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Abstract

Monitoring and strategic response to variants in SARS-CoV-2 represents a considerable chal-
lenge in the current pandemic, as well as potentially future viral outbreaks of similar magnitude.
In particular mutations and deletions involving the virion's prefusion Spike protein has significant
potential impact on vaccines and therapeutics that utilize this key structural viral protein in their
mitigation strategies. In this study, we have demonstrated how dominant energetic landscape
mappings (" glue points”) coupled with sequence alignment information can potentially identify
or flag key residue mutations and deletions associated with variants. Surprisingly, we also found
excellent homology of stabilizing residue glue points across the lineage of 5 coronavirus Spike pro-
teins, and we have termed this as " sequence homologous glue points”. In general, these flagged
residue mutations and/or deletions are then computationally studied in detail using all-atom
biocomputational molecular dynamics over approximately one microsecond in order to ascertain
structural and energetic changes in the Spike protein associated variants. Specifically, we exam-
ined both a theoretically-based triple mutant and the so-called UK or B.1.1.7 variant. For the
theoretical triple mutant, we demonstrated through Alanine mutations, which help "unglue” key
residue-residue interactions, that these three key stabilizing residues could cause the transition of
Down to Up protomer states, where the Up protomer state allows binding of the prefusion Spike
protein to hACE2 host cell receptors, whereas the Down state is believed inaccessible. For the
B.1.1.7 variant, we demonstrated the critical importance of D614G and N5017 on the structure
and binding of the Spike protein associated variant. In particular, we had previously identified
D614 as a key glue point in the inter-protomer stabilization of the Spike protein. Other mutations
and deletions associated with this variant did not appear to play a pivotal role in structure or
binding changes. The mutant D614G is a structure breaking Glycine mutation demonstrating a
relatively large hinge angle and highly stable Up conformation in agreement with previous studies.
In addition, we demonstrate that the mutation N501Y may significantly increase the Spike protein
binding to hACE2 cell receptors through its interaction with Y41 of hACE2 forming a potentially
strong hydrophobic residue binding pair. We note that these two key mutations, D614G and
N501Y, are also found in the so-called South African (SA; B.1.351) variant of SARS-CoV-2.
Future studies along these lines are therefore aimed at mapping glue points to residue mutations
and deletions of associated prefusion Spike protein variants in order to help direct and optimize
efforts aimed at the mitigation of this deadly virion.
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l. Introduction

[ coronaviruses represent one (B) of four genera (A,B,C,and D) of RNA positive sense viruses
in the Nidovirales order [1, 2]. The current pandemic COVID-19 caused by SARS-CoV-2 is the
latest in human viral outbreaks of this genera being preceded by the Middle Eastern Respiratory
Coronavirus (MERS-CoV) and the SARS-CoV outbreak of 2002. SARS-CoV-2 continues to
exhibit high rates of transmission and infection across the globe in the current pandemic. Of
great present concern are variants that may show relative increased transmission and infection
rates and, in addition, may present challenges to current and developing vaccines as well as
therapeutics aimed at mitigation of this deadly virion. Of note is that this virus has a genome
size of ~ 30 kilobases and an intrinsic proofreading mechanism to reduce mutation rates [3]. The
mutation rate of SARS-CoV-2 has been estimated to be ~ 1073 substitutions per site per year
[3]. Genomic sequences of SARS-CoV-2 continue to be deposited in the GSAID (Global Initiative
on Sharing all Influenza Data), which has allowed for the study of structural implications of
mutations [4]. For example, the Spike protein mutation D614G has been associated with higher
upper respiratory tract viral loads and appears to be omnipresent in recent genomic sequences
across the globe [4, 5, 6]. In addition, another variant called the UK Variant or VOC 202012/01 or
B.1.1.7 (classification system [7]) has been identified as a highly transmittable variant and involves
both deletions and mutations in the Spike protein of this virion, including D614G. So, it is of great
importance to determine how current and future variants may translate into altered transmission
rates, viral loading differences, antibody and vaccine escape, and resistance to currently developing
therapeutics. Here we focus on the analysis of mutations of the prefusion Spike protein, due to its
omnipresent importance, as a partial guide to the potential effects of its mutations on structure,
function, and possible behavioral changes of this virion.

A distinct characteristic of the coronaviruses are their large, trimeric Spike proteins that
densely decorate the virion surface [8, 9, 10]. The Spike protein consists of three homologous
protomers or chains where each one is ~ 1200 amino acid residues in length (Fig. 1). In it's
prefusion state, each protomer consists of two large domains called S1 (most distal from the virion
membrane) and S2 (most proximal to it's membrane). In general, the S1 domain represents a
prefusion domain (~ 600 residues) and the S2 domain (~ 600 residues) is the fusion domain.
In general, the S2 or fusion machinery domain is relatively rigid with strong noncovalent intra
and interchain interactions facilitated by helical secondary structures, whereas the S1 domain,
which contains the host cell receptor binding domain (RBD) and N-terminal domain (NTD) in a
V-shaped configuration (Fig. 1), is weaker, flexible, and characterized by beta-strand secondary
structural motifs [11]. We note that the S1 domain of the Spike protein is shed in the transition
from the prefusion state to the fusion state. The configuration of the RBD in the prefusion state
is further characterized as being in the so-called “Up-state” or "Down-state” depending on the
position of the RBD relative to the center of mass of the prefusion Spike protein. For example,
in the Up-state, the RBD of both SARS-CoV and SARS-CoV-2 is more exposed and able to
bind to its ACE2 (Angiotensin Converting Enzyme 2) receptor on the surface of human epithelial
cells (Type | and Il pneumocytes; also, alveolar macrophage and nasal mucosal cells), but in the
“Down-state” the RBD is believed to be more hidden and significantly reduced to ACE2 binding
and to cellular infection [12, 13, 14]. Quantified structural comparisons of the RBD configuration
in the Up versus Down protomer states of SARS-CoV-2 have recently been done that include
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angular positions of the RBD relative to the NTD of a given protomer [8]. Henderson et al
[13] also quantified angular differences in the S1 subdomains of the Spike protein across the
coronaviruses SARS-CoV-2, SARS-CoV, MERS and HKU1 and developed mutational forms that

can alter the equilibrium of Up versus Down states.

Given the critical importance of emerging variants of SARS-CoV-2 to vaccines and thera-
peutics, it is important to analyze the effects of mutations on the stability and dynamics of the
Spike protein. Previously, we studied the stability and dynamics of the entire Spike protein of
SARS-CoV-2 using a combination of all-atom dominant energetic analyses and biophysical com-
putational molecular dynamics using published structures of the trimeric Spike protein [11]. We
determined energetically dominant, non-covalent intra-protomer and inter-protomer interactions,
called "glue” points or "hot” spots that help stabilize the entire trimeric protein structure. For
example, we previously identified D614 as a key glue point with neighboring protomer residues
([11, 15], Table S1) prior to its emergence in current variants. We also mutated a key hot
spot ('latch’ residues) associated with intra-protomer interactions in order to demonstrate the
ability for single protomers to change from Down to Up states. However, it was further demon-
strated that in complete trimeric structures such transitions are held in check by inter-protomer
interactions, specifically, the RBD of any promoter with the NTD of its neighbor.

In the current study, we computationally analyze structure and dynamic driven key mutations
associated with Down versus Up protomer states of SARS-CoV-2; in particular, a theoretically-
based triple mutant that is shown to destabilize neighboring RDB-NTD interactions. In addition,
using these tools, we critically examine the UK variant B.1.1.7, including D614G mutation, in
order to discern key differences in protomer configurations that could potentially impact vaccine
and therapeutic efforts aimed at the debilitation of the current pandemic. We energetically map
deletions and mutations associated with the B.1.1.7 variant against known glue points of SARS-
CoV-2 Spike protein in order to determine potential structure/function changes associated with
variants. We then dynamically analyze any associated conformational changes using all-atom
molecular dynamics of the trimeric spike protein, including the B.1.1.7 and triple mutant variants
over a 0.5 microsecond time period in order to ascertain differences in structural behavior. We
also include sequence alignment analysis of deletions and mutations of B.1.1.7 across the lineages
of [S-coronaviruses SARS-CoV, MERS-CoV and HCoV looking for changes in conserved areas;
such comparisons may also help in identifying critical deletions/mutations across current and
future variants of SARS-CoV-2 and other (-coroanviruses. We determined through sequence
alignment and energetic mappings highly conserved glue point residues across the lineages of (-
coronaviruses despite clade differences. In addition, we are able to demonstrate dynamic changes
in the UK Variant B.1.1.7 that can be traced to two key mutations resulting in a significantly
more accessible RBD and simultaneously stronger binding to ACE2. These key mutations are also
present in the rapidly emerging South African variant B.1.351. Our findings and analysis may
have general applicability and may be important at ascertaining the potential effects of future
variations of this virion on transmission, as well as vaccine and therapeutic effectiveness, in an
attempt to stay ahead via sequence—function analysis of emerging variants.

Materials and Methods
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Figure 1: SARS-Cov-2 /3 coronavirus (PDB ID: 6VSB) with one Up (A) and two Down (B,C)
showing the S1 (binding ectodomain) and S2 (fusion) domains. Also shown is the overall chain
interaction configuration looking at the trimer from the top view.
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Molecular Dynamics

Explicit solvent molecular dynamics (MD) simulations of the novel coronavirus Spike protein
were performed using the NAMD2 program [16]. We used the CHARMM-Gui [17] with the
CHARMM36m force field along with TIP3P water molecules to explicitly solvate proteins and
add any missing residues from the experimental structure files. Disulfide bonds and glycosylated
sites were all included. Simulations were carried out maintaining the number of simulated parti-
cles, pressure and temperature (the NPT ensemble) constant with the Langevin piston method
specifically used to maintain a constant pressure of 1 atm. We employed periodic boundary con-
ditions and initial equilibration for a water box simulation volume as well as the particle mesh
Ewald (PME) method with a 20 A cutoff distance between the simulated protein and water box
edge. The integration time step was 2 femtoseconds with our protein simulations conducted
under physiological conditions (37 C, pH of 7.4, physiological ionic strength with NaCl ions, LYS
and ARG were protonated and HIS was not). All mutations were added via the CHARMM-Gui
[17] and for deletions we chose to use Glycine as a structure breaking mutation in lieu of deleting
residues, since exact structural information on deletions is currently lacking. Any other methods
to revise structure, such as the SWISS model [18], would still be approximate and not based on
the actual protein folding dynamics, whereas the more straight-forward, structure breaking Glycine
represents a good test of the potential role of deletions on structure, as will be demonstrated
here.

Sequence Alignment

Multiple sequence alignment was preformed using Clustal Omega [19]. Clustal Omega uses a
structure guided hidden Markov model (HMM) for multiple sequence alignment. Sequences were
obtained directly from the PDB files across four different 5 corona viruses: SARS-CoV (6ACD)
[14], SARS-CoV-2 (6VSB) [10], MERS-CoV (6Q04) [20], and HCoV (60HW) [21]. Output
format was selected as ClustaW with character counts.

All-Atom Energetic Mappings

Previously [11, 15], we analyzed the complete inter-protomer and intra-protomer interactions
across two independently published structure files (6VSB and 6VYB) for SARS-CoV-2 trimeric
Spike protein using the open source energy mapping algorithm developed by Krall et al [22].
This spatial and energetic mapping algorithm efficiently parses the strongest or most dominant
non-covalent atom-atom interactions (charge and partial atomic charge, Born, and van der Waals
forces), according to empirically established parsing criteria, based on the ab initio AMBER03
force field model. Following our previous studies, the parsing criteria were taken as the upper
limit of —0.1kT units for Lennard-Jones (van der Waals) criteria and —0.3k7" units for Coulombic
interactions, although lower values can also be specified in the analysis part of the mappings
in order to further refine the results [22]. Note that in the all-atom analysis dominant van
der Waals interaction forces are commonly associated with nonpolar atom-atom interactions
and hydrophobic protein interaction regions, whereas the Coulombic partial charge and charge
interactions are commonly associated with hydrophilic protein interaction regions and can include
hydrogen bonding and backbone atom partial charge interactions.


https://doi.org/10.1101/2021.02.09.430519

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430519; this version posted February 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

RMSF and Hinge Angle Determinations

Here we follow the recent hinge angle designation of Peng et al [23] in order to help quantify
and compare Up versus Down protomer states, namely /ASP406-VAL991-ALA622. Note that
the vertex selected (VAL991) is in the rigid S2 domain and therefore is approximately fixed in the
body frame of the protein. This designation helps to correct for any so-called "tumbling” effects
associated with translation and rotations of the center of mass of the protein over large time
scales necessary for these types of simulations. Those authors further designated hinge angles in
the range 52.2 deg to 84.8 deg as ACE2 accessible domains (Up states) and angles in the range
31.6 deg to 52.2 deg as ACE2 inaccessible (Down states).

Root Mean Square Fluctuations (RMSF) C-a values across the 1124 residues for any protomer
were determined according to

1 N

RMSF = N > (@i — @o01)? + (i — Ygor) + (2 — 2001)7]

%

where (x,y,z) are the cartesian coordinates of any C-« residue, N is the number of snapshots
considered, and deviations are measured relative to the body frame or VAL991 for consistency
with hinge angle calculations and to correct for tumbling effects. Here we take snapshots of
structures after every 1.0 nsec.

Results
Sequence Alignment and Glue Point Residues Across Lineages of J coronaviruses

The color map sequence alignment across the entire Spike protein for the four 3 coronaviruses as
obtained from Clustal Omega is shown in Fig. 2. As can be seen the greatest overall alignment
homology is with the S2 or fusion domain and S1-NTD of this protein, and the greatest variation
is in the RBD of S1. We also mapped from the original structure files the dominant energetic
contacts or glue points of the stabilizing RBD-NTD neighboring chain interactions across these
lineages as shown in Fig. 4, where we have superimposed predicted glue points over the sequence
alignment. Somewhat surprisingly we found excellent sequence homology across almost all glue
points despite clade differences among these lineages; below we refer to these as "sequence
homologous glue points”. Additionally, within the SARS-CoV and SARS-CoV-2 clade we found
larger numbers of atom-atom interactions for the same glue point residues associated with SARS-
CoV, indicative of a much stronger and more stable Down state configuration (Fig. 5). Note
that these results were consistent across independently obtained experimental PDB deposited
structure files: SARS-CoV-2 : 6VSB [9], 6VYB [10]; SARS-CoV: 6ACD [14], 6CRZ [24], as
shown in Fig. 5.

Triple Mutant versus Wild Type
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Figure 2: Sequence alignment for SARS-Cov, SARS-CoV-2, MERS, and HCoV. Original .ppt file
is included in the Supplementary material for ease of viewing.

Previously, and as partially shown in Fig. 5 for Down-Down state interactions, we identified
three critical glue point residues that help stabilize RBD-NTD inter-protomer interactions across
both Down-Down and Up-Down states of SARS-CoV-2: viz., ARG357, ASN394, and HIS519
([11], Figs. 3 and 4). These interactions helped prevent "latch” release from Down to Up states
associated with Down state intra-protomer latch residues: GLN564 to ALA520-PRO521-ALAb522.
Note from Fig. 4 that these three stabilizing residues are also part of the sequence homologous
glue points across the lineages of (3-coronaviruses. Here we examine the triple Alanine mutant
ARG357ALA, ASN394ALA, and HIS519ALA in order to determine if these key glue points alone
could cause a conformational change in the absence of any latch mutations. Note that this so-
called " Alanine screening” should diminish side chain interactions of those residues ("unglue”)
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Figure 3: Sequence alignment for SARS-Cov, SARS-CoV-2, MERS, and HCoV. Original .ppt file
is included in the Supplementary material for ease of viewing.

without significant initial structure changes. Figure 6 A-D shows MD calculated values of the
hinge angle and RMSF values for what we have called wild type (WT) SARS-CoV-2 and the
theoretical triple mutant. It is clear that a longer time period of over 200 nsec is required to
reach a dynamic equilibrium state of either of these proteins from the starting configurations that
include an initial NVT equilibrium period. In particular the WT hinge angle decreases by 0.2
radians or 12deg from its starting state of 1 radian or approximately 60 deg putting it on the
upper end of the ACE2-inaccessible region according to the criteria of Peng et al. [23] On the
other hand, the theoretical triple mutant achieves the ACE2 accessible region after approximately
220 nsec and is maintained there throughout the remainder of the simulation. The triple mutant
also shows more flexibility in its S1 domain, according the calculated RMSF values, as compared
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Figure 4: Combination of the Sequence Alignment Map with the Glue Point Map for the S1 Do-
main Across the [ coronaviruses. Green shaded letters are the residues associated with dominant
energetic enteractions or glue points. Yellow shaded letters mark the start and end of the NTD
and blue shaded letters mark the beginning and end of the RBD across these lineages.

to WT as expected for the negation of its three key stabilizing, glue point residues. Also note that
RMSF S2 domain values remain nearly the same for WT and triple mutant as expected for the
more rigid and conserved S2 domain. These results show how sequence information superimposed
on glue point maps followed by biophysical computations can help predict the possible outcomes
of mutations to protein function.
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Figure 5: Comparison of SARS-CoV, (C) and (D), and SARS-CoV-2, (A) and (B), RBD-NTD
neighboring chain glue points. Note that all protomers are in the Down state here. See [11]
Supplementary Data for (A) and (B); Data for (C) - Table S1; Data for (D) - Table S2

UK Variant B.1.1.7

A summary of the mutations and deletions of the UK Variant B.1.1.7 are given in Table 1. Also
shown are the partner glue point residues predicted by OpenContact when the B.1.1.7 residues
are in the Up state and mapped to a neighboring Down state protomer or in the Down state and
mapped to a neighboring Down state protomer. As can be seen only A570D and D614G involve
glue point partners within the Spike protein. None of the glue point partners are involved in the
NTD-RBD sequence homologous regions presented previously. Additionally, we mapped hACE2
binding of SARS-CoV-2 RBD according to the full-length hACE2 structure file PDB ID: 6M17
[12]. We have overlayed the dominant glue point residues to hACE2 in red as shown in Fig. 6. The
residue N501 is a key binding partner to hACE2 (Supplementary Table S3.) and this includes
conspicuously strong interactions with Y41 of ACE2. The N501Y mutation may potentially
increase binding to hACE?2 significantly due to the highly favorable Y-Y hydrophobic interaction
pair in the new mutant state (Table S3), however this remains to be concretely verified. Note
that both D614G and N501Y are also present in the South African variant (B.1.351). Another
potentially interesting feature of this variant, as seen by comparison of Figs. 7 and 8, is the
flexibility associated with the dominant hACE2 binding subdomain of the RBD.

Next, we performed long time MD simulations of B.1.1.7 as described in the Methods section

and shown in Fig. 8 (cf. Fig. 6). As can be seen B.1.1.7 variant maintains the highly accessible
Up state due to the elimination of the D614 glue point through this structure breaking, Glycine
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Figure 6: Hinge angle and RMSF values for Wild Type (A) and (B) frames and Triple Mutant
(C) and (D) frames, respectively; Chain A is Up and Chain B is Down.

mutation in agreement with previous MD studies on this mutation [4, 5, 6]. Note that deletions
associated with B.1.1.7 (Table 1.)and modeled by structure breaking Glycine mutations here,
did not show any conspicuous differences in the structural state of the Spike protein and those
changes do not involve any glue point residues. (Also, see Supplementary Movies: UKMutvsWT)

Table 1. Summary of Mutations and Deletions of B.1.1.7 Variant

Mutation /Deletion | Up — Down Down — Down NTD-RBD Homologous | ACE2 Binding
N501Y - - No Yes
A570D S$2:960-967 | S2: 963-967, 875, 1000 No No
D614G S2: 854-860 | S2: 733-735, 854-861 No No
P681H - - No No

Delete V69-S70 - - No No

Delete Y144-Y145 - - No No

Discussion

Despite its relatively low mutation rate and an inherent error correction mechanism, SARS-
CoV-2 continues to display significant numbers of variants due to its high transmission and infec-
tion rates. Thus, variants represent a considerable challenge in the current COVID-19 pandemic.
Here we analyzed a theoretical triple mutant based on our previous dominant energetic landscape
mappings and long-time all-atom biophysical molecular computations. We demonstrated the abil-
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Figure 7: SARS-CoV-2 Binding residues to hACE?2 (red shaded letters) shown on the combination
of the Sequence Alignment Map with the Glue Point Map for the S1 Domain Across the (3
coronaviruses. See Table S3 for completer data.

ity to significantly alter protomer configurations by destabilizing these three key residues through
alanine mutations or alanine screening. In a reverse sense, by the same methods, we then analyzed
the emerging UK Variant B.1.1.7 in order to determine key mutations or deletions in its Spike
protein that could be responsible for the more infective and transmissive state of SARS-CoV-2.
Our methodology directly lead to two key mutations D614G and N501Y in agreement with other
recent findings. These residues had been previously identified by us as key glue points associ-
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Figure 8: Hinge angle (A) and RMSF values (B) for UK Mutant B.1.1.7.

ated with dominant energetic interactions among the atoms of these residues with their partners.
Biophysical computations confirm the configurational changes associated with D614G to a more
ACE?2 accessible state (Up state). We also show that N501Y has a potential hACE2 glue point
partner 41Y, which may lead to a strong Y-Y hydrophobic residue pair interaction; this may be
partially responsible for the higher infection rate of the UK (B.1.1.7) and SA (B.1.351) variants,
although more studies are needed to verify this. Thus, the two key mutations may increase trans-
mission and infection rates by two distinctly different mechanisms. We also noted more flexibility
in the subdomain of the RBD for B.1.1.7 variant that forms dominant interactions with hACE?2,
as compared to WT, although more studies are needed to quantify this potential feature and its
consequences. Additionally, by overlaying dominant energetic mappings to sequence alignment
maps across lineages of § coronaviruses we identified "homologous sequence glue points” that
could be important in ascertaining the impact of future variants through sequence information.
It is clear that tools are needed to quickly translate genome sequence information to potential
virion function in order to help direct mitigation strategies and resources in an optimized way.
Here we demonstrate that a combination of protein residue sequence alignment superimposed
on glue point and binding point residue identification can flag potential Spike protein function
changes and associated viral behavior. These flagged residues can be further analyzed through
long-time biophysical computations to more precisely probe functional changes.
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