et al., 393 
2017; Zhang et al., 2010) for genes that are specific to Drosophila, and from GenTree (Shao et al., 2019) 394 
for genes that are beyond Drosophila clade. We then assigned a pseudo-age to each of the genes. 395 
Specifically, there are 11 age groups from “cellular organisms”, assigning to a pseudo age value of 0, to 396 
“melanogaster”, assigning a pseudo age value of 10. We downloaded D. melanogaster protein-protein 397 
interaction (PPI) from STRING database (Szklarczyk et al., 2019). A cut-off of combined score larger 398 
than 0.7 was used to retain high confident PPI for further analysis. We then used BSpred (Mukherjee and 399 
Zhang, 2011) to predict protein-protein interaction (PPI) sites and DRNApred (Yan and Kurgan, 2017) to 400 
predict DNA binding sites. For each protein, we calculated ratios of protein interaction residues (PPI-site 401 
ratio) and ratios of DNA binding residues (DNA-site ratio) by dividing total predicted protein interaction 402 
sites and DNA binding sites over protein length, respectively. For structure-related properties, we used 403 
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DeepCNF (Wang et al., 2016) to predict these properties for each gene, including three-state secondary 404 
structures (helix, sheet, and coil), structural disorder, relative solvent accessibility (RSA). Further, we 405 
calculated the ratios of helix, sheet, helix+sheet, and coil residues of each gene from predicted secondary 406 
structures. For each gene, we computed intrinsic structural disorder (ISD) and relative solvent 407 
accessibility (RSA), as protein-length normalized summations of the probabilities of each residue being 408 
disorder and exposed, respectively. 409 
Gene expression patterns. We downloaded gene expression profile from FlyAtlas2 (Leader et al., 2018). 410 
We converted FPKM to TPM by normalizing FPKM against the summation of all FPKMs as following: 411 

TPM# =	
FPKM#
∑FPKM$

× 10% 412 

After TPM conversion, we only retained genes with expression level larger than 0.1 TPM for further 413 
analysis. We treated male and female whole-body TPM as male and female expression levels. We 414 
calculated mean expression level by averaging male and female TPM. We used following Z-score to 415 
describe male specificities of D. melanogaster genes: 416 

𝑧𝑠𝑐𝑜𝑟𝑒 = 	
𝑇𝑃𝑀(𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) − 𝑇𝑃𝑀(𝑓𝑒𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
I𝑠𝑑&(𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) + 𝑠𝑑&(𝑓𝑒𝑚𝑎𝑙𝑒	𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

 417 

We calculated tissue specificities of genes using tau values (Yanai et al., 2005) based on the expression 418 
profiles of 27 different tissues. 419 

High quality 3D structures of D. melanogaster proteins. We downloaded high-quality structures or 420 
structural models of D. melanogaster proteins from protein data bank (PDB) (Burley et al., 2019), 421 
SWISS-MODEL Repository (Bienert et al., 2017), and MODBASE (Pieper et al., 2011), with descending 422 
priorities. For example, if there were 3D structures of a same protein or protein region in multiple 423 
databases, we first considered high-resolution structures from PDB; if no structures were found in PDB, 424 
we then considered SWISS-MODEL Repository; and at last from MODBASE. In addition, we used 425 
blastp (Camacho et al., 2009) to search homologs of each D. melanogaster protein against all PDB 426 
sequences with E-value threshold of 0.001. We further carried out comparative structural modeling using 427 
RosettaCM (Song et al., 2013) to model high-quality structural models of proteins or protein regions that 428 
were not available in PDB, SWISS-MODEL Repository and MODBASE. For each RosettaCM 429 
simulation, we used no more than 5 most significant hits from blastp search. For proteins that are in 430 
complex forms, we only extracted monomers for further analysis. At last, we obtained 14543 high quality 431 
structural models, corresponding to 11284 genes. These structural models contain 2,691,913 unique 432 
amino acids, 41.2% of all the residues in genes that were assigned ω. 433 
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Evolutionary rates of different structural/functional sites. We classified amino acids into different 434 
classes of structural/functional properties. Specifically, we classified three classes for both ISD and RSA 435 
according the probability of residues being disordered or exposed: ordered or buried (0.00 to 0.33), 436 
medium (0.33 to 0.67), disordered or exposed (0.67 to 1.00). For both PPI and DNA binding, we 437 
classified two classes: PPI-site or DNA-site (binding sites), None-PPI or None-DNA (corresponding null 438 
sites for PPI or DNA binding). For residues that have 3D structures, we used STRESS (Clarke et al., 439 
2016) to predict putative ligand binding sites and allosteric sites from all the high-quality structures or 440 
structural models. The allosteric sites were further classified as surface critical or interior critical 441 
according to their locations. We then classified these residues into four groups: LIG (ligand binding sites), 442 
Surf. Crit. (surface critical sites), Interior Crit. (interior critical sites) and Others (other sites). For each of 443 
the site classes, we randomly sampled 100 sequences, each containing 10,000 amino acids. We computed 444 
ω, ωa, and ωna for the randomly sampled sequences similar as the steps described in the above sections. 445 
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  638 
Figure 1. Adaptive evolution in molecular interaction sites. Protein-protein interaction sites (A), DNA 639 
binding sites (B) and putative ligand binding sites (C) show higher adaptation rates than none binding 640 
sites.  Examples of positive selection around molecular interaction sites in high quality structural models 641 
of CG10232 (D), Or67a (E), spz (F), and Cul6 (G). Except for spz (PDB code 3e07), the other proteins 642 
are obtained from SWISS model repository. Putative ligand binding pockets of CG10232 (D) and Or67a 643 
(E) are shown in blue spheres. Ligands including interacting proteins are shown in cyan or green: NAG of 644 
CG10232 in cyan (D), Toll receptor of spz in cyan (F), RING-box protein in cyan and F-box protein in 645 
green for Cul6 (G). The putative odorant binding channel of Or67a is highlighted in cyan circle (E). The 646 
ligand poses in (D, F and G) are obtained by superimposition from structure 2XXL, 4BV4 and 1LDK, 647 
respectively.  648 
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  651 
Figure 2. Co-adaptation of fast-adaptive proteins. (A) Sub-clusters of PPI networks of fast-adaptive 652 
proteins. Only proteins with at least one partner were shown. Examples of molecular interactions that 653 
might regulate co-adaptation in fast-adaptive proteins: (B) Toll-4 (gray) and spz (orange, with green 654 
representing the other spz monomer), (C) Spn28Db (gray, serine protease inhibitor 28Db) and CG18563 655 
(cyan, with Go term “serine-type endopeptidase activity”). A putative N-terminus (transparent beads) of 656 
Toll-4 were built by superimposition from 4LXR, since the N-terminus were missing in the structural 657 
model. Complex structural model of Spn28Db and CG18563 was inferred from 1EZX. 658 
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 660 
Figure 3. Co-adaptation of PPIs in D. melanogaster. For fast-adaptive proteins, adaptation rates of their 661 
partners (orange box plot) are significantly larger compared to slow adaptive proteins (blue box plot). 662 
Max ωa of protein partners are shown in (A and C) and averaged ωa, of protein partners are shown in (B 663 
and D). PPI from STRING with median confidence (combined score larger than 0.4) are shown in (A and 664 
B), and PPI with high confidence (combined score larger than 0.7) are shown in (C and D). 665 
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 667 

 668 
Figure 4. Rates of protein sequence adaptive evolution in the PPI network of different functional 669 
pathways. The PPI networks showed the adaptive evolution in immune system (A) and transport and 670 
catabolism (B). (C) In pathways that are hotspots of adaptive evolution, fast-adaptive proteins can act as 671 
central nodes, while in conserved pathways, fast-adaptive proteins are often at the periphery of the PPI 672 
network. 673 
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 696 
Figure 5. Adaptive evolution in significant nonsynonymous FST SNPs. (A) The significant SNPs at 697 
different FDR cutoffs all show much higher proportions of adaptation than genome-wide expectation. (B) 698 
Positive selections in Toll-4 and Spaztle, related to Fig. 2B. (C) Significant nonsynonymous FST SNPs in 699 
Toll-4. Ligands are shown in cyan by superimposing crystal structure of Toll-Spatzle (PDB code 4BV4) 700 
on to Toll-4 structural model. N279, H431 are both highly differentiated (FDR 3e-7 and 3e-6) and 701 
positively selected (both probability at p=0.9). Other highly differentiated sites, F297, S311, H424, H431 702 
and H462 are located near ligand binding sites or positively selected sites. 703 
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