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Abstract 
Identifying cancer-causing mutations from sequenced cancer genomes hold much promise for           
targeted therapy and precision medicine. “Driver” mutations are primarily responsible for           
cancer progression, while “passengers” are functionally neutral. Although several         
computational approaches have been developed for distinguishing between driver and          
passenger mutations, very few have concentrated on utilizing the raw nucleotide sequences            
surrounding a particular mutation as potential features for building predictive models. Using            
experimentally validated cancer mutation data in this study, we explored various string-based            
feature representation techniques to incorporate information on the neighborhood bases          
immediately 5ʼ and 3ʼ from each mutated position. Density estimation methods showed            
significant distributional differences between the neighborhood bases surrounding driver and          
passenger mutations. Binary classification models derived using repeated cross-validation         
experiments gave comparable performances across all window sizes. Integrating sequence          
features derived from raw nucleotide sequences with other genomic, structural and           
evolutionary features resulted in the development of a pan-cancer mutation effect prediction            
tool, NBDriver, which was highly efficient in identifying pathogenic variants from five            
independent validation datasets. An ensemble predictor obtained by combining the predictions           
from NBDriver with two other commonly used driver prediction tools (CONDEL and Mutation             
Taster) outperformed existing pan-cancer models in prioritizing a literature-curated list of           
driver and passenger mutations. Using the list of true positive mutation predictions derived             
from NBDriver, we identified a list of 138 known driver genes with functional evidence from               
various sources. Overall, our study underscores the efficacy of utilizing raw nucleotide            
sequences as features to distinguish between driver and passenger mutations from sequenced            
cancer genomes.  
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Introduction 
Cancer is caused due to the accumulation of somatic mutations during an individualʼs             
lifetime [1]. These mutations arise due to both endogenous factors such as errors during DNA              
replication, or exogenous factors such as substantial exposure to mutagens such as tobacco             
smoking, UV light, and radon gas. [2]–[4]. These somatic mutations can be of different types,               
ranging from single-nucleotide variants (SNVs), to insertions and deletions of a few            
nucleotides, copy-number aberrations (CNAs), and large-scale rearrangements known as         
structural variants (SVs) [5]. With the advent of high-throughput sequencing, the identification            
of somatic mutations from sequenced cancer genomes has become easier. International cancer            
genomics projects have resulted in the development of large mutational databases such as the              
Catalogue Of Somatic Mutations In Cancer (COSMIC) [6], the International Cancer Genome            
Consortium (ICGC) [7], and The Cancer Genome Atlas (TCGA) [8]. Several open-access            
resources to analyze and visualize large cancer genomics datasets, such as the cBio Cancer              
Genomics Portal [9] and the Database of Curated Mutations in cancer (DoCM) [10], have also               
been developed. These resources aggregate functionally relevant cancer variants from          
different studies and help researchers gain easy access to expert-curated lists of pathogenic             
somatic variants. 
 
However, not all somatic mutations present in the cancer genome are equally responsible for              
developing the disease. A small fraction of somatic variants known as “driver mutations”             
provide a growth advantage and are positively selected for, during cancer cell development [1].              
On the other hand, “passenger mutations” provide no growth advantage and do not contribute              
to cancer progression [1]. Identifying the complete set of cancer-causing genes that harbor             
driver mutations, also known as driver genes, holds much promise for precision medicine,             
where a specific therapeutic intervention is tailored towards a patientʼs mutational profile [11].  
 
Distinguishing between driver and passenger mutations from sequenced cancer genomes is a            
non-trivial task. Doing so solely based on the substitution type (A->T, G->C, etc.) is very               
difficult. Hence, several computational methods that utilize several other factors to identify            
driver mutations have been developed over the years. Recurrence-based driver prioritization           
tools such as MutSigCV [12] and MuSiC [13] for single-nucleotide variants, and GISTIC2 [14] for               
copy number aberrations, have been developed to identify variants that occur more than what              
is expected by chance, otherwise known as the “background mutation rate”. Other methods             
such as SIFT [15], PROVEAN [16], PolyPhen-2 [17], CHASM [18], and FATHMM [19] are based on                
predicting the functional impact of mutations on the protein encoded by the gene.             
Expert-curated databases such as the OncoKB database [20] contain information regarding the            
functional impact of over 3000 cancer-causing alterations belonging to over 400 genes. Pathway             
analysis based tools such as NetBox [21] and HotNet [22] work by identifying mutations              
affecting large scale gene regulatory or protein–protein interaction networks. Machine          
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learning-based methods have also been recently developed to predict deleterious missense           
mutations [23]–[28]. 
 
 
Genome instability, demonstrated by a higher than average rate of substitution, insertion, and             
deletion of one or more nucleotides, is a hallmark of most cancer cells. There is a considerable                 
variation in the rates of SNPs across the human genome. Sequence context plays a significant               
role in the variability of the substitutions rate as explained by the CpG dinucleotides, which               
exhibit an elevated C->T substitution rate by almost 15 folds relative to the average rate               
observed in mammals [29]. Mutational hotspots such as the CpG dinucleotides in breast and              
colorectal cancer [30] and TpC dinucleotides in lung cancer, melanoma, and ovarian cancer             
[31] are some examples of “signatures” that promote mutagenesis. There have been several             
efforts to utilize the sequence context to measure the human genomeʼs substitution rates.             
Aggarwala et al. [32] used the local sequence context of SNPs to explain the observed variability                
in substitution rates. Zhao et al. [33] studied the neighboring nucleotide biases and their effect               
on the mutational and evolutionary processes for over two million SNPs.  
 
Recent studies have identified specific signatures or patterns of mutations in different cancer             
types that shed light on the underlying mechanisms responsible for cancer progression [34],             
[35]. Alexandrov et al. [34] identified 21 distinct mutational signatures in human cancers by              
considering the substitution class and the sequence context immediately to the 3ʼ and 5ʼ of the                
mutated base. Several studies have demonstrated that certain factors such as tobacco smoking,             
UV light, or the inactivation of tumor suppressor genes involved in DNA repair can result in the                 
development of mutational hotspots [31], [34], [36]. There have been two recently published             
studies that have tackled this problem, to the best of our knowledge. Deitlein et al. [61]                
hypothesized that driver mutations occur more frequently in “unusual” nucleotide positions           
than passenger mutations and built probabilistic models to identify driver genes that had             
mutations in those “unusual” contexts. Agajanian et al. [37] integrated classical machine            
learning and deep learning approaches to model raw nucleotide sequences to differentiate            
between driver and passenger mutations.  
 
 
In this study, our overall aim is to build models utilizing machine learning and natural               
language processing techniques to differentiate between driver and passenger mutations solely           
based on the raw nucleotide context. Using missense mutation data with experimentally            
validated functional impacts compiled from various studies, we show that the underlying            
probability distributions of driver and passenger mutationsʼ neighborhoods are significantly          
different from one another. We extracted features from the neighborhood nucleotide           
sequences and built robust binary classification models to distinguish between the two classes             
of mutations. We achieved good classification performances during our repeated          
cross-validation experiments and against an independent hold-out set of literature curated           
mutations. Integrating neighborhood features with other features such as protein          
physicochemical properties and evolutionary conservation scores significantly improved our         
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algorithmʼs overall predictive power in identifying pathogenic variants from five separate           
independent test sets, and had comparable performances with some of the existing            
state-of-the-art mutation effect prediction tools. Overall, this study establishes that we can            
leverage efficient feature representation of the neighborhood sequences of cancer-causing          
mutations to differentiate between a known driver and passenger mutations with sufficient            
discriminative power.  
 
 

Methods 

Mutation Datasets for Building and Evaluating the Models  

Our training data consisted of the list of missense mutations whose effects were determined              
from experimental assays and were compiled in the study conducted by Brown et al. [37]. In                
this study, missense mutations from 58 genes that were pan-cancer-based were combined from             
five different datasets [38], [75]–[79] (Supplementary Table 1). These mutations were presented            
as amino acid substitutions based on their protein coordinates (e.g., F595L, L597Q, etc.). Since              
we were interested in studying the effects of neighboring DNA nucleotide sequences, we             
mapped them to their corresponding genomic coordinates (gDNA) for further analysis. We            
used the publicly available TransVar web-interface [80] for this purpose. The final training set              
was made up of 5265 single nucleotide variants (4131 passengers and 1134 drivers).  
 
For external validation, we collected somatic mutation data from five different sources. First,             
we considered a literature-curated list of 140 passengers and 849 driver mutations categorized             
based on functional evidence published by Martelotto et al. [38] as part of the benchmarking               
study to rank various mutation effect prediction algorithms.  
 
Second, we used a subset of mutations published by the recently released Cancer Mutation              
Census. The Cancer Mutation Census (CMC) [6] is a database that integrates all coding somatic               
mutation data from the COSMIC database to prioritize variants driving different cancer forms.             
It contains functional evidence obtained using both manual curation and computational           
predictions from multiple sources. For our validation experiments, we chose only single            
nucleotide variants classified as missense and derived from the CGC-classified list of tumor             
suppressor genes and oncogenes. Based on the databaseʼs various evidence criteria, we            
considered only mutations categorized as tier 1, 2, and 3 for our study. From this list, we                 
further removed all overlapping mutations with our training set and derived a final set of 277                
mutations for further analysis.  
 
The Catalog of Validated Oncogenic Mutations from the Cancer Genome Interpreter [35]            
database contains a high confidence list of pathogenic alterations compiled from several            
sources such as the DoCM [10], ClinVar [81], OncoKB [20], and the Cancer Biomarkers Database               
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[35]. We extracted only missense somatic mutations flagged as “cancer” for our validation             
experiments. After removing all overlapping mutations with our training set, we obtained a             
final list of 1628 driver mutations. This constituted our third validation set. 
 
The fourth validation dataset consisted of the list of top 50 hotspot mutations reported in the                
comprehensive study done by Rheinbay et al. [44]. In this study, mutation data was              
accumulated from the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium and           
involved analyzing more than 2700 cancer genomes derived from more than 2500 patients. A              
total of 33 coding missense mutations from five well-known cancer genes: TP53, PIK3CA,             
NRAS, KRAS, IDH1, were extracted from this study.  
 
Mao et al. [27] published mutation datasets to judge the performance of the driver prediction               
tool (CanDrA) in predicting rare driver mutations. They were constructed using the following             
criteria: 

1. GBM and OVC mutations reported in the COSMIC database only once.  
2. The reported mutations had no other mutations within 3bp of their position and were 

not part of either the training or test datasets for building the machine learning model 
(CanDrA). 

We used the same datasets to judge our modelʼs ability to predict rare driver mutations based                
solely on the neighborhood sequences. After removing all overlapping mutations with the            
training set, we obtained 34 GBM mutations and 38 OVC mutations. A summary of all the                
mutational datasets used in our study is available in Table 1. Besides, all our predictions are                
derived using the forward strand and were based on the GRCh37 (ENSEMBL release 87) build of                
the human genome. 
 

Feature Extraction 

Sequence-Based Features 
We used the raw nucleotide sequences surrounding a mutation as features for our analysis.              
Each unique mutation was represented as a triplet (Chromosome, Position, Type) where            
“Type” refers to one of the 12 types of point substitution (A>T, A>G, A>C, T>A, T<G, T>C, G>A,                  
G>C, G>T, C>T, C>A, C>G). We then extracted the surrounding raw nucleotide sequences from              
the reference genome for a given mutation position using the bedtools getfasta command.             
The “window size” for a particular mutation captures the number of nucleotides upstream and              
downstream from the mutated position. Hence, considering all possible window sizes between            
1 and 10, including the wild-type nucleotide at the mutated position, we obtained nucleotide              
strings of length 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21, respectively. We also considered the                   
chromosome number and the type of point substitution as features for our analysis. Now, for               
particular window size, to map the nucleotide strings to a numerical format, we used the               
following two widely used feature transformation approaches (Figure 1): 
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1. One-hot encoding: Each neighboring nucleotide was represented as a binary vector of 
size 4 containing all zero values except the nucleotide index, which was marked as 1. 
Thus “A” was encoded as [1,0,0,0], “G” as [0,1,0,0] and so on. 
This particular feature representation resulted in a feature space of size , wheren8 + 2  

represents the window sizes. We used the pandas get_dummies() to, ,  ... 10 n = 1 2 3  
perform this task.  

2. Overlapping k-mers: In this type of feature representation, the neighboring nucleotide 
string sequences for a given window size were represented as overlapping k-mers of 
lengths 2,3 and 4. For instance, an arbitrary sequence of window size 3 {ATTTGGA}, 
where ̒Tʼ is the wild type base at the mutated position, can be decomposed into 
overlapping k-mers of size 2 {AT, TT, TT, TG, GG, GA}, 3 {ATT, TTT, TTG, TGG, GGA} 
and 4 {ATTT, TTTG, TTGG, TGGA} respectively.  

 
To map these overlapping k-mers to a numerical format, we applied two commonly used              
encoding techniques known as CountVectorizer and TfidfVectorizer. The CountVectorizer         
returns a vector encoding whose length is equal to that of the vocabulary (total number of                
unique k-mers in the data set) and contains an integer count for the number of times a given                  
k-mer has appeared in our dataset.  
 
A Term Frequency – Inverse Document Frequency (TF-IDF) vectorizer assigns scores to each             
k-mer based on i) how often the given k-mer appears in the dataset and ii) how much                 
information the given k-mer provides, i.e., whether it is common or rare in our dataset.               
Mathematically, for a given term i present in a document j, the TF-IDF score is given bytf i,j  

req ogtf i,j = f i,i × l di
N   

where is the number of occurrences of i in j, is the number of documents containingreq  f i,j           d i        
i, and N is the total number of documents. These techniques were implemented in Python               
using the feature_extraction module from scikit-learn. The final processed training set used to             
build the machine learning models was represented as a matrix of size , where m is the total            nm       
number of coding point mutations and n is the size of the vocabulary. The matrix entries were                 
the TF-IDF or the CountVectorizer scores. The number of one-hot encoded features, k-mers,             
and the size of the vocabulary possible for each window size is shown in Table 2.  
 
Descriptive Genomic Features 
In addition to the neighborhood features, a set of 27 features (Supplementary Table 2)              
previously used to train the cancer-specific missense mutation annotation tool, CanDrA [27],            
were extracted from the following three data portals: CHASMʼs SNVBOX [18], Mutation            
Assessor [25] and ANNOVAR [82]. Among them were conservation scores (such as ʻGERPʼ             
scores, ʻHMMPHCʼ scores and others), amino acid substitution features (such as ʻPREDRSAEʼ,            
ʻPredBFactorSʼ, and others), exon features (such as ʻExonSnpDensityʼ, ʻExonConservationʼ and          
others), features indicative of protein domain knowledge (such as ʻʻUniprotDOM_PostModEnzʼ,          
ʻUniprotREGIONSʼ and others) and functional impact scores computed by algorithms such as            
VEST [23] and CHASM [18]. A tiny fraction (0.1%) of the UniProtKB annotations were not               
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available from the SNVBOX database for our training data. We used the k-nearest             
neighbors-based imputation technique to substitute the missing features with those of the            
same geneʼs nearest mutations. Our external validation datasets were free from any missing             
information. 

Density Estimation 

A kernel density estimator (or KDE) takes an n-dimensional dataset as an input and outputs an                
estimate of the underlying n-dimensional probability distribution. A Gaussian KDE uses a            
mixture of n-dimensional Gaussian probability distributions to represent the density being           
estimated. It essentially tries to center one Gaussian component per data point, resulting in a               
non-parametric estimation of the density. One of the hyperparameters for a kernel density             
estimator is the bandwidth, which controls the kernelʼs size at each data point, thereby              
affecting the “smoothness” of the resulting curve. We estimated the underlying probability            
distributions for the driver and passenger neighborhoods using a Gaussian kernel density            
estimator. 
 
The schematic workflow of the entire process for a single run of the kernel density estimation                
experiment is shown in Figure 2(A-F). First, we randomly selected, with replacement, an equal              
number (n) of driver and passenger mutations from our training data for a single run of the                 
kernel density estimation algorithm and particular window size (Figure 2A). Then, we tuned             
the bandwidth hyperparameter for each class of mutations using a 5-fold cross-validation            
approach and used the best parameters to derive the kernel density estimates (Figure 2B).              
Finally, we used the Jensen-Shannon (JS) distance metric to calculate the similarity between             
the two class-wise density estimates (Figure 2C). The JS distance between two probability             
distributions is based on the Kullback-Leibler (KL) divergence, but unlike KL divergence, it is              
bounded and symmetric.  For two probability vectors, p and q, it is given by,  
 

S  J = 2
1√D(p||m) (q||m)+ D  

 
where , and is the KL divergence. The significance of the estimated distances (p )m = 2

1 + q    D            
between the probability estimates was calculated using a randomized bootstrapping approach.           
Specifically, we randomly sampled with replacement twice the number (2n) of mutations from             
the same training set, irrespective of the labels. We then split the dataset in half, randomly                
assigning each half to driver and passenger mutations, respectively (Figure 2D). This was             
followed by a similar process of tuning the hyperparameters and deriving the class-wise             
density estimates (Figure 2E). Finally, we reported the JS distance between the density             
estimates (Figure 2F).  
We experimented with the following seven different neighborhood-based feature         
representations: 

● One-hot encoding 
● Count Vectorizer (k-mer sizes of 2,3 and 4) 
● TF-IDF Vectorizer (k-mer sizes of 2,3 and 4) 
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The aforementioned KDE estimation experiments were repeated 30 times for all possible            
window sizes between 1 and 10 and all seven feature representations. Next, the best median JS                
distance estimate from the original experiments was reported for the given window size. The              
percentage of runs of the randomized experiments for which the estimated distance was             
greater than the original estimate was reported as the p-value.The KernelDensity() function            
from the scikit-learn neighbors module was used to derive the density estimates and             
jensenshannon() from the scipy spatial.distance submodule was used to calculate the distance            
metric.  

Classification Models 

To build our binary classification models, we implemented three classifiers: the Random            
Forest classifier, the Extra Trees classifier (Extreme Random Forests), and the generative KDE             
classifier. The overall approach for the KDE-based classification was as follows (Figure 3A): 

1. The dataset was split using the cross-validation strategy. 
2. The training data was then split by label (driver/passenger). 
3. For each class, we fit a generative model using the kernel density estimation method as               

described in the previous section. This gave us the likelihood that and           (x|passenger)  P   
 respectively for a particular data point x.(x|driver)  P  

4. Next, the class prior, which is given by the number of examples of each class:               (driver)  P
and   was calculated.(passenger)  P  

5. Now, for a test data point x, the posterior probability was given by             
and . The(driver|x) ∝ P (x|driver)P (driver)  P  (passenger|x) ∝ P (x|passenger)P (passenger)  P   

label that maximized the posterior probabilities was the one assigned to x. 
 
In contrast, both the tree-based classifiers are discriminative. They are composed of a large              
collection of decision trees where the final output is derived by combining every single treeʼs               
predictions by a majority voting scheme. The main difference between the two tree-based             
classifiers lies in selecting splits or cut points to split the individual nodes. Random Forest               
chooses an optimal split for each feature under consideration, whereas Extra Trees chooses it              
randomly. All the classification models were written using the predefined functions available            
in the scikit-learn (v. 0.22) [83] module. 

Model Selection and Tuning 

Repeated Cross-Validation Experiments 
Owing to the relatively smaller sample size (5265 mutations) of the training set of mutations,               
we adopted a repeated 10-fold cross-validation approach to building our model. First, we split              
the dataset into ten equal subsets in a stratified fashion. Splitting the dataset in a stratified                
fashion maintains the same proportion of mutations in each class as observed in the original               
data. Nine of the ten subsets were combined into one training set (Figure 3A). In each training                 
phase, we performed feature selection using the Extra Trees classifier, cross-validated grid            
search-based parameter tuning, training the classifiers using the best parameters, and           
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obtaining the corresponding prediction scores on the hold-out test set (Figure 3B). For a given               
window size, we experimented with a total of seven feature representations (One-hot encoding,             
Count Vectorizer (k-mer size=2, 3 and 4), TF-IDF Vectorizer (k-mer size=2, 3 and 4), and three                
binary classifiers (Random Forests, Extra Trees, and Kernel Density Estimation). So overall, we             
had 21 distinct feature-classifier pairs.  
 
We ran the 10-fold cross-validation experiments (Figure 3(A-B)) three times for each such pair,              
thereby obtaining 30 values for each classification metric: sensitivity, specificity, AUC, and            
MCC. The best overall median value, the 95% CI for each of the above metrics, and the                 
corresponding feature-classifier pair were reported. To study the variation in classification           
performances with the addition of more nucleotides (or increase in window size), we repeated              
the Wilcoxon signed-rank test on the generated performance metrics for all 45 pairs of window               
sizes , where . The ci()from the gmodels package [84] in R x, )  ( y    and (x, ) 1, , .., 0]  x < y y ∈ [ 2 . 1          
was used to calculate the 95% CIs for the various classification metrics. 
 
Derivation of the Binary Classification Model to Distinguish between Driver and Passenger            
Mutations 
To derive the final machine learning model, all overlapping mutations between the training             
set Brown et al., and the validation set Martelotto et al., were discarded, and the classifier was                 
retrained on the reduced train set (4549 mutations: 544 drivers and 4005 passengers). The set of                
989 mutations published by Martelotto et al. [43] formed our independent test set. Due to the                
inherent imbalance in the dataset, we implemented an undersampling technique known as            
Repeated Edited Nearest Neighbors [85] to downsize the majority class and consequently obtain             
a balanced dataset for subsequent training. 
 
Predictions were obtained using two separate feature sets: 1) only neighborhood features based             
on the raw nucleotide sequences (or the neighborhood-only-model) and 2) neighborhood           
features plus the descriptive genomic features (or NBDriver). In addition to Random Forests,             
Extra trees, and the KDE classifier, we also experimented with a fourth classifier: a linear               
kernel SVM to obtain these predictions. Various combinations of these classifiers were            
implemented as ensemble models using the VotingClassifier() of the ensemble module in            
scikit-learn.  
 
Feature Selection 
We adopted an impurity-based feature selection technique for feature selection using the extra             
trees classifier to derive a ranked list of the top predictive features for our analysis. For the                 
repeated cross-validation experiments, the features that were within the top 30 percentile of             
the most important features were selected and subsequently used to train our models.             
However, for deriving NBDriver, we built several classification models based on the top n              
(n=20, 30, 40, 50, 60) features and chose the one that gave the best overall classification                
performance.  
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The TF-IDF and Countvectorizer scores, used as features for our analysis, were implemented             
using the feature_extraction module in scikit-learn. In both cases, a new vocabulary dictionary of              
all the k-mers was first learnt from the training data using the fit_transform() routine and               
the corresponding term-document matrix was returned. Using this vocabulary, the scores of            
the k-mers from the test data were obtained using the transform() routine and were              
subsequently used in our analysis.  
 
 
Hyperparameter Tuning and Classifier Threshold Selection 
Hyperparameter tuning was done using a cross-validation based grid search technique over a             
parameter grid. The GridSearchCV() from the model_selection module in scikit-learn was used            
for this purpose. To further fine-tune the classifiers, we experimented with various            
classification thresholds from 0 to 1 with step sizes 0.001 and chose the one that gave the best                  
AUROC. For an imbalanced classification problem, using the default threshold of 0.5 is not a               
viable option and often results in the incorrect prediction of the minority class examples.  
 
 
Performance Metrics 
For the repeated cross-validation experiments, we assessed our classifiersʼ performance using           
four commonly used performance metrics: Sensitivity, Specificity, Mathews correlation         
coefficient (MCC), and Area under the ROC curve (AUROC). Mathews correlation coefficient is             
a balanced metric and is very useful in imbalance classification problems. It is bounded              
between -1 and 1, with -1 representing perfect misclassification, 0 representing average            
classification, and +1 representing ideal classification. It is given by the following expression: 
 

CCM = TP×TN−FP×FN
√(TP+FP )(TP+FN )(TN+FP )(TN+FN )

 

where TP stands for True Positives, TN, True Negatives, FP, False Positives and FN, False               
Negatives. MCC is a more robust alternative to Accuracy and F1-score that can sometimes show               
overoptimistic classification performance for imbalanced data and was therefore not used for            
the analysis.  
 
After deriving the binary classifier, we used additional classification performance metrics           
outlined by Martelotto et al. to compare our algorithm's performance with other state-of-the-art             
mutation effect prediction tools. They were Positive Predictive Value (PPV), Negative           
Predictive Value (NPV), and a composite score, defined as the sum of Sensitivity, Specificity,              
PPV, and NPV.  
 
Comparison with Other Pan-Cancer Mutation Effect Predictors 
Similar to the benchmarking study conducted by Martelotto et al., we compared the generated              
binary classifiers with nine pan-cancer mutation effect prediction tools: Mutation Taster [86],            
FATHMM (cancer) [19], Condel [26], FATHMM (missense) [19], PROVEAN (v1.1.3) [16], SIFT            
(Ensemble 66) [87], Polyphen2 [17], Mutation Assessor [25] and VEST [23] using the set of 989                
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literature-curated mutations. For each of these predictors, we used the prediction labels based             
on predefined score cutoffs published as part of the Martelotto et al. [43] study. Two new                
prediction algorithms (CHASMplus (pan-cancer) [24] and CanDrA+ (Cancer-in general) [27])          
were also added to the list, and the score cutoffs were decided in the following manner.  
 
For CHASMplus, we tested all possible thresholds between 0 and 1 with step sizes of 0.01 and                 
chose the corresponding threshold with the highest composite score due to the absence of a               
default threshold. All mutations with predicted scores greater than this optimal threshold were             
labeled as drivers and vice versa. For CanDrA+, we used the default prediction categories [27].               
Predictions for CHASMplus and CanDrA+ were obtained from the OpenCRAVAT web server            
[88] and executable packages published by Mao et al. [27]. Different mutation effect predictors              
were combined using the majority voting rule to obtain better predictive power, and ensemble              
models were created.  
 
While comparing two algorithms, to derive the significance of the difference between any two              
classification metrics, we adopted the same strategy as Martelotto et al . Briefly, we derived the                
95% CI for each of these classification metrics by repeated sampling with replacement with              
1000 iterations. If the generated CIʼs touched or there was no overlap, the difference was               
considered significant ( ) based on the results of the analysis done by Ng et al. [89]..05  p < 0   

Results 
First, we report a pan-cancer machine learning tool, NBDriver (Neighborhood Driver), which            
utilizes neighborhood sequences as features to discriminate missense mutations as either           
drivers or passengers. Our key results are three-fold. First, we use generative models to derive               
the distances between the underlying probability estimates of the two classes of mutations.             
Then, we build robust classification models using repeated cross-validation experiments to           
derive the median values of the metrics designed to estimate the classification performances.             
Finally, we demonstrate our modelsʼ ability to predict unseen coding mutations from            
independent test datasets derived from large mutational databases.  

Neighborhood Sequences of Driver and Passenger Mutations Show Markedly         
Different Distributions 

We estimated the driver and passenger neighborhood sequencesʼ underlying probability          
distributions using kernel density estimation. We computed the Jensen–Shannon (JS) distance           
metric to understand how “distinguishable” they are from one another. The JS metric is              
bounded between 0 (maximally similar) and 1 (maximally dissimilar). Table 3 shows the results              
of the KDE estimation experiments for various window sizes. We observed that, for the Brown               
et al. dataset [37], the maximum significant ( ) median JS distance between passenger       .05  p < 0       
and driver neighborhood distributions, calculated across 30 runs of bootstrapping          
experiments, was 0.275 (for a window size of 2), and the minimum was 0.211 (for window sizes                 
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7-10). Figure 4 shows the variation in the JS distances between the original and the randomized                
KDE experiments for window sizes between 1 and 10. As evident from Figure 4, except for                
window size 1, all other window sizes had a significant JS distance value ( )..05  p < 0   
 
Out of the seven different feature representations, we reported the ones that gave the              
maximum median JS distance. From Table 3, we observed that a TF-IDF vectorizer with k-mer               
sizes 2,3 and 4 was the preferred form of feature representation for six window sizes (1, 4, 6, 8,                   
9 and 10), whereas a count vectorizer with k-mer sizes 2 and 3 was chosen for three window                  
sizes (3, 5, and 7). However, the only exception was for a window size of 2, where the one-hot                   
encoding-based feature representation technique gave the maximum median JS distance.          
These results indicated the TF-IDF based feature representation was the most efficient at             
delineating the differences in the distributions between the driver and passenger           
neighborhoods.   

Repeated Cross-Validation Using Neighborhood Features Generates Robust       
Classification Models 

The repeated cross-validation experiments using only the neighborhood sequences as features           
are shown in the Supplementary Table 3A. From these results, we observed that the best               
median sensitivity of 0.938 (95%CI 0.919-0.940) was obtained using features derived from a             
count vectorizer and subsequent training using a random forest classifier for window sizes 1, 5,               
6 and 9. However, the best median specificity of 0.807 (95%CI 0.791-0.811), AUC of 0.832 (95%                
CI 0.826-0.841), and MCC of 0.584 (95% CI 0.564-0.594) were obtained using a TF-IDF based               
feature representation trained using a KDE classifier for a window size of 10. The variation in                
the classification performances for different window sizes obtained during the repeated           
cross-validation experiments using the initial training set of 5265 mutations is shown in             
Figure 5. This figure shows that except for window sizes 1 and 2, a TF-IDF vectorizer gave the                 
maximum median AUC, Specificity, and MCC. However, for all window sizes, the maximum             
median sensitivities were obtained using the count vectorizer based feature representation           
technique. Classification metrics such as AUC and MCC are used to measure the quality of               
binary classifications. Similar to our observations made from the KDE estimation experiments            
(Table 3), the TF-IDF vectorizer performed consistently well both in terms of the overall AUC               
and MCC, indicating that this particular feature representation technique was the most            
efficient separating the two classes of mutations.  
 
The variation in the classification performances with the increase in the window size is shown               
in Supplementary Table 3b. From this table, we observed that out of the 45 unique pairs of                 
window sizes (Methods: Repeated cross-validation experiments), 27 had a significant ( ;          .05  p < 0  
Wilcoxon signed-rank test) increase in specificity and AUC while 31 had a significant ( ;             .05  p < 0  
Wilcoxon signed-rank test) increase in MCC with the addition of more nucleotides. However,             
for sensitivity, a significant increase was observed only when the window size was increased              
from 4 to 9 and 7 to 9, respectively. These results indicated that adding more nucleotides to a                  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.09.430460doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430460
http://creativecommons.org/licenses/by-nc/4.0/


13 

particular window does not always guarantee an increase in the classifierʼs performance in             
distinguishing between driver and passenger mutations. 
 
 

Classification Models Give Performances Comparable with Other State-of-the-Art        
Mutation Effect Predictors  

Using only the neighborhood nucleotide sequences as features, the best results (Table 4A) on              
the independent test set [38], was obtained using an Extra Trees classifier. This             
neighborhood-only model was trained on features extracted using the Count Vectorizer           
technique on a window size of 10.  
 
We trained NBDriver by combining the neighborhood features and the descriptive genomic            
features. Out of the various classifiers implemented, an ensemble model consisting of a linear              
kernel SVM and a KDE classifier gave the best results (Table 4a). Compared to the               
neighborhood-only model, there was a significant increase ( ) in accuracy (=0.891),       .05  p < 0     
sensitivity (=0.93), NPV (=0.608), Composite Score (=3.123), and MCC (=0.561). However, this            
was accompanied by a significant ( ) drop in specificity (=0.643). There was no     .05  p < 0         
significant change in PPV, though.  
 
A ranked list of the 50 features used to train NBDriver is shown in Supplementary Table 4. Out                  
of those 50 features, 26 were neighborhood-based features or the TF-IDF scores of the              
overlapping 4-mers extracted from a window size of 10. The plot displaying the variation in the                
AUROC with various classification thresholds is shown in Figure 6. The best results were              
obtained using a threshold of 0.119. Consequently, all mutations with the prediction scores             
above this threshold were classified as drivers and vice versa.  
 
Overall, on this benchmarking dataset, NBDriver ranked fourth in terms of the composite             
score, fifth in terms of specificity, and second in NPV, PPV, Sensitivity, and Accuracy. By               
contrast, although the neighborhood-only-model was the top-ranking tool in terms of           
Specificity and PPV, it did not perform well in terms of the other metrics. Owing to NBDriverʼs                 
superior performance, all subsequent external validations were performed using this model.  
 

Voting Ensemble of Prediction Algorithms Gives Better Classification Performances 

We also assessed the effect of combining multiple top-ranked single predictors into an             
ensemble model. We evaluated NBDriverʼs contribution to the overall ensemble by obtaining            
predictions without the tool. The top-performing ensemble consisting of NBDriver,          
CHASMplus, FATHMM (cancer), Mutation Taster, and Condel resulted in a composite score of             
3.504, accuracy of 0.945, and an NPV of 0.88, significantly higher ( than every single           .05)  p < 0     
predictor evaluated in the study (Table 4b; Supplementary Table 5). The composite score and              
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accuracy obtained using this ensemble were also the highest among all the different             
combinations of single-predictors tested in this study (Supplementary Table 5). Removing           
NBDriver from the ensemble resulted in a significant decrease ( in the composite         .05)  p < 0     
score, NPV, MCC, Accuracy, and Sensitivity. However, it was accompanied by a significant             
increase in specificity and no significant PPV change for the smaller ensemble (Table 4b).  
 
Another ensemble model consisting of NBDriver, Mutation Taster, and Condel gave similar            
results (Composite score=3.504) as the previous one (Table 4b; Supplementary Table 5).            
Compared to the previous ensemble (Table 4b), there was no significant difference in MCC,              
Composite Score, PPV, Sensitivity, and Accuracy. However, there was a significant increase in             
the NPV and a significant decrease in the specificity.  
 
A complete set of all the different combinations of the single predictors evaluated in this study                
is present in Supplementary Table 5. From this table, we observed that the maximum              
sensitivity (=0.9941) and NPV (=0.9375) were obtained by the ensemble (Mutation Taster,            
FATHMM (cancer), and CONDEL), which did not include NBDriver. However, the maximum            
specificity (=0.8357) and PPV (=0.9711) were obtained using the ensemble (NBDriver,           
CHASMplus, Mutation Taster, and CONDEL).  
 

Driver and Passenger Mutationsʼ Features Used to Train NBDriver are Significantly           
Different  

 
Our feature selection results illustrate the differences in the underlying biological processes            
governing driver and passenger mutations similar to Mao et al. [27]. Using the training data               
used to build NBDriver, we found that driver mutations tend to occur on amino acid residues                
that have stiff backbones and have less solvent accessibility as denoted by the significantly              
lower (Wilcoxon test; ) ʻPREDRSAEʼ probability measure (Figure 7A) and the    p < .45 × 10−10         
significantly higher (Wilcoxon test; ) ʻPredBFactorSʼ probability measure (Figure     p < .12 × 10−9      
7B) respectively. We also observed that a mutation is more likely to be a driver if it occurs in                   
genomic regions that were evolutionarily conserved. The mean GERP score for driver            
mutations was significantly higher (Wilcoxon test; ) than that of passengers       p < .22 × 10−16      
(Figure 7C). Similarly, driver mutations were more common in genomic sites that had a              
significantly higher (Wilcoxon test; ) Positional Hidden Markov Model (HMM)     p < .33 × 10−16       
conservation score (or HMMPHC) as compared to passengers (Figure 7D). Among the other             
features, we observed similar class-wise distributional differences among features indicative of           
protein domain knowledge. ʻUniprotDOM_PostModEnzʼ denotes the presence or absence of a           
mutation in a site within an enzymatic domain responsible for post-translational modification            
(or PTM). PTM-related mutations are often accountable for changes in protein functions and             
alterations of regulatory pathways, eventually leading to carcinogenesis. ʻUniprotREGIONSʼ is          
another binary feature that tells us whether a mutation occurred in an experimentally defined              
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region of interest in the protein sequence, such as those associated with protein-protein             
interactions and regulation of biological processes. Our analysis pointed out that a            
considerable portion (31%) of driver mutations clustered around PTM sites, contrasted by            
around 0.4% of passengers (Figure 7E). Similarly, about 37% of driver mutations were located              
in protein domains that were experimentally defined as regions of interest compared to around              
11% of passengers (Figure 7F).  
 
In our approach, the TF-IDF algorithm was used to weigh a k-mer and assign importance to it                 
in the given set of neighborhood sequences. Also, a higher TF-IDF score is indicative of the                
greater relevance/importance of that k-mer. Our feature selection results indicated that for the             
26 neighborhood sequence-based features, the mean TF-IDF scores for drivers were           
significantly higher (Wilcoxon test; ) than that of passengers (Figure 8). This result   .05  p < 0          
suggested that NBDriverʼs top neighborhood features are more specific to the driver            
neighborhoods than the passengers.  

Evaluation Using Previously Unseen Coding Mutation Data 
To evaluate NBDriver's capability at identifying previously unseen driver mutations, we 
evaluated it using missense mutation data compiled from the following four databases. 

Cancer Mutation Census 

Based on the various evidence criteria set forth by the Cancer Mutation Census database, a               
particular mutation can be classified into tier 1, 2, or 3, with tier 1 mutations having the highest                  
level of evidence of being a driver and so on. From the list of missense mutations in the CMC                   
not present in our training data, NBDriver could accurately predict all 19 tier 1, 25 out of 28 tier                   
2, and 179 out of 230 tier 3 mutations, achieving an overall accuracy of 81%. On the other hand,                   
the ensemble model consisting of NBDriver, Condel and MutationTaster could accurately           
predict all 19 tier 1, 27 out of 28 tier 2, and 214 out of 230 tier 3 mutations achieving an overall                      
accuracy of 94%. Upon further investigation, we found that NBDriver was highly successful in              
identifying hotspot mutations present in the CMC. Recurrent alterations at the same genomic             
site in cancer genes such as MET, MPL, FLT3 and KIT have been implicated in many different                 
cancer types [39]–[43] (Supplementary Table 7a).  

Cancer Genome Interpreter Database 

Using pathogenic mutations compiled from various sources, we found that NBDriver could            
accurately identify 1274 out of 1628 non-overlapping missense driver mutations, achieving an            
overall accuracy of 78%. The model correctly identified all three mutations from the Cancer              
Biomarkers Database, 39 out of 47 mutations from the DoCM database, 23 out of 31 mutations                
from the Martelotto et al. study [38], and 1209 out of 1547 mutations from the OncoKB database.                 
On the other hand, the ensemble model comprising NBDriver, Condel and MutationTaster            
could accurately predict 1519 out of 1628 mutations achieving an overall accuracy of 93%.  
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Recurrent Driver Mutations  

Out of the top 33 hotspot mutations identified in the study conducted by Rheinbay et al. [44] as                  
recurrently mutated, NBDriver correctly identified 27 as drivers. However, Mutation Taster           
displayed superior performance by identifying all 33 mutations correctly. Except for KRAS,            
NBDriver correctly identified all mutations from the other four genes (NRAS, TP53, PIK3CA,             
and IDH1) as cancer drivers. Hotspot mutations in these four genes reported by Rheinbay et al.                
[44], correctly identified as drivers by NBDriver have been implicated in many different             
cancers [45]–[48] (Supplementary Table 7a). 

Rare Driver Mutations Found in Glioblastoma and Ovarian Cancer 

Using the list of rare drivers reported by the developers of the driver prediction tool CanDrA                
[27], we evaluated NBDriverʼs ability to identify less frequent alterations in the cancer genome.              
Overall, NBDriver alone could identify 29 out of 34 (85%) glioblastoma mutations and 20 out of                
38 (53%) ovarian cancer mutations. All these mutations belonged to eight known OVC-related             
genes (ARID1A, CDK12, ERBB2, MLH1, MSH2, MSH6, PIK3R1, PMS2) and seven known            
GBM-related genes (ATM, EGFR, MDM2, NF1, PDGFRA, PIK3CA, ROS1). All eight OVC-related            
genes correctly identified as drivers by NBDriver have been implicated in ovarian cancer             
through observations made from multiple studies [49]–[53] (Supplementary Table 7b). The           
ensemble model made up of NBDriver, Condel and Mutation Taster performed better than the              
single predictor by identifying 32 out of 34 (94%) glioblastoma mutations and 24 out of 38 (63%)                 
ovarian cancer mutations.  
 

Stratification Of the Predicted Driver Genes Based on Literature Evidence 

We combined the list of genes with at least one true positive missense driver mutation               
prediction from NBDriver into a catalog of 138 putative driver genes. We then compared our               
gene set against those already published in six landmark pan-cancer studies for driver gene              
identification. Bailey et al. [54] identified 299 driver genes from 9423 tumor exomes by              
combining the predictions from 26 different computational tools. Martincorena et al. [55] used             
the normalized ratio of non-synonymous to synonymous mutations (dN/dS model) to identify            
driver genes from 7664 tumors and reported a total of 180 putatively positively-selected driver              
genes and 369 known cancer genes from three main sources:  
1) 174 cancer genes from the version 73 of the COSMIC database [6].  
2) 214 significantly mutated genes across 4742 tumors identified by Lawrence et al. [56] using               
the MutSigCV tool. 
3) 204 genes identified through a literature search.  
 
Two marker papers from TCGA [57], [58] identified 132 significantly mutated genes using the              
MutSigCV tool. Tamborero et al. [35] identified a list of 291 high-confidence drivers from 3205               
tumor samples using a rule-based approach. Deitlein et al. [59] modelled the nucleotide context              
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around driver mutations and identified 460 driver genes based on nucleotide context. Apart             
from the aforementioned studies, overlap between our list of genes and two well-established             
cancer gene repositories: the Cancer Gene Census [6], [60] and the Intogen database [61] was               
also reported. We identified 124 (=89%) of our predicted driver genes as canonical cancer genes               
present in the Cancer Gene Census. Among the remaining genes, six were catalogued as              
drivers in at least two of the pan-cancer studies or mutation databases as mentioned above               
(Supplementary Table 6). A total of eight genes (CTLA4, IGF1R, PIK3CD, TGFBR1, RAD54L,             
SHOC2, CDKN2B and XRCC2) were not identifiable from any of the landmark studies or              
databases and required further validation.  

Discussion 
Our investigation aimed to compare the raw neighborhood sequences of driver and passenger             
mutations and exploit any observed distributional differences to build robust classification           
models. We showed that except for one window size (n=1), a significant difference in the               
distributions between the neighborhoods of driver and passenger mutations was consistently           
present in our cohort. Using TF-IDF and Count Vectorizer scores derived from the overlapping              
k-mers, we trained a KDE-based generative classifier and two other tree-based classifiers. One             
crucial distinction between NBDriver and other methods is the inclusion of overlapping k-mers             
extracted from the neighborhood of mutations as features for further analysis. NBDriver was             
trained using a small set (=50) of highly discriminative features, 52% of which were              
neighborhood scores. Using this model, we could accurately predict 89% of all the             
literature-curated mutations outlined in the Martelotto et al. study [38], 81% of the high              
confidence list of mutations recently published by the Cancer Mutation Census, 78% of all the               
actionable alterations reported in the Cancer Genome Interpreter, 82% of all the hotspot             
mutations reported from a pan-cancer genome analysis, 85% and 53% of rare driver mutations              
found in glioblastoma and ovarian cancer respectively. Ensemble models obtained by           
combining the predictions from other state-of-the-art mutation effect predictors with NBDriver           
performed significantly better than the individual predictors in all five validation datasets.            
These results underscore the importance of including neighborhood features to build mutation            
effect prediction algorithms.  
 
Although our methodʼs focus was to identify missense driver mutations from sequenced cancer             
genomes, the majority of the genes (130 out of 138) containing at least one predicted mutation                
belonged to the Cancer Gene Census or other large-scale driver gene discovery studies. The              
protein products of the eight remaining genes not flagged as drivers by any of the               
databases/studies had known functional roles in maintaining the cancer genomeʼs stability and            
promoting tumor development. The CTLA4 gene modulates immune response by serving as            
checkpoints for T-cell activation, essentially decreasing the T cellsʼ ability to attack cancer             
cells. Immune checkpoint inhibitors, which are designed to “block” these checkpoints have            
drastically changed the treatment outcomes for several cancers [62]. Transcriptomic profiling           
of blood samples drawn from cervical cancer patients identified IGF1R as a biomarker for              
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increased risk of treatment failure [63]. Overexpression of the PIK3CD gene has been             
associated with cell proliferation in colon cancer and is responsible for poor prognosis among              
patients [64]. Multiple studies have indicated an association with polymorphisms observed in            
TGFBR1 and cancer susceptibility [65], [66]. Similarly, polymorphisms detected in the RAD54L            
is a genetic marker associated with the development of meningeal tumours [67]. SHOC2 has              
been reported to be a regulator of the Ras signalling pathway and is associated with poor                
prognosis among breast cancer patients [68]. Similarly, the inactivation of the CDKN2B gene is              
responsible for the progression of pancreatic cancer [69]. With the help of massively parallel              
sequencing studies, rare mutations in the XRCC2 gene have been linked to increased breast              
cancer susceptibility among patients [70]. 
 
Our study does have some limitations. First, we used a representative dataset of driver and               
passenger mutations whose labels were not in silico predictions from other mutation effect             
prediction algorithms but derived from experimentally validated functional and transforming          
impacts from various sources. This resulted in a relatively small sample size for supervised              
classification. However, this approach also minimized the chances of inadvertently          
introducing false-positive mutations into the training set used to derive the driver and             
passenger neighborhoodsʼ class-wise density estimates or the machine learning models.          
Evidence [71] suggests that a sizeable proportion of mutations present in large mutational             
databases are mostly false positives, reflecting sequencing errors due to DNA damage.            
Moreover, NBDriver derived using this high confidence list of mutations performed reasonably            
well across all five independent validation sets and produced 138 driver genes with sufficient              
literature evidence suggesting that our initial choice of the training dataset was overall             
beneficial. Second, since missense mutations are the most abundant form of somatic            
alterations [72], our machine learning models were all trained using missense mutations only.             
However, in principle, our approach could be extended to other types of mutations as well. 
 
Additionally, during the external validation analysis, although NBDriver performed very well           
in terms of PPV (=0.941), the NPV (=0.608) was relatively low (Table 4a). To identify biologically                
relevant mutations for further functional validation, NPV is often overlooked as a classification             
metric. A high NPV allows us to exclude passenger mutations with greater confidence and              
reduces the number of driver mutations incorrectly labeled as passengers (false negatives).            
However, we observed that adding different combinations of multiple single predictors into            
ensemble models resulted in a significant improvement in the NPV (Table 4b). Our             
observations on the ensemble modelsʼ performances were similar to those made by Martelotto             
et al. [38]. Last, we trained our machine learning models using the combined dataset containing               
mutational effects determined from experimental assays not specific to any cancer type.            
Hence, all our models were pan-cancer based. Consequently, a cancer-type specific analysis in             
the future would require the list of known driver and passenger mutations from specific tumor               
types. 
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Conclusion 

In this study, we showed that there is a significant difference in the nucleotide contexts               
surrounding driver and passenger mutations obtained from sequenced cancer genomes. Using           
efficient feature representation, we generated robust classification models that gave          
comparable performances across five independent validation sets. The predicted true positive           
mutations were part of genes with experimental support of being functionally relevant from             
multiple sources. Future experiments using a much larger sample size need to be performed to               
derive neighborhood-sequence-based classification scores for all possible missense mutations         
in the genome across several cancer types. This would be possible if future large-scale              
sequencing studies such as MSK-IMPACT [73], PCAWG [44], ICGC [7], and GENIE [74] produce a               
complete catalog of missense driver mutations with functional evidence in a cancer-type            
specific manner. This relatively novel strategy of utilizing the sequence neighborhoods for            
driver mutation identification can dramatically improve the annotation processʼs efficiency for           
unknown mutations.  
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Table 1: Summary of datasets used in this study 

 
 
 
 
 
 
 
 
 
 

Type Study/ 
Database Name 

Description Sample size 

Training Brown et al. Missense mutations from 58 cancer genes      
generated from experimental assays  

5265 mutations 
(Driver: 1134 
Passenger: 4131) 

Validation Martelotto et al. A Literature curated list of mutations from 15        
cancer genes used to benchmark 15      
mutation-effect prediction algorithms 

989 mutations  
(Driver: 849 
Passenger: 140) 

Validation Catalog of  
Validated 
Oncogenic 
Mutations 

High confidence pathogenic missense variants     
compiled from several sources  

1628 driver mutations 

Validation Rheinbay et al.  Recurrent single point driver mutations in the       
coding region compiled from the Pan-Cancer      
Analysis of Whole Genomes Consortium 

33 driver mutations 

Validation Mao et al.  Rare driver mutations from GBM and OVC       
cancer types 

GBM: 34 driver   
mutations  
OVC: 38 driver   
mutations  

Validation Cancer 
Mutation 
Census 
(COSMIC v92) 

COSMIC mutation data categorized into     
different functional classes both through     
manual curation and computational predictions  

277 driver mutations 
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Table 2: Number of one-hot encoded features and possible k-mers for a given window size. The                
size of the vocabulary (or N) is given in brackets 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Window Size Number of  
one-hot encoded  
features 

Number of  k-mers possible for a given k-mer size  

k=2  
(N=16) 

k=3  
(N= 64) 

k=4  
(N= 256) 

w= 1 8 2 1 0 

w= 2 16 4 3 2 

w= 3 24 6 5 4 

w= 4 32 8 7 6 

w= 5 40 10 9 8 

w= 6 48 12 11 10 

w= 7 56 14 13 12 

w= 8 64 16 15 14 

w= 9 72 18 17 16 

w= 10 80 20 19 18 
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Table 3: Median JS distances for both the original and randomized experiments for different              
window sizes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Window Size Feature Type Median JS  
distance 
(original) 

Median JS  
distance 
(randomized) 

p-value 

1 TF (k=2) 0.345 0.34 Not significant 

2 OHE  0.275 0.221 <0.05 

3 CV (k=2) 0.219 0.170 <0.05 

4 TF (k=3) 0.214 0.167 <0.05 

5 CV (k=3) 0.211 0.166 <0.05 

6 TF (k=4) 0.210 0.166 <0.05 

7 CV (k=2) 0.211 0.165 <0.05 

8 TF (k=3) 0.211 0.164 <0.05 

9 TF (k=3) 0.211 0.166 <0.05 

10 TF (k=4) 0.211 0.165 <0.05 
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Table 4a: Comparison of the generated binary classifiers with other mutation effect prediction             
algorithms using the benchmarking dataset by Martelotto et al.  

 
Table 4b: Evaluating the contribution of NBDriver to the top performing ensemble  

Algorithm Accuracy Sensitivity Specificity PPV NPV CS MCC 

Mutation Taster 0.8857 0.9081 0.75 0.9566 0.5738 3.1885 0.590 

FATHMM (Cancer) 0.91 0.9788 0.4929 0.9213 0.7931 3.1861 0.580 
CHASMplus 
(Pancancer) 0.85 0.852 0.85 0.972 0.486 3.16 0.570 

NBDriver 0.891 0.931 0.643 0.941 0.608 3.123 0.561 
Neighborhood-only 
model  0.85 0.629 0.907 0.9744 0.285 2.7954 0.370 

Condel 0.8584 0.9258 0.45 0.9108 0.5 2.7866 0.392 

FATHMM (missense) 0.8251 0.8775 0.5071 0.9152 0.4057 2.7055 0.351 

PROVEAN 0.7371 0.7444 0.6929 0.9363 0.3089 2.6825 0.327 

SIFT 0.8099 0.861 0.5 0.9126 0.3723 2.6459 0.32 

Polyphen-2 0.7978 0.8422 0.5286 0.9155 0.3558 2.6421 0.317 

Mutation Assessor 0.747 0.7665 0.6286 0.9259 0.3077 2.6287 0.3 

VEST 0.7503 0.8269 0.2857 0.8753 0.2139 2.2018 0.1 
CanDrAplus 
(Cancer-in-general) 0.592 0.857 0 0.99 0 1.847 -0.03 

Algorithm Accuracy Sensitivity Specificity PPV NPV CS MCC 

NBDriver +  
CHASMplus+ 
FATHMM (cancer) +   
Mutation Taster +   
Condel 

0.945 0.985 0.689 0.95 0.88 3.504 0.746 

CHASMplus+ 
FATHMM (cancer) +   
Mutation Taster +   
Condel 

0.921 0.942 0.771 0.96 0.71 3.384 0.691 

A smaller ensemble that gave no significant change in Composite score and MCC compared to               
the previous ensemble (First row of Table 4b) 

NBDriver + Mutation   
Taster + Condel 

0.942 0.99 0.65 0.945 0.919 3.504 0.745 
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Figure Legends 

Figure 1: A diagram representing the features derived from the neighborhood nucleotide            
sequences of the point mutations for an arbitrary window size of 4 is shown here. The mutated                 
position is represented as a triplet (Chromosome: Position: Substitution Type).  
(I) The original sequence is represented here with the mutated nucleotide (ch17:109889:G>T) in             
bold. (II) One-hot encoding was used to derive the 4-bit binary one-hot encoded vector for each                
nucleotide. (III) Overlapping k-mers of sizes 2,3 and 4 have been represented here . In this                
case, the neighborhood features also include the wildtype nucleotide at the mutated position.             
The overlapping k-mers were encoded into a numerical format using the countvectorizer and             
the TFIDF vectorizer and the resulting word matrix was derived. The samples (or individual              
neighborhoods) are represented as rows and the k-mers are represented as columns. For both              
types of feature representation, the chromosome number and the substitution type (A>T, G>C             
etc) were included as additional features.  
 
Figure 2: The workflow depicting one run of the kernel density estimation experiment is              
shown in this figure. All 5265 mutations from the Brown et al. study were used to derive the                  
estimates. (A) First, an equal number of driver and passenger mutations were sampled with              
replacement. (B) The “bandwidth” hyperparameter was tuned using a 5-fold cross-validation           
approach, and the resulting tuned hyperparameter was used to estimate the densities. (C) The              
kernel density estimates for the driver and passenger neighborhoods were obtained separately,            
and the distance between them was calculated using the Jensen-Shannon (JS) distance. The JS              
distance is used to quantify how “distinguishable” two probability distributions are from each             
other. It is bounded between 0 and 1, where 0 represents the case where the two probability                 
distributions are equal and vice versa. (D) The bootstrapping experiment to compute the             
significance of the density estimates calculated in (C) is shown in this figure. First, it involved                
random sampling of twice the driver or passenger mutations from (A) irrespective of the              
labels, followed by randomly splitting the data into driver and passenger labels. (E)             
Hyperparameter tuning and density estimation was performed similarly to (B). (F) The            
bootstrapped JS distance between the driver and passenger neighborhoods was derived. All six             
steps (A-F) of the density estimation experiments were repeated 30 times for all possible              
window sizes between 1 and 10 and seven different feature representations. The significance of              
the difference between the medians of the original and the bootstrapped JS distances was then               
reported.  
 
Figure 3: The workflow depicting one run of the 10-fold cross-validation experiments is shown              
in this figure. (A) In the first step, the entire dataset was split into ten equal parts. Nine of the                    
ten subsets were combined into one training set, and one part was left as the test set. (B) Seven                   
different feature representations [OHE, Count Vectorizer (k=2,3,4) and TF-IDF Vectorizer          
(k=2,3,4)] were considered for further analysis. After feature selection using a tree-based            
classifier, hyperparameter tuning was performed for three classifiers, and the corresponding           
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models were derived. Finally, validation of each of the classifiers on the test set was               
performed, and the corresponding performance metrics were reported.  
 
Figure 4: Variation in JS distances between the estimated densities for every window size              
between 1 and 10 is shown in this figure. All 5265 mutations from the original study were used                  
here. Two types of boxplots, one for the original and another for the randomized experiments               
have been shown here along with the p-values, which approximates the probability that the              
original median distance can be obtained by chance. Except window 1, all other window sizes               
had a significant (** ) difference between the original and the randomized JS distances..05  p < 0  
 
Figure 5: The variation in the classification performances with different window sizes obtained             
during the repeated cross-validation experiments using the initial training set of 5265            
mutations is shown in this figure. For each window size, feature representations among CV              
(CountVectorizer), TF (TF-IDF Vectorizer) and OHE (One-hot encoding) that gave the best            
performances in terms of (A) Sensitivity (B) Specificity (C) AUC and (D) MCC is displayed. 
 
Figure 6: Plot showing the variation in AUROC with the different classification thresholds             
obtained while deriving NBDriver is shown here. NBDriver was trained on a reduced training              
set of 4549 mutations after removing all overlapping mutations from the original study and              
Martelotto et al. For an imbalanced classification problem, using the default threshold of 0.5 is               
often not advisable. In our case, the best AUROC was obtained using a threshold of 0.119.                
Consequently, all mutations with prediction scores greater than this threshold were classified            
as drivers and vice versa.  
 
Figure 7: Differences in the distribution of features between driver and passenger mutations             
observed from the training data used to derive NBDriver. (A) PREDRSAE (Predicted Residue             
Solvent Accessibility - Exposed) gives the probability of the wild type residue being exposed.              
From the plot it is clear that probability of driver mutations occurring in residues that are                
exposed is significantly less (Wilcoxon test; P=5.4E-10) than that of passengers. (B)            
PredBFactorS (High Predicted Bfactor) gives the probability that the wild type residue            
backbone is stiff. From the plot it is clear that the probability of driver mutations occurring in                 
residues with stiff backbones is significantly higher (Wilcoxon test; P=2.1E-09) than that of             
passengers. (C) GERP conservation scores give the evolutionary conservativeness scores for           
specific sites where mutations have occurred. From the plot it is clear that driver mutations               
occur in sites with GERP scores that are significantly higher (Wilcoxon test; P<2.2E-16) than              
passenger mutations. (D) HMMPHC (Positional Hidden Markov Model (HMM) conservation          
score) is a measure which is calculated on the basis of the degree of conservation of the                 
residue, the mutation and the most probable amino acid. From the plot it is clear that driver                 
mutations tend to occur in residues with HMMPHC scores significantly higher (Wilcoxon test;             
P=3.3E-16) than passenger mutations. (E) UniprotDOM_PostModEnz is a feature based on           
protein domain knowledge which tells us whether a site in an enzymatic domain is responsible               
for any kind of post translational modification (or PTM). ʻPresenceʼ indicates that the mutation              
occurs in a site responsible for PTM and vice versa. From the plot it is clear that more driver                   
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mutations occur in PTM-associated sites as compared to passengers. (F) UniprotREGIONS is a              
binary variable which tells us whether a mutation occurs in a region of interest in the protein                 
sequence. ʻPresenceʼ indicates that the mutation occurs in a region of interest and vice versa.               
From the plot it is clear that more driver mutations cluster in regions of interest in the protein                  
sequence as compared to passengers thereby making them mechanistically influential for the            
progression of the disease.  
 
Figure 8: Plot showing the class-wise variation in the mean TF-IDF scores for the 26               
neighborhood-sequence features used to train NBDriver. The x-axis represents the 4-mers used            
in the analysis, and the y-axis represents the mean TF-IDF scores. From the plot, it is evident                 
that the mean TF-IDF scores are consistently higher for drivers as compared to passengers.              
Since a higher TF-IDF score indicates the relevance or importance of a particular k-mer, we can                
conclude that the 4-mers used to derive NBDriver are more specific to the driver              
neighborhoods than passengers.  
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