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Abstract 
 
SARS-CoV-2 harbors a unique S1/S2 furin cleavage site within its spike protein, which can be 
cleaved by furin and other proprotein convertases.  Proteolytic activation of SARS-CoV-2 spike 
protein at the S1/S2 boundary facilitates interaction with host ACE2 receptor for cell entry.  To 
address this, high titer antibody was generated against the SARS-CoV-2-specific furin motif.  
Using a series of innovative ELISA-based assays, this furin site blocking antibody displayed high 
sensitivity and specificity for the S1/S2 furin cleavage site, and demonstrated effective blockage 
of both enzyme-mediated cleavage and spike-ACE2 interaction.  The results suggest that 
immunological blocking of the furin cleavage site may afford a suitable approach to stem 
proteolytic activation of SARS-CoV-2 spike protein and curtail viral infectivity. 
 
 
Introduction 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first recognized in the 
beginning of 2020 and is responsible for the present COVID-19 pandemic.  SARS-CoV-2 consists 
of a positive-sense single-stranded RNA genome and 4 different types of structural proteins.  
The N, or nucleocapsid, protein encapsidates the genome, while the S (spike), E (envelope), and 
M (membrane) proteins comprise the surrounding lipid bilayer envelope.  Of particular appeal 
is the S protein, which enables viral infection via angiotensin-converting enzyme 2 (ACE2) 
receptor recognition and membrane fusion, making this structural protein an ideal target for 
therapeutic intervention. 
 
The S protein is composed of two subunits, S1 and S2.  Within the S1 subunit is a receptor-
binding domain (RBD) that recognizes and binds to the ACE2 receptor.  The S protein also 
harbors a furin cleavage site at the boundary between the subunits.  The complete SARS-CoV-2 
furin cleavage site has been characterized as a 20 amino acid motif corresponding to the amino 
acid sequence A672-S691 of SARS-CoV-2 spike protein  (Figure 1), with one core region 
SPRRAR│SV (8 amino acids, S680-V687) and two flanking solvent-accessible regions (8 amino 
acids, A672–N679, and 4 amino acids, A688-S691).  The core region is very unique as its R683 and 
A684 positions are positively-charged (Arg) and hydrophobic (Ala) residues, respectively, which 
could be cleaved by the proprotein convertase (PC) furin and/or furin-like PCs secreted from 
host cells and bacteria in the airway epithelium.   Furin and furin-like PCs, such as PC5/6A and 
PACE4, are proven to be cleavage region sequence-specific, and these PCs exhibit widespread 
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tissue distribution.  With this unique furin cleavage site, such distribution may explain why 
COVID-19 causes damage in multiple organs.  Thus, the importance of blocking SARS-CoV-2 
S1/S2 site cleavage caused by furin or facilitating protease activity is emphasized by the fact 
that cleavage of the S protein at the S1/S2 site has been documented as essential for SARS-CoV-
2 binding to the host ACE2 receptor, cell-cell fusion, and infection of human lung cells [1,2]. 
 
Due to the correlation between PC-mediated cleavage and S protein activation, we 
hypothesized that blockage of the furin cleavage site could potentially subvert SARS-CoV-2 
infection by hindering enzymatic action and S protein-ACE2 interaction.  To address this, we 
generated a novel antibody with high sensitivity and specificity for the furin cleavage site of 
SARS-CoV-2 spike protein.  The antibody was then employed in a series of innovative in vitro 
assays where it was observed to efficiently block a) cleavage by purified enzymes and human 
specimens, and b) binding to ACE2.  To our knowledge, this is the first time that such an 
antibody-based tactic directed against the target of SARS-CoV-2-specific PC activity has been 
established. 
 
 
Methods 
 
Generation of furin site blocking antibody (fbAB) 
Antigen consisted of the SARS-CoV-2-specific furin motif (20 aa; Figure 1) conjugated to keyhole 
limpet hemocyanin (KLH).  The peptide-KLH conjugate (0.5 mg) was injected into a rabbit, 
followed by a boost (3 × 0.25 mg) over 2 weeks.  Serum was collected and antibody was purified 
with protein A columns. 
 
Quantification of fbAB titer 
To test the titer of the generated fbAB, the antigen was coated onto high protein binding, 
polystyrene, 8-well microplate strips at a concentration of 200 ng/well with 0.1 M NaCO3.  The 
strips were incubated for 2 h at 37°C for coating and then blocked with 2% BSA for 1 h at 37°C.  
After washing the strips for 3 times with PBS-T, fbAB was added into the wells at the indicated 
dilutions (prepared with PBS-T) and incubated for 1 h at RT.  After washing for 4 times, anti-
rabbit IgG-HRP (EpiGentek) (50 µl, 1:2000) was added and incubated for 30 min at RT.  After 
washing for 4 times, 100 µl of TMB solution (EMD Millipore Corp.) were added per well and 
blue color development was monitored for 2-10 min.  The reaction was stopped with an equal 
volume of 1 M HCl and the optical density was measured with a microplate reader (MRX-TC 
Revelation, Dynex Technologies) at a wavelength of 450 nm. 
 
Sensitivity of fbAB recognition 
A SARS-CoV-2 protein (Sino Biological), containing the S1/S2 boundary furin site and tagged 
with polyhistidine (His) at the N-terminal, was added at different concentrations (0.01 - 100 
ng/well) into nickel-nitrilotriacetic acid (Ni-NTA)-coated polystyrene, 8-well microplate strips 
(Fisher) and incubated for 45 min at RT.  After washing the strips for 2 times with PBS-T, fbAB 
(50 µl, 1:2000) was added and incubated for 1 h at RT.   After washing for 3 times, anti-rabbit 
IgG-HRP (50 µl, 1:2000) was added and incubated for 30 min at RT.  After washing for 4 times, 
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100 µl of TMB solution were added per well and blue color development was monitored for 2-
10 min.  The reaction was stopped with an equal volume of 1 M HCl and the optical density was 
measured with a microplate reader at a wavelength of 450 nm. 
 
Specificity of fbAB recognition 
His-tagged SARS-CoV-2 protein containing the S1/S2 boundary furin site, His-tagged peptide 
containing the SARS-CoV-2-specific furin motif (EpiGentek), and His-tagged SARS-CoV-2 S1 RBD 
protein lacking the S1/S2 boundary furin site (EpiGentek) were added at a concentration of 10 
ng/well to the Ni-NTA-coated strips and incubated for 1h at 37°C.  After washing the strips for 2 
times with PBS-T, fbAB (50 µl) was added at 1:1000 or 1:5000 dilutions and incubated for 1 h at 
RT.  After washing for 3 times, anti-rabbit IgG-HRP (50 µl, 1:2000) was added and incubated for 
30 min at RT.  After washing for 4 times, 100 µl of TMB solution were added per well and blue 
color development was monitored for 2-10 min.  The reaction was stopped with an equal 
volume of 1 M HCl and the optical density was measured with a microplate reader at a 
wavelength of 450 nm. 
 
Immunoprecipitation by fbAB 
fbAB was coated onto the 8-well microplate strips at a concentration of 200 ng/well with 0.1 M 
NaCO3.  The strips were incubated for 2 h at 37°C for coating, washed for 3 times with PBS-T, 
and then blocked with 2% BSA for 1 h at 37°C.  After washing the strips for 3 times, His-tagged 
SARS-CoV-2 protein containing the S1/S2 boundary furin site or His-tagged peptide containing 
the SARS-CoV-2-specific furin motif were added at different concentrations to the fbAB-coated 
wells and incubated for 2 h at RT.  After washing for 3 times, Ni-NTA-HRP (Millipore) (50 µl, 
1:4000) was added and incubated for 30 min at RT.  After washing for 4 times, 100 µl of TMB 
solution were added per well and blue color development was monitored for 2-10 min.  The 
reaction was stopped with an equal volume of 1 M HCl and the optical density was measured 
with a microplate reader at a wavelength of 450 nm. 
 
fbAB blockage of furin-mediated cleavage 
A peptide (EpiGentek) containing the SARS-CoV-2-specific furin motif and tagged with His and 
biotin at the N- and C-terminals, respectively, was added at a concentration of 10 ng/well to the 
Ni-NTA-coated strips and incubated for 1 h at RT.  After washing the strips for 3 times with PBS-
T, fbAB was added at a concentration of 200 ng/well and incubated for 1 h at 37°C.  A SARS-
CoV-2 neutralization antibody (EpiGentek), which targets the spike RBD, was used as a control.  
After washing for 3 times, purified proprotein convertase furin (New England Biolabs) was 
added at different concentrations (2-4 U/well) and incubated for 25 min at 37°C.  Protease 
cleavage (PC) assay buffer (EpiGentek) was used to prepare the furin solutions.  After washing 
for 4 times, streptavidin-HRP (100 µl, 1:5000) was added and incubated for 15 min at RT.  After 
washing for 4 times, 100 µl of TMB solution were added per well and blue color development 
was monitored for 2-10 min.  The reaction was stopped with an equal volume of 1 M HCl and 
the optical density was measured with a microplate reader at a wavelength of 450 nm. 
 
fbAB blockage of trypsin-mediated cleavage 
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His- and biotin-tagged peptide containing the SARS-CoV-2-specific furin motif was added at a 
concentration of 10 ng/well to the Ni-NTA-coated wells of the 8-well microplate strips and 
incubated for 1 h at RT.  After washing the strips for 3 times with PBS-T, fbAB was added at a 
concentration of 200 ng/well and incubated for 1 h at 37°C.  After washing for 3 times, serine 
protease trypsin (Sigma) was added at different concentrations (10-20 ng/well, prepared with 
PC assay buffer) and incubated for 25 min at 37°C.  After washing for 4 times, streptavidin-HRP 
(100 µl, 1:5000) was added and incubated for 15 min at RT.  After washing for 4 times, 100 µl of 
TMB solution were added per well and blue color development was monitored for 2-10 min.  
The reaction was stopped with an equal volume of 1 M HCl and the optical density was 
measured with a microplate reader at a wavelength of 450 nm. 
 
fbAB blockage of human nasal swab-mediated cleavage 
Collection of nasal swab samples from healthy uninfected volunteers was in accordance with 
the standard CDC nasal swab collection protocol.  The collected samples were released into 300 
µl of PC assay buffer by rotating the swab in the buffer for 30 sec. 
 
His- and biotin-tagged peptide containing the SARS-CoV-2-specific furin motif was added at a 
concentration of 10 ng/well to the Ni-NTA-coated wells of the 8-well microplate strips and 
incubated for 1 h at RT.  After washing the strips for 3 times with PBS-T, fbAB was added at a 
concentration of 200 ng/well and incubated for 1 h at 37°C.  After washing for 3 times, 20-30 µl 
of nasal swab sample solution were added per well and incubated for 25 min at 37°C.  After 
washing for 4 times, streptavidin-HRP (100 µl, 1:5000) was added and incubated for 15 min at 
RT.  After washing for 4 times, 100 µl of TMB solution were added per well and blue color 
development was monitored for 2-10 min.  The reaction was stopped with an equal volume of 1 
M HCl and the optical density was measured with a microplate reader at a wavelength of 450 
nm. 
 
fbAB blockage of spike-ACE2 binding 
Untagged SARS-CoV-2 spike protein (GenScript) containing the S1/S2 boundary furin site was 
coated onto the high protein binding, polystyrene, 8-well microplate strips at a concentration of 
50 ng/well with 0.1 M NaCO3.  The strips were incubated for 2 h at 37°C for coating and then 
blocked with 2% BSA for 1 h at 37°C.  After washing the strips for 3 times with PBS-T, fbAB was 
added into the wells at the indicated concentrations and incubated for 1 h at 37°C.  After 
washing for 3 times, purified His-tagged ACE2 (EpiGentek) was added at a concentration of 100 
ng/well (prepared with PBS) and incubated for 1 h at 37°C.  After washing for 3 times, Ni-NTA-
HRP (50 µl, 1:4000) was added and incubated for 30 min RT.  After washing for 4 times, 100 µl 
of TMB solution were added per well and blue color development was monitored for 2-10 min.  
The reaction was stopped with an equal volume of 1 M HCl and the optical density was 
measured with a microplate reader at a wavelength of 450 nm. 
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Results 
 
After generation of furin site blocking antibody (fbAB) raised against an antigen consisting of 
the 20 amino acid SARS-CoV-2-specific furin motif (Figure 1), the fbAB titer was evaluated using 
an ELISA-based colorimetric detection system with antigen-coated microplates.  As shown in 
Figure 2, when compared with normal serum, fbAB purified from serum of antigen-injected 
host displayed a strong signal intensity (OD >2.5) at 8000X dilution.  The optical density 
decreased linearly over successive 2-fold serial dilutions, but a high signal intensity (OD >1) was 
still observed for fbAB diluted as much as 128000X.  The results indicate that high amounts of 
fbAB against the furin motif of SARS-CoV-2 spike protein could be generated from antigen-
injected host and subsequently detected with this novel colorimetric assay. 
 
The sensitivity of fbAB recognizing the S1/S2 boundary furin site of SARS-CoV-2 spike protein 
was determined by incubating fbAB in nickel-coated microplate wells bound with different 
amounts of His-tagged target protein.  Capture of the well-bound target by fbAB was then 
measured colorimetrically using ELISA-based detection.  As shown in Figure 3, the target 
protein displayed a nice dose-response, with signal intensity increasing linearly up to a 
concentration of 100 ng/well.  As low as 0.01 ng/well of the protein was detected with this 
assay, indicating high sensitivity of fbAB for SARS-CoV-2-specific furin motif recognition. 
 
The specificity of fbAB-spike interaction was assessed by incubating antibody in wells coated 
with either: SARS-CoV-2 spike protein containing the S1/S2 boundary furin site; a peptide 
containing the SARS-CoV-2-specific furin motif; or SARS-CoV-2 S1 RBD protein.  As shown in 
Figure 4, fbAB displayed a strong binding interaction with the furin cleavage site of both spike 
protein and peptide.  The interaction was highly specific as the SARS-CoV-2 S1 RBD protein, 
which lacks the S1/S2 boundary furin site, failed to elicit a detectable signal.  The S protein and 
peptide were further used to assess the immunoprecipitation efficiency of fbAB in antibody-
coated wells.  Figure 5 shows the efficient immunocapture of both S protein and peptide by 
fbAB in a concentration-dependent manner.  The results indicate that synthesized peptide is 
the same as biological S protein for use as an assay substrate, as both the peptide and full-
length S protein were strongly bound by fbAB.  Thus, synthesized peptide was utilized in the 
follow-up cleavage blockage assays. 
 
Next, fbAB blockage of SARS-CoV-2 furin motif cleavage via enzymatic activity was examined.  
Dual His- and biotin-tagged peptide containing the SARS-CoV-2-specific furin motif was bound 
to Ni-coated microplate wells.  The wells were then incubated with fbAB, followed by exposure 
to either of three different enzymes: furin, trypsin, or human nasal swab sample.  Cleavage at 
the furin motif will remove the C-terminal portion of the peptide, resulting in inhibition of 
streptavidin-HRP binding to biotin and reduced signal intensity.  As shown in Figure 6, fbAB 
effectively blocked the cleavage of the SARS-CoV-2 furin motif by purified furin enzyme at 
various doses (2-4 U).  Peptide pre-incubated with fbAB prior to peptide binding to the assay 
wells was similarly afforded protection against cleavage by furin (data not shown).  By 
comparison, SARS-CoV-2 neutralization antibody (SnAB), which was used as a control and 
targets the spike RBD, showed minimal blocking of furin-mediated cleavage.  fbAB also 
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downregulated cleavage mediated by the serine protease trypsin (Figure 7), although to a lesser 
extent when compared with furin.  PCs from human nasal swab samples displayed a high 
cleavage percentage (~80%) of the furin motif, which was decreased by approximately 30% in 
the presence of fbAB (Figure 8). 
 
As cleavage of the S protein at the S1/S2 site is required for SARS-CoV-2 binding to the host 
ACE2 receptor for cell entry, we tested the effect of fbAB on spike-ACE2 interaction in SARS-
CoV-2 spike protein-coated wells.  As shown in Figure 9, fbAB blocked the binding of ACE2 to S 
protein in a dose-dependent manner, with >60% of ACE2 binding activity diminished at an fbAB 
dose of 40 nM and almost complete inhibition of spike-ACE2 binding at 80 nM of antibody. 
 
 
Discussion 
 
During infection, the cell entry mechanism of SARS-CoV-2 involves direct contact with the host 
ACE2 receptor, facilitated by the RBD within the S1 subunit of the S protein, and proteolytic 
cleavage of the S1/S2 multibasic cleavage site by the cell surface transmembrane protease 
serine 2 (TMPRSS2) and cellular cathepsin L [2,3,4].  The S1/S2 junction also harbors a unique 
furin cleavage site that can be cleaved by furin and other PCs in lieu of TMPRSS2/cathepsin L 
activity, which may enhance infectivity [1,5].  A recent study showed that a furin cleavage site-
deleted SARS-CoV-2 mutant exhibited reduced replication in human respiratory cells and 
attenuation of viral pathogenesis in in vivo models [6].  The widespread expression of furin, 
especially in the human lung [7,8], makes the furin cleavage site an ideal target for therapeutic 
intervention. 
 
Through use of a synthesized peptide containing the SARS-CoV-specific furin cleavage sequence 
(entire 20 amino acid motif, Figure 1) as an antigen, a high titer antibody was generated with 
high sensitivity and specificity for the S1/S2 boundary furin site.  This furin site blocking 
antibody (fbAB) was further examined using a series of innovative ELISA-based colorimetric 
assays to rapidly and reliably measure its efficiency at blocking cleavage and receptor 
interaction.  fbAB demonstrated effective blockage of SARS-CoV-2 spike protein cleavage 
caused by purified furin enzyme, the serine protease trypsin, and human nasal swab specimens.  
It was shown that in both asymptomatic and symptomatic COVID-19 patients, nasal samples 
have yielded higher viral loads than throat samples [9], indicating the nasal epithelium as a 
portal for initial infection and transmission and as a dominant location for viral replication 
through pre-activation by PCs from both host and bacteria in the nasal cavity.  Based on our 
results, human nasal swab specimens yielded 80% cleavage of the assay substrate containing 
the SARS-CoV-2-specific furin motif, confirming this sample type as a valid biological source of 
abundant PC activity. 
 
It should be noted that in addition to blocking furin-mediated cleavage of bound target, fbAB 
pre-incubated with peptide containing the SARS-CoV-2-specific furin motif, before 
immobilization on the well surface, was also effective at inhibiting enzyme cleavage.  As virus 
particles are mobile targets within the systemic circulation, it was necessary to confirm that 
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antibody interaction with unbound target in suspension status could reduce formation of 
cleaved product as seen with immobile peptide. 
 
Given the importance of the spike/furin/ACE2 signal axis in the infection pathway of SARS-CoV-
2, the ability of fbAB to disrupt binding interaction between S protein and its host receptor is 
critical to attenuating the spread of disease.  fbAB demonstrated very high potency in blocking 
the binding of ACE2 to S protein-coated microplate wells, effectively reducing the percentage of 
receptor binding activity to a nearly undetectable level at a submicromolar antibody 
concentration. 
 
Current approaches to blocking or reducing furin site cleavage of target proteins are predicated 
on the direct inhibition of furin or furin-like enzymes.  Such inhibition is generally achieved by 
naturally-occurring macromolecular protein-based inhibitors (e.g., serpin A1-antitrypsin) or 
small molecule chemical inhibitors (e.g., pure peptide, peptide mimetics, and nonpeptidic 
compounds).  As these inhibitors are selective for the proteases themselves rather than specific 
sites of proteolytic activity, their inhibitory effect is limited with regard to preventing furin site 
cleavage exclusively at a precise location such as the S protein of SARS-CoV-2.  Furthermore, 
furin and furin-related PCs are widely distributed in various human tissues.  The inhibition of 
host proteases could non-specifically damage the normal functionality of proteins that require 
activation by these enzymes.  Therefore, our strategy of implementing an antibody to expressly 
block the SARS-CoV-2-specific furin site from cleavage by furin and facilitating proteases would 
be a selective option in controlling the activation of SARS-CoV-2 spike protein and the spread of 
the virus. 
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Figure Legend 
 
Figure 1.  Structure of the SARS-CoV-2 spike protein, including the location of the furin cleavage 
site at the boundary between the S1 and S2 subunits. 
 
Figure 2.  fbAB titer of recognizing the antigen containing the SARS-CoV-2-specific furin motif.  
Antigen concentration = 200 ng/well. 
 
Figure 3.  Sensitivity of fbAB recognizing the antigen containing the SARS-CoV-2-specific furin 
motif. 
 
Figure 4.  Specificity of fbAB recognizing the SARS-CoV-2 spike protein containing the S1/S2 
boundary furin site or a peptide containing the SARS-CoV-2-specific furin motif.  A: SARS-CoV-2 
protein containing the S1/S2 boundary furin site; B: Peptide containing the SARS-CoV-2-specific 
furin motif; C: SARS-CoV-2 S1 RBD protein lacking the S1/S2 boundary furin site. 
 
Figure 5.  Immunoprecipitation of the SARS-CoV-2 protein containing the S1/S2 boundary furin 
site by fbAB.  A: SARS-CoV-2 protein containing the S1/S2 boundary furin site; B: Peptide 
containing the SARS-CoV-2 specific furin motif. 
 
Figure 6.  fbAB blockage of SARS-CoV-2 furin motif cleavage by furin.  Furin concentration = 2-4 
U/well.  fbAB and spike protein neutralization antibody (SnAB) concentration = 200 ng/well. 
 
Figure 7.  fbAB blockage of SARS-CoV-2 furin motif cleavage by facilitating protease trypsin.  
Trypsin concentration = 10-20 ng/well.  fbAB concentration = 200 ng/well. 
 
Figure 8.  fbAB blockage of SARS-CoV-2 furin motif cleavage by human nasal swab sample.  
Human nasal swab sample was released into 300 µl of furin assay buffer and 20-30 µl of sample 
solution was used for the assay.  fbAB concentration = 200 ng/well. 
 
Figure 9.  Reduction of ACE2 binding to SARS-CoV-2 spike protein by fbAB blocking the SARS-
CoV-2 furin motif at different concentrations.  Coated SARS-CoV-2 spike protein concentration = 
50 ng/well.  ACE2 concentration = 100 ng/well. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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