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 2 

ABSTRACT 21 

Understanding the effectiveness and potential mechanism of action of agricultural biological 22 

products under different soil profiles and crops will allow more precise product 23 

recommendations based on local conditions and will ultimately result in increased crop yield. 24 

This study aimed to use bulk and rhizosphere soil’s microbial composition and structure to 25 

evaluate the effect of a Bacillus amyloliquefaciens strain QST713 inoculant on potatoes, and to 26 

explore its relationship with crop yield. We implemented NGS and bioinformatics approaches to 27 

assess the bacterial and fungal biodiversity in 185 soil samples, distributed over four different 28 

time points -from planting to harvest- from three different geographical regions in the United 29 

States. 30 

In addition to variety, phenological stage of the potato plant and geography being important 31 

factors defining the microbiome composition and structure, the microbial inoculant applied as a 32 

treatment also had a significant effect. However, treatment preserved the native communities 33 

without causing a detectable long-lasting effect on the alpha- and beta-diversity patterns after 34 

harvest. Specific taxonomic groups, and most interestingly the structure of the fungal and 35 

bacterial communities (measured using co-occurrence and co-exclusion networks), changed after 36 

inoculation. Additionally, using information about the application of the microbial inoculant and 37 

considering microbiome composition and structure data we were able to train a Random Forest 38 

model to estimate if a bulk or rhizosphere soil sample came from a low or high yield block with 39 

relatively high accuracy, concluding that the structure of fungal communities is a better estimator 40 

of potato yield than the structure of bacterial communities. 41 

 42 
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IMPORTANCE The manuscript’s results reinforce the notion that each crop variety on each 43 

location recruits a unique microbial community and that these communities are modulated by the 44 

vegetative growth stage of the plant. Moreover, inoculation of a Bacillus amyloliquefaciens 45 

strain QST713-based product on potatoes also changed specific taxonomic groups and, most 46 

interestingly, the structure of local fungal and bacterial networks in bulk and rhizosphere soil. 47 

The data obtained, coming from in-field assays performed in three different geographical 48 

locations, allowed training a predictive model to estimate the yield of a certain block, identifying 49 

microbiome variables -especially those related to microbial community structure- with a higher 50 

predictive power than the variety and geography of the block. The methods described here can be 51 

replicated to fit new models predicting yield in any other crop, and to evaluate the effect of any 52 

Ag-input product in the composition and structure of the soil microbiome. 53 

 54 

INTRODUCTION 55 

Potato, the stem tuber vegetable produced by Solanum tuberosum, is the crop with the highest 56 

yield out of the five most important agricultural crops in the world (rice, wheat, soybeans, maize 57 

and potatoes). Although global production of potatoes in 2012 reached 364,808,768 MT, it has 58 

been calculated that actual yield corresponds to only about 10 to 75% of potential yield (1). 59 

Improving global agricultural crop production in a sustainable way is paramount given the 60 

current prospects for world population increase (2). 61 

Potato yield has been directly correlated with edaphological and climate variation (3-5), with 62 

management practices (6) and with potato cultivar (7). Interestingly, the same biogeographical 63 

patterns have been identified as the main drivers of microbial community composition in potato 64 

plants (8-15), reinforcing the key role of soil microbiology in potato crop productivity (16). 65 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430373doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430373
http://creativecommons.org/licenses/by-nc/4.0/


 4 

Thus, in agro-ecosystems, the enhancement and sustainability of productivity can be assessed by 66 

means of the soil microbiome. Additionally, the Natural Resources Conservation Service of the 67 

US Department of Agriculture (17) links soil quality with the concept of soil health, 68 

acknowledging the relevance of soil microorganisms to drive soil functionality. 69 

In this context, the use of substances, microorganisms, or mixtures thereof, known as plant 70 

biostimulants, is among the latest practices for sustainable food and energy production (18). 71 

Biological products are claimed to promote plant health and quality and recycling crop residues 72 

with low environmental impact (19, 20). Not surprisingly, the market for agricultural biological 73 

products is recording a CAGR of over 10% since 2017, and it is expected to reach a market size 74 

of over four billion dollars by 2025 (21). Rajabi-Hamedani and collaborators (22) argue that this 75 

growth is a consequence of the need to increase the efficiency of agrochemical inputs, to reduce 76 

crop damage caused by abiotic stress, and to reduce the environmental impact of production 77 

systems. 78 

Most agricultural biological products based on microorganisms are expected to pertain to the 79 

functional group of Plant Growth Promoter species, so a direct impact in plant health (23, 24) 80 

and yield (25) is assumed. Different direct mechanisms involved in yield promotion have been 81 

demonstrated in certain bacterial strains, including: i) improving growth of tomato plants, by 82 

increasing root hairs development in a phytohormone-mediated process using an Azospirillum 83 

brasilense strain (26) or by increasing the tolerance to abiotic stresses through the action of an 84 

ACC deaminase produced by a Burkholderia unamae strain (27); ii) increasing plant growth by 85 

enhanced nutrient (P) acquisition in cucumber and tomato plants using a Bacillus sp. strain (28); 86 

iii) enhancing nodule formation by a two species consortia of Pseudomonas putida plus 87 

Rhizobioum sp. in beans (29); or by improving grain yield in rice by increasing panicle number 88 
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through the use of an Azospirillum amazonense strain (30). In addition, some microbial strains 89 

have also shown an indirect effect in soil and plant health, as tools for in situ microbiome 90 

engineering, promoting the development of other beneficial microbial species, improving the 91 

resistance of the microbiome to the invasion of plant pathogens, and increasing the natural 92 

resistance of the plant against diseases (31). 93 

Instead of assuming a simple, unidirectional and direct effect of a certain microbial strain in the 94 

physiology and development of plants, agricultural biological products face challenges with 95 

consistent field performance. Different strains and species can have different functional 96 

performance under specific environmental and ecological conditions (32). For this reason, 97 

biological products’ claims need to describe ecological and functional performance and not only 98 

be based on composition of matter (33). 99 

In this work we aimed to contribute to global sustainability of the agricultural lands by 100 

demonstrating that assessment of bulk and rhizosphere soil microbial composition and structure 101 

can be practical tools to substantiate agricultural biological product claims, and at the same time 102 

they provide a toolkit for growers to assess and achieve increased yield and sustainability of their 103 

management practices. Applying “-omics” technologies we explored the subtle side effects of the 104 

microbial inoculant Bacillus amyloliquefaciens strain QST713, in the surrounding rhizosphere 105 

and bulk soil microbiota of potatoes, and its potential connection with the yield observed. We 106 

followed the recommendations of Ricci and collaborators (33) for field trials in one crop, in 107 

order to demonstrate that this product has bona fide effects. We were particularly interested in 108 

comparing the microbiome profile associated with treated vs. untreated samples over time and 109 

across diverse locations, to determine whether or not a common mechanism of action was at 110 

play. Both, the changes in the microorganism composition of samples across time as well as the 111 
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evolution of the structure of the bacterial and fungal communities were assessed. Additionally, 112 

making use of potential correlations among microbiome profiles, product use and crop yield we 113 

built a yield prediction model as a first step towards guaranteeing growers the level of 114 

effectiveness of a product under different management and environmental conditions (weather, 115 

soil microbiome, soil type, crop variety, etc). Our observations conclude that individual 116 

microorganism abundances as well as the structure of the fungal and bacterial communities 117 

change slightly but significantly after application of the inoculant and that these changes can be 118 

associated with the unique yield response at each biogeographical location. 119 

 120 

RESULTS 121 

In this work, we assessed bacterial and fungal communities of bulk and rhizosphere soil (soil 122 

health) of potato cultivars from three different regions of the United States (Sutton and Grant 123 

(Idaho), and White Pigeon (Michigan)). Our aim was to understand the effect of a microbial 124 

inoculant (B. amyloliquefaciens strain QST713) in the rhizosphere microbiota and its final legacy 125 

in the bulk soil microbiota after harvest. We were also trying to identify potential microbiome 126 

biomarkers associated with samples with low or high yields. A total of 185 samples from treated 127 

and untreated plots at each location were collected over four time points, from planting (T0) to 128 

harvest (T3), focusing on the early changes occurring after one (T1) and two (T2) months from 129 

planting, where T0 and T3 are bulk soil samples, and T1 and T2 are rhizosphere soil samples. 130 

Figure 1 shows that, in two of the three locations assayed the use of the inoculant had a 131 

significant effect on increasing the crop yield (Grant p-value 8.66×10-10, and Sutton p-value 132 

7.67×10-7), without any detectable effect in the third location (White Pigeon p-value 0.31) which 133 

had, indeed, a much higher yield in both control and treatment samples. 134 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430373doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430373
http://creativecommons.org/licenses/by-nc/4.0/


 7 

 135 

Variety, phenological stage and geography drive the microbiome composition of bulk and 136 

rhizosphere soil of potato crops. Figure 2 shows a clear population dynamic occurring from T0 137 

(before planting) to T1 and T2 samples (one and two months after planting, respectively) in all 138 

locations. Figure 2A shows that in terms of beta-diversity of bacterial populations, variety 139 

(R2=0.286), phenological stage (R2=0.286) and location (R2=0.042) had significant effects, with 140 

the treatment (R2=0.004) having a minor non-significant effect. However, for fungal populations 141 

(Figure 2C), variety dominates as the main driver of the beta-diversity patterns (R2=0.299), with 142 

phenological state having a much lower impact (R2=0.084) than in bacterial populations, and 143 

location (R2=0.067) and treatment (R2=0.007) having similar impacts to that in bacterial 144 

populations. Additionally, for fungal populations, all covariates had significant effects (full 145 

PERMANOVA data in Table S1). As shown in Figures 2A and 2C, White Pigeon is significantly 146 

different from Grant and Sutton; this can be easily explained by the geographical distance 147 

between locations, which correlates well with the Aitchison distances of samples in the PCoA 148 

analysis. There are also different edaphological and weather conditions at each of these 149 

locations, and a different crop variety in White Pigeon as compared to Sutton and Grant, all of 150 

which are major drivers of the soil microbial populations as previously observed by Rasche (10) 151 

and İnceoğlu (14) in potato soils. The significant differences between microbial community 152 

compositions before and after planting can be clearly seen at Figures 2A and 2C, where, despite 153 

the large differences between locations, T1 and T2 samples clustered in all the three locations, 154 

away from their respective T0, especially in the case of bacterial populations. Similar 155 

observations have been reported in maize (34), rice (35) and potato cultivars (13), and in forest 156 

soils (36).  157 
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Regarding alpha-diversity (Figures 2B and 2D), there is a clear impact of planting in reducing 158 

the diversity of bacterial and fungal populations, as shown for both OTUs richness and Shannon 159 

(H’) index values from T0 to T1. This trend can be extended until time T2 in most cases -with 160 

the exception of the Shannon index for bacterial populations at White Pigeon and for fungal 161 

populations at Grant and Sutton- indicating that the phenological stage of the plant is one of the 162 

main drivers of changes at the alpha-diversity level in both bacterial and fungal populations. 163 

Additionally, comparing control versus treated samples at the same time point, we observed 164 

significant changes in Grant at T1 for bacterial richness and Shannon index as well as fungal 165 

Shannon index (Table S2). Interestingly, Grant was the site with the largest yield increase 166 

response due to treatment. When soil samples were again analyzed after harvest (T3) in Grant 167 

and Sutton locations, we observed that in spite of the marked microbial succession patterns 168 

found from T0 to T2, there was no significant changes in alpha-diversity between the microbial 169 

communities found in the soil before planting (T0) and after harvesting (T3) (Table S3); 170 

therefore, the plant’s associated soil microbiota seems to have cycled back to its original state. 171 

At the taxonomy level, despite clear population dynamic patterns from T0 to T2 sampling times 172 

in all the three locations and in both treated and untreated samples, samples from all three 173 

locations and times shared some of the most abundant genera for both bacterial and fungal 174 

communities (Figure S1). Figure S1 shows the top bacterial genera identified across samples in 175 

this study (core microbial species). Of these, five (Arthrobacter, Pseudomonas, Sphingomonas, 176 

Streptomyces and Rhizobium) also appeared in the soil bacteria survey performed by İnceoğlu 177 

(13) on potato fields. Among the top fungal genera shared across samples in our study (core 178 

fungal species) we found Cryptococcus, Mortierella, and Alternaria. 179 
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Thus, as previously reported (37) in tomato cultivars using a B. subtilis strain, and in soybean 180 

(38) and lettuce (39) cultivars using different strains of B. amyloliquefaciens, here we didn’t 181 

detect a durable impact of the treatment on the bulk soil microbial communities in terms of major 182 

taxa (Figure S1), and alpha- and beta-diversity (Figure 2), but instead we observed a clear 183 

temporal -cyclical- dynamics which differentiates bulk soil (T0 and T3) and rhizosphere soil (T1 184 

and T2) samples (Figure 2). 185 

 186 

Elements of microbiome composition and structure can be effectively modulated by use of 187 

a B. amyloliquefaciens-based soil applied biological product. To dissect the specific effect of 188 

the biological product over the microbial composition across time at each location, we compared 189 

the fold change of each OTU in the treatment group from T0 to T1 (and from T0 to T2) vs. the 190 

fold change in the control group at the same time intervals per location (Table S4). Out of 17,241 191 

unique bacterial OTUs in the samples of the study, 16 changed significantly from T0 to T1 (none 192 

in Grant, one in Sutton, and 15 in White Pigeon), and 100 from T0 to T2 (16 in Grant, 79 in 193 

Sutton, and five in White Pigeon). These OTUs belong to 73 genera, of which, 13 changed 194 

significantly in at least two locations: Bacillus, Bradyrhizobium, Clostridium, Novosphingobium, 195 

Rhodoplanes, Sphingomonas, Sphingopyxis, and Woodsholea in Grant and Sutton; Agromyces, 196 

Flavobacterium, Pedobacter, and Sporosarcina in Sutton and White Pigeon; and 197 

Stenotrophomonas in Grant and White Pigeon. For fungi, out of 1,702 unique OTUs, ten OTUs 198 

changed significantly from T0 to T1 (none in Grant, eight in Sutton and two in White Pigeon), 199 

and 32 from T0 to T2 (none in Grant, 32 in Sutton, and none in White Pigeon). These OTUs 200 

belong to 30 genera, of which, one changed significantly in at least two locations: Cryptococcus 201 

in Sutton and White Pigeon. Thus, despite variety, phenological stage and location having a 202 
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larger effect than treatment in the composition of microorganism populations, the inoculant still 203 

generated common detectable abundance changes in at least two of the three locations for several 204 

taxonomic groups, some of which have known functionally relevant roles (Bacillus, 205 

Bradyrhizobium, Flavobacterium, Pedobacter, Sphingomonas, and Stenotrophomonas). 206 

  207 

In order to get a deeper understanding of how the structure of the bacterial and fungal 208 

communities, and therefore the ecological relationships among microorganisms, impacts the 209 

effect of the bacterial inoculant, we studied the co-occurrence and co-exclusion patterns between 210 

pairs of OTUs in each sample of the trial. As some of us reported in a recent work (40), by 211 

studying the network properties of local communities inferred from the co-occurrences and co-212 

exclusion patterns of a reference metacommunity it is possible to estimate ecological emergent 213 

properties (i.e. niche specialization, level of competition) of interest for the understanding of 214 

microbiome functioning. We first built metacommunities based on all samples of the trial. As an 215 

initial filter, for bacteria, we retained OTUs that were detected in at least 30% of the entire 216 

dataset, and 90% for fungal communities. This is due to the disproportionate number of unique 217 

OTUs detected in 16S vs. ITS soil sequencing. To keep the overall size of the data manageable 218 

we limited the number of selected OTUs to 4,000 with a maximum of 10 million possible 219 

significant pairs. We also filtered out OTU pairs that were not significantly (p < 0.05) enriched 220 

(co-occurrence) or depleted (co-exclusion). This resulted in metacommunity networks consisting 221 

of 3,339 nodes for bacteria (19.4% of the total 17,241 bacterial OTUs) and 447 nodes for fungi 222 

(26.3% of the total 1,702 fungal OTUs), which on average captured 92.11% of the bacterial 223 

abundance and 98.62% of the fungal abundance of the samples in the study. We then explored 224 

the structure of local microbiome communities, based on just the nodes present in each 225 
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individual sample, aiming to detect changes in network properties that are associated with the 226 

application of the biological product at a specific location over time. Specifically, for the co-227 

exclusion and co-occurrence bacterial networks, we calculated the modularity (a measure of the 228 

strength of partitioning of a network into modules) and transitivity (measure of the degree to 229 

which nodes in a network cluster together) as well as the proportion of co-exclusions and co-230 

occurrences present in the local network compared to the total number of possible combinations 231 

among all OTUs in the sample. 232 

Figures 3A and 3B show the evolution from T0 through T2 of four of the six local network 233 

properties studied across locations, for bacterial and fungal populations, respectively. Figure 3C 234 

lists those changes that have been significant (see Table S5 for full data) in time -from T0 to T1, 235 

and from T0 to T2- in treated vs. untreated blocks. In Grant there is a significant decrease in 236 

fungal co-occurrence transitivity and bacterial co-occurrence proportion from T0 to T1 in the 237 

treated samples when compared to untreated ones. In agreement with the observations of Ortiz-238 

Alvarez (40) on their extensive survey of vineyard soils, it seems that any human intervention in 239 

a crop alters the structure of microbial communities of the soil, and a decreased transitivity on 240 

the fungal co-occurrence network seems to be a common indicator of these types of alterations. 241 

In the above-mentioned work, some of us argued that low clustered communities (those with low 242 

transitivity scores) can be associated with highly competitive environments with a high degree of 243 

niche specialization, which are among the most relevant properties of an ecosystem when trying 244 

to understand its functionality and its response to human interventions and land-use changes 245 

(41). It is also interesting to see a lagged effect (at T2) of the treatment in modifying some 246 

network properties of the bacterial communities in both Grant and Sutton. In Grant, the bacterial 247 

co-occurrence proportion increases from T0 to T2 (in contrast to the decrease from T0 to T1), 248 
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and at the same time the transitivity of the bacterial co-occurrence network increases. In Sutton, 249 

both the bacterial co-occurrence proportion as well as the bacterial co-exclusion proportion 250 

increased from T0 to T2. Thus, when attending to the microbiome structure changes caused by 251 

the treatment in Grant and Sutton, which were the locations where treatment had a significant 252 

effect over yield, we can highlight significant treatment-mediated effects over the fungal and 253 

bacterial community networks that decreased from T0 to T1, and then increased in T2. 254 

Interestingly, and contrary to what was observed in Grant and Sutton, in White Pigeon, the 255 

location where treatment didn’t have a significant effect over yield and that had a different 256 

variety of potato, there was an increase in the bacterial co-exclusion modularity from T0 to T1. 257 

 258 

Elements of microbiome composition and structure allow prediction of potato yield. We 259 

fitted a Random Forest model aiming to predict if a rhizosphere or bulk soil sample comes from 260 

a block with a yield ≤ 30t/ha or > 30t/ha, based on its microbiome composition and structure 261 

using multivariate compositional data (Principal Components from a beta-diversity ordination) 262 

and local network properties. We measured yield data in 20 treated and 20 untreated plots from 263 

the three geographical locations, and for each we utilized all samples available over times T0, T1 264 

and T2. In total 112 samples were used for this task split into a training set of 84 samples and a 265 

test set of 28 samples. The result of this model showed a predictive accuracy of 78.6% (Figure 266 

4A) and identified four variables (two network properties and two compositional) as the most 267 

important predictors of yield (Figure 4B), even with a higher importance than a variable we used 268 

to encompass the effects of geography and variety that are not accounted for by the microbial 269 

composition and structure. Surprisingly, the structure of fungal communities (i.e. fungal co-270 

occurrence transitivity and co-exclusion proportion), showed a much higher predictive value than 271 
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the structure of bacterial communities (Figure 4B, see Table S6 for full data on the importance of 272 

variables to the yield prediction model). We observed an inverse correlation between the co-273 

occurrence transitivity of bulk and rhizosphere soil fungal communities and the yield found in 274 

the potato cultivars. This is a particularly important observation for understanding the effect of 275 

the B. amyloliquefaciens-based biological product assayed here in shaping the structure of fungal 276 

communities as a potential mechanism of action when increasing the yield. As shown in Figure 277 

3B and Table S5, in going from T0 to T1 the increase in fungal co-occurrence transitivity in 278 

Grant is greater in the control samples than the treated ones, and this difference is significant (p-279 

value=0.007). In Sutton -where a smaller but significant effect of the treatment increasing yield 280 

was also found (Figure 1)- in going from T0 to T1 there was a smaller increase in fungal co-281 

occurrence network transitivity in the treated samples when compared to the control ones (albeit 282 

the difference is not significant, p-value=0.086). In White Pigeon instead, where the treatment 283 

did not have an effect over yield and where there was a different potato variety, there is a 284 

decrease in fungal co-occurrence network transitivity in going from T0 to T1 in treated samples, 285 

and even a more marked decrease in control samples. 286 

The other two compositional variables (PC3 and PC1) contributing to the predictive power of the 287 

model fitted can be explored by looking at the taxonomy of the OTUs in each showing a 288 

significant correlation with the yield. It is necessary to keep in mind that the predictive power of 289 

PC3 and PC1 variables, as principal components of a multivariate analysis, came from the 290 

interaction patterns among the OTUs and not from their individual behavior. However, we can 291 

highlight the presence, for instance, of the fungal biocontrol agent Trichoderma sp. (42) as the 292 

OTU with the highest positive correlation with yield in PC3 (Figure S2). 293 
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As described in the methods section, since yield is constant for all samples within a plot, we 294 

converted yield to a categorical variable (≤ 30t/ha, > 30t/ha). The distribution of the yield data 295 

was bimodal, and thus it seemed logical to divide the categories on a zero probability density 296 

point for the bimodal distribution. However, in order to assess if this decision may have had an 297 

impact in the features identified as important by the yield predictive model presented here, we 298 

investigated the models resulting from splitting the yield data into three (≤ 26t/ha, > 26t/ha to ≤ 299 

35t/ha, > 35t/ha) or four (≤ 20t/ha, >20t/ha to ≤ 26t/ha; > 26t/ha to ≤ 35t/ha , > 35t/ha) 300 

categories. As can be seen from Table S6, fungal co-occurrence transitivity and fungal co-301 

exclusion proportion always had higher importance than geography and variety, independent of 302 

the number of yield categories used. In the model with three yield categories the bacterial co-303 

exclusion proportion also had higher importance than geography and variety, whereas in the 304 

model with four yield categories, fungal co-inclusion modularity and PC12 had higher 305 

importance than geography and variety. However, dividing yield into more categories resulted in 306 

decreased accuracy (64.3% when splitting into three categories and 57.1% when splitting into 307 

four categories) due to the limited training set size being divided into an increasing number of 308 

categories. 309 

Van Klompenburg and collaborators (43) performed a systematic literature review to identify the 310 

most used machine learning algorithms for crop yield prediction as well as the most used 311 

features to train those algorithms. They identified that most researchers have used neural 312 

networks in their work with the most frequently used features being temperature, rainfall and soil 313 

type. Interestingly, none of the articles reviewed utilized soil microbial or fungal composition or 314 

structure as features. In recent work, Jeanne and collaborators (16) developed a model to 315 

correlate potato yield to soil bacterial diversity. They showed that their species balance index 316 
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related to potato yield (SBI-py) had a high correlation (0.77) with yield, whereas the Shannon 317 

diversity, Pielou diversity and Chao 1 diversity failed to correlate well with yield. Here, we built 318 

a machine learning potato yield model based on bacterial and fungal communities of rhizosphere 319 

and bulk soil and their structure, which can predict with relatively high accuracy whether a 320 

potato plot will have a yield of more or less than 30t/ha, which was the value that divided the 321 

bimodal distribution of yield in our training set. It is also worth noting that the dataset in this 322 

study included as a variable the application of a bioinoculant, thus this yield model also 323 

represents a first step towards understanding when and where biological products work. Despite 324 

the small sample size and the treatment of yield as a categorical value, independent of the 325 

number of categories used for splitting yield, we always found that the structure of fungal 326 

communities was a better estimator of potato yield than the structure of bacterial communities, 327 

which is a finding that merits further investigation. 328 

 329 

DISCUSSION 330 

The use of microbial inoculants to increase the yield of plants is a useful strategy, increasingly 331 

used in agriculture. In addition to the direct impact of the microbial inoculant in the plant, due to 332 

its unique metabolic properties, the introduction of an allochthonous strain in the microbial 333 

rhizosphere and bulk soil ecosystems may have an impact on the entire microbiome, affecting 334 

the composition and structure of the native communities. Our work demonstrates that variety 335 

being the main driver of the microbial profile of rhizosphere and bulk soils from potatoes, 336 

phenological stage of the plant and geography also have a major impact in the microbiome 337 

composition, especially in the bacterial community. Even though relegated to last position, the 338 

use of a microbial inoculant based on B. amyloliquefaciens QST713 -a strain isolated from the 339 
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soil of a Californian organic peach orchard with a demonstrated effective broad-spectrum 340 

bactericide and fungicide activity (44) through a number of different mechanisms of action (45, 341 

46)- had a significant effect over the beta-diversity of fungal communities. Looking at alpha-342 

diversity we observed significant changes at T1 in one location (Grant) for both bacterial and 343 

fungal communities in treated plots. Given that variety, plant phenological stage and geography 344 

have such strong influence over bulk and rhizosphere soil community composition and structure, 345 

the treatment effects observed were analyzed per location as evolution between two time points 346 

when comparing treated versus untreated plots. This also means that the patterns identified here 347 

as derived from product use may be of a more correlative than deterministic nature. Nonetheless, 348 

several OTUs changed significantly from T0 to T1 and from T0 to T2 in the inoculated soils, 349 

including several functionally important members of the soil microbiota, as well as modified 350 

specific microbial network properties. Specifically, a potential link between the bioinoculant and 351 

yield whereby the bioinoculant reduces the transitivity of the co-occurrence fungal network of 352 

the rhizosphere and bulk soil where it is applied through its biofungicide activity seems fit. 353 

Importantly, we also observed that this B. amyloliquefaciens QST713 trial did not cause any 354 

legacy effect on the microbiome profile of the soil analyzed after harvesting, i.e. the effect of the 355 

bioinoculant is cyclical and the native microbiome returns to its original state after harvesting. 356 

We also presented here a Random Forest yield prediction model for potatoes based on a soil 357 

health assessment of its microbial composition and structure. This model is our first step towards 358 

understanding not only why, but also when and where biological products work increasing yield.  359 

In addition, the significant contribution of the local network properties on the estimation of the 360 

actual yield of a certain block reinforces the idea of the need of a more functional vision of 361 

agriculture microbiomes, as certain emergent properties can be deduced from them. In particular, 362 
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low clustered (low co-occurrence transitivity) fungal communities, as found here as positively 363 

contributing to the yield, are expected to be driven by a higher degree of niche specialization 364 

(40). Thus, B. amyloliquefaciens QST713 seems to help the soil microbiota adopt a conformation 365 

with lower fungal co-occurrence network transitivity than expected from untreated plots which is 366 

conducive to improved yield, but in a reversible manner (the fungal communities return to their 367 

original stage post-harvest). 368 

Our model trained in only three locations, including only two potato varieties, and where half of 369 

the samples were treated with the bioinoculant may be biased, for instance, in recognizing the 370 

effects of B. amyloliquefaciens QST713 over the soil microbiome as the main features predictive 371 

of yield. However, the fact that fungal co-occurrence network transitivity is linked with potato 372 

yield, has not been reported before and merits further study. Possible future avenues of research 373 

derived from the current work include: i) investigating whether fungal co-occurrence network 374 

transitivity continues to be an important variable in models predicting yield in a more diverse 375 

datasets than the one described here (more varieties, more locations, more samples, wider variety 376 

of edaphological and weather conditions); ii) building predictive models containing not only 377 

microbiome data, but also edaphological and climate information; iii) investigating further the 378 

link between decreased fungal co-occurrence network transitivity and nutrient metabolism in the 379 

soil; and iv) investigating further metacommunity networks or individual sample networks with 380 

low transitivity to understand the taxonomic composition of modules and explain further each of 381 

the niches identified within them; among others. Ultimately, the inverse correlation between crop 382 

yield and fungal co-occurrence transitivity identified in this study as the potential mechanism of 383 

action of B. amyloliquefaciens QST713 in increasing potato yield is a useful concept to design 384 

and test interventions for increasing crop yield. This finding also demonstrates that assessment of 385 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430373doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430373
http://creativecommons.org/licenses/by-nc/4.0/


 18

soil microbial composition and structure in agricultural input trials can be practical tools to 386 

substantiate biological product claims, and that they provide a toolkit for growers to assess and 387 

achieve increased yield and sustainability of their management practices. 388 

 389 

MATERIALS AND METHODS 390 

Field trials. Russet Burbank potatoes were planted in Sutton and Grant locations in Idaho. Seed 391 

variety Lamoka was planted in White Pigeon, Michigan. Applications were performed at 46.770 392 

l/ha spray volume combining grower standard practice of Quadris and Admire Pro plus the 393 

biological treatment, tank mixed and applied in-furrow. Treatment consisted of a biological 394 

product containing a minimum of 2.7×1010 CFU/g of B. amyloliquefaciens QST713 at a dose of 395 

0.935 l/ha out of the total spray volume. Grower standard fungicide and insecticide applications 396 

were chemigated over trial area as seeded. Plots were 0.405 hectares (1 acre) each. Harvest was 397 

conducted by harvesting 2.787m2 within each plot. Yield weights were evaluated and recorded in 398 

lbs and cwt/ac. 399 

 400 

Sample collection. Whole plants from the field were collected and processed to obtain bulk soil 401 

and rhizosphere samples over the three regions. The field samples were processed to obtain bulk 402 

soil from all the root surfaces by vigorous shaking, and to collect rhizosphere samples we 403 

followed the protocol by Lundberg and collaborators (47) with slight modifications: roots 404 

(separated from mother tubers) were chopped into small bits and collected in a clean tube, filled 405 

with 40 ml of PBS buffer, vortexed and centrifuged to obtain a pellet. The rhizosphere pellet was 406 

stored at -80ºC until genomic DNA was extracted. Samples were collected at four different time 407 

points: before planting and/or treatment (T0), one month after planting (T1), two months after 408 
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planting (T2) and at harvest (T3). Samples from White Pigeon were collected only for three time 409 

points: T0, T1 and T2. From each time-point, a total of 20 samples (ten treated and ten untreated) 410 

were collected, except for White Pigeon at T0 (four treated and four untreated), T1 (12 treated 411 

and nine untreated), and T2 (four treated and four untreated), and for Grant at T0 (four treated 412 

and four untreated). A total of 76 bulk soil samples (T0 and T3) and 109 rhizosphere samples 413 

(T1 and T2) were collected. Samples were collected across different locations for each field and 414 

the composite was submitted for analysis, in order to achieve a more homogenized sampling 415 

reducing the effect of microbial variability. 416 

 417 

Sample analysis. After collection, samples were immediately sent for molecular analysis to 418 

Biome Makers laboratory in Sacramento, US. DNA extraction was performed with the DNeasy 419 

PowerLyzer PowerSoil Kit from Qiagen. To characterize both bacterial and fungal microbial 420 

communities associated with bulk soils and rhizosphere samples, the 16S rRNA and ITS marker 421 

regions were selected. Libraries were prepared following the two-step PCR Illumina protocol 422 

using custom primers amplifying the 16S rRNA V4 region and the ITS1 region described 423 

previously (48). Sequencing was conducted in an Illumina MiSeq instrument using pair-end 424 

sequencing (2x300bp). The bioinformatic processing of reads included the merging of forward 425 

and reverse paired reads to create robust amplicons, using Vsearch (49) with minimum overlaps 426 

of 100 nucleotides and merge read sizes between 70 and 400 nucleotides. OTU clustering was 427 

performed at 97% sequence identity, followed by quality filtering through denovo chimera 428 

removal using the UCHIME algorithm (50). Taxonomic annotation was performed using the 429 

SINTAX algorithm (51), which uses k-mer similarity to identify the top taxonomy candidate, 430 

after which we retained results where the species level had a score of at least 0.7 bootstrap 431 
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confidence. We used the SILVA database version 132 (52) and UNITE database version 7.2 (53) 432 

as taxonomic references. 433 

 434 

Alpha- and beta-diversity analysis. Exploratory analyses of 16S and ITS OTU counts were 435 

conducted separately using the R package vegan (54). Alpha- and beta-diversity were analyzed 436 

using OTU counts. Alpha-diversity metrics (Shannon and richness) were calculated and plotted 437 

across all covariates available. Wilcoxon rank-sum tests were performed to compare control and 438 

treated samples within location-timepoint subgroups. For beta-diversity, Kruskal’s non-metric 439 

multidimensional scaling was performed in conjunction with Aitchison distances. Relative 440 

abundances for OTUs as well as annotations at various taxonomic levels (genera, families, etc.) 441 

were used in the analyses. Permutational multivariate analysis of variance was performed on the 442 

Aitchison distance matrix, using all possible combinations of the variety, location, timepoint and 443 

treatment variables. 444 

 445 

Differential abundance. For all subsequent analyses, the zero counts in the data were replaced. 446 

Valid values for replacement were calculated under a Bayesian paradigm, assuming a Dirichlet 447 

prior. Non-zero values were then adjusted to maintain the overall composition (55). Differential 448 

abundance determination was carried out using the R package edgeR (56). For each OTU, the 449 

fold change attributable to the treatment across different times (e.g. T0 to T1) was calculated. 450 

This was done by conducting a hypothesis test separately for each location, measuring the fold 451 

change of a given OTU in the treatment group (from T0 to T1) vs. the fold change in the control 452 

group (from T0 to T1), and then repeating the test but using times T0 and T2. 453 

 454 
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Calculation of local network properties. Meta-community networks were built for 16S and 455 

ITS data separately using the methods described by Veech (57) and Ortiz-Álvarez (40). In a 456 

nutshell, we first built a metacommunity network of all samples: this was done by estimating the 457 

co-occurrence and co-exclusion that would occur solely by chance for all possible OTU pairs, 458 

given the data. We selected OTU pairs that occurred significantly more than expected by chance 459 

to create the co-occurrence networks. Similarly, those that occurred significantly fewer times 460 

than expected by chance constituted the co-exclusion network. Local networks (single sample-461 

level) were calculated by subsetting the metacommunity network for OTU pairs detected in each 462 

sample and estimating a local network. The R package igraph was used to calculate network 463 

properties: modularity, transitivity and proportion of co-exclusions and co-occurrences in 464 

relation to the total number of combinations among all OTUs in a sample (58). An adequate 465 

description of the ecological meaning of the different network properties calculated in this work 466 

can be found in the review work of Proulx and collaborators (59). Network properties were 467 

compared using a linear model. Using the network property as outcome, hypothesis tests were 468 

performed to compare timepoint differences in treated vs. control samples (analogous to the 469 

approach used for investigating differential abundances). 470 

 471 

Yield model. Yield data was first explored using medians and inter-quartile ranges (IQRs). 472 

Wilcoxon rank sum tests were performed on these yield data. The OTU counts were transformed 473 

using the centered log-ratio (CLR) transformation. CLR-transformed 16S and ITS data were 474 

jointly projected onto 70 principal components. Yield was modelled as the outcome of these 70 475 

principal components, along with fungal and bacterial network properties, treatment, soil type (to 476 

distinguish between bulk and rhizosphere soils), and a variable that encompasses variety and 477 
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geography, using a probability forest as described by Malley (60). Since the yield is a constant 478 

variable for all time points within a plot, the yield was converted to a categorical variable (≤ 479 

30t/ha, > 30t/ha). The threshold for this division, 30 tonnes, was set at a zero probability density 480 

point for the bimodal distribution of yield. We used a total of 112 samples (all T0 through T2 481 

samples in the study for which we had yield data) and split them into training (n = 84) and test (n 482 

= 28) sets. Variable importance for each variable in the model was calculated using the Gini 483 

index. As a sensitivity test, probability forests were fit for a three-way split of the yield variable, 484 

and variable importances were compared. Among the 70 principal components of the 485 

microbiome included in the model, the ones with the highest importance in the probability forest 486 

were selected for further analysis. The loadings of these principal components were clustered 487 

using an unsupervised hierarchical clustering algorithm to visualize some of the most influential 488 

OTUs' impact on these principal components. 489 

 490 

Data availability. Raw files for bacterial and fungal amplicons for each sample are available in 491 

NCBI under BioProject accession code: PRJNA699261. 492 
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 684 
Figures Legends 685 

 686 

Figure 1. Yield data (t/ha) for control and treated blocks across locations. Discontinued line 687 

separates blocks into two categorical variables (≤ 30t/ha, > 30t/ha), and corresponds to one of the 688 

natural zero probability density points in the bimodal yield distribution. The box limits 689 

correspond to the 25th and 75th percentile, and the central line is the median. The whiskers are 690 

the 5th and 95th percentile. The dots represent outliers (points below 25th percentile - (1.5 * 691 

IQR) and above 75th percentile + (1.5 * IQR), where IQR is the interquartile range or absolute 692 

difference between 75th and 25th percentiles. 693 

 694 

Figure 2. Beta- and alpha-diversity of bacterial and fungal populations in samples across 695 

locations and sampling times. (A, C) Beta-diversity (PCoA ordination) of bacterial and fungal 696 

populations. (B, D) Alpha-diversity (OTU Richness and Shannon (H’) index) of bacterial and 697 

fungal populations. T0 - before planting; T1 - one month after planting; T2 - two months after 698 

planting. Boxplot limits are the same as defined in Figure 1. 699 

 700 

Figure 3. Local network properties across locations and sampling times. (A, B) Local network 701 

properties of bacterial and fungal populations in samples from the three locations (Grant, Sutton 702 

and White Pigeon) at three sampling times (T0 - before planting; T1 - one month after planting; 703 
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T2 - two months after planting). (C) Significant changes from T0 to T1 and from T0 to T2 in 704 

treated vs. untreated blocks. 705 

 706 

Figure 4. Random Forest yield model fitted to predict blocks with yields of ≤ 30t/ha or > 30t/ha 707 

based on soil microbiome composition and structure data. (A) Confusion matrix for the Random 708 

Forest model over the test set samples. (B) Importance figures of the main variables contributing 709 

to the predictive power of the Random Forest model. 710 

 711 
Supplementary Figures Legends 712 

 713 

Figure S1. Taxonomic composition of soil samples across locations and sampling times. (A) 714 

Most abundant bacterial genera identified. (B) Most abundant fungal genera identified. T0 - 715 

before planting; T1 - one month after planting; T2 - two months after planting; T3 – after 716 

harvest.  717 

 718 

Figure S2. Taxonomic assignment and their relationship with yield (fold change values) of the 719 

OTUs contributing to the ten most important principal components of the beta-diversity 720 

ordination generated for the yield predictive model. 721 

 722 
Supplementary Table Legends 723 

 724 

Table S1. Full PERMANOVA for bacterial and fungal beta-diversity. 725 

 726 

Table S2. Wilcoxon rank-sum test for bacterial and fungal alpha-diversity of control vs. treated 727 
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samples. 728 

 729 

Table S3. Wilcoxon rank-sum test for bacterial and fungal alpha-diversity of T0 vs. T3 samples. 730 

 731 

Table S4. Significant differential abundance of bacterial and fungal OTUs of control vs. treated 732 

samples at T1 vs. T0 and T2 vs. T0.  733 

 734 

Table S5. Network property changes of bacterial and fungal communities of control vs. treated 735 

samples at T1 vs. T0 and T2 vs. T0.  736 

 737 

Table S6. Importance of variables in Random Forest yield predictive models. 738 
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Figure 1. Yield data (t/ha) for control and treated blocks across locations. Discontinued line separates blocks into two
categorical variables (≤ 30t/ha, > 30t/ha), and corresponds to one of the natural zero probability density points in the
bimodal yield distribution. The box limits correspond to the 25th and 75th percentile, and the central line is the
median. The whiskers are the 5th and 95th percentile. The dots represent outliers (points below 25th percentile - (1.5
* IQR) and above 75th percentile + (1.5 * IQR), where IQR is the interquartile range or absolute difference between
75th and 25th percentiles.
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Figure 2. Beta- and alpha-diversity of bacterial and fungal populations in samples across locations and sampling
times. (A, C) Beta-diversity (PCoA ordination) of bacterial and fungal populations. (B, D) Alpha-diversity (OTU
Richness and Shannon (H’) index) of bacterial and fungal populations. T0 - before planting; T1 - one month after
planting; T2 - two months after planting. Boxplot limits are the same as defined in Figure 1.
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Figure 3. Local network properties across locations and sampling times. (A, B) Local network properties of bacterial
and fungal populations in samples from the three locations (Grant, Sutton and White Pigeon) at three sampling times
(T0 - before planting; T1 - one month after planting; T2 - two months after planting). (C) Significant changes from T0
to T1 and from T0 to T2 in treated vs. untreated blocks.
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B

Figure 4. Random Forest yield model fitted to predict blocks with yields of ≤ 30t/ha or > 30t/ha based on soil
microbiome composition and structure data. (A) Confusion matrix for the Random Forest model over the test set
samples. (B) Importance figures of the main variables contributing to the predictive power of the Random Forest
model.
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