1 DROP: Molecular voucher database for identification of *Drosophila* parasitoids

- 2 Resource article
- 3 Word count: 8237 excluding references
- 4
- 5 Authors
- 6 Chia-Hua Lue (C-HL), (0000-0002-5245-603X), chiachia926@gmail.com, corresponding
- 7 author
- 8 Matthew L. Buffington (MLB)
- 9 Sonja Scheffer (SS)
- 10 Matthew Lewis (ML)
- 11 Tyler A. Elliott (TAE)
- 12 Amelia R. I. Lindsey (AL)
- 13 Amy Driskell (AD), (0000-0001-8401-7923)
- 14 Anna Jandova (AJ)
- 15 Masahito T. Kimura (MTK)
- 16 Yves Carton (YC)
- 17 Robert R. Kula (RRK)
- 18 Todd A. Schlenke (TAS)
- 19 Mariana Mateos (MM), (0000-0001-5738-0145)
- 20 Shubha Govind (SG), (0000-0002-6436-639X)
- 21 Julien Varaldi (JV)
- 22 Emilio Guerrieri (EG), (0000-0002-0583-4667)

- 23 Massimo Giorgini (MG), (0000-0001-8670-0945)
- 24 Xingeng Wang (XW)
- 25 Kim Hoelmer (KH)
- 26 Kent M. Daane (KMD)
- 27 Paul K. Abram (PKA)
- 28 Nicholas A. Pardikes (NAP), (0000-0002-9175-4494)
- 29 Joel J. Brown (JJB), (0000-0002-3608-6745)
- 30 Melanie Thierry (MT)
- 31 Marylène Poirié (MP)
- 32 Paul Goldstein (PG), (0000-0002-1443-7030)
- 33 Scott E. Miller (SEM), (0000-0002-4138-1378)
- 34 W. Daniel Tracey (WDT)
- 35 Jeremy S. Davis (JSD), (0000-0002-5214-161X)
- 36 Francis M. Jiggins (FMJ)
- 37 Bregje Wertheim (BW)
- 38 Owen T. Lewis (OTL)
- 39 Jeff Leips (JL)
- 40 Phillip P. A. Staniczenko (PPAS)
- 41 Jan Hrcek (JH), (0000-0003-0711-6447), janhrcek@gmail.com
- 42
- 43
- 44

45 Affiliations

- 46 (C-HL, AJ, NAP, JJB, MT, JH) Biology Centre of the Czech Academy of Sciences, Institute
- 47 of Entomology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- 48 (C-HL, PPAS) Department of Biology, Brooklyn College, City University of New York
- 49 (CUNY), 2900 Bedford Ave, Brooklyn, NY11210, USA
- 50 (MLB, SS, ML, RRK, PG) Systematic Entomology Laboratory, ARS/USDA c/o Smithsonian
- 51 Institution, National Museum of Natural History, 10th& Constitution Ave, NW,
- 52 Washington DC 20560, USA
- 53 (TAE) Centre for Biodiversity Genomics, 50 Stone Road East, University of Guelph,
- 54 Guelph, Ontario, N1G2W1, Canada
- 55 (AL) Department of Entomology, University of Minnesota, Saint Paul MN 55108.
- 56 (AD) Laboratories of Analytical Biology, Smithsonian Institution, National Museum of
- 57 Natural History, 10th & Constitution Ave, NW, Washington DC 20560, USA
- 58 (MTK) Hokkaido University Museum, Sapporo, Hokkaido 060-0810, Japan
- 59 (YC) "Évolution, Génomes, Comportement, Écologie", CNRS et Université Paris-Saclay
- 60 (TAS) Department of Entomology at the University of Arizona, Forbes 410, PO BOX
- 61 210036, Tucson, AZ 85721-0036.
- 62 (MM) Wildlife and Fisheries Sciences Department, Texas A&M University
- 63 (SG) The Graduate Center of the City University of New York, 365 Fifth Avenue, New
- 64 York, NY10016, USA
- 65 (JV) Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie
- 66 Evolutive UMR 5558, F-69622 Villeurbanne, France

- 67 (EG, MG) CNR- Institute for Sustainable Plant Protection (CNR-IPSP), National Research
- 68 Council of Italy, Piazzale E. Fermi 1, 80055 Portici, Italy.
- 69 (XW, KH) United States Department of Agriculture, Agricultural Research Services,
- 70 Beneficial Insects Introduction Research Unit. 501 S. Chapel St., Newark, DE 19713, USA
- 71 (KMD) Department of Environmental Science, Policy and Management. University of
- 72 California, Berkeley. Mulford Hall, 130 Hilgard Way, Berkeley, CA 94720.
- 73 (PKA) Agriculture and Agri-Food Canada, Agassiz Research and Development Centre,
- 74 6947 Hwy #7, Agassiz, VOM 1A0, British Columbia, Canada
- 75 (JJB, MT, JH) University of South Bohemia, Faculty of Science, Branisovska 31, 37005,
- 76 Czech Republic
- 77 (MP) Université "Côte d'Azur", INRAE, CNRS. and Evolution and Specificity of
- 78 Multitrophic Interactions (ESIM) Sophia Agrobiotech Institute, 400 Route des Chappes,
- 79 BP 167, 06903 Sophia Antipolis, France
- 80 (SEM) Smithsonian Institution, National Museum of Natural History, 10th & Constitution
- 81 Ave, NW, Washington DC 20560, USA
- 82 (WDT, JSD) Department of Biology, Indiana University Bloomington. 702 N. Walnut
- 83 Grove, Bloomington, IN47405
- 84 (WDT) Gill Center for Biomolecular Science, Indiana University Bloomington. 702 N.
- 85 Walnut Grove, Bloomington, IN47405
- 86 (JSD) Biology Department, University of Kentucky, 101 T. H. Morgan Building, Lexington,
- 87 KY, 40506

- 88 (FMJ) Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2
- 89 3EH UK
- 90 (BW) Groningen Institute for Evolutionary Life Sciences, University of Groningen,
- 91 Nijenborgh 9, 9747 AG Groningen, the Netherlands
- 92 (OTL) Department of Zoology, University of Oxford. 11a Mansfield Road, Oxford OX1
- 93 3SZ, UK.
- 94 (JL) Department of Biological Sciences, University of Maryland Baltimore County. 1000
- 95 Hilltop circle, Baltimore, MD, 21250
- 96
- 97
- 98 Abstract

99 Molecular identification is increasingly used to speed up biodiversity surveys and 100 laboratory experiments. However, many groups of organisms cannot be reliably 101 identified using standard databases such as GenBank or BOLD due to lack of sequenced 102 voucher specimens identified by experts. Sometimes a large number of sequences are 103 available, but with too many errors to allow identification. Here we address this 104 problem for parasitoids of Drosophila by introducing a curated open-access molecular 105 reference database, DROP (Drosophila parasitoids). Identifying Drosophila parasitoids is 106 challenging and poses a major impediment to realize the full potential of this model 107 system in studies ranging from molecular mechanisms to food webs, and in biological 108 control of Drosophila suzukii. In DROP (http://doi.org/10.5281/zenodo.4519656), 109 genetic data are linked to voucher specimens and, where possible, the voucher

110	specimens are identified by taxonomists and vetted through direct comparison with
111	primary type material. To initiate DROP, we curated 154 laboratory strains, 856
112	vouchers, 554 DNA sequences, 16 genomes, 14 transcriptomes, and 6 proteomes drawn
113	from a total of 183 operational taxonomic units (OTUs): 114 described Drosophila
114	parasitoid species and 69 provisional species. We found species richness of Drosophila
115	parasitoids to be heavily underestimated and provide an updated taxonomic catalogue
116	for the community. DROP offers accurate molecular identification and improves cross-
117	referencing between individual studies that we hope will catalyze research on this
118	diverse and fascinating model system. Our effort should also serve as an example for
119	researchers facing similar molecular identification problems in other groups of
120	organisms.
121	
122	Key Words
123	Biodiversity, DNA sequences, Genomes, Integrative taxonomy, Molecular diagnostics,
124	Biological control
125	
126	
127	
128	
129	
130	
131	

132 Introduction

133	Building a knowledge base that encompasses ecology, evolution, genetics, and
134	biological control is contingent on reliable taxonomic identifications. Molecular
135	identification is commonly used in groups of organisms with cryptic species that are
136	difficult to identify morphologically (Fagan-Jeffries et al., 2018; Miller et al., 2016;
137	Novotny & Miller, 2014), for the molecular detection of species interactions (Baker et
138	al., 2016; Condon et al., 2014; Gariepy et al., 2019; Hrček & Godfray, 2015; Hrcek et al.,
139	2011), and for identification of species from environmental DNA samples (Shokralla et
140	al., 2012). The accuracy of molecular identification, however, depends on the accuracy
141	of identifications associated with sequences databased in existing online depositories
142	(Fontes et al., 2021). The foundations of that accuracy are the voucher specimens which
143	were sequenced and the collaboration of a taxonomic authority in the deposition of the
144	sequence data.
145	GenBank serves as the most widely used sequence depository; however,
146	deposition of sequences in GenBank, which is required by most peer-reviewed journals,
147	does not require deposition of associated vouchers. The Barcode of Life Data System
148	database (BOLD) (Ratnasingham & Hebert, 2007) explicitly aims to provide a framework
149	for identifying specimens using single-locus DNA sequences (Hebert et al., 2003; Smith
150	et al., 2005), and while these are associated with vouchers and metadata, the curation
151	of these data is not consistently maintained by those submitting material. A recent
152	study by Pentinsaari et al. (2020) showed misidentification in both databases caused by
153	missteps in the protocols from query sequences to final determination.

154	Although the BOLD database function "BOLD-IDS" allows considerable database
155	curation (e.g. flagging of misidentified/contaminated records), it also automatically
156	includes sequences from GenBank, and may perpetuate the shortcomings previously
157	mentioned since these cannot be curated from within BOLD. As such, the quality of
158	sequences and the reliability of identifications obtained from BOLD-IDS can vary, and
159	depends on the curation by taxonomists focusing on individual taxa (Meiklejohn et al.,
160	2019). BOLD-IDS works well for taxa where qualified taxonomists have been involved
161	with assuring data quality; some insect examples include beetles (Hendrich et al., 2015),
162	butterflies (Escalante et al., 2010), geometrid moths (Hausmann et al., 2011, 2016;
163	Miller et al., 2016), true bugs (Raupach et al., 2014), and microgastrine wasps (Smith et
164	al., 2013).
165	Unfortunately, this is not the case of parasitoids (Insecta: Hymenoptera) of
166	Drosophila flies (Insecta: Drosophilidae). There are vast numbers of Drosophila
166 167	<i>Drosophila</i> flies (Insecta: Drosophilidae). There are vast numbers of <i>Drosophila</i> parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and
167	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and
167 168	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and their hosts are important model organisms in biology. As of this writing, there are
167 168 169	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and their hosts are important model organisms in biology. As of this writing, there are 88,666 nucleotide sequences deposited in GenBank for <i>Leptopilina heterotoma</i>
167 168 169 170	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and their hosts are important model organisms in biology. As of this writing, there are 88,666 nucleotide sequences deposited in GenBank for <i>Leptopilina heterotoma</i> (Thomson) and <i>L. boulardi</i> (Barbotin, Carton & Kelner-Pillault) (Hymenoptera: Figitidae)
167 168 169 170 171	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and their hosts are important model organisms in biology. As of this writing, there are 88,666 nucleotide sequences deposited in GenBank for <i>Leptopilina heterotoma</i> (Thomson) and <i>L. boulardi</i> (Barbotin, Carton & Kelner-Pillault) (Hymenoptera: Figitidae) alone. However, less than 1 % of the identifications associated with these sequences
167 168 169 170 171 172	parasitoid sequences readily available in GenBank and BOLD, as these parasitoids and their hosts are important model organisms in biology. As of this writing, there are 88,666 nucleotide sequences deposited in GenBank for <i>Leptopilina heterotoma</i> (Thomson) and <i>L. boulardi</i> (Barbotin, Carton & Kelner-Pillault) (Hymenoptera: Figitidae) alone. However, less than 1 % of the identifications associated with these sequences have been confirmed by taxonomists or are associated with voucher specimens

176	The phylogenetic and subgeneric structure within Drosophila and related genera is
177	not yet fully resolved (O'Grady & DeSalle, 2018). Various subgenera, including
178	Scaptomyza, Zaprionus, Lordiphosa and Samoaia, have been treated as both genera and
179	subgenera, and researchers have yet to achieve consensus on these various hypotheses
180	(O'Grady & DeSalle, 2018; Remsen & O'Grady, 2002; Yassin, 2013; Yassin & David,
181	2010). Species in Drosophila subgenera and genera closely related to Drosophila
182	commonly share niche space and natural histories and, as a result, are often attacked by
183	overlapping or identical groups of parasitoids. For instance, the invasive African fig fly,
184	Zaprionus indianus Gupta is attacked by Pachycrepoideus vindemiae (Rondani, 1875)
185	and Leptopilina boulardi (Pfeiffer et al., 2019; Santos et al., 2016), all of which have been
186	recorded from Drosophila. Therefore, we also include these groups within the contents
187	of DROP.
187 188	of DROP. Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera
188	Parasitoids of Drosophila belong to four superfamilies of Hymenoptera
188 189	Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera (Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of
188 189 190	Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera (Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of <i>Drosophila</i> flies independently. All the parasitoids known to attack <i>Drosophila</i> are
188 189 190 191	Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera (Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of <i>Drosophila</i> flies independently. All the parasitoids known to attack <i>Drosophila</i> are solitary and attack either the larval or pupal stage; in both cases, they emerge from the
188 189 190 191 192	Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera (Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of <i>Drosophila</i> flies independently. All the parasitoids known to attack <i>Drosophila</i> are solitary and attack either the larval or pupal stage; in both cases, they emerge from the fly's puparium (Carton et al., 1986; Prévost, 2009). The known <i>Drosophila</i> larval
188 189 190 191 192 193	Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera (Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of <i>Drosophila</i> flies independently. All the parasitoids known to attack <i>Drosophila</i> are solitary and attack either the larval or pupal stage; in both cases, they emerge from the fly's puparium (Carton et al., 1986; Prévost, 2009). The known <i>Drosophila</i> larval parasitoids belong to two families (Table 1), Braconidae (including the genera <i>Asobara</i> ,
188 189 190 191 192 193 194	Parasitoids of <i>Drosophila</i> belong to four superfamilies of Hymenoptera (Chalcidoidea, Cynipoidea, Ichneumonoidea, Diaprioidea) which evolved parasitism of <i>Drosophila</i> flies independently. All the parasitoids known to attack <i>Drosophila</i> are solitary and attack either the larval or pupal stage; in both cases, they emerge from the fly's puparium (Carton et al., 1986; Prévost, 2009). The known <i>Drosophila</i> larval parasitoids belong to two families (Table 1), Braconidae (including the genera <i>Asobara,</i> <i>Aphaereta, Phaenocarpa, Tanycarpa, Aspilota, Opius</i>) and Figitidae (<i>Leptopilina,</i>

198 Pteromalidae (Pachycrepoideus, Spalangia, Trichomalopsis, Toxomorpha) and Encytidae 199 (*Tachinaephaqus*); they are all idiobionts that terminate host development immediately. 200 Host-specificity across the *Drosophila* parasitoids is poorly characterized—while some 201 can parasitize other families of Diptera (e.g., Aphaereta aotea) (Hughes & Woolcock, 202 1976), most are thought to be limited to Drosophila hosts. 203 There are around 4000 described species of Drosophilidae, and Drosophila contains 204 more than a third of the family's described species (O'Grady & DeSalle, 2018). By 205 contrast, although parasitic wasps are generally a species-rich group (Dolphin & Quicke, 206 2001; Quicke, 2015), the most recent catalogue of parasitoid species that attack 207 Drosophila lists only 50 described species (Carton et al., 1986). This disparity suggests 208 that the diversity of parasitic wasps attacking *Drosophila* is severely underestimated, an 209 assertion supported by the results presented here. This is largely a consequence of the 210 challenging nature of parasitoid taxonomy, in which morphological identification is intractable for many species, and the fact that taxonomic specialists are greatly 211 212 outnumbered by the species they study. 213 Currently, only a few biological study systems have been characterized in 214 sufficient breadth and depth to allow researchers to connect various levels of biological 215 organization, from molecular mechanisms to food webs of interacting species. 216 Parasitoids of *Drosophila* represent one such system (Prévost, 2009). Moreover, the 217 practical feasibility of rearing parasitoids of *Drosophila* under laboratory conditions has 218 led to a number of fundamental discoveries in ecology (Carton et al., 1991; Terry et al., 219 2021), evolution (Kraaijeveld & Godfray, 1997), immunology (Kim-Jo et al., 2019; Nappi

220	& Carton, 2001; Schlenke et al., 2007), physiology (Melk & Govind, 1999), symbiosis (Xie
221	et al., 2011, 2015), behavioral science (Lefèvre et al., 2012) and other fields. In contrast
222	to this large body of laboratory studies, basic natural history of Drosophila parasitoids,
223	especially their species richness is little known (Kimura & Mitsui, 2020; Lue et al., 2018).
224	Addressing this knowledge gap is especially pressing given current efforts to use
225	parasitoids in biological control efforts, such as those of the invasive pest spotted wing
226	Drosophila, Drosophila suzukii (Abram et al., 2020; Daane et al., 2016; Giorgini et al.,
227	2019; Wang et al., 2020 a&b).
228	Properly executed molecular identification has the potential to be much more
229	efficient for the majority of researchers, and many laboratory strains are commonly
230	identified using DNA sequences alone. While it is practical for researchers to assign
231	species names based on a match to sequence records in genetic databases, this practice
232	often causes a cascade of inaccuracies. To illustrate the extent of the problem, we
233	present the example of Ganaspis, a genus of parasitoids commonly used in laboratories
234	that includes both superficially indistinguishable species with highly divergent
235	sequences that are often treated as conspecific, as well as specimens with identical
236	sequences identified under different names (Figure 1).
237	Aims
238	To address these issues, we introduce a newly curated molecular reference database
239	for <u>Dro</u> sophila <u>p</u> arasitoids —DROP— in which sequences are either linked to voucher
240	specimens identified by taxonomists or have a traceable provenance (Figure 2). The first
241	aim of DROP is to provide a reliable DNA sequence library for molecular identification of

242	Drosophila parasitoids that enables cross-referencing of original taxonomic concepts
243	with those of subsequent studies. We pay special attention to live parasitoid strains
244	which are available for future experiments. The second aim is to standardize and
245	expedite the linkage between specimens and available sequence data; we place a
246	premium on museum vouchers as they allow for repeatable scientific research. In DROP,
247	this goal is facilitated through a consolidated digital infrastructure of data associated
248	with laboratory strains, offering the opportunity for researchers to re-examine past
249	experimental results in a permanent context. The third aim is to provide an up-to-date
250	catalogue of the diversity of <i>Drosophila</i> parasitoids as a foundation for advancing the
251	understanding of their taxonomy. Finally, the fourth aim of DROP is for our collaborative
252	effort to serve as an inspiration to communities of researchers studying other groups of
253	organisms who are experiencing difficulties with the reliability of molecular reference
254	databases.
255	
256	Materials and Methods

257 Data sources

To assemble the DROP database, we targeted 20 wasp genera that potentially parasitize frugivorous *Drosophila* species. We compiled DNA sequence and voucher data from four sources: 1) museum collections, 2) publications, for which we selected the reference with taxonomist or parasitoid biologists as coauthors to ensure reliable species identity, 3) molecular biodiversity inventories publicly available in BOLD and

263	GenBank, for which we managed to secure inspection of the vouchers by taxonomists,
264	and 4) a sequencing and taxonomic inventory of laboratory strains we conducted.
265	We first gathered species information into a catalogue of Drosophila parasitoid
266	species (Table 1) from 216 references (see DROP database reference table) and 36
267	institutes (Table S2). To ensure reliable names for nominal species (sequences identified
268	by a species name) in our database, we confirmed their taxonomic validity using the
269	Ichneumonoidea 2015 digital catalogue (Yu et al., 2016) and Hymenoptera Online (HOL;
270	http://hol.osu.edu/), both of which are curated by taxonomic experts. To obtain reliable
271	molecular identification data, we harvested 8,298 DNA sequences from GenBank and
272	BOLD (all compiled in BOLD as DS-DROPAR dataset <u>dx.doi.org/10.5883/DS-DROPAR</u>). As
273	of writing, these sequences represented 445 Barcode Index Numbers (BINs – a form of
274	dynamic provisionary taxa in BOLD, more detail in Ratnasingham & Hebert 2013), and
275	211 named taxa.
276	The majority of the harvested sequences were Braconidae (6690), Diapriidae
277	(967), Figitidae (622), and Pteromalidae (19). Because of the concerns with generic
278	databases (noted above and in Figure 1 and Table S1), we assembled a list of sequences
279	with valid species names that could either be traced back to vouchers examined by
280	taxonomists or were referred to directly in publications authored by a recognized expert
281	in the relevant taxon group. We then cross-checked species names with their
282	corresponding BINs in BOLD and flagged potential conflicts between species names and
283	BINs (Table S1).

284	A core goal of DROP besides that of a tool for biodiversity research is to function as a
285	platform that accommodates Drosophila parasitoids kept in laboratory strains (for
286	experimental work) or cultures in quarantine facilities (for biological control
287	applications). So far, there has been a lack of a coherent and reliable means of verifying
288	identification of species kept in laboratory settings, which can be a serious problem.
289	Since lab cultures are routinely contaminated by neighboring cultures (e.g., through
290	escapees), one species may be displaced by another even under a vigilant eye.
291	For lab and quarantine lines in DROP, we deposited DNA extractions and vouchers in
292	the National Insect Collection, National Museum of Natural History, Smithsonian
293	Institution (USNM; Washington, DC, USA). During their initial assembly of DROP,
294	laboratory OTUs (operational taxonomic unit) were designated by their strain name;
295	most laboratory strains can be associated with provisional species, but some cannot yet
296	be assigned. Three females and three males of each strain were dry-mounted and
297	individually assigned a USNMENT 'QR code' specimen label as representative vouchers.
298	For each molecular voucher, three legs from a female wasp were removed for DNA
299	extraction and sequencing (Supplementary Methods for details), and the rest of the
300	body was assigned a USNMENT specimen label and preserved for morphological
301	identification. Both DNA extraction and vouchers were entered into the database and
302	uploaded to BOLD (DROP project: DS-LABS <u>dx.doi.org/10.5883/DS-LABS</u>) with an
303	associated GenBank ID.
304	Where possible, we identified OTU strains using a combination of morphological and
305	sequence data, and characterized provisional species or species clusters using neighbor-

306	joining trees (Figure S1) based on the COI gene sequences (Supplemental material). For
307	establishing BIN limits in the context of DROP, we have adopted an initial percent cutoff
308	at 2%. We acknowledge that 2% genetic diverge cutoffs (or BINs) are unlikely to work
309	well across range of widely distributed species (Lin et al., 2015). But as Ratnasingham &
310	Hebert (2013) pointed out, 2% is a good starting point for many taxa, also it may need to
311	be adjusted as more samples are acquired and compared. Note that we use the term
312	"OTU" as a general and neutral designation encompassing described species, provisional
313	species, undescribed species, and cryptic species.

314

315 Drosophila parasitoid database—DROP

316 To compile the above information, we built a simple Structured Query Language 317 (SQL) database in sqlite3 format using SQLiteStudio (step by step user instruction in 318 supplemental material). Sqlite3 is a cross-platform format which can be also be opened 319 using a number of other programs. There are eight linked tables in the database — 320 species, strain, voucher, sequence, genome, transcriptome, proteome and reference — 321 along with additional tables for linking these to reference table (Figure S2). The 322 database incorporates all sample fields used by BOLD for compatibility and includes a 323 number of new fields to accommodate a catalogue of Drosophila parasitoid species, 324 laboratory strain information, and links from the DROP database to BOLD and GenBank 325 records. 326 DROP is available on Zenodo (http://doi.org/10.5281/zenodo.4519656) for

327 permanent deposition and version control. In addition to the main database, the

328	Zenodo repository includes additional files to facilitate easy use of the database. These
329	files include: 1) the reference database in comma-separated text (.csv) and FASTA
330	format ready to be used for molecular identification; 2) a species catalogue with
331	taxonomic information; and 3) a list of laboratory strains with confirmed molecular
332	vouchers. DROP will be continued to be curated and maintained by C-HL at the Zenodo
333	repository and sequences generated in the future will also be deposited in BOLD (DROP
334	project). If the curator changes, this will be announced in the README.md file in Zenodo
335	repository. As the database relies on vouchers, we will aim for it to be continued to be
336	maintained by taxonomists with direct access to museums.
337	
338	Species, provisional species, and OTU designations
339	In addition to the inherent value of a formal taxonomic name, a reliable provisional
339 340	In addition to the inherent value of a formal taxonomic name, a reliable provisional taxon label can also be used for exchanging scientific information and conveying
340	taxon label can also be used for exchanging scientific information and conveying
340 341	taxon label can also be used for exchanging scientific information and conveying experimental results among researchers (Schindel & Miller, 2010). Based on the amount
340341342	taxon label can also be used for exchanging scientific information and conveying experimental results among researchers (Schindel & Miller, 2010). Based on the amount of sequence divergence between described species, we observed what appears to be a
340341342343	taxon label can also be used for exchanging scientific information and conveying experimental results among researchers (Schindel & Miller, 2010). Based on the amount of sequence divergence between described species, we observed what appears to be a significant number of provisional OTUs in the initial dataset we compiled. Furthermore,
 340 341 342 343 344 	taxon label can also be used for exchanging scientific information and conveying experimental results among researchers (Schindel & Miller, 2010). Based on the amount of sequence divergence between described species, we observed what appears to be a significant number of provisional OTUs in the initial dataset we compiled. Furthermore, among the data linked to a valid species name, some of these provisional OTUs are
 340 341 342 343 344 345 	taxon label can also be used for exchanging scientific information and conveying experimental results among researchers (Schindel & Miller, 2010). Based on the amount of sequence divergence between described species, we observed what appears to be a significant number of provisional OTUs in the initial dataset we compiled. Furthermore, among the data linked to a valid species name, some of these provisional OTUs are actively being used in research and have sequences available to the public. We
 340 341 342 343 344 345 346 	taxon label can also be used for exchanging scientific information and conveying experimental results among researchers (Schindel & Miller, 2010). Based on the amount of sequence divergence between described species, we observed what appears to be a significant number of provisional OTUs in the initial dataset we compiled. Furthermore, among the data linked to a valid species name, some of these provisional OTUs are actively being used in research and have sequences available to the public. We therefore provide a list of provisional species (potential new species) with their

350	possible, these OTUs are linked to a voucher USNM specimen label number. If the genus
351	of the OTU is known, the "Drop_Leptopilina_sp.1" format is followed. These
352	designations can facilitate species identification as well as discovery and description of
353	new species without compromising the existing taxonomy of the described OTUs in
354	question. As more complete species descriptions become available, this provisional
355	species framework can be updated while keeping the link to previous provisional species
356	name through deposited vouchers.
357	

358 Results

359 Overview of DROP

360 We catalogued 183 OTUs in the DROP database with 114 described species of 361 Drosophila parasitoids and 69 provisional species (Table 1). In total, we documented 154 362 laboratory strains (Table S3), and 853 vouchers from 36 institutions (Table S2). Among 363 the described species, 98 have voucher information, of which 61 are traceable to type 364 specimens, including 45 to holotypes (i.e., specimen used to root a name to the 365 taxonomic author's concept of the species). Leptopiling is represented by the highest 366 number of species with 45 OTUs, followed by Asobara with 26 OTUs. Within the 154 367 catalogued lab strains, 86 were actively being used in ongoing research (i.e., a live strain 368 being cultivated). These strains represent 39 OTUs: 11 described species and 28 369 provisional species (Table S3, Figure S1).

370

371 Molecular Vouchers

372	So far, DROP includes 545 DNA sequences and links to 16 genomes (Table S4), 14
373	transcriptomes (Table S5), and 6 proteomes (Table S6). From the total of 8298 DNA
374	sequences (BOLD dataset: DS-DROPAR) collected from public databases, only 322
375	sequences (less than 4% of available sequences) satisfied the reliability criteria we
376	imposed for molecular vouchers to be included in DROP (see Materials and Methods).
377	The DS-DROPAR dataset <u>dx.doi.org/10.5883/DS-DROPAR</u> initially referred to 211 taxon
378	names, but only 52 names were valid, linked to vouchers, or linked to a publication with
379	evidence that the specimens had been identified by taxonomists. The remaining 223 of
380	545 DROP DNA sequences were generated by DROP project (datasets: DS-LABS
381	dx.doi.org/10.5883/DS-LABS and DS-AUSPTOID dx.doi.org/10.5883/DS-AUSPTOID) and
382	came from 121 OTUs (101 lab strains and 12 provisional species).
383	The DROP database is largely made up of standard barcode COI sequences (349
384	sequences), which includes 77 OTUs: 43 described species and 33 provisional species.
385	We aimed to supplement COI with secondary markers (28SD2, 18S, ITS2) when possible,
386	resulting in an additional 120 sequences from 26 OTUs: 15 described species and 11
387	provisional species. There are currently 19 OTUs that have sequences from more than
388	one genetic marker.
389	
390	Species Delimitation in Laboratory Strains

We used 298 COI sequences to resolve the identification of each laboratory
strain, and where possible, indicated potential species clusters (Fig. S1 and Table S3).
Using a fixed 2% divergence cutoff, a total of 31 lab strain OTUs were assignable to a

394	valid species name, and the remaining 70 strain OTUs were assigned to a provisional
395	species. The taxonomic status of several of these provisional species is also being
396	investigated using an integrative taxonomic approach involving morphological
397	identification, genomic data, or other genetic data.
398	
399	Discussion
400	In this paper, we introduce and describe a free and open-access database for the
401	reliable molecular identification of <i>Drosophila</i> parasitoids. The guiding principle of DROP
402	is data credibility, based on the prerequisite that genetic data are explicitly associated
403	with voucher specimens and taxonomic concepts of the original authors (Troudet et al.,
404	2018). When incorporating information from public genetic databases, we included only
405	sequences that have passed our filtering protocol. This protocol ensures each entry is
406	associated with a valid scientific name, provisional name, or consistently applied OTU
407	designation that can be used to integrate genetic and organismal data from
408	independent studies.
409	The following discussion expands on the utility of DROP and how we hope it will
410	benefit molecular species identification, connect research from various disciplines,
411	support biological control applications, and serve as a long-term molecular voucher
412	repository and clearinghouse for vetted data. We also provide specific guidance for
413	users how best to refer to DROP in their publications to allow cross-linking between
414	studies.

415

416 Molecular (mis-)identification

417	We observe that 17% of the described Drosophila parasitoid OTUs in BOLD and
418	GenBank (dataset: DS-DROPAR) are associated with more than one BIN; these are
419	examples of BIN-ID conflict. Roughly half of these OTUs are used as lab strains. This
420	latter observation is disturbing, because it demonstrates that the criteria used to
421	differentiate and reference species in active research programs are clouded. For
422	example, BIN-ID conflicts were observed in the Drosophila parasitoids Ganaspis
423	brasiliensis (Ihering) and Asobara japonica Belokobylskij (Table S1), both of which are in
424	active use in numerous research programs (e.g. Moreau et al., 2009; Nomano et al.,
425	2017; Reumer et al., 2012; Wang et al., 2020a & 2021) as well as in biological control
426	efforts against the invasive <i>D. suzukii</i> (e.g. Abram et al., 2020; Daane et al., 2016;
427	Giorgini et al., 2019). All the BINs from <i>G. brasiliensis</i> carry the name <i>G. xanthopoda</i>
428	(Figure 1). In such instances, assigning an identification by matching specimens to
429	barcode records in the genetic database is problematic, as two names are applied to the
430	same BIN. If sequences comprising the BIN are not linked to a voucher that can be
431	examined, teasing apart the two names and how they are applied is impossible.
432	Applying explicit, consistent criteria for species determination ensures that
433	experimental results can be reliably repeated, and that any potentially novel
434	observations will not be explained away as artifacts of identification. DROP addresses
435	these concerns by linking reliable reference sequences and vouchers for G. brasiliensis
436	(Figure 1) between different studies: one with reference to the morphological

437 description (Buffington & Forshage, 2016) and the other with reference to the genome 438 (using voucher specimens from the morphological study; Blaimer et al., 2020). 439 We were not able to resolve all conflicts between BIN and species identity, for one 440 or more of the following three reasons: First, many records lack reliably identified 441 vouchers and have often been themselves used for molecular identification, 442 proliferating errors. Second, in some cases, it is not possible to verify whether the 443 genetic differences among BINs represent different species or simply intraspecific 444 genetic variation (Bergsten et al., 2012), because BINs themselves are not a species 445 concept. The only solution to this problem is to derive original sequence data from type 446 specimens (which is often either impractical or impossible for a number of technical 447 reasons), or from specimens whose conspecificity with the types has been corroborated. 448 Since species boundaries are always subject to testing, additional specimens from 449 multiple collecting events (ideally representing different seasons and geographic 450 regions) may help provide the additional data to circumscribe a given species' limits. The 451 third difficulty in resolving BIN-ID conflict derives from the data themselves: Although 452 the mitochondrial COI gene is the locus most frequently chosen for identification of 453 insects and other animals, its effectiveness varies among insect groups (Brower & 454 DeSalle, 2002; Gompert et al., 2008; Lin & Danforth, 2004). In part, this derives from 455 gene-tree/species-tree conflict as a function of mitochondrial DNA introgression 456 (Gompert et al., 2008; Klopfstein et al., 2016), parthenogenesis (Reumer et al., 2012), 457 and/or Wolbachia infection (Ferrer-Suay et al., 2018; Wachi et al., 2015; Xiao et al., 458 2012), any of which may lead to complications in species delimitation using

459	mitochondrial loci. Ideally, studies should apply multiple loci, genomes, and comparative
460	taxonomic data to clarify species boundaries. As Drosophila parasitoids are often
461	maintained in laboratory cultures, it is also possible to use mating experiments to
462	explore species boundaries under the paradigm of the biological species concept
463	(Seehausen et al., 2020).
464	
465	DROP as a taxonomic tool
466	DROP offers an empirical platform for species discovery and a useful tool for
467	taxonomic research. The fact that the number of BINs reported here exceeds the
468	number of described species (Table S1, Figure S3) highlights the need for taxonomic
469	work. But such work cannot proceed on the basis of BINs or barcodes, but requires
470	integrative taxonomic approach employing a combination of molecular and
471	morphological data. Describing new species on the sole basis of a barcode or BIN,
472	without the benefit of independent character data, should, in general, be avoided
473	(Meier et al., 2021). It risks creating nomenclatural synonymy if it is later determined
474	that a sequence can be attributed to a specimen that bears a valid, available name.
475	Moreover, BINs are based on distance analyses which, by definition, are incompatible
476	with diagnoses per se (Ferguson, 2002; Prendini et al., 2002; Goldstein & DeSalle, 2011).
477	Therefore, in taxonomic treatments, it is critical to clarify the range of applicability of a
478	given BIN and its overlap with a taxonomic name (see example in Figure 1). DROP allows
479	cross-linking between studies and therefore provides researchers with valuable tools for

- 480 taxonomic revisions, including the means of discovery, corroboration, and description of
- 481 new species.
- 482

483 How to use DROP to ensure cross-linking between studies and reliable molecular

- 484 *identification?*
- 485 Public genetic databases have adopted a longstanding convention in treating
- 486 undetermined OTUs and sequences, referring to provisional species with numbers, as
- 487 for example "sp. 1", and these are rarely linked to vouchers. For OTUs designated as
- 488 provisional species, DROP enables cross-indexing of specimens, sequences and
- 489 references between any studies (ecological, taxonomic, evolutionary, genetic, etc). The
- 490 best way to ensure cross-linking is depositing a voucher in DROP, together with a
- 491 sequence or genome from the same individual (or individual from the same strain or
- 492 series). For example, one can write:
- 493

494 Provisional species "drop_Gan1_sp.1" refers to voucher USNMENT01557320
495 deposited in the USNM, Washington DC, COI sequence (DROP sequence_id: 2, BOLD
496 Process ID: DROP143-21), 28SD1 sequence (DROP sequence_id: 289), and 28SD2

- 497 sequence (DROP sequence_id: 303).
- 498

Similarly, laboratory strains can be reported in the same way, just adding the DROP lab strain_id. It is important to periodically recheck identification of laboratory strains as cultures are easily cross-contaminated, and deposit vouchers of laboratory

- 502 strains associated with experiments to DROP. In the future, when e.g.
- ⁵⁰³ "drop_Gan1_sp.1" is described as a new species with a formal specific epithet, DROP
- 504 curator will update the species status and holotype information while keeping this
- 505 provisional species name as an informal "synonym."
- 506 A weaker and thus much less preferred way of cross-linking is to state in the
- 507 study that the identification of organisms was performed based on molecular
- 508 identification match of a sequence to DROP sequences. This is the only available option
- 509 for environmental DNA studies. For example, one can write:
- 510

511 Provisional species "drop_Gan1_sp.1" was identified based on 99.9% blast match 512 of COI to DROP sequence id: 2 (BOLD Process ID: DROP143-21).

513

DROP deposition in Zenodo allows referencing of DROP either through general doi (the doi we use throughout this paper), which takes the user always to the latest database version, or through a doi specific to DROP version. When referencing DROP please primarily cite this paper, but for reproducibility it is also good practice to include doi of the specific DROP version used.

There are two basic ways of molecular identification which should ideally be used in combination: sequence matching (blast), and tree-building methods which investigate membership to a cluster. Further, there are a number of decisions to be made with each method, concerning locus (or loci) and thresholds. DROP leaves these decisions up to the users, only provides raw sequences or links to them. Practically, the

524	choice of loci is currently most	ly limited to COI, but in the future it is likely that
-----	----------------------------------	--

- 525 molecular identifications will be based on multiple loci or whole genomes. Over time we
- 526 will also get a better idea about what thresholds are more appropriate than a fixed 2%
- 527 cut off. For rarer parasitoid genera which attack also other hosts besides Drosophila
- 528 (e.g. *Opius*, or *Spalangia* wasps) we suggest caution in the identification using only
- 529 DROP sequences as DROP does not include all sequences from these genera, but just
- 530 from species which are already known to attack *Drosophila*.
- 531

532 From molecular mechanisms to ecosystem structure

533 The use of molecular tools in insect biodiversity studies has gradually expanded from

534 barcoding single individuals to metabarcoding large environmental samples

535 representing entire food webs (Jeffs et al., 2020; Littlefair et al., 2016). Drosophila and

536 their parasitoids are among the few systems that currently allow us to explore

537 thoroughly the mechanisms of species interactions at scales ranging from the molecular

538 to the ecological. Here, we highlight two examples where information compiled in DROP

539 enables the study of the Drosophila-parasitoid system across multiple levels of biological

540 organization:

541 DROP includes a DNA reference library of Australian *Drosophila* parasitoids (dataset:

542 DS-AUSPTOID <u>dx.doi.org/10.5883/DS-AUSPTOID</u>) that connects laboratory experiments

543 and field research. Molecular vouchers of both hosts and parasitoids were collected

544 along altitudinal gradients in the rainforest of northern Queensland, Australia (Jeffs et

al., 2021). With this DNA reference library, researchers can detect interactions between

546	Drosophila and their parasitoids using PCR-based approaches and parasitized pupae
547	(Hrcek & Godfray, 2015; Jeffs et al., 2020). Surveying host-parasitoid interactions in this
548	way will improve our understanding of how environmental change alters the structure
549	of host-parasitoid networks (Morris et al., 2014; Staniczenko et al., 2017; Tylianakis et
550	al., 2007) by accelerating data collection in the field. In addition, JH established lab
551	cultures of both hosts and their parasitoids from the same Australian sampling sites with
552	the aim of conducting laboratory experiments (e.g. Thierry et al., 2021). Molecular
553	vouchers of the lab strains were then submitted to DROP as a reference database
554	(datasets: DS-LABS <u>dx.doi.org/10.5883/DS-LABS</u>) to ensure that criteria for species
555	determination were applied consistently—and will continue to be applied consistently—
556	between the natural community studies and the laboratory experiments.
557	The presence of a foundational DNA reference library and species catalogue in
557 558	The presence of a foundational DNA reference library and species catalogue in DROP will enable the process of exploring parasitoid biodiversity to become more
558	DROP will enable the process of exploring parasitoid biodiversity to become more
558 559	DROP will enable the process of exploring parasitoid biodiversity to become more efficient. For example, DROP includes molecular vouchers from <i>Drosophila</i> parasitoids
558 559 560	DROP will enable the process of exploring parasitoid biodiversity to become more efficient. For example, DROP includes molecular vouchers from <i>Drosophila</i> parasitoids that were collected across seasons and along latitudinal gradients in the eastern United
558 559 560 561	DROP will enable the process of exploring parasitoid biodiversity to become more efficient. For example, DROP includes molecular vouchers from <i>Drosophila</i> parasitoids that were collected across seasons and along latitudinal gradients in the eastern United States (Lue et al., 2016, 2018). These data proved to be extremely useful for identifying
558 559 560 561 562	DROP will enable the process of exploring parasitoid biodiversity to become more efficient. For example, DROP includes molecular vouchers from <i>Drosophila</i> parasitoids that were collected across seasons and along latitudinal gradients in the eastern United States (Lue et al., 2016, 2018). These data proved to be extremely useful for identifying species in a more recent exploration of native parasitoid biodiversity across North
558 559 560 561 562 563	DROP will enable the process of exploring parasitoid biodiversity to become more efficient. For example, DROP includes molecular vouchers from <i>Drosophila</i> parasitoids that were collected across seasons and along latitudinal gradients in the eastern United States (Lue et al., 2016, 2018). These data proved to be extremely useful for identifying species in a more recent exploration of native parasitoid biodiversity across North America (e.g., Abram et al., 2020). There are additional uses for DROP: curated
558 559 560 561 562 563 564	DROP will enable the process of exploring parasitoid biodiversity to become more efficient. For example, DROP includes molecular vouchers from <i>Drosophila</i> parasitoids that were collected across seasons and along latitudinal gradients in the eastern United States (Lue et al., 2016, 2018). These data proved to be extremely useful for identifying species in a more recent exploration of native parasitoid biodiversity across North America (e.g., Abram et al., 2020). There are additional uses for DROP: curated specimen collections may be used to document species distributions, phenology,

Taxonomic accuracy for biocontrol studies

570	Unfortunately, the history of biological control includes many examples of
571	misidentifications that have resulted in failures to employ or establish the expected
572	control agent, thus hindering eventual success (Buffington et al., 2018; Rosen, 1986;
573	Huffaker et al. 1962). In the context of biological control research on Drosophila pest
574	species, a simple, reliable, and rapid identification tool for their natural enemies is
575	essential (Wang et al. 2020b). By anchoring the criteria for determining identities of
576	organisms being considered for biological control programs, DROP annotation enables
577	the direct examination of centers of origin for parasitoid species, their co-occurrence
578	with natural enemies, and the optimal timing for potential introductions of such
579	enemies (Abram et al., 2020; Daane et al., 2016; Girod et al., 2018a and b; Kimura, 2015;
580	Mitsui et al., 2007). Because most sequences from DROP are already vetted for
581	reliability, they can be used to identify biological control agents rapidly, before or after
582	being brought into quarantine facilities for safety and efficacy testing. This will decrease
583	the risk of non-target ecological impacts arising from misidentifications and facilitate
584	regulatory review for releases of effective and specific natural enemies.
585	In addition to species identification, reference sequences from DROP may be used as
586	a starting point to create species-specific primers for the accurate identification of
587	parasitoids, design multiplex PCR assays that rapidly distinguish species in natural or
588	agricultural ecosystems (Ye et al., 2017), and apply high-throughput molecular
589	identification diagnostics (Fagan-Jeffries et al., 2018).

590

591 Long-term molecular voucher preservation

592	During the curation of DROP, we found that holotype specimens were missing from
593	museums for several iconic Drosophila parasitoid species: Asobara tabida (Nees von
594	Esenbeck), Leptopilina clavipes (Hartig), and Leptopilina longipes (Hartig). This is not
595	uncommon and impedes future taxonomic revisions regardless of whether or not
596	molecular data are used. To avoid contributing to this problem, DROP uses museums as
597	depositories for ensuring that sequenced vouchers of both described species and
598	provisional species are permanently stored. In order to stabilize nomenclature, we
599	further advocate the designation of neotypes (a replacement specimen for a missing
600	holotype or type series) that have museum-vouchered DNA barcodes and additional
601	genomic extractions in storage.
602	Natural history museums are designed to maintain vouchers (including types) for
603	long-term preservation, and increasingly they implement institutionalized workflows
604	that link DNA sequences to specimens and specimen metadata (Prendini et al., 2002).
605	We strongly encourage the deposition of voucher specimens from field surveys and
606	experimental studies in museum collections, as has been urged by the Entomology
607	Collections Network (ECN) and required in many PhD programs. No matter how quickly
608	new molecular techniques are developed or refined, there is no substitute for a reliable
609	database of voucher specimens when it comes to ensuring the repeatability of biological
610	research (Funk et al., 2005; Lendemer et al., 2020).

611	Our results show that species richness of the parasitic wasps that attack Drosophila
612	is severely underestimated, and only a fraction of them have been described. In DROP,
613	38% of the OTUs are provisional species, and more than 46% of the named OTUs have
614	synonyms. Remarkably, Leptopilina heterotoma, one of the world's most studied
615	parasitoids, has more than 20 synonyms! As is generally the case, the rate of species
616	description and revision of Drosophila parasitoids lags far behind that with which
617	molecular sequence data are generated. Ensuring a consistent application of OTU
618	recognition is therefore essential. With DROP, researchers may ensure consistency in
619	their application of scientific names, and that those names are valid, making the
620	daunting process of describing Drosophila parasitoids more accurate and efficient. In
621	addition to the collection of physical museum resources, a central role taxonomists play
622	in DROP and its curation is that of fostering better integration of taxonomy with
623	experimental and biodiversity research. Our intention is to perpetuate DROP beyond
624	this introductory publication. We hope that experts in all areas of Drosophila-parasitoid
625	biology and related fields will join us in this effort.
626	

627 Conclusion

Taxonomic confusion presents many obstacles in experimental and biodiversity studies. One way of addressing this impediment is to provide a reliable DNA library with traceable vouchers (Astrin et al., 2013). Compared to BOLD and GenBank, DROP is a small database that provides some advantages over an immense genetic database. For example, it is easier for the research community to have direct communication amongst

633	themselves, when there is a strong focus on a few specific taxa (Weigand et al., 2019). A
634	good database has to maintain good quality of molecular data, but even more
635	challenging is to maintain quality of identification from different sources (Fontes et al.,
636	2021). In a big database, setting up a universal standard that satisfied all the taxa and
637	researchers desires is particularly challenging. The curated nature of DROP will allow us
638	to make strong rules to govern this data and assure users of its fidelity. While GenBank
639	and BOLD each perform some amount of curation, it could be difficult to agree on
640	curators for the whole range of animal and plant species catalogued there. We
641	developed DROP as a resource and platform for gathering and sharing reliable genomic
642	sequence data for Drosophila parasitoids. We hope it will serve as a model for
643	researchers working with organisms which present similar difficulties. While compiling
644	DROP, we found that the high number of provisional versus named OTUs suggests that
645	the diversity of parasitic wasps attacking <i>Drosophila</i> is greatly underestimated. With this
646	in mind, DROP represents the start of an important knowledge base that will strengthen
647	future studies of natural host-parasitoid interactions, population dynamics, biocontrol,
648	and the impact of climate change on biodiversity and ecosystem services.

649

650 Acknowledgements

The idea of DROP project was developed during the 2018 Entomological Society of America conference, during the symposium "*Drosophila* parasitoids: from molecular to ecosystem level". We thank Dr. Elijah Talamas for valuable comments on earlier drafts and Dr. Vid Bakovic for genomic consultation on this project. We also thank Chris

- 655 Jeffs for providing some Australian field samples. We are thankful for funding support
- 656 from the Czech Science Foundation (17-27184Y). Additional fund for sequencing was
- 657 provided by MLB, OTL, and PPAS. Mention of trade names or commercial products in
- this publication is solely for the purpose of providing specific information and does not
- 659 imply recommendation or endorsement by the USDA. USDA is an equal opportunity
- 660 provider and employer.
- 661

662 **References**

- Abram, P. K., Mcpherson, A. E., Kula, R., Hueppelsheuser, T., Perlman, S. J., Curtis, C. I.,
 Fraser, J. L., ... Buffington, M. (2020). New records of *Leptopilina, Ganaspis*, and *Asobara* species associated with *Drosophila suzukii* in North America, including
 detections of L. japonica and G. brasiliensis. *Journal of Hymenoptera Research*, 78,
 1-17, https://doi.org/10.3897/jhr.78.55026
- Astrin, J. J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular
 taxonomy, with proposed definitions for vouchers in a molecular context. *ZooKeys*,
 365(SPEC.ISSUE), 67–70. https://doi.org/10.3897/zookeys.365.5875
- Baker, C. C. M., Bittleston, L. S., Sanders, J. G., & Pierce, N. E. (2016). Dissecting hostassociated communities with DNA barcodes. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1702).
- 674 https://doi.org/10.1098/rstb.2015.0328
- Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke, M.,
 Hendrich, ... Vogler, A. P. (2012). The effect of geographical scale of sampling on
 DNA barcoding. *Systematic Biology*, 61 (5), 851-869.
- 678 https://doi.org/10.1093/sysbio/sys037
- Blaimer, B. B., Gotzek, D., Brady, S. G., & Buffington, M. (2020). Comprehensive
 phylogenomic analyses re-write the evolution of parasitism within cynipoid wasps. *BMC Ecology and Evolution*, 20 (155). https://doi.org/10.1186/s12862-020-01716-2
- Brower, A. V. Z., & DeSalle, R. (2002). Patterns of mitochondrial versus nuclear DNA
 sequence divergence among nymphalid butterflies: The utility of wingless as a
 source of characters for phylogenetic inference. *Insect Molecular Biology*, 7 (1), 7382. https://doi.org/10.1046/j.1365-2583.1998.71052.x
- Buffington, M., &Forshage, M. (2016). Redescription of *Ganaspis brasiliensis* (Ihering,
 1905), new combination, (Hymenoptera: Figitidae) a natural enemy of the Invasive *Drosophila suzukii* (Matsumura, 1931) (Diptera: Drosophilidae). *Proceedings of the Entomological Society of Washington*, 118(1), 1–13. https://doi.org/10.4289/00138797.118.1.1

691 Buffington, M., Talamas, E. J., & Hoelmer, K. A. (2018). Team Trissolcus: Integrating 692 taxonomy and biological control to combat the brown marmorated stink bug. 693 American Entomologist, 64 (4), 224–232 694 Carton, Y., Boulétreau, M., van Alphen, J. J. M., & van Lenteren, J. C. (1986). The 695 Drosophila parasitic wasps. In Ashburner M, Carson HL, Thompson JN (Eds), The 696 genetics and biology of Drosophila, (3),348–394. Carton, Y., Haouas, S., Marrakchi, M., & Hochberg, M. (1991). Two competing parasitoid 697 species coexist in sympatry. Oikos, 60, 222-230. https://doi.org/10.2307/3544869 698 699 Condon, M. A., Scheffer, S. J., Lewis, M. L., Wharton, R., Adams, D.C., & Forbes, A. A. 700 (2014). Lethal interactions between parasites and prey increase niche diversity in a 701 tropical community. Science, 343(6176), pp.1240-1244. 702 Daane, K. M., Wang, X.-G., Biondi, A., Miller, B. E., Miller, J. C., Riedl, H., Shearer, P. W., 703 ... Walton, V. M. (2016). First exploration of parasitoids of Drosophila suzukii in 704 South Korea as potential classical biological agents. Journal of Pest Science 89, 823-705 835, doi:10.1007/s10340-016-0740-0. 706 Dolphin, K., & Quicke, D. L. J. (2001). Estimating the global incompletely described 707 parasitoid wasps. Biological Journal Of The Linnean Society, 73 (3), 279-286, 708 https://doi.org/10.1006 709 Escalante, P., Ibarra-Vazquez, A., & Rosas-Escobar, P. (2010). Tropical montane 710 nymphalids in Mexico: DNA barcodes reveal greater diversity. Mitochondrial DNA, 711 21, 30-37, https://doi.org/10.3109/19401736.2010.535527 712 Ferrer-Suay, M., Staverløkk, A., Selfa, J., Pujade-Villar, J., Naik, S., & Ekrem., T. (2018) 713 Nuclear and mitochondrial markers suggest new species boundaries in Alloxysta 714 (Hymenoptera: Cynipoidea: Figitidae). Arthropod Systematics & Phylogeny, 76(3), 715 463-473, doi:10.5883/DSALLOXYST 716 Fagan-Jeffries, E. P., Cooper, S. J. B., Bertozzi, T., Bradford, T. M., & Austin, A. D. (2018). 717 DNA barcoding of microgastrine parasitoid wasps (Hymenoptera: Braconidae) using 718 high-throughput methods more than doubles the number of species known for 719 Australia. Molecular Ecology Resources, 18(5), 1132–1143. 720 https://doi.org/10.1111/1755-0998.12904 721 Ferguson, J. W. H. (2002). On the use of genetic divergence for identifying species. 722 Biological Journal of the Linnean Society, 75, 509–16. 723 Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C., & Widmayer, H. A. (2018). 724 Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most 725 speciose animal order. BMC Ecology, 18(1), 1–11. https://doi.org/10.1186/s12898-726 018-0176-x 727 Fontes, J. T., Vieire, P. E., Ekrem, T., Soares, P., & Costa, F. O. (2021). BAGS: An 728 automated barcode, audit & grade system for DNA barcode reference libraries. 729 Molecular Ecology Resources, 21(2), 573-583. https://doi.org/10.1111/1755-730 0998.13262 731 Funk, V. A. (2018). Collections-based science in the 21st Century. Journal of Systematics 732 and Evolution, 56(3), 175–193. https://doi.org/10.1111/jse.12315 733 Funk, V. A., Hoch, P. C., Prather, L. A., & Wagner, W. L. (2005). The importance of 734 vouchers. Taxon, 54(1), 127-129. https://doi.org/10.2307/25065309

735 Gariepy, T. D., Bruin, A., Konopka, J., Scott-Dupree, C., Fraser, H., Bon, M. C., & Talamas, 736 E. (2019). A modified DNA barcode approach to define trophic interactions 737 between native and exotic pentatomids and their parasitoids. *Molecular Ecology*, 738 28(2), 456–470. https://doi.org/10.1111/mec.14868 739 Giorgini, M., Wang, X.-G., Wang, Y., Chen, F. S., Hougardy, E., Zhang, H. M., Chen, Z. 740 Q., ... Guerrieri, E. (2019). Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the 741 742 dominant parasitoid. Journal of Pest Science, 92(2), 509–522. 743 https://doi.org/10.1007/s10340-018-01068-3 744 Girod, P., Borowiec, N., Buffington, M., Chen, G., Fang, Y., Kimura, M. T., Peris-Felipo, F. 745 J., ... Kenis, M. (2018). The parasitoid complex of D. suzukii and other fruit feeding 746 Drosophila species in Asia. Scientific Reports, 8(1), e11839. 747 https://doi.org/10.1038/s41598-018-29555-8 748 Girod, P., Lierhmann, O., Urvois, T., Turlings, T. C. J., Kenis. M., & Haye, T. (2018). Host 749 specificity of Asian parasitoids for potential classical biological control of Drosophila 750 suzukii. Journal of Pest Science 91,1241–1250, https://doi. doi:10.1007/s10340-751 018-1003-z 752 Goldstein, P. Z., & DeSalle, R. (2011). Integrating DNA barcode data and taxonomic 753 practice: Determination, discovery, and description. BioEssays, 33(2),135-147, 754 https://doi.org/10.1002/bies.201000036 755 Gompert, Z., Forister, M. L., Fordyce, J. A., & Nice, C. C. (2008). Widespread mito-nuclear 756 discordance with evidence for introgressive hybridization and selective sweeps in 757 Lycaeides. Molecular Ecology, 17(24), 5231-5244, https://doi.org/10.1111/j.1365-758 294X.2008.03988.x 759 Grissell, E. (1999). Hymenopteran biodiversity: some alien notions. American 760 Entomologist, 45,236-244. 761 Hardy, I. C., van Alphen, J. J. M., & Godfray, H. C. J. (1994). Parasitoids: Behavioral and 762 evolutionary ecology. The Journal of Animal Ecology, 63(4), 1009-1010, 763 https://doi.org/10.2307/5282 764 Hausmann, A., Haszprunar, G., & Hebert, P. D. N. (2011). DNA barcoding the geometrid fauna of bavaria (Lepidoptera): Successes, surprises, and questions. PLoS ONE, 6(2), 765 766 1-9. https://doi.org/10.1371/journal.pone.0017134 767 Hausmann, A., Miller, S. E., Holloway, J. D., Dewaard, J. R., Pollock, D., Prosser, S. W. J., 768 & Hebert, P. D. N. (2016). Calibrating the taxonomy of a megadiverse insect family: 769 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae). 770 Genome, 59(9), 671-684. https://doi.org/10.1139/gen-2015-0197 771 Hebert, P. D. N., Ratnasingham, S., & DeWaard, J. R. (2003). Barcoding animal life: 772 Cytochrome c oxidase subunit 1 divergences among closely related species. 773 Proceedings of the Royal Society B: Biological Sciences, 270 (Suppl.), 96-99, 774 https://doi.org/10.1098/rsbl.2003.0025 775 Hendrich, L., Morinière, J., Haszprunar, G., Hebert, P. D. N., Hausmann, A., Köhler, F., & 776 Balke, M. (2015). A comprehensive DNA barcode database for Central European 777 beetles with a focus on Germany: Adding more than 3500 identified species to 778 BOLD. Molecular Ecology Resources, 15(4), 795-818, https://doi.org/10.1111/1755-

779	0998.12354
780	Hrček, J., & Godfray, H. C. J. (2015). What do molecular methods bring to host-parasitoid
781	food webs? Trends in Parasitology, 31(1), 30–35.
782	https://doi.org/10.1016/j.pt.2014.10.008
783	Hrcek, J., Miller, S. E., Quicke, D. L. J., & Smith, M. A. (2011). Molecular detection of
784	trophic links in a complex insect host-parasitoid food web. <i>Molecular Ecology</i>
785	<i>Resources</i> , 11(5), 786–794. https://doi.org/10.1111/j.1755-0998.2011.03016.x
786	Huffaker, C. B., Kennett, C. E., Finney, G. L. (1962). Biological control of olive scale,
787	Pwrlatoria oleae (Cohree), in California by imported Aphytis maculicornis (Masi)
788	(Hymenoptera: Aphelinidae). <i>Hilgardia</i> , 32 (13): 541-636. DOI:
789	10.3733/hilg.v32n13p541
790	Hughes, R. D., Woolcock, L. T. (1976). Aphaereta aotea sp. N. (Hymenoptera:
791	Braconidae), an Alysiine parasite of dung breeding flies. Journal of Australian
792	Entomological Society, 15, 191-196.
793	Jeffs, C. T., Terry, J. C. D., Higgie. M., Jandová, A., Konvičková. H., Brown. J. J., Lue. CH.,
794	Lewis, O. T. (2020). Molecular analyses reveal consistent food web structure with
795	elevation in rainforest <i>Drosophila</i> - parasitoid communities. <i>Ecography</i> , 43, 1-11,
796	https://doi.org/10.1111/ecog.05390
797	Kim-Jo, C., Gatti, J. L., & Poirié, M. (2019). <i>Drosophila</i> cellular immunity against
798	parasitoid wasps: A complex and time-dependent process. In Frontiers in
799	Physiology, https://doi.org/10.3389/fphys.2019.00603
800	Kimura, M. T. (2015). Prevalence of exotic frugivorous <i>Drosophila</i> species, <i>D. simulans</i>
801	and <i>D. immigrans</i> (Diptera: Drosophilidae), and its effects on local parasitoids in
802	Sapporo, northern Japan. <i>Applied Entomology and Zoology</i> , 50(4), 509–515.
803	https://doi.org/10.1007/s13355-015-0361-8
804	Kimura, M. T., & Mitsui, H. (2020). <i>Drosophila</i> parasitoids (Hymenoptera) of Japan. In
805	<i>Entomological Science</i> , 23(4), 359-368, https://doi.org/10.1111/ens.12432
806	Klopfstein, S., Kropf, C., & Baur, H. (2016). Wolbachia endosymbionts distort DNA
807	barcoding in the parasitoid wasp genus Diplazon (Hymenoptera: Ichneumonidae).
808	Zoological Journal of the Linnean Society, 177(3), 541–557.
809	https://doi.org/10.1111/zoj.12380
810	Kraaijeveld, A. R., & Godfray, H. C. J. (1997). Trade-off between parasitoid resistance and
811	larval competitive. <i>Nature</i> , 389, 278-280, https://doi.org/10.1038/38483
812	Lefèvre, T., De Roode, J. C., Kacsoh, B. Z., & Schlenke, T. A. (2012). Defence strategies
813	against a parasitoid wasp in Drosophila: Fight or flight? Biology Letters, 8(2), 230-
814	233, https://doi.org/10.1098/rsbl.2011.0725
815	Lendemer, J., Thiers, B., Monfils, A. K., Zaspel, J., Ellwood, E. R., Bentley, A., LeVan, K.,
816	Aime, M. C. (2020). The extended specimen network: A strategy to enhance US
817	biodiversity collections, promote research and education. <i>BioScience</i> , 70(1), 23-30,
818	https://doi.org/10.1093/biosci/biz140
819	Lin, C. P., & Danforth, B. N. (2004). How do insect nuclear and mitochondrial gene
820	substitution patterns differ? Insights from Bayesian analyses of combined datasets.
821	Molecular Phylogenetics and Evolution, 30(3), 686-702,
822	https://doi.org/10.1016/S1055-7903(03)00241-0

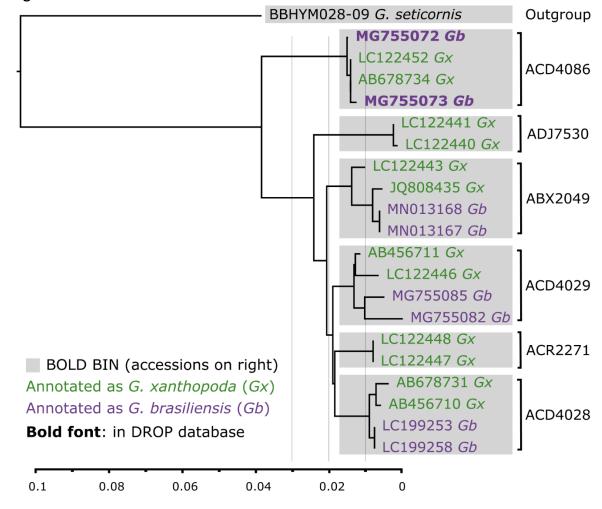
823 Lin, X., Stur, E., & Ekrem, T. (2015). Exploring genetic divergence in a species-rich genus 824 using 2790 DNA barcodes. PLoS ONE, 10(9): e0138993. 825 https://doi.org/10.1371/journal.pone.0138993 826 Littlefair, J. E., Clare, E. L., & Naaum, A. (2016). Barcoding the food chain: From Sanger to 827 high-throughput sequencing1. Genome, 59(11), 946–958. 828 https://doi.org/10.1139/gen-2016-0028 829 Lue, C.-H., Borowy, D., Buffington, M. L., & Leips, J. (2018). Geographic and seasonal 830 variation in species diversity and community composition of frugivorous Drosophila 831 (Diptera: Drosophilidae) and their Leptopilina (Hymenoptera: Figitidae) parasitoids. 832 Environmental Entomology, 47(5): 1096-1106. https://doi.org/10.1093/ee/nvy114 833 Lue, C.-H., Driskell, A. C., Leips, J., & Buffington, M. L. (2016). Review of the genus 834 Leptopilina (Hymenoptera, Cynipoidea, Figitidae, Eucoilinae) from the Eastern 835 United States, including three newly described species. Journal of Hymenoptera 836 Research, 53: 35-76. https://doi.org/10.3897/jhr.53.10369 837 Meiklejohn, K. A., Damaso, N., & Robertson, J. M. (2019). Assessment of BOLD and 838 GenBank – Their accuracy and reliability for the identification of biological 839 materials. PLoS ONE, 14(6): e0217084. 840 https://doi.org/10.1371/journal.pone.0217084 841 Meier, R., Blaimer, B., Buenaventura, E., Hartop, E., von Thomas, R., Srivathsan, A., & 842 Yeo, D. (2021) A re-analysis of the data in Sharkey et al.,'s (2021) minimalist 843 revision reveals that BINs do not deserve names, but BOLD Systems needs a 844 stronger commitment to open science. *bioRxiv*. 845 https://doi.org/10.1101/2021.04.28.441626 846 Melk, J. P., & Govind, S. (1999). Developmental analysis of *Ganaspis xanthopoda*, a larval 847 parasitoid of Drosophila melanogaster. Journal of Experimental Biology, 202, 1885-848 1896 849 Miller, S. E., Hausmann, A., Hallwachs, W., & Janzen, D. H. (2016). Advancing taxonomy 850 and bioinventories with DNA barcodes. Philosophical Transactions of the Royal 851 Society Biological Sciences, 371(1702): 20150339. doi: 10.1098/rstb.2015.0339 852 Mitsui, H., van Achterberg, K., Nordlander, G., & Kimura, M. T. (2007). Geographical 853 distributions and host associations of larval parasitoids of frugivorous Drosophilidae 854 in Japan. Journal of Natural History, 41(25–28), 1731–1738. 855 https://doi.org/10.1080/00222930701504797 856 Moreau, S. J. M., Vinchon, S., Chergui, A., & Prévost, G. (2009). Components of Asobara 857 venoms and their effects on hosts. In Advances in Parasitology, Prévost G (Ed). 70, 858 217-232, https://doi.org/10.1016/S0065-308X(09)70008-9 859 Morris, R. J., Gripenberg, S., Lewis, O. T., & Roslin, T. (2014). Antagonistic interaction 860 networks are structured independently of latitude and host guild. Ecology Letters, 861 17(3), 340-349, https://doi.org/10.1111/ele.12235 862 Nappi, A. J., & Carton, Y. (2001). Immunogenetic aspects of the cellular immune 863 response of Drosophila against parasitoids. Immunogenetics, 52(3-4), 157-164. 864 https://doi.org/10.1007/s002510000272 865 Nomano, F. Y., Kasuya, N., Matsuura, A., Suwito, A., Mitsui, H., Buffington ,M.L., & 866 Kimura, M. T. (2017). Genetic differentiation of Ganaspis brasiliensis

867	(Hymenoptera: Figitidae) from East and Southeast Asia. Applied Entomology and
868	Zoology, 52(3), 429–437. https://doi.org/10.1007/s13355-017-0493-0
869	Novotny, V., & Miller, S. E. (2014). Mapping and understanding the diversity of insects in
870	the tropics: Past achievements and future directions. <i>Austral Entomology</i> , 53(3),
871	259–267. https://doi.org/10.1111/aen.12111
872	O'Grady, P. M., & DeSalle, R. (2018). Phylogeny of the genus <i>Drosophila</i> . <i>Genetics</i> ,
873	209(1), 1–25. https://doi.org/10.1534/genetics.117.300583
874	Pentinsaari, M., Ratnasingham, S., Miller, S. E., & Hebert, P. D. N. (2020). BOLD and
875	GenBank revisited – Do identification errors arise in the lab or in the sequence
876	libraries? <i>PLoS One</i> , 15(4): e0231814. https://doi.org/10.1371/journal.
877	pone.0231814
878	Pfeiffer, D. G., Shrader, M. E., Wahls, J. C. E., Willbrand, B. N., Sandum, I., van der Linde,
879	K., Laub, C. A., Day, E. R. (2019). African Fig Fly (Diptera: Drosophilidae): Biology,
880	expansion of geographic range, and its potential status as a soft fruit pest. Journal
881	of Integrated Pest Management, 10(1), 1–8. https://doi.org/10.1093/jipm/pmz018
882	Prendini, L., Hanner, R., & DeSalle, R. (2002). Obtaining, storing and archiving specimens
883	and tissue samples for use in molecular studies. In Techniques in Molecular
884	Systematics and Evolution. https://doi.org/10.1007/978-3-0348-8125-8 11
885	Prévost, G. (2009). Parasitoids of <i>Drosophila. In Advances in parasitology</i> .
886	https://doi.org/10.1016/S0065-308X(09)70018-1
887	Quicke, D. L. J. (2015). The Braconid and Ichneumonid parasitoid wasps: Biology,
888	systematics, evolution and ecology. Wiley-Blackwell,
889	https://doi.org/10.1002/9781118907085
890	Ratnasingham, S., & Hebert, P. D. N. (2007). BARCODING: bold: The Barcode of Life Data
891	System (http://www.barcodinglife.org). <i>Molecular Ecology Notes</i> , 7(3), 355-364,
892	https://doi.org/10.1111/j.1471-8286.2007.01678.x
893	Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species:
894	the barcode index number (BIN) system. <i>PLoS ONE</i> , 8(7): e66213.
895	https://doi.org/10.1371/journal.pone.0066213
896	Raupach, M. J., Hendrich, L., Kuchler, S. M., Deister, F., Moriniere, J., & Gossner, M. M.
897	(2014). Building-Up of a DNA Barcode Library for true bugs (Insecta: Hemiptera:
898	Heteroptera) of Germany reveals taxonomic uncertainties and surprises. PLoS ONE,
899	9(9), 1–13. https://doi.org/10.1371/journal.pone.0106940
900	Remsen, J., & O'Grady, P. (2002). Phylogeny of Drosophilinae (Diptera: Drosophilidae),
901	with comments on combined analysis and character support. Molecular
902	Phylogenetics and Evolution, 24(2), 249-264, https://doi.org/10.1016/S1055-
903	7903(02)00226-9
904	Reumer, B, M., van Alphen, J. J. M., & Kraaijeveld, K. (2012). Occasional males in
905	parthenogenetic populations of Asobara japonica (Hymenoptera: Braconidae): Low
906	Wolbachia titer or incomplete coadaptation. <i>Heredity</i> , 108(3), 341-346,
907	https://doi.org/10.1038/hdy.2011.82
908	Rosen, D. (1986). The role of taxonomy in effective biological control programs.
909	Agriculture, Ecosystems & Environment, 15(2-3), 121-129.
910	https://doi.org/10.1016/0167-8809(86)90085-X

911 Santos, W. G. N., Fernandes, E. C., Souza, M. M., Guimarães, J. A., & Araujo, E. L. (2016). 912 First record of Eucoilinae (Hymenoptera: Figitidae), parasitoids of African fig fly 913 Zaprionus indianus Gupta (Diptera: Drosophilidae), in the Caatinga biome. 914 Semina: Ciencias Agrarias, 37(5), 3055–3058. https://doi.org/10.5433/1679-915 0359.2016v37n5p3055 916 Schilthuizen, M., Vairappan, C. S., Slade, E. M., Mann, D. J., & Miller, J. A. (2015). 917 Specimens as primary data: Museums and "open science." Trends in Ecology and 918 Evolution, 30(5), 237-238. https://doi.org/10.1016/j.tree.2015.03.002 919 Schlenke, T. A., Morales, J., Govind, S., & Clark, A. G. (2007). Contrasting infection 920 strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. 921 PLoS Pathogens, 3(10):e158, https://doi.org/10.1371/journal.ppat.0030158 922 Schindel, D., & Miller, S. E. (2010). Provisional Nomenclature the on-ramp to taxonomic 923 names. In: Polaszek, A. (Ed), Systema Nature, 250: The Linnaean Ark. CRC, Boca 924 Raton, 109-115. 925 Seehausen, M. L., Ris, N., Driss, L., Racca, A., Girod, P., Warot, S., Borowiec, N., Tosevski, 926 I., & Kenis, M. (2020). Evidence for a cryptic parasitoid species reveals its suitability 927 as a biological control agent. Scientific reports, 10: 19096. 928 https://doi.org/10.1038/s41598-020-76180-5 929 Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation 930 sequencing technologies for environmental DNA research. In Molecular Ecology, 931 21(8), 1794-1805, https://doi.org/10.1111/j.1365-294X.2012.05538.x 932 Smith, M. A., Fisher, B. L., & Hebert, P. D. N. (2005). DNA barcoding for effective 933 biodiversity assessment of a hyperdiverse arthropod group: The ants of 934 Madagascar. Philosophical Transactions of the Royal Society Biological Sciences, 935 360(1462), 1825-1834, https://doi.org/10.1098/rstb.2005.1714 936 Smith, M. A., Fernandez-Triana, J. L., Eveleigh, E., Gomez, J., Guclu, C., Hallwachs, W., 937 Hebert. P. D. N., ... Zaldivar-Riveron, A. (2013). DNA barcoding and the taxonomy of 938 Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 939 20000 sequences. Molecular Ecology Resources, 13, 168-276, 940 https://doi.org/10.1111/1755-0988.12038 941 Staniczenko, P. P. A., Reed-Tsochas, F., Lewis, O. T., Tylianakis, J. M., Albrecht, M., 942 Coudrain, V., & Klein, A. M. (2017). Predicting the effect of habitat modification on 943 networks of interacting species. Nature Communications, 8, 792, 944 https://doi.org/10.1038/s41467-017-00913-w 945 Tarli, V. D., Grandcolas, P., & Pellens, R. (2018). The informative value of museum 946 collections for ecology and conservation: A comparison with target sampling in the 947 Brazilian Atlantic forest. PLoS ONE, 13(11): e0205710. 948 https://doi.org/10.1371/journal.pone.0205710 Terry, J. C. D., Chen, J., & Lewis, O. T. (2021). The effect of natural enemies on the 949 950 coexistence of competing species - an empirical test using Bayesian modern 951 coexistence theory. bioRxiv: https://doi.org/10.1101/2020.08.27.270389 952 Thierry, M., Pardikes, N. A., Lue, C.-H., Lewis, O. L., & Hrcek, J. (2021). Experimental 953 warming influences species abundances in a *Drosophila* host community through 954 direct effects on species performance rather than altered competition and

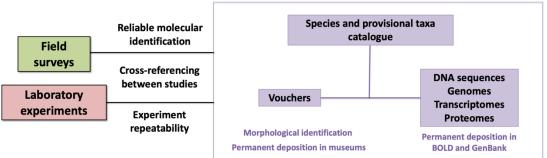
955	parasitism. <i>PLoS ONE</i> , 16(2): e0245029.
956	https://doi.org/10.1371/journal.pone.0245029
957	Troudet, J., Vignes-Lebbe, R., Grandcolas, P., & Legendre, F. (2018). The increasing
958	disconnection of primary biodiversity data from specimens: How does it happen
959	and how to handle it? Systematic Biology, 67(6), 1110–1119.
960	https://doi.org/10.1093/sysbio/syy044
961	Tylianakis, J. M., Tscharntke, T., & Lewis, O. T. (2007). Habitat modification alters the
962	structure of tropical host-parasitoid food webs. <i>Nature</i> , 445(7124), 202–205.
963	https://doi.org/10.1038/nature05429
964	Wachi, N., Nomano, F. Y., Mitsui, H., Kasuya, N., & Kimura, M. T. (2015). Taxonomy and
965	evolution of putative thelytokous species of Leptopilina (Hymenoptera: Figitidae)
966	from Japan, with description of two new species. Entomological Science, 18(1), 41–
967	54. https://doi.org/10.1111/ens.12089
968	Wang, XG., Biondi, A., & Daane, K. M. (2020). Functional responses of three candidate
969	Asian larval parasitoids evaluated for classical biological control of Drosophila
970	suzukii. Journal of Economic Entomology, 113(1): 73–80. doi: 10.1093/jee/toz265
971	Wang, XG., Biondi, A., Nance. A. N., Zappalà, L., Hoelmer, K. A., & Daane, K. M. (2021).
972	Assessment of Asobara japonica as a potential biological control agent for the
973	spotted wing drosophila, Drosophila suzukii. Entomologia Generalis (In Press) doi:
974	10.1127/entomologia/2020/1100
975	Wang, XG., Lee, J., Daane, K.M., Buffington, M., & Hoelmer, K. A. (2020). Biological
976	control of Drosophila suzukii. CAB Reviews 54, 10.1079/PAVSNNR202015054
977	Weigand, H., Beermann, A. j., Čiampor, F., Costa, F. O., Csabai, Z., Duarte, S., Geiger, M.
978	F., Ekrem, T. (2019). DNA barcode reference libraries for the monitoring of
979	aquatic biota in Europe: Gap-analysis and recommendations for future work.
980	Science of The Total Environment. 687(15), 499-254.
981	https://doi.org/10.1016/j.scitotenv.2019.04.247
982	Xiao, J. H., Wang, N. X., Murphy, R. W., Cook, J., Jia, L. Y., & Huang, D. W. (2012).
983	Wolbachia infection and dramatic intraspecific mitochondrial DNA divergence in a
984	fig wasp. <i>Evolution</i> , 66, 1907-1916, https://doi.org/10.1111/j.1558-
985	5646.2011.01561.x
986	Xie. J., Tiner, B., Vilchez, I., & Mateos, M. (2011). Effect of the Drosophila endosymbiont
987	Spiroplasma on parasitoid wasp development and on the reproductive fitness of
988	wasp-attacked fly survivors. Evolutionary Ecology, 25, 1065-1079,
989	https://doi.org/10.1007/s10682-010-9453-7
990	Xie, J., Winter, C., Winter, L., & Mateos, M. (2015). Rapid spread of the defensive
991	endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp
992	pressure. FEMS Microbiology Ecology, 91(2), 1-11,
993	https://doi.org/10.1093/femsec/iu017
994	Yassin, A. (2013). Phylogenetic classification of the Drosophilidae Rondani (Diptera): The
995	role of morphology in the postgenomic era. Systematic Entomology,
996	https://doi.org/10.1111/j.1365-3113.2012.00665.x
997	Yassin, A., & David, J. R. (2010). Revision of the Afrotropical species of Zaprionus
998	(Diptera, Drosophilidae), with descriptions of two new species and notes on

- 999 internal reproductive structures and immature stages. *ZooKeys*, 51, 33-72,
- 1000 https://doi.org/10.3897/zookeys.51.380
- Ye, Z., Vollhardt, I. M. G., Girtler, S., Wallinger, C., Tomanovic, Z., & Traugott, M. (2017).
 An effective molecular approach for assessing cereal aphid-parasitoid-
- 1003 endosymbiont networks. *Scientific Reports*, 7(1), 1–12.
- 1004 https://doi.org/10.1038/s41598-017-02226-w
- 1005Yu, D. S. K., 2016, Global index for Ichneumonoidea. Last updated October 22, 20161006https://web.archive.org/web/20161022093945/http:/ichneumonoidea.name/gl1007https://web.archive.org/web/20161022093945/http:/ichneumonoidea.name/gl
- 1008


1009 Data Accessibility

- 1010 The DROP database is freely accessible at Zenodo depository
- 1011 (http://doi.org/10.5281/zenodo.4519656). Sequences from GenBank and BOLD, all
- 1012 compiled in BOLD, DROP project, DS-DROPAR dataset <u>dx.doi.org/10.5883/DS-DROPAR</u>.
- 1013 New sequences have been deposited in BOLD, DROP project (datasets: DS-LABS
- 1014 dx.doi.org/10.5883/DS-LABS and DS-AUSPTOID dx.doi.org/10.5883/DS-AUSPTOID).
- 1015

1016 Author Contributions


- 1017 The initial project idea was originated by C-HL, MLB, JH, MM, TS, JV, SG, and
- 1018 PPAS. Molecular work was conducted by C-HL, SS, ML, AJ, and AD. BOLD and GenBank
- 1019 data was harvested by TAE and C-HL. Figures were made by AL and C-HL. Laboratory and
- 1020 field sample preparations were conducted by MTK, YC, TS, MM, SG, JV, EG, MG, XW,
- 1021 KM, KMD, PA, NAP, MT, JJB, MP, FMJ, WDT, JSD, BW, OTL, PPAS, JL and AL. Taxonomic
- 1022 concepts and interpretations were conducted by RRK, MLB, CH-L, PG, and SEM. DROP
- 1023 database was built by JH and C-HL. All authors contributed to review and final revisions
- 1024 of the manuscript, which was written primarily by C-HL, MLB and JH.
- 1025

1026 Figures:

1027

1028 Figure 1: An example of difficulties of molecular identification demonstrated on 1029 Ganaspis xanthopoda and G. brasiliensis. Only two sequences (in bold text) can be 1030 reliably used for identification and are included in DROP database. To select the 1031 sequences, we searched the BINs associated with the organism's name "Ganaspis 1032 xanthopoda" (green) or "Ganaspis brasiliensis" (purple) in BOLD. From each BIN, two 1033 sequences from each species were selected to build a neighbor-joining tree (bottom axis 1034 indicated % genetic divergence). There was a total of 6 BINs (gray boxes) in this 1035 sequence complex. Of these, 4 BINs contained both species names and without 1036 examination of vouchers, identification would be impossible. In DROP, vouchers from 1037 two sequences, MG755073 and MG755072, were deposited in CNR-IPSP (Table S2), 1038 examined by taxonomists and identified as G. brasiliensis. These two COI sequences can 1039 now be used to reliably identify G. brasiliensis. For G. xanthopoda, there were no 1040 available vouchers or reliable sequences that passed DROP standards to use for 1041 identification. Species delimitation between G. brasiliensis and G. xanthopoda is 1042 convoluted, varies according to arbitrary % genetic divergence (gray vertical lines), and 1043 needs an integrative taxonomic revision.

Database of <u>Dro</u>sophila <u>P</u>arasitoids (DROP)

1044

Figure 2: Concept of a centralized, vetted, curated database for <u>Drosophila Parasitoids</u> (DROP) we developed. First, we provide a species and provisional species catalog with correct taxonomy. Second, to provide a reliable genetic reference library, we link genetic data (DNA sequences, genomes, transcriptomes, proteomes) to a voucher connected to the species catalog. Third, we link the two primary sources of data (field surveys and laboratory experiments) by requiring a permanent deposition of vouchers and sequences in order to be included in DROP.

- 1032
- 1053

1054 **Tables:**

1055 **Table 1:** List of species and provisional species included in DROP. For additional1056 taxonomic details, see DROP.

Superfamily	Family	Genus	Species_Name	Author
Chalcidoidea	Encyrtidae		drop_Cha2_sp12	
Chalcidoidea	Encyrtidae	Tachinaephagus	drop_IR1_sp41	Kimura
Chalcidoidea	Encyrtidae	Tachinaephagus	drop_BG1_sp42	Kimura
Chalcidoidea	Encyrtidae	Tachinaephagus	zealandicus	Ashmead 1904
Chalcidoidea	Pteromalidae		drop_Pte69_sp11	
Chalcidoidea	Pteromalidae	Pachycrepoideus	vindemmiae	(Rondani, 1875)
Chalcidoidea	Pteromalidae	Spalangia	drop_IR1_sp38	Kimura
Chalcidoidea	Pteromalidae	Spalangia	drop_NG1_sp39	Kimura
Chalcidoidea	Pteromalidae	Spalangia	drop_SK1_sp40	Kimura
Chalcidoidea	Pteromalidae	Spalangia	drosophilae	Ashmead 1887
Chalcidoidea	Pteromalidae	Spalangia	erythromera	Foerster 1850
Chalcidoidea	Pteromalidae	Trichomalopsis	dubia	(Ashmead, 1896)
Chalcidoidea	Pteromalidae	Trichomalopsis	microptera	(Lindeman, 1887)
Chalcidoidea	Pteromalidae	Trichomalopsis	nigricola	Boucek

Chalcidoidea	Pteromalidae	Trichomalopsis	sarcophagae	(Gahan, 1914)
Chalcidoidea	Pteromalidae	Vrestovia	brevior	Boucek 1993
Chalcidoidea	Pteromalidae	Vrestovia	fidenas	(Walker, 1848)
Chalcidoidea	Pteromalidae		drop_ PacAtl_sp46	
Chalcidoidea	Pteromalidae		drop_ PachyPort_sp45	
Chalcidoidea			drop_ CH_sp64	
Cynipoidea	Figitidae	Ganaspis	brasiliensis	(Ihering, 1905)
Cynipoidea	Figitidae	Ganaspis	drop_ Gan_sp51	
Cynipoidea	Figitidae	Ganaspis	drop_ Gan_sp52	
Cynipoidea	Figitidae	Ganaspis	drop_ Gan_sp53	
Cynipoidea	Figitidae	Ganaspis	drop_Gsp1_sp67	
Cynipoidea	Figitidae	Ganaspis	drop_Gsp2_sp68	
Cynipoidea	Figitidae	Ganaspis	drop_Gsp50_sp66	
Cynipoidea	Figitidae	Ganaspis	drop_IR1_sp25	Kimura
Cynipoidea	Figitidae	Ganaspis	drop_ IR2_sp26	Kimura
Cynipoidea	Figitidae	Ganaspis	drop_Gan1_sp1	
Cynipoidea	Figitidae	Ganaspis	drop_TK1_sp27	Kimura
Cynipoidea	Figitidae	Ganaspis	hookeri	Craword 1913
Cynipoidea	Figitidae	Ganaspis	mahensis	Kieffer 1911
Cynipoidea	Figitidae	Ganaspis	mellipes	(Say, 1826)
Cynipoidea	Figitidae	Ganaspis	mundata	Forster 1869
Cynipoidea	Figitidae	Ganaspis	seticornis	(Hellen, 1960)
Cynipoidea	Figitidae	Ganaspis	tenuicornis	Kieffer 1904
Cynipoidea	Figitidae	Ganaspis	xanthopoda	(Ashmead, 1896)
Cynipoidea	Figitidae	Kleidotoma	bicolor	(Giraud, 1860)
Cynipoidea	Figitidae	Kleidotoma	dolichocera	Thomson 1877
Cynipoidea	Figitidae	Kleidotoma	drop_TK1_sp28	Kimura
Cynipoidea	Figitidae	Kleidotoma	filicornis	(Cameron, 1889)
Cynipoidea	Figitidae	Kleidotoma	icarus	(Quinlan, 1964)
Cynipoidea	Figitidae	Kleidotoma	psiloides	Westwood 1833
Cynipoidea	Figitidae	Kleidotoma	tetratoma	(Hartig, 1841)
Cynipoidea	Figitidae	Leptolamina	drop_Fig64_sp5	
Cynipoidea	Figitidae	Leptolamina	drop_Lmn_sp6	
Cynipoidea	Figitidae	Leptolamina	drop_TK1_sp29	Kimura
Cynipoidea	Figitidae	Leptolamina	gressitti	Yoshimoto & Yasumatsu 1965
Cynipoidea	Figitidae	Leptolamina	papuensis	Yoshimoto 1963
Cynipoidea	Figitidae	Leptolamina	ponapensis	Yoshimoto 1962
Cynipoidea	Figitidae	Leptolamina	seychellensis	(Kieffer, 1911)

Cynipoidea	Figitidae	Leptopilina	atraticeps	(Kieffer, 1911)
Cynipoidea	Figitidae	Leptopilina	australis	(Belizin, 1966)
7 1	U			(Barbotin, Carton &
Cynipoidea	Figitidae	Leptopilina	boulardi	Kelner-Pillault, 1979)
Cynipoidea	Figitidae	Leptopilina	clavipes	(Hartig, 1841)
Cynipoidea	Figitidae	Leptopilina	cupulifera	(Kieffer, 1916)
Cupinoidoa	Figitidae	Lantaniling	docomflagolla	Lue & Buffington 2017
Cynipoidea	Figitidae	Leptopilina	decemflagella	2017
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp54	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp55	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp56	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp57	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp58	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp59	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp60	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp61	
Cynipoidea	Figitidae	Leptopilina	drop_Lep_sp62	
Cynipoidea	Figitidae	Leptopilina	drop_BG1_sp34	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_Fig059_sp4	
Cynipoidea	Figitidae	Leptopilina	drop_Fig124_sp2	
Cynipoidea	Figitidae	Leptopilina	drop_Fig58_sp3	
Cynipoidea	Figitidae	Leptopilina	drop_IR1_sp30	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_NG1_sp33	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_SK1_sp35	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_STL_sp7	
Cynipoidea	Figitidae	Leptopilina	drop_TK2_sp31	Kimura
Cynipoidea	Figitidae	Leptopilina	drop_TK3_sp32	Kimura
Cynipoidea	Figitidae	Leptopilina	fimbriata	(Kieffer, 1901)
			<i>,</i>	Allemand &
Cynipoidea	Figitidae	Leptopilina	freyae	Nordlander 2002 Allemand &
Cynipoidea	Figitidae	Leptopilina	guineaensis	Nordlander 2002
Cynipoidea	Figitidae	Leptopilina	heterotoma	(Thomson, 1862)
7 1	0			Novkovic & Kimura
Cynipoidea	Figitidae	Leptopilina	japonica japonica	2011
Cynipoidea	Figitidae	Leptopilina	lasallei	Buffington & Guerrieri 2020
Sympolica	ingitiode	Leptopiillu	iusuici	Lue & Buffington
Cynipoidea	Figitidae	Leptopilina	leipsi	2018
Cynipoidea	Figitidae	Leptopilina	lonchaeae	(Cameron, 1912)
Cynipoidea	Figitidae	Leptopilina	longipes	(Hartig, 1841)
Cynipoidea	Figitidae	Leptopilina	mahensis	(Kieffer, 1911)

Cynipoidea	Figitidae	Leptopilina	maia	Lue & Buffington 2016
Cynipoidea	Figitidae	Leptopilina	maria	(Girault, 1930)
Cynipoidea	Figitidae	Leptopilina	orientalis	Allemand & Nordlander 2002
Cynipoidea	Figitidae	Leptopilina	pacifica	Novkovic & Kimura 2011
Cynipoidea	Figitidae	Leptopilina	rufipes	(Cameron, 1908)
Cynipoidea	Figitidae	Leptopilina	rugipunctata	(Yoshimoto, 1962)
Cynipoidea	Figitidae	Leptopilina	ryukyuensis	Novkovic & Kimura 2011
Cynipoidea	Figitidae	Leptopilina	tokioensis	Wachi & Kimura 2015
Cynipoidea	Figitidae	Leptopilina	tsushimaensis	Wachi & Kimura 2015
Cynipoidea	Figitidae	Leptopilina	victoriae	Nordlander 1980
Cynipoidea	Figitidae	Rhoptromeris	heptoma	(Hartig, 1840)
Cynipoidea	Figitidae	Rhoptromeris	nigriventris	Nordlander 1978
Cynipoidea	Figitidae	Rhoptromeris	rufiventris	(Giraud, 1860)
Cynipoidea	Figitidae	Rhoptromeris	villosa	(Hartig, 1840)
Cynipoidea	Figitidae		drop_Lg500_sp43	
Ichneumonoidea	Braconidae	Alysia	drop_SP1_sp24	Kimura
Ichneumonoidea	Braconidae	Aphaereta	aotea	Hughes & Woolcock 1976
Ichneumonoidea	Braconidae	Aphaereta	drop_SP1_sp15	Kimura
Ichneumonoidea	Braconidae	Aphaereta	drop_TK1_sp13	Kimura
Ichneumonoidea	Braconidae	Aphaereta	drop_TM1_sp14	Kimura
Ichneumonoidea	Braconidae	Aphaereta	minuta	(Nees, 1811)
Ichneumonoidea	Braconidae	Aphaereta	pallipes	(Say, 1829)
Ichneumonoidea	Braconidae	Aphaereta	scaptomyzae	Fischer 1966
Ichneumonoidea	Braconidae	Areotetes	striatiferus	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Areotetes	carinuliferus	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Asobara	ajbelli	Berry 2007
Ichneumonoidea	Braconidae	Asobara	albiclava	Berry 2007
Ichneumonoidea	Braconidae	Asobara	antipoda	(Ashmead, 1900)
Ichneumonoidea	Braconidae	Asobara	bactrocerae	(Gahan, 1952)
Ichneumonoidea	Braconidae	Asobara	brevicauda	van Achterberg & Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	citri	(Fischer, 1963)
Ichneumonoidea	Braconidae	Asobara	drop_KG1_sp16	Kimura
	Braconidae	Asobara	drop_NG1_sp17	Kimura
Ichneumonoidea	Bracornuae	Asuburu	ulop_logi_spi/	Kimuru

Ichneumonoidea	Braconidae	Asobara	drop_SP1_sp18	Kimura
Ichneumonoidea	Braconidae	Asobara	drop_Sp2_sp19	Kimura
lenneunonoideu	Bracomaac	///////	<u>u:op_op2_op10</u>	van Achterberg &
Ichneumonoidea	Braconidae	Asobara	elongata	Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	gahani	(Papp, 1969)
Ichneumonoidea	Braconidae	Asobara	japonica	Belokobylskij 1998
Ichneumonoidea	Braconidae	Asobara	kenyaensis	Peris-Felipo 2014
Ichneumonoidea	Braconidae	Asobara	leveri	(Nixon, 1939)
Ichneumonoidea	Braconidae	Asobara	mesocauda	van Achterberg & Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	orientalis	Viereck 1913
Ichneumonoidea	Braconidae	Asobara	persimilis	(Prince, 1976)
Ichneumonoidea	Braconidae	Asobara	pleuralis	(Ashmead, 1905)
Ichneumonoidea	Braconidae	Asobara	rossica	Belokobylskij 1998
Ichneumonoidea	Braconidae	Asobara	rufescens	(F ^{rster,} 1862)
Ichneumonoidea	Braconidae	Asobara	tabida	(Nees, 1834)
				van Achterberg &
Ichneumonoidea	Braconidae	Asobara	triangulata	Guerrieri 2016
Ichneumonoidea	Braconidae	Asobara	turneri	Peris-Felipo 2014 van Achterberg &
Ichneumonoidea	Braconidae	Asobara	unicolorata	Guerrieri 2016
Ichneumonoidea	Braconidae	Aspilota	albertica	Berry 2007
Ichneumonoidea	Braconidae	Aspilota	andyaustini	Wharton 2002
Ichneumonoidea	Braconidae	Aspilota	angusta	Berry 2007
Ichneumonoidea	Braconidae	Aspilota	concolor	Nees 1812
Ichneumonoidea	Braconidae	Aspilota	parecur	Berry 2007
Ichneumonoidea	Braconidae	Aspilota	villosa	Berry 2007
Ichneumonoidea	Braconidae	Dinotrema	barrattae	Berry 2007
Ichneumonoidea	Braconidae	Dinotrema	longworthi	Berry 2007
Ichneumonoidea	Braconidae	Dinotrema	philipi	Berry 2007
Ichneumonoidea	Braconidae		drop_Aso_sp8	
Ichneumonoidea	Braconidae	Opiognathus	pactus	(Haliday, 1837)
Ichneumonoidea	Braconidae	Opius	bellus	Gahan 1930
Ichneumonoidea	Braconidae	Opius	cinerariae	Fischer
Ichneumonoidea	Braconidae	Opius	crenuliferus	Li & van Achterberg 2013
	Dueseridee	Onius	menulling to to	Li & van Achterberg
Ichneumonoidea	Braconidae	Opius	monilipalpis	2013
Ichneumonoidea	Braconidae	Opius	ocreatus	(Papp)
Ichneumonoidea	Braconidae	Opius	pallipes	Wesmael 1835 Wharton & Austin
Ichneumonoidea	Braconidae	Opius	pteridiophilus	1990

Ichneumonoidea	Braconidae	Opius	pterus	Wharton & Austin 1990
Ichneumonoidea	Braconidae	Opius	trimaculatus	Spinola
Ichneumonoidea	Braconidae	Opius	youi	Li & van Achterberg 2013
Ichneumonoidea	Braconidae	Phaenocarpa	conspurcator	(Haliday, 1838)
Ichneumonoidea	Braconidae	Phaenocarpa	drop_ IR1_sp22	Kimura
Ichneumonoidea	Braconidae	Phaenocarpa	drop_TK1_sp21	Kimura
Ichneumonoidea	Braconidae	Phaenocarpa	tacita	Stelfox 1941
Ichneumonoidea	Braconidae	Phaenocarpa	drosophilae	(Fischer 1975)
Ichneumonoidea	Braconidae	Tanycarpa	bicolor	(Nees, 1814)
Ichneumonoidea	Braconidae	Tanycarpa	chors	Belokobylskij 1998
Ichneumonoidea	Braconidae	Tanycarpa	drop_NG1_sp23	Kimura
Ichneumonoidea	Braconidae	Tanycarpa	punctata	van Achterberg 1976
Ichneumonoidea	Braconidae		drop_Aly_sp47	
Ichneumonoidea	Braconidae		drop_Aly_sp48	
Ichneumonoidea	Braconidae		drop_ Aly_sp49	
Ichneumonoidea	Braconidae		drop_ Aly_sp50	
Ichneumonoidea	Braconidae		drop_Aly_sp63	
Ichneumonoidea	Braconidae		drop_Aso_sp69	
Diaprioidea	Diapriidae	Trichopria	anastrephae	Costa Lima 1940
Diaprioidea	Diapriidae	Trichopria	drop_ BG1_sp37	Kimura
Diaprioidea	Diapriidae	Trichopria	drop_ Dia70_sp65	
Diaprioidea	Diapriidae	Trichopria	drop_ Tri_sp44	
Diaprioidea	Diapriidae	Trichopria	drop_Bdia_sp10	
Diaprioidea	Diapriidae	Trichopria	drop_Dia127_sp9	
Diaprioidea	Diapriidae	Trichopria	drop_TK1_sp36	Kimura
Diaprioidea	Diapriidae	Trichopria	drosophilae	(Kieffer, 1912)
Diaprioidea	Diapriidae	Trichopria	modesta	(Ratzeburg, 1848)