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ABSTRACT 
Background. During development, complex organ patterns emerge through the precise 
temporal and spatial specification of different cell types. On an evolutionary timescale, these 
patterns can change, resulting in morphological diversification. It is generally believed that 
homologous anatomical structures are built – largely – by homologous cell types. However, 
whether a common evolutionary origin of such cell types is always reflected in the conservation 
of their intrinsic transcriptional specification programs is less clear.  
Results. Here, using a paradigm of morphological diversification, the tetrapod limb, and single-
cell RNA-sequencing data from two distantly related species, chicken and mouse, we 
assessed the transcriptional dynamics of homologous cell types during embryonic patterning. 
We developed a user-friendly bioinformatics workflow to detect gene co-expression modules 
and test for their conservation across developmental stages and species boundaries. Using 
mouse limb data as reference, we identified 19 gene co-expression modules with varying 
tissue or cell type-restricted activities. Testing for co-expression conservation revealed 
modules with high evolutionary turnover, while others seemed maintained – to different 
degrees, in module make-up, density or connectivity – over developmental and evolutionary 
timescales. 
Conclusions. We present an approach to identify evolutionary and developmental dynamics 
in gene co-expression modules during patterning-relevant stages of homologous cell type 
specification. 
 
 
1 INTRODUCTION 
Recent advances in single-cell 
technologies now enable researchers to 
study the molecular dynamics of pattern 
formation and evolution at the level of the 
basic biological unit of life, the individual 
cell. During development, starting from a 
single fertilized cell, various progenitor cell 
populations need to proliferate, 
differentiate, and – for some of their 
progeny – undergo controlled cell 
elimination. These processes require tight 
coordination, across time and space, to 
result in proper pattern formation of 
complex organs. From a cell’s perspective, 
this progression is linked to the integration 
of various extra-cellular signals, as 
determined by its relative position inside the 

forming tissue, and the cell-intrinsic 
interpretation of these cues, shaped by the 
lineage-specific molecular state of the cell. 
Accordingly, evolutionary modifications in a 
given patterning process can occur through 
changes in either cell-extrinsic or -intrinsic 
components – or a combination of both –, 
to result in morphological diversification.  
This is exemplified in the vertebrate limb, a 
paradigm of morphological evolution, 
where developmental patterning has 
experienced important modifications 
across the tetrapod clade. Molecular 
genetics studies and experimental 
embryology have yielded important insights 
into how, e.g., early limb bud outgrowth is 
initiated and advanced, or what 
modifications in these molecular programs 
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can drive diversification of limb form and 
function.1,2 So far, a majority of these 
findings have focused on the activity and 
interplay of various extra-cellular signaling 
pathways.3–8 Yet only since recently, thanks 
to the development of single-cell genomics 
technology, can we study the molecular 
dynamics that occur cell-intrinsically, inside 
the signal-receiving cell types, at high 
resolution. 
Cell types, like anatomical structures, can 
be considered homologous across different 
taxa, with their evolutionary origins tracing 
back to a common ancestor.9,10 Moreover, 
it its generally believed that homologous 
anatomical structures are built – to a large 
extent – by homologous cell types, and that 
changes in organ patterning often simply 
reflect temporal, spatial and quantitative 
differences in the specification of these 
cells during development.11 The overall 
molecular state of a homologous cell type, 
however, may vary substantially between 
species, even within a similar 
developmental context. This holds 
especially true at the transcriptional level, 
where selection can be weak and result in 
genetic drift and concerted transcriptome 
evolution.12–16 Accordingly, identification of 
so-called ‘species signals’, rather than 
functionally relevant gene expression 
changes, can dominate differential 
expression analyses, particularly when 
applied to similar cell types over long 
evolutionary distances.12,17 Moreover, any 
given cell type might occur in a variety of 
so-called ‘cell states’, related to e.g. cell 
cycle or metabolic status, thereby further 
complicating these comparisons.18 Hence, 
to understand developmental pattern 
evolution comprehensively, we require both 
a detailed understanding of the cell-
extrinsic changes occurring in the signaling 
environment, as well as appropriate 
methods to detect species-specific 
differences in the intrinsic molecular make-
up of the recipient cell types. 
Here, we present a bioinformatics workflow 
in R to identify gene co-expression modules 
from scRNA-seq data, and test for their 
conservation across developmental stages 
and species boundaries. Using mouse limb 
E15.5 data as our reference, we identify 
tissue and cell type-specific co-expression 
modules and demonstrate the ability to 
follow their compositional changes, module 

architecture and expression dynamics 
along developmental time courses in two 
distantly related tetrapods. Differences in 
module conservation – between modules, 
across species – indicate that patterning 
processes involving certain cell populations 
are more likely to occur through changes in 
extracellular environment, while others 
undergo high evolutionary turnover in their 
cell-intrinsic molecular make-up. Moreover, 
we demonstrate the power of gene co-
expression module detection to identify 
distinct cell states, shared across 
developmental and evolutionary 
timescales. 
 
2 RESULTS 
2.1 Primary data acquisition, 3’UTR 
annotation and data processing 
We used publicly available scRNA-seq data 
from mouse and chicken spanning six 
embryonic stages, from early limb bud 
initiation and outgrowth, to late stages of 
pattern refinement and tissue maturation. 
For mouse, we had access to stages E9.5, 
E10.5, E11.5, E13.5, E15.5, and E18.5, 
and used a total of 17857 cells19,20 (Fig. 1A). 
For chicken, we used our own previously 
published data (HH25, HH29, and HH3121), 
and complemented the time series with 
newly generated data points spanning 
stages HH21, HH24, and HH27 (Fig. S1A, 
B), to cover days 3 to 7 of development with 
a total of 32461 cells (Fig. 1B). For both 
chicken and mouse, we have fore- and 
hindlimb data, which we analyzed 
interchangeably (Fig. 1A, B). 
A preliminary inspection of the two data 
sets revealed that – on average – mouse 
samples displayed a higher percentage of 
skeletal cell types. We reasoned that either 
during the preparation of single cell 
suspensions the mouse tissue had been 
dissociated more thoroughly, thereby 
releasing a higher percentage of 
extracellular matrix-encapsulated skeletal 
cells, or that our expression analyses of 
chick cells failed to accurately capture the 
expression status of genes important for 
skeletogenesis. Indeed, when visually 
examining the genomic location of our 
mapped chicken reads, many seemed to 
fall outside the annotated 3’ UTR regions 
and hence were not included in our UMI 
count tables (Fig. S1A, B). Such annotation 
issues have been reported before, also for 
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other species,22 and they are particularly 
problematic when using sequencing 
technologies with high 3’UTR-biases like 
the 10x Genomics Chromium 3′ Kit. 
Therefore, we decided to improve the 
3’UTR annotation of the chicken genome, 
using publicly available bulk RNA-seq data 
(see Experimental Procedures).23 This 
resulted in a slight overall increase of the 
average 3’UTR length, yet with many of the 
extensions not exceeding 100bp (Fig. S1C, 
D). However, even such modest extensions 
in 3’UTR lengths resulted in a substantial 
increase of UMI numbers detected for 
many genes, including some well-known 
skeletal regulators like SOX9 and GDF5 
(Fig. S1E, F). Accordingly, we re-mapped 
all our chicken data using our newly 
improved 3’UTR annotation. While this did 

not completely alleviate the bias in murine 
skeletal cells – i.e. differences in 
dissociation protocols likely also contribute 
to this effect –, we now managed to identify 
small skeletal sub-populations, like e.g. 
synovial joints, more reliably in the chicken 
(data not shown). Moreover, we believe 
that this improved 3’UTR annotation will 
also prove helpful for future single cell 
genomics studies in the chicken model 
system. 
With these improved UMI count tables for 
the chicken, we continued our comparisons 
to the mouse limb samples. As our datasets 
were produced in different laboratories, we 
implemented a standardized filtering step of 
all single cells, based on quality 
measurements like library size, proportion 
of mitochondrial reads and number of 

Figure 1. Comparative single-cell transcriptomic atlases of the developing mouse 
and chicken limb. (A, B) Sampling schemes and tSNE projections of 17’857 mouse 
(A) and 32’461 chicken (B) forelimb (triangle) and hindlimb (circle) single cel l  
transcriptomes. (C-F) Mouse (C) and chicken (E) cluster identit ies are highlighted by 
color codes in the tSNE projections, on a cell-by-cell basis, with cells belonging to 
similar t issue types sharing color codes across all samples. Relative sample 
composition is visualized by barplots (D, F). A total of 86 and 74 clusters were 
identif ied in mouse and chicken, respectively, distributed over 6 sampling time points.  
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genes detected. Moreover, due to the 
overall size of the E9.5 and E10.5 datasets, 
we randomly subsampled 25% of the single 
cell transcriptomes, to have datasets of 
comparable sizes. We then normalized the 
expression data, performed cell cycle 
correction and adjusted multi-batch 
samples. For each species, we then 
integrated all cells into a single tSNE 
dimensionality reduction embedding (Fig 
1A, B).  
In order to identify the different cell types in 
our data, we first analyzed all stages 
individually. Using the same parameters of 
unsupervised graph-based clustering 
throughout, we found 13 clusters in the 
mouse E9.5 sample, 16 at E10.5, 12 at 
E11.5, and 15 at E13.5, E15.5 and E18.5 
each. For our chicken samples, we found 9 
clusters in the HH21 dataset, 11 at HH24, 
15 at HH25, 9 at HH27, 19 at HH29, and 11 
at HH31. By comparing the results of our 
differential gene expression analyses to 
known marker genes, we were able to 
identify most of these clusters as distinct 
cell or tissue types. In all samples we found 
one major cell population, consisting of 
lateral plate mesoderm-derived limb 
mesenchymal cells at various stages of 
differentiation, as well as several smaller 
clusters of cells with different 
developmental origins (Fig 1C, E). Of 
those, skin cells (purple) were present in all 
samples, while muscle cells (black), blood 
(light gray) and blood vessels (brown) were 
detected only in a subset of the samples. A 
small cluster of likely melanocytes (dark 
gray) was found only at mouse stages 
E15.5 and E18.5.  
Within the lateral plate mesoderm-derived 
limb mesenchymal cells we identified 
undifferentiated limb mesenchyme (light 
red), proliferating or cycling mesenchyme 
(dark red), non-skeletal connective tissue 
(nsCT) (maroon), and skeletogenic cells 
like e.g. chondrocytes (blue). Mesenchymal 
cells with a likely distal origin (yellow) were 
detected only at stage E11.5 in the mouse, 
but in all chicken samples, while the 
interdigit cells were only found in the later 
chicken stages HH29 and HH31 (green). 
Differences in dissection strategies and 
dissociation protocols likely account for 
these disparities in cell types detected in a 
given sample, as well as for changes in 
their relative abundance. For example, 

while in mouse samples coming from whole 
limbs a steady increase in the proportion of 
skeletal cells is observed, a more targeted 
sampling of certain limb sub-domains in the 
older chicken samples likely obscured this 
effect (see ref.21 for details) (Fig 1D, F). 
Overall, in 17857 mouse cells and 32461 
chicken cells we identified a total of 86 and 
74 clusters, many of which correspond to 
distinct cell types at various stages of 
maturation across the 6 developmental 
stages. More importantly, the large majority 
of these cell types can be considered 
homologous between the two species, and 
hence their single-cell transcriptomes can 
now be used in a comparative context, to 
assess cell type-specific transcriptional 
dynamics across developmental and 
evolutionary timescales.  
 
2.2 A bioinformatics workflow to 
detect cell type-specific gene co-
expression modules from scRNA-
seq data 
To detect cell type-specific gene 
expression signatures, and circumvent 
some of the issues inherent to cross-
species differential expression analyses, 
we adapted weighted gene correlation 
network analysis (WGCNA)24 and tested for 
the occurrence of transcriptome-wide gene 
co-expression patterns in single cells. 
WGCNA, originally developed for the 
detection of gene co-expression modules in 
bulk RNA-seq data, has seen a recent 
surge in popularity, given the high number 
of replicate samples, i.e. single cells, 
available when working with scRNA-seq 
data. We reasoned that a standardized, 
user-friendly bioinformatics workflow would 
proof beneficial to first-time users of 
WGCNA, as well as make the results more 
comparable between different types of 
studies and data sets. Accordingly, we 
developed an R package (“scWGCNA”) for 
gene co-expression module detection and 
comparisons. In a first part, our analysis 
starts with a Seurat object25 – one of the 
most commonly used output formats of 
scRNA-seq data analyses these days – and 
then performs,  1) pseudocell construction, 
to increase overall robustness; 2) 
identification of highly variable genes [if not 
already provided by the user]; 3) WGCNA 
module detection; 4) Gene Ontology (GO)-
term enrichment analyses and putative cell 
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type identification; and, lastly, produces 5) 
a standardized output file in HTML format.  
For pseudocell construction, 20% of the 
cells from each cluster are chosen at 
random (see Fig 2A), to which their 10 
nearest neighboring cells in the PCA space 

are then aggregated.26 The average 
expression of every gene is calculated for 
each of these cell aggregates and 
normalized, to result in a gene-by-
pseudocell expression data matrix. We 
consider several metadata bins contained 

Figure 2. A bioinformatics workflow for iterative gene co-expression module 
detection and identification. (A) tSNE projection of the mouse E15.5 sample used as 
reference for iterative WGCNA gene co-expression module detection. Identif ied 
clusters are color-coded and labeled, with seed cells used for pseudocell construction 
highlighted in grey. (B-E) Sample outputs of our ‘scWGCNA’ package. (B) Final 
WGCNA gene hierarchical cluster ing dendrogram, showing 19 modules of co-
expression. (C) Cumulative results of GO-term enrichment analyses, showing the top 
4 (by p-value) enriched GO-terms for each module. (D) Cytoscape visualization of co-
expression module ‘ lightgreen’. Node size for each gene is proportional to its module 
membership, edge thickness and intensity represent topological overlap. (E) E15.5 
tSNE showing the averaged cellular expression of module ‘l ightgreen’.  
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in the original Seurat object, including – if 
already calculated – a set of highly variable 
genes as determined from the single-cell 
data. This gene set is critical for 
subsequent analyses, as it directly affects 
the modules that potentially can be 
detected.24,27 Accordingly, ‘highly variable 
gene detection’ is optional in our pipeline 
(see above), allowing users to opt for their 
method of choice. Thereafter, using the 
variable genes expression matrix as input, 
a range of powers are tested to find a 
suitable soft-thresholding power that 
transforms the correlation network to 
resemble a scale-free topology – i.e. the 
underlying structure and characteristics are 
independent of changes in network size, 
which is assumed to be the case for 
biological networks.24,28 This step is 
inherent to WGCNA and aims to reduce the 
noise of correlations in the adjacency 
matrices used. Moreover, it also serves as 
an important control point: if a scale-free 
topology index is not reached, the genes – 
or cells – used should be reconsidered by 
the user. Next, the main WGCNA analysis 
follows. In short: based on the expression 
matrix, expression correlation, adjacency, 
and topological overlap matrices are 
calculated first. Then, based on topological 
overlap, genes are assigned to discrete 
modules of co-expression. The 
membership of the genes to their modules 
is tested, based on the correlation of their 
expression to the overall expression of the 
module: genes without significant 
membership are discarded, and the 
process is repeated until all genes pass the 
membership test. Lastly, the mean 
expression of the different modules is 
calculated in single-cell space, and plotted 
onto a dimensionality reduction of choice. 
Graph representations of all modules are 
generated, and corresponding GO-term 
enrichment analyses are performed. All 
results are then summarized in a single 
report in HTML format (see Supplement 1).  
We decided to test our workflow with only 
one limb data set, in order to be able to 
compare composition and expression 
status of the identified modules in different 
embryonic stages, as well as across 
species boundaries. We used the mouse 
E15.5 sample as our reference data, as it 
showed a high variety in skeletal and 
connective tissue cell populations (Fig. 2A). 

From the 2594 E15.5 single-cell 
transcriptomes a total of 513 pseudocells 
were constructed. Using the 2967 top 
variable genes as input, we obtained 1248 
genes showing significant co-expression 
dynamics, distributed over 19 modules of 
co-expression. For sake of simplicity, the 
different modules identified are hereafter 
referred to by their colors, according to the 
WGCNA results (Fig. 2B, C). The modules 
varied substantially in size and degrees of 
similarity among them (Fig. 2B). Genes 
within the detected modules showed signs 
of enrichment for functional GO-terms that 
we expect to be important for limb 
development, distributed over the different 
tissue types found in the forming 
appendage (Fig. 2C). Likewise, the 
averaged expression of a module, 
calculated over all single cells as the 
averaged expression of all the genes 
contained within it, often showed patterns 
of tissue or cell type specificity. Certain 
modules exhibited highly restricted 
expression, confined to a single cell cluster, 
while others spanned across multiple 
populations (Supplement 1). For example, 
module ‘lightgreen’ was one of the smallest 
modules detected, with 31 genes centered 
around Bcl11b, and an averaged module 
activity confined to our previously identified 
skin cluster (Fig. 2D, E).  Other modules 
with tissue specificity and indicative GO 
terms were, e.g., ‘red’ (muscle), ‘yellow’ 
(blood vessels) or ‘turquoise’ (cartilage); 
while modules ‘green’ and ‘midnightblue’ 
displayed broader patterns of activity and 
GO term enrichments for “cell cycle” and 
“cellular respiration”, respectively 
(Supplement 1).  
Hence, our analysis revealed the existence 
of several gene co-expression modules in 
one of the limb scRNA-seq data sets, 
mouse E15.5, with varying patterns of 
tissue or cell type specificity.  
 
2.3 Testing for gene co-expression 
module conservation across 
developmental and evolutionary 
timescales 
We then conducted a comparison of these 
modules of gene co-expression across all 
samples, testing for the conservation of 
different properties in each module: gene 
composition, ‘density’ and ‘connectivity’. 
First, to assess module composition and 
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overall activity between the two species, we 
checked if genes within the modules were 
present as orthologues, and whether they 
are expressed in any of the chicken 
samples. In terms of gene content, we only 
considered 1-to-1 orthologues, based on 

Ensembl criteria with a confidence cut-off of 
1.29,30 Presence/absence of genes in the 
chicken genome varied greatly between the 
different modules, with the highest 
percentage of 1-to-1 orthologues missing in 
modules related to immune function (Fig. 

Figure 3. Evolutionary and developmental dynamics in gene co-expression 
modules. (A) Conservation of module gene composition and expression status.  
Barplots showing, module by module, the fraction of module genes present as 1-1 
orthologues in the chicken genome, and whether or not they are expressed in our 
samples (red bar). (B, C) Zsummary statistics for ‘density’ and ‘connectiv ity’, module 
by module, for each test sample in mice (B) and chicken (C). The different  
developmental stages for each sample are coded for by symbols. Green and red dotted 
lines indicate Zsummary values of 10 and 2, respectively, to indicate ‘strong evidence’ 
of module ‘density’ or ‘connectivty’ conservation (above 10), potential conservation 
(between) or ‘no evidence’ of conservation (below 2). (D) Hierarchically clustered 
heatmap of scaled averaged expression for each gene co-expression module, across 
mouse and chicken samples on a cluster-by-cluster pseudobulk basis. Top row of 
cluster identif iers is color-coded for species and developmental stage, bottom row for 
tissue type to which the respective cluster was attributed to, based on marker gene 
expression. Representative GO-terms are provided for each module.  
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3A, ‘brown’, ‘greenyellow’, ‘pink’, ‘lightcyan’ 
and ‘cyan’). Conversely, modules enriched 
for GO-terms related to transcriptional 
regulation and morphogenesis all had more 
than 75% of their genes represented in the 
chick genome (Fig. 3A, ‘purple’; and ‘blue, 
‘salmon’). In terms of expression, the 
highest fraction of non-expressed genes 
was found in modules ‘magenta’ and 
‘lightyellow’, with ~15% and ~25% of their 
1-1 orthologous not being detected in our 
chicken samples. Overall, our analysis 
showed that for 8 of the 19 modules less 
than 60% of their genes are present in our 
chicken samples as 1-to-1 expressed 
orthologues. Seven of these 8 modules 
were enriched for GO-terms related to 
immune function or skin development (Fig. 
3A and Supplement 2). For the remainder 
of our analyses, we only considered 1-to-1 
orthologues expressed in samples of both 
species. 
We next wanted to assess to what extent 
the module co-expression relationships 
between genes are conserved across 
developmental and evolutionary 
timescales. A co-expression network can 
be visualized as a group of genes (nodes), 
connected with different strengths as 
defined by their co-expression relationships 
(edges) (see also Fig. 2D). We tested for 
conservation of ‘density’ (i.e., the average 
strength of all connections between all 
genes) and ‘connectivity’ (i.e., the patterns 
of strength of connections) in all of our 
modules.31 For this, we developed a 
second part of our workflow, again 
implemented in our R package. As input, a 
list of 1-to-1 orthologous genes, expression 
matrices of the test datasets, and the 
reference WGCNA analysis (see above) is 
required. In a first step, modules are filtered 
to only contain expressed 1-to-1 
orthologues. In a second step, a 
“preservation test” is performed, which 
integrates a suite of statistical tests of 
network properties into so-called 
“preservation indices”.31 Hence, we obtain 
metrics for the conservation of module 
gene composition, as well as indices for the 
preservation of ‘density’ and ‘connectivity’ 
for each module, across the different test 
samples (Fig. 3A-C, Supplement 2).  
These “preservation tests” showed that the 
co-expression dynamics within our 
modules have different levels of 

conservation across our samples. To 
quantify these differences, we used the 
integrated Zsummary statistic of 
conservation. This statistic can be 
interpreted with two thresholds, with a 
Zsummary greater than 10 implying strong 
evidence of module preservation, and lower 
than 2 suggesting no evidence of 
preservation.31 In general, we observed 
that – as expected – the co-expression 
relationships of the modules detected in the 
E15.5 sample are more conserved in the 
other mouse samples, than in chicken. We 
also found that, overall, density is more 
conserved than connectivity, with only a 
few exceptions (Fig. 3B, C). By using a 
median rank index, we observed that the 
most conserved modules are ‘green’ (GO-
term enrichment (GOE): ‘cell cycle’) and 
‘grey’ (GOE: ‘skeletal development’). In the 
mouse samples, we noticed that only 
module ‘purple’ (GOE: ‘transcriptional 
regulation’) shows an overall higher 
conservation of connectivity than density, 
implying that the co-expression 
relationships between specific genes are 
better conserved than the overall 
correlation in the module. Moreover, in 
chicken samples, modules ‘purple’ and 
‘turquoise’ (GOE: ‘cartilage development’) 
also showed overall higher conservation of 
connectivity than density. On average, 
however, modules related to ‘cartilage’ and 
‘skeletal development’ showed higher 
conservation in density and/or connectivity 
in chicken samples, as compared to 
module ‘purple’, even though the latter 
contained a higher fraction of expressed 1-
to-1 orthologues (Fig. 3A-C, Supplement 
2).  
Despite this seemingly low level of overall 
conservation, our gene co-expression 
modules still seemed to carry a substantial 
amount of information concerning cell type 
and cell state, both across developmental 
stages as well as for comparing samples 
between the two species. To try and infer 
cell type and cell state equivalencies, we 
first calculated the expression of each 
module for every cell. We then averaged 
cellular module expression across all 
previously identified cell clusters, for each 
of our samples, to define so-called cell 
cluster-specific “pseudobulk” 
representations of module activities. 
Importantly, our modules calculated from 
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the mouse E15.5 sample might not 
accurately reflect the transcriptional activity 
of all cells in our study. To account for this, 
we defined a threshold as the median 
expression of all modules in a given 
pseudobulk, plus two times the median 
absolute deviation. Only pseudobulks 
expressing any module at a higher level 
than this threshold were considered for 
further comparisons. Out of a total of 160 
pseudobulks, 128 showed high enough 
expression of at least one of the co-
expression modules to pass our threshold. 
We scaled the expression data module-
wise and calculated Pearson’s correlation 
coefficients, Euclidian distances and 
hierarchical clustering of all pseudobulks 
and modules. For the most part, these 
pseudobulks didn’t group by species in the 
hierarchical clustering, but rather by cell 
type in general (Fig. 3D). Pseudobulks not 
derived from lateral plate mesoderm cells 
showed a particularly clear cell type-based 
clustering, regardless of the species of 
origin. We found chicken and mouse blood 
cells, vessels, muscle and skin 
pseudobulks grouped together, due to their 
elevated expression of modules enriched 
for GO-terms reflecting the respective 
cellular functions. On the other hand, lateral 
plate mesoderm-derivatives were divided 
into three major clusters, based largely on 
the expression of modules ‘turquoise’ 
(GOE: ‘cartilage development’), ‘green’ 
(GOE: ‘cell cycle’), and ‘purple’ to ‘grey’ 
(GOE: ‘transcriptional regulation’, ‘cellular 
respiration’, ‘morphogenesis’ and ‘skeletal 
development’) (Fig. 3D). 
Collectively, testing for conservation of 
gene co-expression at multiple embryonic 
timepoints, and between distantly related 
species, revealed considerable disparities 
between the different modules. Often, 
these differences were in line with the likely 
cellular functions attributed to the 
respective modules. Regardless of the 
degree and type of conservation, however, 
most of the identified modules still seemed 
to contain important information concerning 
the cell type and state from which a given 
single-cell transcriptome originated from, 
both across different developmental stages 
and taxa.  
 

2.4 Cross-species developmental 
dynamics and ontogenetic trajectories 
of gene co-expression modules 
Finally, we analyzed the expression of our 
identified modules across embryonic time, 
in both species, taking advantage of the 
different developmental stages that were 
used for tissue sampling. We focused only 
on cells derived from the early limb bud 
mesenchyme, as they have a common 
developmental origin in the lateral plate 
mesoderm, play a central role in 
establishing the eventual limb morphology, 
and displayed a higher degree of 
heterogeneity in module activities amongst 
themselves (see Fig. 3D). We selected 
modules showing high scaled averaged 
expression in these cells, and all lateral 
plate mesoderm-derived pseudobulks as 
input. In order to appreciate developmental 
changes in module gene expression, we re-
grouped the corresponding cell cluster 
pseudobulks, species by species, by 
computing pair-wise Pearson’s correlation 
coefficients, Euclidian distances and 
hierarchical clustering. Based on tree 
height, this identified 4 major clusters for 
the mouse and 5 for the chicken. For both 
species, we additionally identified 2 
clusters, each consisting of only two 
pseudobulks, which we chose not to 
analyze further (Fig 4A, B). These module-
defined clusters roughly equated to 
‘mesenchyme’, ‘proliferative mesenchyme’, 
‘nsCT’ and ‘chondrocytes’, when 
comparing them to the original assignments 
of their respective cell cluster pseudobulks 
(Fig 4A, B).  
For mouse and chicken, within each 
module-defined cluster, we ordered the 
pseudobulks according to their embryonic 
stage of collection and plotted the scaled 
averaged module expression along these 
ontogenetic trajectories. Additionally, we 
included the individual gene expression 
traces represented in the respective 
module activities, (Fig 4C, D). We observed 
that the genes in module ‘green’ (GOE: ‘cell 
cycle’) increased their expression along 
development only in the ‘proliferative 
mesenchyme’, while they decreased in 
‘nsCT’ and ‘chondrocytes’. Module ‘purple’ 
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(GOE: ‘transcriptional regulation’) showed 
no reproducible trend in activity, between 
the different clusters and the two species. 
Genes in modules ‘blue’, ‘salmon’ and 
‘grey’ (GOE: ‘morphogenesis’ and ‘skeletal 
development’) all showed very similar 

dynamics, with increased expression along 
the development of the ‘nsCT’ cluster in 
both species. Module ‘turquoise’ (GOE: 
‘cartilage development’) increased its 
activity in the ‘chondrocyte’ clusters of 
mouse and chicken, right around the 

Figure 4. Comparative developmental transcriptome trajectories in homologous 
cell populations. (A, B) Heat maps of Pearson’s correlation coefficients and 
hierarchical clustering based on pairwise Euclidian distances, calculated on averaged 
expression of selected modules, for mouse (A) and chicken (B) lateral plate mesoderm-
derived cel l cluster pseudobulks. Top row of cluster identif iers is color-coded for 
species and developmental stage, bottom row for t issue type to which the respective 
cluster was attributed to, based on marker gene expression. The five (A, mouse) and 
six (B, chicken) major clusters emerging, based on tree height, are highlighted on the 
right with grey boxes. (C, D) Developmental trajectories of scaled averaged module 
expression in ontogenetical ly ordered pseudobulks, separated by ‘t issue-like’ clusters 
identif ied in A, B. Embryonic stage of each pseudobulk is color-coded at the bottom. 
Scaled averaged modules expression trajectories shown in the respective module 
color, with induvial module gene traces underlaid in grey. 
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expected onset of chondrogenesis in the 
two appendages, albeit with high variability 
in the individual gene expression traces. 
Finally, module ‘tan’ (GOE: ‘lipid 
metabolism’) only showed signs of high 
expression in the hypertrophic cell 
population in mouse of the E15.5 sample. 
(Fig 4C). 
 
3 DISCUSSION 
To understand the molecular basis of 
morphological evolution, as driven by 
changes in embryonic and post-embryonic 
development, both cell-extrinsic and -
intrinsic alterations need to be 
considered.32 Here, we present an 
integrative approach to perform 
comparative gene co-expression analyses 
at the single-cell level. We demonstrate its 
functionality by testing single-cell 
transcriptomic data from the developing 
mouse limb for the occurrence of cell type-
specific gene co-expression modules and 
assess their conservation and 
developmental dynamics in the 
corresponding cell populations of the 
chicken.  
 
3.1 Assessing gene co-expression 
modules in scRNA-seq data from 
distantly related species. 
Deciphering species-specific molecular 
states of homologous cell types is 
essential, to correctly interpret their 
response to alterations in extracellular 
signaling environments. With the advent of 
single-cell genomics, we now have the 
technological means to perform such 
analyses at the appropriate cellular 
resolution, across different species.33 
However, comparing gene expression 
between distantly related taxa has its 
challenges, especially when working with 
sparse data like scRNA-seq.12,22,34,35 To 
circumvent some of these inherent issues, 
we decided to test for the dynamics and 
conservation of gene co-expression 
modules in pseudocells.36–39 
In a first step, we follow the logic of an 
iterative approach, to perform and optimize 
WGCNA gene co-expression modules 
calculations within a reference scRNA-seq 
data set of choice. We use WGCNA 
statistics to measure significance of gene 
membership to their assigned modules, 
and re-group them accordingly for 

successive rounds of clustering and 
testing.21,40,41 It is important to note here 
that WGCNA does not reveal de facto 
regulatory networks or functional 
relationships between genes, but rather 
simply reflects modules of gene co-
expression.24 For example, while the co-
expression of transcription factors and their 
putative target genes might indeed reflect 
regulatory interactions, relying on gene 
expression data alone to infer this process 
is prone to result in a high proportion of 
false positives.42 Alternative approaches, 
making use of properly annotated cis-
regulatory sequence information, may 
seem more appropriate for such 
purposes.43,44 However, the application of 
such algorithms is mostly restricted to a 
very limited set of model species, as they 
rely on the availability of extensive and 
high-quality transcription factor binding 
motif data sets.  
Accordingly, in the second step of our 
workflow, we opted to perform comparative 
analyses using modules of gene co-
expression, to make it applicable to the 
largest number of species possible. Within 
these modules, we specifically tested for 
the preservation of the overall strength of 
connections, i.e. ‘density’, as well as for the 
patterns of those connections between 
genes, i.e. ‘connectivity’.31 The validity of 
such comparisons obviously depends on 
the presence of corresponding cell 
populations between the samples, as well 
as the number of orthologous genes found 
in each species to be compared. Naturally, 
detection of true 1-to-1 orthologues is 
bound to decrease with increasing 
evolutionary distance.45,46 On a module-by-
module basis, however, differences in this 
overall trend may be informative in itself, to 
interpret the underlying evolutionary 
dynamics (see Fig. 3A, and discussion, 
below). As for homologous cell types, the 
restricted presence – e.g., hypertrophic 
chondrocytes in the mouse E15.5 sample – 
or absence – e.g., distal mesenchyme – of 
certain cell populations in the reference 
data set also has implications for our 
comparative analyses (Fig. 2A, B). For 
example, imagine a gene with strong 
topological overlap to a cell type-specific 
module in the reference sample. If that 
gene in the test sample is co-expressed 
with different genes in an additional cell 
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population – i. e. absent from the reference 
sample –, then this might skew connectivity 
of the tested module. We therefore advise 
for an informed and balanced selection of 
the cell populations considered, in order to 
obtain the most meaningful results. 
Importantly, the entirety of the workflow 
presented above is wrapped in an R 
package with functions that can be run 
independently, are customizable, and 
produce standardized output files to serve 
as input for further in-depth analyses. All 
necessary code and documentation are 
publicly available. 
 
3.2 Conservation of gene co-
expression modules in the 
developing tetrapod limb. 
Working with mouse limb E15.5 data as our 
reference, we identified a total of 19 gene 
co-expression modules and tested for their 
conservation in mouse and chicken 
samples, at multiple developmental 
timepoints. Already at the compositional 
level, important qualitative and quantitative 
differences emerged between the modules. 
For example, among modules enriched for 
immune functions, some showed as few as 
30% of their genes to be present as 1-to-1 
orthologues in the chicken genome (Fig. 
3A). Such high genomic turnover is 
considered a hallmark of the immune 
system, compared to other functional 
groups of genes, as it constantly adapts in 
an evolutionary arms race to an ever-
changing pathogen and parasite 
regime.47,48 Likewise, modules enriched for 
skin-related functions showed low levels of 
compositional conservation. The function of 
the skin, and its associated ectodermal 
appendages (i.e. hair follicles, glands or 
feathers), has diverged considerably 
between mammals and sauropsids.49–51 
Moreover, selection for a variety of 
integumentary traits in domesticated 
chickens might have accentuated this trend 
further.52 
In terms of ‘density’ and ‘connectivity’, 
module ‘green’ showed the overall highest 
degree of conservation, both for mouse and 
chicken samples (Fig. 3 B, C, Supplement 
2). This is somewhat expected, as a co-
expression module reflecting the cell cycle 
process likely should be conserved even 
between distantly related taxa. For modules 
predominantly active in lateral plate 

mesoderm derivatives, certain tendencies 
emerged when comparing them across 
developmental time. Overall, ‘density’ and 
‘connectivity’ of these modules seemed 
better conserved in samples at later stages 
of development (Fig. 3 B, C). Likewise, we 
observed that early pseudobulks of less 
differentiated cell populations were under-
represented in our analysis of module 
expression levels (Fig. 3 D). 9 out of the 14 
excluded pseudobulks in mouse, and 6 out 
of 18 in chicken, stem from mesenchyme 
populations of our earliest two time points. 
Moreover, at the finer scale of our 
hierarchical clustering, pseudobulks from 
earlier stages tend to cluster by species 
(Fig. 3 D). The fact that we calculated our 
reference modules at a rather late stage of 
development might potentially explain this 
tendency, i.e. the expression of certain 
modules might simply not be adequately 
represented in these early cells. However, 
by recreating the same analysis using 
E11.5 modules as reference, we observed 
a similar trend (data not shown). Therefore, 
we suggest that advanced differentiation of 
cell types effectively makes them – at least 
module-wise – transcriptionally more 
similar to their counterparts in other 
species, than to their less differentiated 
relatives in the same organism.10,53 
Of all the modules identified for a distinct 
cell or tissue type, ‘turquoise’ (GOE: 
‘cartilage development’) was the overall 
largest and showed the highest degree of 
conservation, (Fig. 2A, Fig. 3A-C). This was 
particularly evident at later stages of 
development, and for Zsummary 
‘connectivity‘, implicating that differentiating 
chondrocytes indeed follow similar 
molecular programs in the two species. 
Specifically, this evolutionary conserved 
‘connectivity’ indicates that genes of 
module ‘turquoise’ share conserved co-
expression dynamics, or that they are 
controlled by the same up-stream factor(s) 
across taxa. The cells producing the 
cartilage template of the limb skeleton thus 
seem equipped with a similar molecular 
make-up, hence making patterning 
changes between species likely to occur 
predominately through alterations in 
extracellular signaling. However, not all 
signal-receiving cell populations of 
patterning relevance show equal 
conservation in their gene co-expression 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430383doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430383
http://creativecommons.org/licenses/by-nc-nd/4.0/


Transcriptome dynamics in homologous cell types - Feregrino & Tschopp
   
 

13 
 

dynamics. Modules related to skin 
development show, as outlined above, high 
compositional variance and low 
conservation of ‘connectivity’ (Fig. 3A-C), 
and integumental patterns can vary greatly, 
even amongst closely related species.54–56 
Our comparative gene co-expression 
analyses in single cells can therefore 
provide important clues whether a certain 
patterning process is likely to be dominated 
by changes in the extracellular 
environment, or if cell-intrinsic factors are 
also important to consider for its 
amenability to evolutionary change. 
 
3.3 Cell types and cell states, in 
development and evolution. 
Lastly, looking at our module-based 
clustering of pseudobulks, we often 
observed discrepancies in cluster 
composition, compared to our original cell 
type assignments. This holds especially 
true for pseudobulks of lateral plate 
mesoderm origin (Fig. 3D, Fig. 4A, B). 
There, many of our prior assignments – 
based on differential expression analysis 
and marker gene identification – no longer 
seem to concur with the transcriptional 
clustering of our gene co-expression 
modules. As a result, pseudobulks of 
different assigned cellular identities, e.g. 
chondrocytes, mesenchyme or interdigit, 
start to intermingle. Upon closer inspection, 
this trend seems to be driven – to a large 
extent – by the differential activities of 
modules ‘green’ and ‘midnightblue’, i.e. ‘cell 
cycle’ and ‘cellular respiration’, respectively 
(Fig. 3D). Both of these modules clearly 
seem more indicative of cell state, than cell 
type.18 Therefore, using co-expression 
module detection on single-cell data 
appears to reveal commonalities in the 
expression dynamics of groups of genes 
that otherwise might go unnoticed. For 
example, if relying on differential 
expression analyses alone, i.e. by 
contrasting each of the populations against 
the rest of the cells, groups of genes with 
broad expression patterns will most likely 
not be detected as markers of a given cell 
population.57 The issue seems particularly 
relevant for genes that relate to cell state, 
rather than cell type, as module-based cell 
state signatures of gene expression can be 
shared by a variety of different cell types 
(Fig. 3D, Fig. 4A, B). 

Accordingly, we advocate for a multi-
layered approach when assigning cellular 
identifiers to scRNA-seq data, where a 
combination of differential expression 
analyses, cluster-independent gene co-
expression module detection, and prior 
knowledge of the biological system at hand 
is taken into consideration. At a broader 
scale, even in samples from embryonic 
stages, the data will generally have the 
tendency to sort according to 
developmental lineage, cell type, and only 
then cell state. The last two categories 
especially, however, can be difficult to 
disentangle during development. Many cell 
types can often be present in multiple 
stages of differentiation, with rare 
trajectional intermediates – or transitional 
stages – interspersed in between.58–61 
Whether those themselves should be 
considered distinct cell types, or rather cell 
states, can be a matter of debate.10,18,62 
Cleary, though, accounting for more 
general, lineage-independent cell states 
should result in a more comprehensive 
appreciation of the respective cell type 
behaviors, with e.g. ‘cell cycle’ expected to 
be a dominant signature in any growing 
tissue. This will only become more relevant, 
as scRNA-seq studies continue to expand 
into investigating the impacts of different 
genetic backgrounds, or environmental 
variables.63–65 
Overall, we observe that our comparative 
gene co-expression module approach 
represents a valuable addition to 
discriminate distinct cell states, some of 
which can be shared amongst different cell 
types or even distinct developmental 
lineages. Especially among early, 
undifferentiated tissues, these module 
signatures can contain important temporal 
information across samples, but also – for 
more mature cell types – signals relevant 
for comparisons between distantly related 
species, mutant backgrounds, and 
environmental parameters. 
 
4 EXPERIMENTAL PROCEDURES 
4.1 Sampling and Data Sources 
We sampled complete forelimbs at stages 
HH21, HH24 and HH27. Tissue 
dissociation and 10x Genomics Chromium 
3′ Kit library preparation was performed as 
reported previously.21 We obtained for 
HH21 / HH24 / HH27 a total of 2990 / 6345 
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/ 2189 cells, with median UMI counts of 
2365 / 2215 / 1315 and median number of 
genes detected of 978 / 952 / 637 per cell. 
Raw sequencing data and UMI count 
matrices are available under GEO 
accession ‘in-process’. 
Publicly available datasets used in this 
study were mouse E9.5 and E10.5 (GEO 
accession: GSE149368)20; mouse E11.5, 
E13.5, E15.5 and E18.5 (GEO accession: 
GSE142425,)19; and chicken HH25, HH27 
and HH29 (GEO accession: 
GSE130439).21 
 
4.2 3’UTR elongation and improved 
chick genome annotation 
To elongate 3’UTR annotations, we used 
stage HH11, HH14, HH21/22, HH25/26, 
HH32 and HH36 whole embryo bulk RNA-
seq datasets.23 RNA-seq reads were 
processed and mapped individually for 
each stage, filtered and down-sampled to 
40 million pairs of mapped reads per 
sample. Resulting BAM files were merged 
and used to generate transcript models with 
Cufflinks.66 The newly calculated transcript 
models were then processed for 3’ UTR 
elongation.  
Elongation of existing GRCg6a 3’ UTR 
annotations was conducted with the 
following logic: We only considered 
transcript models with expression >1 
FPKM, which overlapped only one original 
gene annotation track, and where the 
original 3’ UTR annotation was shorter than 
the novel model. 3’ UTR elongation was 
capped at a maximum of 5,000 bp, and was 
shortened accordingly, if it resulted in any 
overlap with a neighboring gene. A total of 
3132 3’UTRs were elongated in such way. 
Additionally, we realized that with the 
migration form Gallus_gallus-5.0, 225 gene 
stable IDs associated with a gene name 
were now absent from GRCg6a. Using a 
combination of BLAST67 and the 
GenomicRanges and IRanges packages68 
in R, we managed to recover 62 of these 
genes and appended them to our modified 
GRCg6a annotation.  
 
4.3 Single-cell data pre-processing 
All chicken samples were processed with 
CellRanger (10x Genomics), using our 
improved GRCg6a genome annotation. 
Chicken and mouse UMI count matrices 
were processed, with cells filtered for 

quality based on total and relative UMI 
counts and percentage of mitochondrial 
UMIs. UMI matrices for E9.5 and E10.5 
samples are already filtered for total UMI 
counts and mitochondrial counts. Due to 
the overall size of these two data sets, we 
randomly subsampled 25% of the single 
cell transcriptomes, to have datasets of 
comparable sizes. Moreover, we excluded 
4412 cells from the first replicate of the E9.5 
sample showing abnormal haemoglobin 
genes expression.  
 
4.4 Data normalization and correction 
UMI count data was normalized cell-wise 
using Seurat v3.1.425 with a scale factor of 
10000 and then log-transformed. Total UMI 
count, proportion of mitochondrial UMIs 
and cell cycle stage scores21,69,70 were then 
used as variables to regress using the 
function “SCTransform” from Seurat. 
Moreover, for samples E9.5 and HH29 
sequencing batch effects were also 
regressed. It is important to note that cell 
cycle correction is only applied to calculate 
PCs, tSNEs and clusters, but not for 
differential expression analyses and all 
other analyses. 
 
4.5 Dimensionality reduction, cell 
clustering and cluster annotation 
We performed principal component 
analysis (PCA) using Seurat’s “RunPCA” 
with default options. Significant PCs were 
determined for each sample as those falling 
outside of a Marchenko-Pastur 
distribution71 and tSNEs were produced to 
retain and represent the global structure of 
the data.72,73 To infer cell clusters, we 
identified the nearest neighbors of each 
cell, using the first significant PCs. We 
calculated a hierarchical tree of clusters 
using “BuildClusterTree” based on 
significant PCs and identified ‘sister tips’ 
and performed differential expression tests 
on each of them. If two clusters showed 
less than 5 genes differentially expressed, 
they were merged, and the process 
repeated with a new tree of clusters. 
Differential expression analyses were 
performed with the MAST74 implementation 
in Seurat. Using “FindVariableFeatures”, 
we selected highly variable genes with a 
standardized variance larger than the 
sample median. For making comparisons 
across clusters we used normalized but 
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“uncorrected” data, using the δ(S-G2M) as 
a latent variable. We only tested highly 
variable genes expressed in at least 25% of 
the cells in either cell population. Only 
genes with an adjusted p-value < 0.05 and 
log2 fold change > 0.5 were considered as 
differentially expressed. Differentially 
expressed genes were then used as 
“marker genes” for cell cluster annotation, 
in combination with spatial gene expression 
data repositories like Geisha (Chicken 
Embryo Gene Expression Database)75 and 
MGI (Mouse Gene Expression 
Database),76 as well as GO-term 
enrichment analyses.77 
Data integration into a single tSNE per 
species was conducted using transformed 
data and “IntegrateData” with its related 
functions. We used as anchors all the 
shared expressed genes for the mouse and 
3000 highly variable genes for the chicken, 
with 20 dimensions and a k.filter of 100. 
PCA and tSNE were calculated as above. 
 
4.6 R package “scWGCNA”  
The main analytical workflow presented in 
this paper is contained within a newly 
developed R package, “scWGCNA”, and is 
available on GitHub with accompanying 
documentation at 
https://github.com/CFeregrino/scWGCNA  
It consists of three main functions, as 
outlined below.  
‘Pseudocell’ function - To increase 
robustness, we define so-called 
‘pseudocells’. The 10 nearest neighbors 
(NN) of each cell were calculated in the 
PCA space using “FindNeighbors”. From 
each of the previously calculated cell 
clusters, 20% of the cells were chosen 
randomly as seed cells. In order to 
maximize the number of cells aggregated 
into pseudocells, we perform a sampling of 
50 sets of randomly chosen seed cells and 
choose the set with the largest NN count. 
Moreover, seed cells typically share some 
of their NN with other seed cells, for which 
we do an iterative cell distribution step. 
First, to avoid “greedy” seed cells, starting 
with the seed cell with the lowest amount of 
remaining NN, one of its NN is chosen at 
random. The chosen cell is removed from 
the universe of cells and its assigned seed 
cell is recorded. Once all cells have been 
distributed to a seed cell, we use the 
function “AverageExpression” to aggregate 

the scaled expression of each resulting 
pseudocell.  
‘Iterative WGCNA’ function - We 
calculate highly variable genes from 
normalized single cell data using 
“FindVariableFeatures” and the “mvp” 
method with cutoffs of minimal 0.25 
dispersion and minimal 0 expression. Then, 
with pseudocell expression data, a soft 
thresholding power is selected to calculate 
an adjacency matrix using 
“pickSoftThreshold” in WGCNA with the 
bidweight midcorrelation method and a 
signed network type.24 The WGCNA 
analyses itself occurs in a recursive 
manner. A topological overlap matrix is 
produced from pseudocell expression data 
with the function “TOMsimilarityFromExpr”, 
with previously calculated soft thresholding 
power and bidweight midcorrelation. A 
hierarchical clustering tree is then 
computed using the topological overlap 
distances. A series of cut heights are set in 
steps of 0.0001 around (+- 0.0005) of a 
height of 99% of the range between the 5th 
percentile and the maximum heights on the 
clustering tree. The size of the detected 
modules for each cut height is recorded, 
and the height producing the smallest – or 
no – gray module (i.e. unassigned genes), 
and the same number of modules as the 
previous iteration (or 20, in the first run) is 
selected. Once a height is selected, 
modules are detected, and module 
membership of each gene is calculated 
using “geneModuleMembership”. Genes 
not assigned, or without significant module 
membership, are removed, and the 
remaining ones are used to start the 
process again. Once all remaining genes 
have significant module membership, 
eigengenes and average expression of 
each module are calculated in single-cell 
space, and GO-term enrichment analyses 
for each module us performed using 
Limma.21,77 All output is contained within a 
single HTML file, with averaged module 
expression plotted on tSNEs. Networks are 
visualized using R packages ‘network’78 
and ‘GGally’,79 with edge thicknesses and 
intensities scaled module-wise to represent 
topological overlap.  
‘Comparative WGCNA’ function - We use 
pseudocell data of both reference and test 
datasets.  We subset the modules to 
contain only genes present as high 
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confidence 1-to-1 orthologues, using 
orthologous genes list from ENSEMBL 
BioMart.80 Using the “goodGenes” function 
from WGCNA, we filter genes based on 
expression and variance in all test samples. 
Conservation test is performed by 
“modulePreservation”, with filtered module 
assignments, bidweight midcorrelation, a 
maximal gold modules size of 300, and 20 
permutations.31 The overall conservation 
Zsummary and median rank, as well as the 
density and connectivity conservation 
Zsummary are summarized in a single 
HTML file.  
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Supplemental Figure 1 
 

 
 
Supplemental Figure 1. Elongating 3’UTR annotations in the chicken genome. (A, B) 
Genome browser visualizations of mapped reads, stemming from either bulk (top) or 10x 
Genomics single-cell (bottom) RNA-seq experiments, at the SOX9 (A) and GDF5 (B) 
locus. The respective gene models are displayed from the or iginal GRCg6a annotat ion 
(galGal6), the annotation of Orgeur and colleagues81 and the annotat ion produced in this 
work. (C) Boxplots of 3’UTR lengths of the original GRCg6a and our annotation. (D) 
Histogram showing the distribution of elongation lengths for all elongated 3’UTRs. (E) 
Resulting changes in UMI counts, when mapping our HH31 sample to either the original 
GRCg6a or our modified annotation. For the large major ity of genes, UMI counts either 
stay unchanged or show an increase with our annotation. We visually inspected the few 
genes that showed a reduced UMI count and realized that these UMIs had been attributed 
to another gene or transcript model in our second CellRanger run, i.e. they were not lost 
due to misguided 3’UTR elongations. (F) Correlation of 3’UTR elongation length and 
increase in UMI counts. Only a weak effect was found of the amount of 3’UTR lengthening 
on the gained UMI counts. 
 
Supplement 1 
HTML output of the ‘Iterative WGCNA’ function 
 
Supplement 2 
HTML output of the ‘Comparative WGCNA’ function 
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