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ABSTRACT 16 

Robust and accurate behavioral tracking is essential for ethological studies. Common methods 17 
for tracking and extracting behavior rely on user adjusted heuristics that can significantly vary 18 
across different individuals, environments, and experimental conditions. As a result, they are 19 
difficult to implement in large-scale behavioral studies with complex, heterogenous 20 
environmental conditions. Recently developed deep-learning methods for object recognition 21 
such as Faster R-CNN have advantages in their speed, accuracy, and robustness. Here, we show 22 
that Faster R-CNN can be employed for identification and detection of Caenorhabditis elegans in 23 
a variety of life stages in complex environments. We applied the algorithm to track animal speeds 24 
during development, fecundity rates and spatial distribution in reproductive adults, and 25 
behavioral decline in aging populations. By doing so, we demonstrate the flexibility, speed, and 26 
scalability of Faster R-CNN across a variety of experimental conditions, illustrating its generalized 27 
use for future large-scale behavioral studies.  28 

  29 
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INTRODUCTION 30 

Ethology has been crucial in the fields of neuroscience, genetics, and aging (Anderson and Perona 31 
2014; Krakauer et al. 2017; Brown and De Bivort 2018; Niepoth and Bendesky 2020) . This rings 32 
true even in the simplified C. elegans model, which has been used to probe a variety of 33 
ethological questions (Hedgecock and Russell 1975; Chalfie et al. 1985; Gray et al. 2005; Stephens 34 
et al. 2008; Brown et al. 2013; Brown et al. 2016) . In these experiments, it is extremely valuable 35 
to robustly and accurately track and measure the behavior of C. elegans on a large scale. The 36 
ability to collect large-scale behavioral data has significantly improved throughout the years. 37 
While many behavioral assays consist of manually recording small populations on agar plates 38 
under a stereomicroscope, recent automated methods have drastically increased the variety of 39 
biological questions researchers can explore. Ranging from multi-camera systems, to time-shared 40 
imaging systems, to low-cost imaging systems, advances in hardware have allowed users to more 41 
easily obtain large amounts of raw behavior video (Stroustrup et al. 2013; Churgin et al. 2017; 42 
Maia Chagas et al. 2017; Stern et al. 2017; Le et al. 2020) . In addition to improvements in data 43 
acquisition, there have been advances in culture methods, which enable the exploration of more 44 
complex environmental conditions. These range from individual “arenas”, which allow the 45 
tracking of populations with individual level resolution, to microfluidic devices, which allow for 46 
precise spatiotemporal environmental control (Chung et al. 2011; Zhang et al. 2016; Churgin et 47 
al. 2017) . While these technological advancements have enabled the ability to explore complex 48 
behavior relevant to neuroscience and aging, this increase in behavioral recordings and data 49 
shifts the bottleneck to the analysis of large-scale image datasets. This is especially crucial for 50 
images taken in heterogeneous environments, such as those in more complex, naturalistic 51 
conditions.   52 

One of the major challenges in analyzing behavioral data is the detection and identification of 53 
the object of interest, especially under a variety of imaging and environmental conditions. While 54 
there are many existing image processing tools that are currently used to detect, identify, and 55 
subsequently analyze the behavior of worms (Swierczek et al. 2011; Javer et al. 2018), there are 56 
unmet needs. These tools often use traditional image processing methods, such as background 57 
subtraction, thresholding based on the color or intensity of the object, or the use of 58 
morphological features (such as size), to detect and identify the object of interest. For example, 59 
in the popular worm tracker Tierpsy Tracker (Javer et al. 2018), users manually optimize 60 
parameters based on experimental conditions and are subsequently able to extract behavioral 61 
data from their dataset. With these segmentation and tracking tools, users can extract a variety 62 
of informative behavioral phenotypes, such as size, speed of movement, and the posture of 63 
individuals. However, with the advent of more complex experimental setups that introduce more 64 
heterogeneous experimental or environmental conditions, it is not straightforward to adapt 65 
these traditional methods to robustly and accurately detect objects of interest. For example, in 66 
conditions with low or uneven imaging contrast, basic thresholding based on intensity values may 67 
not be accurate. If animals or the objects of interest move only subtly, background subtraction 68 
cannot be used to easily differentiate between the object of interest and the background of the 69 
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image. Additionally, if there is a wide range in morphological properties, such as the dramatic 70 
size change of animals during development, it is difficult to rely on traditional morphological 71 
features such as size as a method of identifying objects of interest. Thus, coupled with the 72 
increased scale of behavioral datasets, there is a need for a robust, flexible, and facile method to 73 
detect and identify worms that would be able to work across a variety of different experimental 74 
conditions, with minimal user input.  75 

To address this problem, we turn towards deep learning, which has emerged as a powerful data-76 
driven tool for object detection. While there are many deep learning object detection methods, 77 
the Faster R-CNN architecture is a widely-used method that uses region proposal networks (RPN) 78 
coupled with convolutional neural networks (CNN) to extract the location (in the form of 79 
bounding boxes) and estimated likelihood for each detected object (Ren et al. 2015) . It is one of 80 
the top performing object detection methods, as measured by the mean average precision (mAP) 81 
of detections on the standardized COCO dataset (Huang et al. 2017).  Compared to other CNN 82 
methods with equivalent or higher mAP, the Faster R-CNN architecture is less computationally 83 
costly and thus advantageous for large volumes of data. Further, the Faster R-CNN architecture 84 
has been tested in a wide range of applications, ranging from vehicle and pedestrian detection 85 
to malarial detection via cell classification (Ren et al. 2015; Hung et al. 2018) .   86 

Here, we implement Faster R-CNN to identify and detect worms across a variety of different 87 
conditions without extensive user input. We find that after the initial training, the deep learning 88 
model quickly and accurately detects objects of interest. We demonstrate its flexibility across a 89 
variety of different recording platforms and imaging modalities. We also demonstrate its ability 90 
to detect worms across a variety of different ages (from L2 to death), showing its flexibility across 91 
different body sizes and movement levels, and illustrate how it can be used to extract useful 92 
behavioral metrics to give insights into biological questions, such as egg laying, development, and 93 
behavioral decline in aging. Finally, we provide a web-based pipeline (https://github.com/lu-94 
lab/frcnn-all-in-one) for testing our trained models with novel data and to enable other 95 
researchers to annotate and train their own object detection models with novel data and classes.  96 

 97 

RESULTS 98 

To illustrate the difficulty in identifying and tracking objects in complex conditions, we examined 99 
three common experimental set-ups. The first tracks an individual worm from the L2 larval stage 100 
to Day 1 of adulthood on an agar plate seeded with food (Figure 1A). During this period, the 101 
worm was free to roam throughout the field of view, and animals were imaged through early 102 
adulthood.  This type of low-magnification imaging setup is common for long-term and high-103 
throughput imaging (Swierczek et al. 2011; Mathew et al. 2012; Zheng et al. 2012; Buckingham 104 
et al. 2014; Perni et al. 2018), as well as lifespan imaging (Stroustrup et al. 2013) . For small L2 105 
animals, a major challenge in tracking is the small size of the individual (starting at around 360 106 
μm in length) and differentiating it from the background despite the low contrast and low 107 
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magnification of the image. Tuning heuristics-based image processing tools to optimize for the 108 
small size and low contrast of young animals leads to further challenges as the worm grows 109 
(Figure S1 A-E). The contrast from background improves as the worm develops; however, other 110 
subtle changes in background (such as eggs or tracks formed on lawns) may be identified as 111 
animals when using heuristics tuned for young animals (Figure S1 C-E). These heuristics are also 112 
highly dependent on environmental and imaging conditions. In the case that changes in 113 
illumination or environment are an integral part of the experiment, this leads to an inability to 114 
process data without further tuning (Figure S1 E). Together, these challenges make processing 115 
developmental behavior data a labor-intensive task.  116 

The second experimental system measures worm fecundity over time. An adult worm was 117 
allowed to roam across a seeded agar plate and freely lay eggs (Figure 1C). Due to the small size 118 
of eggs (~50 μm) (Riddle DL, Blumenthal T, Meyer BJ 1997), low magnification and contrast, and 119 
the tendency for eggs to be laid in clusters, it can be both time and labor intensive to manually 120 
count the number of eggs over time and mark their spatial location. Further, some studies may 121 
involve egg-laying behavior in different environments (e.g. on or off bacterial lawns) where 122 
imaging conditions and contrast pose significant problems in identifying these objects and 123 
distinguishing them from other objects in the field of view. In contrast to animals, the immobility 124 
of eggs also prevents the use of background subtraction as a useful tool. These practical 125 
constraints make it difficult to track fecundity and other egg-laying phenotypes at a large scale. 126 

The third example is tracking the behavior and movement of individuals during the aging process. 127 
Worms were cultured within a microfluidic chamber array (Figure 1D, top) from the L4 stage to 128 
their death. Individuals were longitudinally monitored and their behavior was recorded 129 
intermittently throughout their lifespan under a variety of different food concentrations (Figure 130 
1D, bottom rows). While the size of the worm and the contrast are better than those for young 131 
animals during development, there are two inherent challenges. First, as before, the 132 
environment is heterogeneous - within the chamber there are often moving objects aside from 133 
the worm (such as debris or eggs laid by the individual), making it difficult to accurately identify 134 
and detect the location of the worm even in instances with high levels of movement. Second, 135 
there are low levels of movement as the worm ages and eventually dies, making it difficult to 136 
identify the worm through traditional image processing techniques that rely on movement. 137 
These challenges are cumbersome to address when using traditional image processing tools that 138 
require tuned user parameters. For instance, when the parameters are chosen for an individual 139 
video (Figure S2 A-B, top row), it fails to accurately identify and detect the location of worms of 140 
the same age and under the same environmental and imaging conditions (Figure S2 A-B, bottom 141 
rows). When the worm is in its reproductive period, the presence of lain eggs that cluster 142 
together in the chamber can cause misidentification and inaccurate segmentation of the worm 143 
(Figure S2 A). When the worm is aged and only performs small, subtle movements the algorithm 144 
often truncates or misidentifies the location of the worm entirely (Figure S2 B). 145 
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For both the on-plate and on-chip conditions, traditional detection and tracking methods are 146 
unable to robustly identify the location of the worm. While classic segmentation methods based 147 
on heuristics can provide posture information that CNN object detection methods cannot, the 148 
need to specifically tune parameters for a wide range of videos makes it unrealistic to deploy 149 
these methods at large scales in each of the demonstrated experiments. Thus, there is a need for 150 
a quick and generalizable method of identifying and tracking objects of interest in challenging 151 
imaging conditions such as these.  152 

To address these challenges, we implemented Faster R-CNN, a deep learning network with high 153 
precision in object detection, including small objects. From an existing Faster R-CNN model pre-154 
trained on the COCO image dataset, we tuned the model using our respective behavioral data 155 
sets (Lin et al. 2014; Abadi et al. 2015) . For each of the three different experimental conditions, 156 
we trained a separate Faster R-CNN model. For the condition with developing worms cultured on 157 
an agar plate we created the worms-on-plate (WoP) model. For the WoP model, we annotated 158 
worms with bounding boxes in 1,122 randomly chosen and representative images from a much 159 
larger dataset and trained the model with 1,008 of these, holding out the remainder as a test set 160 
to evaluate the model. To measure worm fecundity, we created the egg-finder model. We 161 
annotated eggs and worms in 127 images and used 114 of these to train the model, with the 162 
remainder used to for evaluation of model performance. Lastly, for the more specialized 163 
condition of worms cultured within the microfluidic chambers, we created the worms-in-164 
chamber (WiCh) model. For the WiCh model, we annotated eggs and worms in 5,176 images, 165 
with 4,658 of these used to train and the remainder to evaluate the model.  166 

When we qualitatively examined the bounding box output of these trained models, we found 167 
that many of the failure cases using traditional methods were resolved (Figure 1, Figures S1-2). 168 
In the WoP dataset, worms were identified accurately in both very low-contrast images when 169 
worms were very small as well as in much higher-contrast images later in life (Figure 1A). We also 170 
found that this model could detect worms in very different imaging conditions with which it was 171 
not trained (Figure 1B, File S3). This is highly significant as it indicates the model is much more 172 
generalizable compared to heuristic techniques and thus more widely usable in real applications. 173 
In the egg-finder dataset, we found that eggs were identified well despite their small size and 174 
tendency to cluster together (Figure 1C). Notably, when we applied the egg-finder model to 175 
publicly available videos from the Open Worm Movement Database, we were able to detect both 176 
worms and eggs (File S1). Finally, in the more specific WiCh dataset, worms were identified 177 
accurately, even in the most food-dense, low-contrast settings and at later ages where worm 178 
movement is reduced (Figure 1D). In addition, clusters of eggs could be accurately identified, 179 
making it possible to differentiate active worm movement from passive movement of the egg 180 
cluster (Figure 1D). 181 

Next, we quantitatively evaluated our models to ensure their accuracy (Table 1). A common 182 
metric used in object detection is the average precision (AP), which uses the overlap between 183 
actual bounding boxes and those predicted by the model at varying confidence thresholds to 184 
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evaluate the model performance. An AP equal to unity would indicate perfect predictions. For 185 
the WoP model, we were able to obtain an average precision of 0.969. AP for the youngest 186 
animals (66 test images) was 1.0 with our test set, compared to the oldest animals (22 test 187 
images), for which false positives reduced the AP slightly to 0.876 (Figure S3), making the model 188 
robust across age without further tuning. For our egg-finder model, the worm AP was 0.932 and 189 
the egg AP was 0.74 (Figure S3). While the average precision for eggs is not as high as for the 190 
other objects we detected, we found that it was able to identify 79% of the eggs in our test set 191 
and that the sensitivity of the model for our test set was 0.84 (Figure S3). Conservative 192 
identification of eggs by the model likely stems from the size of eggs making the overlap threshold 193 
(intersection over union) of detections and ground truths particularly sensitive, as well as the 194 
intensity of the eggs being similar to other image features such as the tracks created by animal 195 
movement, and the occlusion of eggs by each other. In practice, we found this model worked 196 
well to identify egg-laying phenotypes in further experiments (see below, Figure 3), and was able 197 
to detect eggs in data collected by other labs (File S1). It also may be possible to improve the 198 
average precision by using more training data. For the WiCh model, we obtained an AP of 0.998. 199 
This model is also robust across different conditions within the dataset, ranging from different 200 
ages, contrast levels, and objects of interest (Figure S3), with the models detecting not just 201 
worms but also the lain eggs within the field of view (AP of 0.932).  202 

In addition to the models being flexible across conditions without the need for additional 203 
parameter tuning, the inference time for each image is short (~131 ms/frame on our equipment). 204 
This is significant because in practice, these generalizable strategies can reduce the time and 205 
effort it takes to quantify new data. For instance, in cases with large sets of data under varied 206 
conditions, traditional hand annotation or the implementation of user-tuned parameters would 207 
require excessive amounts of time and manual labor. In contrast, deep learning enables users to 208 
analyze large behavioral datasets in a more efficient manner. 209 

We next put the algorithm to a real use-case - monitoring egg-laying phenotypes of C. elegans. 210 
Egg-laying rate is indicative of health (Trent et al. 1983), evolutionary fitness (Duveau and Félix 211 
2012; Zhao et al. 2018; Anholt et al. 2020), and is also important in understanding the regulatory 212 
mechanisms of the reproductive circuit (Trent et al. 1983; Mendel et al. 1995; Ségalat et al. 1995; 213 
Chen et al. 2020). However, the small size (approximately 50 μm) and large number of eggs 214 
(about 300 per adult hermaphrodite) makes measuring fecundity a challenging task.  Manually 215 
counting eggs is time-intensive, but it is often still the method of choice because existing 216 
automated methods for egg detection are very sensitive to imaging conditions, requiring high 217 
image uniformity and often high magnification (Geng et al. 2005; Jung et al. 2014; Chen et al. 218 
2020). Likely due to the challenging nature of the task, several popular software packages for 219 
worm behavior quantification do not include methods to track egg-laying (Swierczek et al. 2011; 220 
Wählby et al. 2012; Javer et al. 2018). Other egg-counting methods rely on specialized cytometry 221 
to count eggs as they are flushed from liquid culture (Sofela et al. 2018; Atakan et al. 2020). 222 
Another factor that makes counting eggs difficult is the burst-like timing of egg-laying events 223 
(Waggoner et al. 1998; Schafer 2005; Collins et al. 2016). Many egg-laying events in close 224 
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temporal proximity causes eggs to cluster, making identification of individual eggs challenging. 225 
Further, the bacterial lawn that adults feed on becomes highly textured as adults crawl on it, 226 
which makes identifying eggs and animals significantly more challenging for image thresholding 227 
methods. To determine whether the egg-finder model would resolve these issues, we applied it 228 
to count and locate eggs (Figure 2).  We collected images of individual day 1 adult worms and the 229 
eggs they laid at two time points, 2 and 5 hours after transferring animals onto plates for 230 
individual culture. While we qualitatively found that our model did not successfully identify every 231 
egg, the agreement between manual egg counts and those from our model was significant 232 
(Figure 2A & B). Even when illumination was uneven across the field of view, when eggs were 233 
laid on the lawn, and when eggs clustered together, the model produced accurate results (as 234 
exemplified in Figure 2A). This robustness in the face of highly variable conditions indicates that 235 
this method is a much faster alternative to manual counting of eggs. This method is especially 236 
well suited for large datasets and movies where manual annotation of every frame would be 237 
prohibitively difficult or when imaging conditions like textured bacterial lawns prevent 238 
thresholding techniques from performing well.  239 

Next, we showed that we can apply the algorithm to accurately estimate two egg-laying rates for 240 
each animal in early adulthood from images of individual animals’ brood at two time points 241 
(Figure 2C). These results match previously reported egg-laying rates of about 4-10 eggs/hr 242 
(Waggoner et al. 1998). The distribution of egg-laying rates for the manual and Faster R-CNN 243 
model egg counts was statistically indistinguishable at both timepoints, whereas comparing the 244 
Faster R-CNN model egg count distributions and manual egg count distributions between 245 
timepoints showed a significant difference. We noted that egg-laying rates decreased over time, 246 
which we suspect is due to transferring animals from a crowded growth plate to individual plates. 247 
This change in the experienced levels of oxygen, carbon dioxide, and food may promote a higher 248 
egg-laying rate until the individuals habituate to the new environment and begin to deplete food 249 
(Trent et al. 1983; Schafer 2005; Fenk and De Bono 2015). The ability to detect this difference 250 
using the egg-finder model demonstrates that Faster R-CNN can be used to identify biologically 251 
relevant phenotypes in a less time-intensive way than manually counting eggs.   252 

In addition to identifying a rate phenotype, we used the egg-finder model to identify a spatial 253 
phenotype using the food-sensing mutant tph-1. These animals are known to spend a greater 254 
fraction of time in a roaming state and are also slower to pause upon encountering food (Flavell 255 
et al. 2013; Entchev et al. 2015; Stern et al. 2017). Based on this and anecdotal evidence (Dhaval 256 
Patel, personal communication), we expected that tph-1 animals would lay more eggs off of 257 
bacterial lawns compared to wild type animals. To examine whether this was the case, we 258 
defined an egg location preference score such that a greater number of eggs laid on the bacterial 259 
lawn would result in a positive preference score, while a negative preference score would 260 
indicate that a greater number of eggs were laid off the bacterial lawn. We found that the 261 
distribution of preference scores for WT and tph-1 animals was consistent with tph-1 animals 262 
having a lower preference for laying eggs on the bacterial lawn, and that the two distributions 263 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.02.08.430359doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.08.430359
http://creativecommons.org/licenses/by-nc/4.0/


8 

were significantly different both when counted manually and when counted using the Faster R-264 
CNN model (Figure 2D). This example demonstrates that the model can distinguish eggs on or off 265 
the lawn regardless of lighting, contrast, and despite the width of adult animal’s tracks being 266 
almost the same size as an egg. Further, we applied the egg-finder Faster R-CNN model to movies 267 
from the publicly available Open Worm Movement Database and found that we were able to 268 
successfully detect both eggs and worms in these movies without additional training (File S1). 269 
Overall, the egg-finder model performed well across both datasets in different imaging 270 
conditions and was able to uncover the same egg-related phenotypes as a human annotator in 271 
our own dataset again suggesting that Faster R-CNN models can replace manual labor particularly 272 
for large-scale datasets and movies with complex imaging conditions. 273 

In addition to quantifying aspects of behavior through endpoint snapshots, we reasoned that 274 
Faster R-CNN could also be used to track animals over time. Estimating animal linear and angular 275 
velocity is a useful indicator of the animals’ behavior state (e.g. dwelling/ roaming) as well as 276 
potentially an indicator of health when observed over sufficiently long timescales (Hahm et al. 277 
2015; Zhang et al. 2016). Using the dynamic location of worm bounding boxes detected using our 278 
WoP model, we evaluated whether it was possible to obtain accurate movement measurements. 279 
We compared the centroids of detected bounding boxes obtained from our model to the 280 
centroids of hand-annotated postures at 5 series of time points over about 2 days of worm 281 
development (Figure 3A-B). Throughout the ~ 2 days of observation, the object detection model 282 
was able to accurately identify worms, with the smallest animals an average of 124 pixels (~0.12 283 
mm2) in area (Figure 3A, left column). This timescale includes development from late L2 stage 284 
through to adulthood. We found that the bounding box centroids detected were typically close 285 
(0.212 mm +/- 0.197 mean+/- standard deviation) to the centroids of the hand-annotated bounds 286 
of the worm, indicating that this method can provide accurate worm locations at discrete time 287 
points (Figure 3A, right column, Figure S6 B-D). To test whether we could also measure motion 288 
accurately with this method, we used time points a minute apart and calculated motion between 289 
the bounding box centroids and hand-annotated worm shape centroids at these time points. The 290 
difference between these two motion measurements was an average of 0.126mm +/- 0.083mm 291 
(mean +/- std) and motion trends were clearly replicated between the hand-annotated shape 292 
centroids and the bounding box centroids (Figure 3B, Figure S6 C). We further compared peak 293 
and mean velocity in our hand-annotated dataset to peak and mean velocity computed using the 294 
WoP Faster R-CNN model centroids. We found that both peak and mean velocities were very 295 
similar, with differences on the order of pixels in 5MP images (Table S1). Similarly, we found that 296 
we were able to very accurately recapitulate the linear and angular velocity and peak and mean 297 
velocities of a publicly available dataset using our WoP Faster R-CNN model (Stern et al. 2017) 298 
(Figures S4 and S5, File S3). Even without knowledge of the precise pixels that comprise the 299 
worm, the extents of the worm can be used as a rough measurement of movement and speed.  300 

We next examined how this approach could be used to track behavior continuously over 301 
development. Behavior during development is individualistic and can affect long-term behavior 302 
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and neuropeptide signaling in C. elegans (Stern et al. 2017). The dual challenges of the small size 303 
and low contrast of young animals have previously imposed stringent hardware requirements to 304 
ensure high-quality images (e.g. at higher magnification), therefore limiting the scalability of 305 
long-term developmental experiments. In contrast, the WoP model can extract worm position 306 
despite low image quality and the extreme variation in the size and contrast of developing 307 
worms. We collected time-lapse images at 1-minute intervals of 10 animals over a 2-day period 308 
from late L2 stage to adulthood, and detected worm bounding boxes for each image (Figure 3C, 309 
File S2). The magnitude of motion increased over time, and likewise, we found that the size of 310 
the detected bounding box grew approximately 5-fold over time as the animals developed 311 
(Figure 3C, Figure S6A).  We next examined whether our centroid data could be used to identify 312 
roaming and dwelling states, which are an indicator of satiety and which are influenced by 313 
neuromodulators. C. elegans spends the greater portion of its time moving at slower speeds 314 
while eating (dwelling) and a small portion of its time searching for other food sources (roaming) 315 
(Waggoner et al. 1998; Ben Arous et al. 2009; Flavell et al. 2013). We calculated the linear and 316 
angular velocity for each animal and found that while there was little separation in linear velocity 317 
between the two states, there was a striking split in angular velocity that was consistent with the 318 
roaming and dwelling state separation in other datasets at the same 1-minute sampling rate 319 
(Figure 3D, Figure S7). We found that by classifying the behavior state using an angular velocity 320 
threshold of 90 degrees we were able to accurately predict roaming and dwelling in a ground 321 
truth data set with the same sampling rate. We then used the same 90 degree threshold to 322 
identify roaming and dwelling states throughout animal development in our own data (File S4). 323 
Thus, this technique can enable researchers to infer high-level information about the animal’s 324 
behavioral state from the limited information provided by bounding box identification.  325 

Next we tested how well the model can be used to track motion in a realistic biological discovery 326 
context: examining behavioral decline in the aging process. Behavior and movement are common 327 
methods to gauge the health and physiological age of an individual (Golden et al. 2008; Hahm et 328 
al. 2015; Zhang et al. 2016; Churgin et al. 2017; Le et al. 2020). For these experiments, it can be 329 
challenging to accurately measure how the movement of individuals changes throughout their 330 
entire lifespan due to complex environmental conditions and the large scale of the data. As a 331 
specific example, we examined wild-type individuals cultured in a microfluidic device, allowing 332 
us to identify and track individuals throughout the entirety of their adult lifespan. Due to the size 333 
of each chamber (~1.5 mm in diameter), as the worm grows, the extent of movement becomes 334 
limited making common metrics (such as tracking the distance traveled by the centroid of the 335 
segmented worm) unable to clearly provide insights into the decline of movement over time. As 336 
a result, to gauge movement we examined the normalized sum of the difference in pixels across 337 
frames for segmented individuals (Figure 4A). As the worm ages and its movement declines, the 338 
difference across frames decreases as well for the overall population (Figure 4B). However, 339 
although this method provides useful insight into the behavioral decline of the individual, it can 340 
be difficult to accurately obtain the properly segmented worm in large datasets. This is due to 341 
issues with background contrast, the presence of eggs in the chamber, and the low mobility of 342 
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older worms. Furthermore, the process typically requires large amounts of manual parameter 343 
tuning (to account for the different sizes of worms as they age, changing levels of movement with 344 
age, and variation across the individuals) and substantial computational time to segment and 345 
extract features of interest. The need for manual tuning and intensive computational resources 346 
makes it difficult to scale this method for large sets of behavioral information.  347 

Faster R-CNN can serve as a quick and accurate alternative to gauge behavioral decline with aging 348 
across a population. By tracking the bounding box locations of the worm detected by the WiCh 349 
model and measuring the IoU (intersection over union) of the detection bounding boxes across 350 
the video, we can get a rough metric of movement. Young, highly active worms have little to no 351 
bounding box intersection across frames, while older, slower moving worms have increasing 352 
levels of intersection across frames (Figure 4C). To examine how movement changed with time 353 
we examined a movement score (1 – IoU), and observed individual decline in movement, as well 354 
as a population-level behavioral declines with age (Figure 4D). Not only were we able to view 355 
similar patterns of movement decline to that observed with segmented frames, we were able to 356 
do so on a larger scale with minimal processing time (~131 ms/frame).  357 

Further, we wanted to examine whether this movement score could discern how perturbations 358 
influence decline in movement with age. Dietary restriction (DR) is an evolutionary conserved 359 
perturbation that has been shown to modulate aging (Mair et al. 2003; Colman et al. 2009; Greer 360 
and Brunet 2009). We examined the movement score of worms cultured under constant DR 361 
(OD6002.5) starting at Day 2 of adulthood and were able to demonstrate that the worms under 362 
lower food levels had a statistically significant difference in behavioral decline compared to 363 
worms cultured at higher food levels (OD60010), trends observed in a prior study (Figure 4E) (Le 364 
et al. 2020). In addition, to verify the performance of the model on the dataset, we also validated 365 
that the detected bounding boxes from the WiCh model were comparable to the bounding box 366 
of the hand annotated, segmented worms (Figure S8). This exercise demonstrates that motion 367 
quantitatively estimated by Faster R-CNN can be used as a quick metric to track and examine 368 
behavioral decline within an aging population. 369 

 370 

Discussion 371 

Processing big sets of behavior data remains a major challenge currently facing large-scale 372 
ethological studies. As a model organism, C. elegans is well-poised as a subject for large-scale 373 
investigation, but typical computer vision analysis pipelines may still be insufficient in complex 374 
imaging conditions, where the animal itself may change size, contrast with background, or where 375 
inhomogeneities in the environment lead to failure of heuristic models. Here we have shown that 376 
applying Faster R-CNN object detection models to identify, count, and track behaviors in 377 
challenging environments is a fast and flexible alternative to more traditional analysis methods. 378 
We first demonstrated this method’s applicability in identifying eggs and determining egg-laying 379 
rates and spatial distribution of eggs. We were also able to show that this method was effective 380 
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in tracking movement of animals ranging from L2 stage through the end of life, providing high-381 
level behavior state information as well as information relevant to animal health. This effectively 382 
includes most applications in behavioral and aging studies using C. elegans. 383 

Compared to other conventional methods, we found this deep learning method to be 384 
significantly more generalizable across a variety of experimental conditions. It requires no 385 
specialized hardware or dedicated imaging set-up and, once trained, we found the Faster R-CNN 386 
models worked very well, even under conditions for which they had not been trained (File S1, 387 
S3). In comparison, other methods (including other machine-learning image classification tools 388 
like Ilastik (Berg et al. 2019)) needed additional manual tuning for even slightly different lighting 389 
conditions, differently sized animals, or changing contrast levels (Figure S9). While for small 390 
datasets, the time investment for annotating images and training the model may be high, for 391 
large datasets with imaging variability the high detection accuracy and elimination of video-by-392 
video or frame-by-frame hand-tuning represents a significant gain. For datasets that require 393 
extensive human correction, the accuracy of manual annotation degrades unpredictably over 394 
time as attention wanes; in comparison, machine learning models are predictably biased based 395 
on the content of the training set. These advantages, combined with the high speed of processing 396 
with a GPU (on average 7.6 fps), makes the deep learning approach a very good alternative to 397 
more conventional methods. 398 

For cases where the existing trained models (WoP, egg-finder, or WiCh) are unable to robustly 399 
detect objects of interest, we have also developed an easy-to-use web-based tool that enables 400 
users to annotate, retrain, and evaluate their dataset (accessible from https://github.com/lu-401 
lab/frcnn-all-in-one). There is a low barrier-to-entry for use, with no dependence on paid, 402 
commercial software (such as MATLAB) and no requirement for downloading external programs. 403 
While we found that the Faster R-CNN architecture suited our accuracy and speed requirements, 404 
this pipeline can also be used to train models using other object detections architectures that 405 
achieve faster inferencing speeds with somewhat lower accuracy. Using the Faster R-CNN 406 
architecture with our pipeline, we found that training on as few as 10-20 annotated images for 407 
several hours provided very high-quality tracking results (File S6). This time investment will likely 408 
pay off for large-scale datasets and datasets where imaging conditions create challenges for 409 
classic thresholding methods. 410 

We also showed that even without segmenting images as many traditional methods do, we were 411 
still able to extract information about animal and egg location, size, linear and angular velocity, 412 
and animal behavior state that could be used to identify biologically meaningful phenotypes. 413 
These simple methods have a lower computational cost than that of segmentation, and in cases 414 
where precise knowledge of posture is not necessary, this method provides a fast and 415 
environmentally robust estimation of relevant metrics. Additionally, there are related deep 416 
learning approaches that provide semantic segmentation, such as a Mask R-CNN model, which 417 
would enable extraction of posture information. The application of this model is a natural next 418 
step, although the annotation necessary to train such a model is significantly more intensive.  419 
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In addition to the ability to accurately identify and track animals quickly, the success of this deep 420 
learning method in extreme imaging conditions suggests that this method can be used to push 421 
the current limitations in quantifying animal behavior in ethologically relevant environments. 422 
Researchers face a trade-off between performing assays in naturalistic environments and the 423 
ability to extract more information from more uniform and controlled environments. Deep 424 
learning methods such as this one may provide us with a greater ability to extract the necessary 425 
information from richer environments with greater ethological relevance.  426 

 
Model 

 
Category 

Average Precision 
(AP) @ threshold 
0.5 

Average 
Precision (AP) @ 
threshold 0.1 

Average 
Precision (AP) @ 
confidence 
threshold 0.01, 
IoU threshold 
0.3 

Development Worms (all ages) 0.969 0.969 0.969 
Egg counting  Eggs 0.398 0.430 0.740 
Aging Worms (all ages) 0.998 1.00 1.00 

Table 1. DETECTION RESULTS ACROSS DIFFERENT CONFIDENCE THRESHOLDS ON THE 427 
DEVELOPMENT, EGG LAYING, AND AGING DETECTION MODELS USING FASTER R-CNN.  428 

  429 
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figshare (https://doi.org/10.6084/m9.figshare.13678705.v1). 446 

 447 

Materials and Methods 448 

 C. elegans maintenance 449 

C. elegans strains were maintained under standard conditions at 20°C unless otherwise noted 450 
(Stiernagle 2006) . Strains used in this work include N2 and QL101[tph-1(n4622) II]. 451 

Plate assays 452 

To prevent animals from leaving the microscope field of view (FoV), we prepared special plates. 453 
Palmitic acid has been demonstrated as an effective barrier for worms in behavior experiments 454 
(Fletcher and Kim 2017) . It is typically applied as a solution in ethanol to a standard plate and the 455 
ethanol is allowed to evaporate off. However, it is hard to deposit in a controlled way due to the 456 
palmitic acid solution wetting the agar. We used an ethanol-sterilized piece of PDMS as a negative 457 
to prevent a 10 mg/mL palmitic acid in ethanol solution from wetting the center of a 5cm NGM 458 
plate, allowing the ethanol to evaporate for at least 30 minutes before removing the PDMS with 459 
tweezers. These plates were subsequently seeded with 10 ul (developmental experiments) or 5 460 
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ul (egg-laying experiments) of OP50. Plates used in developmental experiments were incubated 461 
at room temperature for about 24 hours to allow a thin lawn to form and were stored at 4°C until 462 
an hour before use. For egg-laying experiments, plates were seeded approximately 2 hrs before 463 
transferring animals onto plates.  464 

For developmental assays, adult animals were bleached to obtain eggs. Eggs were allowed to 465 
hatch and larvae allowed to reach L1 arrest by agitating eggs overnight in M9 buffer. L1s were 466 
then pipetted onto an unseeded NGM plate and single animals were pipetted onto the prepared 467 
seeded palmitic acid plates. These plates were then parafilmed and incubated at 20°C until 468 
animals reached late L2 stage (20 hours after plating), when each plate was placed on a Raspberry 469 
Pi-based imaging system. The Raspberry Pi imaging system used a Raspberry Pi v3 Model B 470 
(Raspberry Pi Foundation) with official Raspberry Pi touchscreen (Raspberry Pi Foundation) and 471 
a Raspberry Pi Camera Module v2 (Raspberry Pi Foundation) with no additional lens to capture 472 
images at minute time intervals. Darkfield illumination was provided by an LED Matrix (Adafruit), 473 
with a center circle of LEDs dark and the surrounding matrix illuminating animals with red light.   474 
Developmental experiments lasted 44 hours, at which point worms have typically reached sexual 475 
maturity and plates were removed from imaging systems.  476 

For egg-laying assays, gravid day 1 adults animals were picked onto prepared palmitic acid plates 477 
and plates were imaged at 2 and 5 hours at 1.6x on a stereomicroscope (Leica M165 FC) using a 478 
1.3 MP CMOS camera (Thorlabs DCC1645C) with a 0.5x coupler.  479 

C. elegans on-chip culture 480 

Synchronized L4-stage wildtype animals were loaded into a worm chamber array microfluidic 481 
device.  Microfluidic devices were fabricated from polydimethylsiloxane using standard soft 482 
lithography techniques and sterilized by autoclaving.  483 

Worms were cultured at 20°C in E. coli (HB101) spiked with Pluronic F-127 (0.005%), carbenicillin 484 
(50µg/ml), and kanamycin (50µg/ml) to prevent the risk of bacterial aggregation and 485 
contamination during long-term culture. The bacteria was at a concentration of OD600 10 to 486 
prevent any harmful effects of dietary restriction on the developmental process. The bacteria 487 
also contained 5uM of C22, which interrupts eggshell formation and results in non-viable 488 
progeny. At Day 2 of adulthood, worms were then shifted to 25°C and to the desired food level. 489 
Individuals shown in Figure 4 were maintained at OD600 10 unless otherwise stated. Individuals 490 
in Figure 1 were cultured at OD60010 and OD6002.5. We used an average flow rate of 491 
approximately 15µL/min across all conditions. See prior work for more details. (Le et al. 2020)  492 

Training Faster R-CNN network 493 
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For the egg detection and aging model, we used TensorFlow GPU (v 1.14) to train the model. For 494 
the developmental tracking model, we used TensorFlow CPU (v 1.14). For all models except the 495 
model trained using the web-based pipeline we used the pre-trained ‘Faster_rcnn_inception_v2’ 496 
model from the Tensorflow 1 model zoo 497 
(https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_de498 
tection_zoo.md) and fine-tuned it with our data sets of interest. We trained the models and 499 
processed the images on a system with an Intel(R) Xeon(R) CPU E5-1620 v4 processor and a 500 
NVIDIA Quadro M4000 GPU. 501 

 502 

For the egg detection model, images were taken of a mixed population of wild-type worms on a 503 
seeded plate at 1.6x magnification on a stereomicroscope (Leica M165 FC) using a 1.3 MP CMOS 504 
camera (Thorlabs DCC1645C) with a 0.5x coupler. We manually annotated 127 images of worms 505 
and eggs using the labelImg Python package. Images were randomly split into training and testing 506 
sets using a rough 90/10 split (114 images for training, 13 test images).  507 

For the developmental tracking model, images were taken as described for plate developmental 508 
assays above. 1,122 images were randomly selected from a large set of developmental imaging 509 
data (> 10,000 images taken on 8 different imaging setups) and annotated using the labelImg 510 
Python package. This annotated image set was divided into 1,008 images for training and 114 511 
images for testing, roughly a 90/10 split. No images used in training or testing overlap with image 512 
data evaluated in Figure 4. 513 

For the aging model, videos were taken at an acquisition rate of 14 fps using a 1.3 Megapixel 514 
monochrome CMOS camera (Thorlabs DCC1545M camera) coupled with a 10X close focus zoom 515 
lens (Edmund #54-363). Each video was 10 seconds in length. Illumination was provided by a set 516 
of concentric red LED rings (Super Bright LEDs 60 and 80mm LED Halo Headlight Accent Lights) to 517 
reduce the amount of blue light exposed to the worm. Videos were sampled evenly throughout 518 
the lifespan of individuals in food levels of OD60010 and OD6002.5. We manually annotated 5,176 519 
frames of worms and, if present, eggs using the labelImg Python package. Images were randomly 520 
split into training and testing sets using a rough 90/10 split (4658 images for training, 518 test 521 
images). 522 

For the model trained with our web-based pipeline, we annotated 14 frames total and used 12 523 
frames to train a Tensorflow 2 Faster R-CNN model pre-trained with the COCO image dataset for 524 
2 hours. We used the resulting model to perform the detections in Supplemental File 6.  525 

Faster R-CNN model characterization 526 

For each of our annotated datasets, we evaluated how well our model performed by calculating 527 
precision and recall as well as average precision. Precision is a measure of the false positive rate, 528 

as calculated by 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 , where TP is the number of true positives and FP is the 529 

number of false positives. Recall is a measure of the false negative rate, as calculated by 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 =530 
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 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 , where FN is the number of false negatives. Average precision is the integral of the 531 

precision recall curve for a set of images that have ground truth bounding box annotations as 532 
well as model predictions.  To determine whether detections by the models were true positives, 533 
false positives, or false negatives, we used a measure of the overlap of detections and ground 534 

truth known as intersection over union (IoU), calculated as 𝐼𝐼𝑟𝑟𝐼𝐼 = |𝐺𝐺𝐺𝐺 ⋂  𝑃𝑃| 
|𝐺𝐺𝐺𝐺 ∪ 𝑃𝑃|

, where GT is the 535 

bounding box of the ground truth and P is the bounding box of the prediction. An IoU ≥ 0.5 is 536 
counted as a true positive and an IoU < 0.5 as a false positive for our worm detections, with the 537 
IoU threshold lowered to 0.3 for egg detections in our egg-finder model. A false negative is 538 
counted when a ground truth annotation has no overlap with a detection by the model.  Once all 539 
images with ground truth annotations are evaluated in this way, the maximum precision at each 540 
recall level is used to interpolate between points of the precision-recall plot. 541 

The AP, recall, and precision for the egg-finder Faster R-CNN model was evaluated using a score 542 
threshold of 0.01. The AP, recall and precision for the WoP Faster R-CNN model and the aging 543 
model was evaluated using a score threshold of 0.5. Mask annotation and centroid computation 544 
for ground-truth movement comparisons of data in Figure 3 was collected using MATLAB. 545 

 546 

Evaluation of egg-laying phenotypes 547 

Images of individually cultured animals were collected at 2 hrs after transfer onto individual 548 
plates and again at 5 hrs after transfer. For each image, a human curator manually counted eggs 549 
and identified them as being on or off the bacterial lawn. The Faster R-CNN model was also used 550 
to detect eggs in each image at a confidence threshold above 0.01, and eggs were manually 551 
identified as being on or off the bacterial lawn. We used these detections to overlay bounding 552 
boxes on each image and manually classified each detection as on or off the bacterial lawn. As 553 
the arena where the worm was able to roam was larger than the microscope field of view, images 554 
were tiled to ensure all eggs laid by each individual were captured. In cases where images 555 
overlapped with one another, double-counted eggs were subtracted from the overall count. The 556 

egg-laying preference score was calculated as follows: 𝑝𝑝𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜−𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜+𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜𝑜𝑜𝑜𝑜

.  557 

Evaluation of behavioral decline in aging 558 

Images of worms were segmented through hand annotations using Ilastik. To calculate the pixel 559 

difference as the worms age we used ∑ |𝑖𝑖𝑖𝑖𝑒𝑒1−𝑖𝑖𝑖𝑖𝑒𝑒2|
(𝑖𝑖𝑖𝑖𝑒𝑒1+𝑖𝑖𝑖𝑖𝑒𝑒2)/2

  where img1 was the initial segmented frame 560 

of the video and img2 was the final segmented frame of the video. The IoU of the bounding boxes 561 
were calculated using the built-in MATLAB function bboxOverlapRatio. The 1-IoU metric was 562 
found by looking at the overlap between the bounding box found in the first frame and the 563 
bounding box found in the last frame of the video.  564 
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 565 

Data Availability 566 

All raw and annotated datasets and trained models are available as supplemental material via 567 
figshare (https://doi.org/10.6084/m9.figshare.13678705.v1).   568 
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Figure Legends 569 

Figure 1. Deep learning can be used to detect objects in a variety of complex environments 570 

A. Tracking an individual worm throughout its developmental period (from L2 to Day 1 571 
adulthood). (left) Images of the plate over time. Scale bar is 5mm. The red box is the 572 
Faster R-CNN detection of the tracked worm. (right) Zoomed in image of the worm 573 
detected by the WoP Faster R-CNN model. Scale bar is 0.5mm.  574 

B. The WoP model applied in a different experimental set-up (adult worms in a microfluidic 575 
pillar array chamber). Worms detected by the WoP Faster R-CNN model are marked 576 
with red bounding boxes. Scale bar is 3mm. 577 

C. An egg-laying adult on an agar plate, with detected eggs boxed in blue and detected 578 
worm boxed in red. All detections made with egg-finder Faster R-CNN model. Scale bar 579 
is 1mm. (right) Zoomed in image of a cluster of eggs detected by the model. 580 

D. Tracking worms through their adult lifespan. (top) Microfluidic chamber array that 581 
cultures individual worms within each chamber (white arrows indicate chambers with 582 
single worms). White scale bar is 1.5mm. (bottom) Zoomed in images of individual 583 
worms under different food levels across the entirety of their adult lifespan. Worms 584 
detected by the WiCh Faster R-CNN model are boxed in red. Egg clusters detected by 585 
the WiCh Faster R-CNN model are boxed in blue. Scale bar is 0.5 mm. 586 

Figure 2. Automated egg detection using Faster R-CNN 587 

A. Representative image from egg-finder dataset. Blue boxes overlaid on the right inset 588 
images indicate egg detections using the egg-finder Faster R-CNN model at the 589 
confidence score threshold of 0.01. Scale bar is 1mm. 590 

B. Agreement between manual egg count and egg-finder Faster R-CNN model egg count. 591 
Eggs laid by individual animals were counted manually and using the Faster R-CNN 592 
model with a confidence score threshold of 0.01. The agreement between these two 593 
counts was measured at two time points for n=29 individual animals. Distributions were 594 
compared using the Kolmogorov-Smirnov 2-sample test and found to be not 595 
significantly different (KS statistic is 0.155, p value is 0.491). 596 

C. Egg-laying rate distribution for 29 animals at 2 time points. Horizontal bars within each 597 
distribution represent egg counts for individual animals. Distributions were compared 598 
using the Kolmogorov-Smirnov 2-sample test. The egg-laying rate counted manually at 599 
timepoint one was significantly different from the egg-laying rate counted manually at 600 
timepoint two (KS statistic is 0.448, p value is 0.0053). The egg-laying rate counted using 601 
the egg-finder Faster R-CNN model with a confidence threshold of 0.01 at timepoint one 602 
was significantly different from the egg-laying rate counted using the egg-finder Faster 603 
R-CNN model with the same threshold at timepoint two (KS statistic is 0.448, p value is 604 
0.0053). For each timepoint, the Faster R-CNN egg-laying rate distribution was 605 
compared to the manually counted distribution, and for both timepoints, the KS test 606 
statistic was determined to be 0.2069 with a p value of 0.5141. 607 
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D. Egg-laying preference for N2 (n= 16) and tph-1 (n=13) animals. Horizontal bars within 608 
each distribution represent egg counts for individual animals. Positive scores indicate a 609 
higher propensity to lay eggs on the lawn compared to off the lawn. Negative scores 610 
indicate a higher propensity to lay eggs off the lawn (see Methods for calculation 611 
formula). Distributions were compared using the Kolmogorov-Smirnov 2-sample test. N2 612 
vs. tph-1 distributions were different at a significant level for both manual counts (KS 613 
stat is 0.473, p-value of 0.0018) and egg-finder Faster R-CNN model counts (KS stat is 614 
0.459, p-value is 0.0028). 615 

Figure 3. Tracking behavior in development 616 

A. A single N2 animal tracked throughout development at 5 example time points. At left, 617 
the full-size image is overlaid with a red box highlighting the worm location for each 618 
timepoint. At right, the boxed portion of the image is overlaid with the manual 619 
annotation at the example timepoint (blue) and five minutes later (yellow), as well as 620 
the centerpoint of the WoP Faster R-CNN model’s detected bounding box at the 621 
example timepoint (purple) and five minutes later (orange).  622 

B. Heatmap comparing distance travelled by worms calculated from manual annotations 623 
and WoP Faster R-CNN model detections. For each timepoint in A and the subsequent 624 
five minutes, the distance travelled by the worm is calculated from manually segmented 625 
animals and from the WoP Faster R-CNN detections. The manual distance is calculated 626 
from the Euclidean distance travelled at the centroid of the segmented animal for each 627 
pair of time points, while the Faster R-CNN distance travelled is calculated from the 628 
Euclidean distance between the centroid of WoP Faster R-CNN bounding boxes for each 629 
pair of time points.  630 

C. Heatmap of centroid movement measured using the Faster R-CNN model for 10 631 
individuals over the course of development from late L2 stage through adulthood.  632 

D. Histogram of Faster R-CNN derived movement speeds for the example animal in A and 633 
B.  634 

Figure 4. Tracking behavioral decline in aging  635 

A. (top) Representative image of movement as the worm ages. The posture at the 636 
beginning of the video is shown in blue. The posture at the end of the video is shown in 637 
yellow. (bottom) Absolute difference image of the frames shown on the left. Pixel 638 
change values are the sum of the absolute difference image normalized by the average 639 
worm size in the video.  640 

B. (top) Heatmap of individual behavior decline (via pixel changes) over time (n = 15). 641 
(bottom) Average pixel change values over time from L4 to Day 15 of adulthood. Error is 642 
plotted as SEM.  643 

C. Representative image of the bounding boxes obtained using Faster R-CNN as the worm 644 
ages. The box found at the beginning of the video is shown in blue. The box found at the 645 
end of the video is shown in yellow. The IoU of the two boxes is shaded. 646 
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D. (top) Heatmap of individual movement (1 – IoU) from L4 to Day 15 of adulthood (n = 647 
31). Individuals are cultured in OD60010. (bottom) Average movement decline over time. 648 
Error is plotted as SEM.  649 

E. Average movement decline over time for individuals cultured in high levels of food 650 
(OD60010 in blue) and individuals cultured in low levels of food (OD6002.5 in red). Error is 651 
plotted as SEM. Movement for OD60010 and OD6002.5 is significantly different via 652 
Kolmogorov-Smirnov 2-sample test (p = 0.0.03). 653 

 654 
Supplemental Figure Legends 655 
Figure S1. Limitations of traditional image processing techniques in developmental 656 
monitoring 657 

A. Detection of animals throughout development using the trained WoP Faster R-CNN 658 
model or a common tool that uses traditional segmentation (Tierpsy Tracker). Tierpsy 659 
Tracker parameters were manually tuned to detect the animal in the example image in 660 
A, and not re-tuned for analyzing the same animal at later timepoints in B-E. Successful 661 
segmentation of the worm by Tierpsy Tracker is denoted by a white arrow, with non-662 
worm segmentations marked by red arrows (middle column). Worm detections using 663 
the WoP Faster R-CNN model are bounded by a red box (left column). All worm 664 
detections shown reached a confidence threshold of 0.99. The animal in A is detected 665 
by both the WoP model and Tierpsy Tracker, but other non-worm objects are identified 666 
based on the optimized Tierpsy Tracker segmentation. 667 

B. The same animal as in A at a later timepoint. The animal is identified using the WoP 668 
model, but not identified by Tierpsy Tracker. 669 

C. As contrast improves, the same animal is detected by both Tierpsy Tracker and the 670 
WoP model, but the segmentation parameters as optimized for small, low-contrast 671 
animals also pick up non-worm objects. 672 

D. Once the animal becomes a gravid adult, the animal is identified by both Tierpsy 673 
Tracker and the WoP model, but eggs and tracks in the bacterial lawn increase the 674 
number of non-worm segmentations by Tierpsy Tracker. 675 

E. Illumination changes increases the number of non-worm segmentations by Tierpsy 676 
Tracker, while the WoP model is still able to identify the animal and no other non-677 
worm objects. 678 

Figure S2. Limitations of traditional image processing techniques in aging populations 679 

A. Detection of a young worm using traditional techniques (Tierpsy Tracker) or the trained 680 
WiCh Faster R-CNN model (top row) Successful detection of a worm via Tierpsy Tracker. 681 
Parameters for traditional techniques were manually tuned for this specific video. 682 
(bottom rows) Detection of worms (under the same age and environmental condition) 683 
using the same parameters as before. Detection errors are highlighted by red arrows. 684 
Red boxes show detection location via WiCh Faster R-CNN model. 685 
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B. Detection of an old, slow moving worm using traditional techniques (Tierpsy Tracker) or 686 
the trained WiCh Faster R-CNN model (top row) Successful detection of a worm. 687 
Parameters for traditional techniques were manually tuned for this specific video. 688 
(bottom rows) Detection of worms (under the same age and environmental condition) 689 
using the same parameters as before. Errors and misidentification are highlighted by red 690 
arrows. Red boxes show detection location via WiCh Faster R-CNN model. 691 

Figure S3. Precision-recall curves for the detection models 692 

C. Precision-recall curves for worm detection in the WoP model with confidence threshold 693 
of 0.5. Precision recall curve for all worms (left), L2-L3 stage animals (middle), and adult 694 
animals (right). 695 

D. Precision-recall curve for the worm detection (left) and egg detection (right) in the egg-696 
finder model with confidence threshold of 0.01. The intersection over union used to 697 
determine true positive detections for eggs was 0.3, compared to 0.5 for worms.  698 

E. Precision-recall curve for the overall worm detection (left) and egg detection (right) in 699 
the WiCh model with confidence threshold of 0.5 (top row). Precision-recall curves for 700 
the worm at varying stages in the lifespan with confidence threshold of 0.5 (middle 701 
row), and across different food levels/contrasts with confidence threshold of 0.5 702 
(bottom row). 703 

Figure S4. Accurate centroid tracking in other datasets 704 

A. Comparison of X centroid coordinates from Stern et al. to Faster R-CNN WoP model 705 
detections of the same data. 706 

B. Comparison of Y centroid coordinates from Stern et al. to Faster R-CNN WoP model 707 
detections of the same data. 708 

Figure S5. Accurate linear and angular velocity analysis with other datasets 709 
A. Comparison of binned angular velocity over time from Stern et al. and Faster R-CNN 710 

WoP detections of the same data. Data was binned by first smoothing angular velocities 711 
using a 10s moving average window (as in Stern et al.), then thresholding the data into 712 
low and high angular velocities. The angular velocity values represent the average 713 
angular velocity of the low and high angular velocity data for each data set 714 
independently.  715 

B. Linear velocity of both datasets vs. time. Linear velocity was calculated in the same way 716 
from both datasets, then smoothed with a moving average window of 10s, and finally by 717 
removing outliers.  718 

C. Scatterplot comparing Faster R-CNN WoP centroid velocities to Stern et al. ground truth 719 
velocities.  720 

Figure S6. Accuracy of tracking in development 721 

A. Change of bounding box size over time using WoP Faster R-CNN for animal depicted in 722 
4A. Smoothed using a moving window average over 10 time points (10 minutes). Where 723 
no animal is detected, line is not connected. 724 
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B. Density histogram of distances between box centroid as detected by WoP Faster R-CNN 725 
model and centroid of annotated worm shape for animal in 4A (n=30 time points). 726 

C. Density histogram of difference between movement calculated from annotations and 727 
movement calculated from WoP Faster R-CNN model for animal in 4A (n=25 time 728 
points). 729 

D. Centroid movement as calculated by the WoP Faster R-CNN model vs. centroid 730 
movement as calculated from manually segmented animals for animal in 4A (n=25) 731 

Figure S7. Accurate classification of roaming and dwelling at reduced sampling frequency 732 

A. Linear vs. angular velocity probability plot, calculated as described in Stern et al. with 733 
centroid data from Stern et al. Black dashed line shows split used to classify roaming vs. 734 
dwelling states.  735 

B. Linear vs. angular velocity probability plot, calculating angular velocity by using the Stern 736 
et al. centroids at the current time as well as the centroid one minute in the past and 737 
one minute into the future. Black dashed line shows split at 90 degrees/min angular 738 
velocity used to classify roaming/ dwelling states with 79% accuracy based on ground 739 
truth classification in (A).  740 

Figure S8. Accurate detection of worms using the WiCh model 741 

Histogram of IoU values for bounding boxes detected by the WiCh Faster R-CNN model 742 
compared to bounding boxes of hand annotated, segmented worms of the same frame. (n = 743 
2550 frames). 744 

Figure S9. Limitations with existing machine learning based segmentation tools 745 

A. Representative example frames of issues with segmentation using Ilastik within the 746 
same video. Even after training at least 50 frames (including a frame from the same 747 
video) the classification predictions and subsequent segmentations truncate the worm. 748 
Blue denotes background, yellow marks the worm, and red marks the egg objects.  749 

B. Representative example frames of issues with segmentation using Ilastik across similar 750 
videos. All frames were taken under the same imaging condition. (top) Prediction of 751 
pixel classification using the trained model. The model was trained with at least 50 752 
images prior. Blue denotes background, yellow marks the worm, and red marks the egg 753 
objects. (bottom) Segmentation of objects based on the predictions. Note the 754 
truncation of worms and the misclassification of eggs as worms.  755 

 756 

Supplemental Files 757 

1. Video from the Open Worm Movement Database 758 
(https://www.youtube.com/channel/UCx36wu_Hh0sGvPaCkAMHrMg) with egg and 759 
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worm detections using the egg-finder Faster R-CNN detection model overlaid in blue 760 
(eggs) and red (worms).  761 

2. Time-lapse video of a developing N2 animal (the same animal as in Figure 4A-B) imaged 762 
at one-minute intervals on an agarose plate. The video speed is such that 1s is 763 
equivalent to 30 minutes of images. The left half of the frame consists of the original 764 
images, and the right half is the original image with a green box indicating the WoP 765 
Faster R-CNN detection overlaid. 766 

3. Video from (Stern et al. 2017) with worm detections using WoP Faster R-CNN model 767 
overlaid in red (x5 speed).  768 

4. Time-lapse video of a developing N2 animal (the same animal as in Figure 4A-B) with 769 
behavioral state identified for each timepoint based on the angular velocity. If the 770 
location of the worm could not be identified in any set of three consecutive frames, the 771 
frame is marked with ‘No data’.  772 

5. Time-lapse video of an aging worm every other day from L4 to Day 16 within the 773 
microfluidic device at food level OD60010. The video is at 2x speed.  774 

6. Time-lapse video of a plate with adult animals overlaid with worm detections in red 775 
from the Faster R-CNN model trained using our web-based pipeline. The model was 776 
trained for ~ 2 hours on 12 annotated images.  777 
 778 

 779 

  780 
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