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Abstract 

Cancer screening provides the opportunity to detect cancer early, ideally 

before symptom onset and metastasis, and offers an increased opportunity 

for a better prognosis. The ideal biomarkers for cancer screening should 

discriminate individuals who have not developed invasive cancer yet but 

are destined to do so from healthy subjects
1,2

. However, most cancers lack 

effective screening recommendations. Therefore, further studies on novel 

screening strategies are urgently required. Here, our proof-of-concept 

study shows blood platelets could be a platform for liquid biopsy-based 

early cancer detection. By using a simple suboptimal inoculation 

melanoma mouse model, we identified differentially expressed RNAs in 

platelet signatures of mice injected with a suboptimal number of cancer 

cells (eDEGs) compared with mice with macroscopic melanomas and 

negative controls. These RNAs were strongly enriched in pathways 

related to immune response and regulation. Moreover, 36 genes selected 

from the eDEGs via bioinformatics analyses were verified in a mouse 

validation cohort via quantitative real-time PCR. LASSO regression was 

employed to generate the prediction models with gene expression 

signatures as the best predictors for occult tumor progression in mice. The 

prediction models showed great diagnostic efficacy and predictive value 

in our murine validation cohort, and could discriminate mice with occult 

tumors from control group (area under curve (AUC) of 0.935 (training 
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data) and 0.912 (testing data)) (gene signature including Cd19, Cdkn1a, 

S100a9, Tap1, and Tnfrsf1b) and also from macroscopic tumor group 

(AUC of 0.920 (training data) and 0.936 (testing data)) (gene signature 

including Ccr7, Cd4, Kmt2d, and Ly6e). Our study provides evidence for 

potential clinical relevance of blood platelets as a platform for liquid 

biopsy-based early detection of cancer. Furthermore, the eDEGs are 

mostly immune-related, not tumor-specific. Hence it is possible 

platelets-based liquid biopsy could enable simultaneous early detection of 

cancers from multiple organs of origin
3
. It is also feasible to determine 

the origin of cancer since platelet profiles are influenced by tumor type
3
. 
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Main text 

Traditional cancer screening methods have demonstrated low accuracy 

and efficacy, while novel cancer markers such as circulating tumor cells 

(CTCs) and circulating tumor DNA (ctDNA), which offer new genomic 

approaches through liquid biopsies, still have limited efficiency
1,4-6

. The 

ideal biomarkers for the early detection of cancer should discriminate 

individuals with occult cancer that is destined to progress from healthy 

subjects. Therefore, further studies searching for new blood-based 

biomarkers for early cancer detection are now urgently required.  

Blood platelets, which are traditionally known for their function in 

hemostasis and thrombosis, have emerged as important participants in 

tumor pathogenesis
7,8

. Recent studies have indicated significant platelet 

involvement in cancer growth and metastasis
9,10

. It has been reported that 

tumor-educated platelets (TEPs) may have potential for cancer 

companion diagnostics
3,11-13

. However, whether platelets could serve as a 

platform for cancer risk assessment or early disease diagnostics still 

merits further investigation.  

Inoculation of suboptimal numbers of tumor cells can induce delayed 

melanoma formation in mice 

To investigate these issues, we established a melanoma mouse model by 

inoculating C57BL/6 mice with a suboptimal number of tumor cells, 

which were named an “early-early” mouse model since the tumors in our 
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model were occult or microscopic before they rapidly grew and became 

macroscopic. C57BL/6 mice were subcutaneously injected with several 

concentrations of B16F10 cells. In contrast with the rapid tumor 

development in mice from the group injected with a optimal number of 1 

× 10
5
 cells per mouse established by previous studies

14,15
, inoculation of 

mice with lower numbers of cells postponed the onset of tumor formation, 

with variable growth kinetics, as evidenced by the dispersion of growth 

curves (Fig. 1a). In groups injected with 1 × 10
5
 cells and 1 × 10

4
 cells 

per mouse, all mice developed tumors which became visible in 2 weeks 

and 3 weeks post-inoculation respectively (Fig. 1a, b). However, injection 

with suboptimal numbers of cells (5 × 10
3
 cells or 2 × 10

3
 cells per mouse) 

induced tumors in some subjects that remained small and did not progress 

for as long as 6 weeks after inoculation (Fig. 1a, b). Around 76% of mice 

(100 out of 131) injected with 5 × 10
3
 cells per mouse developed tumors 

that became visible at 2-6 weeks after inoculation, while only 13% of 

mice (8 out of 60) injected with 2 × 10
3
 cells per mouse formed visible 

tumors within 6 weeks post-inoculation (Fig. 1b, c). Moreover, around 24% 

of mice from the group injected with 5 × 10
3
 cells per mouse and 87% of 

mice injected with 2 × 10
3
 cells did not develop melanomas within 6 

weeks after inoculation and remained tumor-free for a prolonged period 

of 15 weeks post-inoculation (Fig. 1b, c).  

Since some tumors developed late (Fig. 1a), these “late-developer” 
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mice harbored occult or microscopic melanomas after inoculation for 

weeks before they progressed into macroscopic tumors afterwards. We 

proposed that the “pre-diagnostic” blood samples from mice inoculated 

with a suboptimal number of tumor cells could be used for screening 

novel “early-early” cancer biomarkers.  

Platelet mRNA profiles of mice inoculated with a suboptimal number 

of tumor cells are distinct from those of both healthy and 

tumor-bearing mice 

To screen for novel “early-early” cancer biomarkers in our melanoma 

model, we collected blood samples from optimal inoculation group (1 × 

10
5
 cells per mouse, O group), suboptimal inoculation group (2 × 10

3
 

cells per mouse, S group), and negative control group (C group) on day 

14 post-injection, when optimal inoculation group all developed palpable 

tumors and suboptimal inoculation group did not form visible tumors yet, 

indicating the tumors might still be occult (Fig. 2a). Mice were autopsied 

after blood collection and examined under a magnifying scope to confirm 

there were no visible tumors in S group (Extended Data Fig. 1a).  

Recently, it has been reported that tumor-educated platelets (TEPs) 

may have potential for cancer companion diagnostics
3,11-13

. Therefore, we 

isolated blood platelets for further study as well as peripheral blood 

mononuclear cells (PBMCs) for comparison. Both platelet RNA and 

PBMC RNA were isolated and evaluated for quantity and quality. Total 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430530doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430530


platelet RNA samples of 20 mice in O group, 50 mice in S group and 40 

mice in C group were pooled into 5 samples per group in order to meet 

the quantity criteria of RNA sequencing. The disparity in platelet RNA 

quantity of mice from different groups was probably due to higher 

platelet production via thrombocytosis in tumor-bearing mice
16

. Total 

PBMC RNA samples of 20 mice in O group, 24 in S group and 25 in C 

group were also pooled into 5 samples per group to guarantee sufficient 

RNA quantity. Pooled platelet and PBMC RNA samples were then 

processed for RNA sequencing. Platelet RNA sequencing yielded a mean 

read count of around 53 million clean reads per sample, while PBMC 

RNA sequencing yielded about 44 million clean reads per sample. After 

genome mapping of RNA reads, we identified among the platelet RNAs 

known platelet-abundant genes, such as B2m (beta-2 microglobulin), Fth1 

(ferritin heavy polypeptide 1), Pf4 (platelet factor 4), Ppbp (pro-platelet 

basic protein) and Tmsb4x (thymosin, beta 4, X chromosome) (Extended 

Data Fig. 1b), which yielded much higher read counts than average level. 

The obtained platelet RNA profiles correlated with PBMC RNA profiles, 

but the correlation between platelet and PBMC RNA profiles was much 

less prominent than that between samples within the platelet or PBMC 

group (Extended Data Fig. 1c). Moreover, mRNAs such as B2m, Tmsb4x, 

Ppbp, Rgs18 (regulator of G-protein signaling 18), Ctsb (cathepsin B), 

Calr (calreticulin), Eef2 (eukaryotic translation elongation factor 2) and 
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Igfbp4 (insulin-like growth factor binding protein 4), which were 

previously reported differentially expressed genes between platelet and 

PBMC profiles
17

, were also differentially expressed in our sequencing 

data (Extended Data Fig. 1d).  

A total of 760 out of 24,774 mRNAs were increased and 443 out of 

24,774 mRNAs were decreased in platelet samples of S group as 

compared to samples of C group, while presenting a strong correlation 

between these platelet profiles (r = 0.991, Pearson’s correlation) (Fig. 2b 

left). A total of 1,352 out of 24,231 mRNAs were increased and 1,083 

mRNAs were decreased in S group compared with O group (r = 0.982, 

Pearson’s correlation) (Fig. 2b middle). Out of 23,923 mRNAs, 522 were 

increased and 428 were decreased in O group compared to C group (r = 

0.998, Pearson’s correlation) (Fig. 2b right). For PBMC samples, a total 

of 239 out of 31,625 mRNAs were increased and 251 out of 31,625 

mRNAs were decreased in PBMC samples of S group as compared to 

samples of C group, also presenting a strong correlation between these 

PBMC mRNA profiles (r = 0.996, Pearson’s correlation) (Extended Data 

Fig. 2a left). A total of 732 out of 31,263 mRNAs were increased and 

1,477 mRNAs were decreased in S group compared with O group (r = 

0.833, Pearson’s correlation) (Extended Data Fig. 2a middle). Out of 

26,630 mRNAs, 1,676 were increased and 868 were decreased in O group 

compared to C group (r = 0.803, Pearson’s correlation) (Extended Data 
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Fig. 2a right). We detected in platelets 3,458 and in PBMCs 3,694 

differentially expressed protein coding and non-coding RNAs by multiple 

pairwise comparisons, which were used for subsequent investigations 

(Fig. 2c, Extended Data Fig. 2b). Hierarchical clustering based on 

differentially detected platelet mRNAs distinguished 3 sample groups 

with minor overlap, while clustering based on PBMC mRNAs could not 

quite discriminate S group from C group (Fig. 2d, Extended Data Fig. 

2c).  

Blood platelets provide novel biomarkers to predict occult tumor 

progression in mice 

To screen for distinct markers of occult melanoma, we searched for genes 

differentially expressed in S group compared with both C group and O 

group (eDEGs, “e” as in “early-early mouse model”) (Fig. 3a, details in 

“Methods”). Compared with 524 eDEGs (436 were protein-coding genes) 

from platelet data, there were only 149 genes (only 63 were 

protein-coding genes) in PBMC data that fulfilled our criteria 

(Supplementary Table 1, 2). KEGG pathway analysis revealed that these 

differentially expressed mRNAs from platelets of suboptimal inoculation 

group (eDEGs) were strongly enriched for biological processes related 

with immune response or regulation, such as “cytokine receptor 

interaction” and “cell adhesion molecules” (Fig. 3b, Extended Data Table 

1), whereas the differentially expressed genes in PBMC mRNAs were 
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only enriched for two biological processes with low gene counts in each 

pathway (Extended Data Fig. 2d, Extended Data Table 2). Therefore, 

platelet RNA profiles might provide a platform for screening novel 

biomarkers of occult tumor. Furthermore, platelets were the optimum 

biosource for screening new biomarkers for early cancer detection since 

PBMC RNA profiles failed to yield enough eDEGs or significantly 

enriched pathways. To better understand the interplay among the 

identified eDEGs in platelets, we obtained the protein-protein interaction 

(PPI) network using the online STRING tool
18

. The complicated network 

was made up of 25 modules, including 351 nodes and 1,148 edges and 

the top three significant modules were selected for further analysis (Fig. 

3c-e). The first module contained 26 nodes and 270 edges, including Tlr9 

(toll-like receptor 9), Icam1 (intercellular adhesion molecule 1), Ccr7 

(chemokine (C-C motif) receptor 7), Ifng (interferon gamma), etc (Fig. 

3c). In the second and third module, there were only 10 nodes found and 

the degree values of genes (edges) were much lower than those in the first 

module (Fig. 3d, e). Combining literature search with our bioinformatics 

analyses, we finally selected 36 genes from our platelet data for 

subsequent experimental validation (Fig. 3f).  

We established a validation cohort using our “early-early” melanoma 

model to test the diagnostic efficacy and predictive value of the 

aforementioned 36 biomarkers. Mice inoculated in our previous 
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experiments were divided into 3 groups according to their tumor 

development status on the day of blood collection (day 14 

post-inoculation) (Fig. 4a). Mice with occult tumors on day 14 

post-inoculation, which were validated by subsequent tumor progression 

at least 5 days after blood collection, were categorized as early-early 

tumor group (E group) (Extended Data Fig. 3, Extended Data Table 3, 

details in “Methods”). Mice with macroscopic tumors were classified as 

melanoma group (M group) and mice injected with HBSS were in 

negative control group (C group) (Fig. 4a). Tumor volumes measured on 

blood collection day showed that E group mice had no visible tumor or 

only small tumors (volume < 1 mm
3
) that did not progress for more than 

2 weeks post-inoculation, verified by multi-phase regression analysis via 

Joinpoint program (Fig. 4b, Extended Data Fig. 3, Extended Data Table 

3)
19

. Tumor growth kinetics demonstrated that E group mice eventually 

developed macroscopic melanomas afterwards, much later than M group 

(Fig. 4c, d).  

Quantitative real-time PCR (qPCR) experiments were performed to 

validate the selected 36 genes from eDEGs in our mouse validation 

cohort (Extended Data Table 4). The normalized expression levels of the 

36 genes were mostly in accordance with our previous sequencing data, 

except Clca3a1 (chloride channel accessory 3A1), F13a1 (coagulation 

factor XIII, A1 subunit), Ifng, Prf1 (perforin 1 (pore forming protein)) 
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and S100a9 (S100 calcium binding protein A9), which yielded 

non-significant results (Extended Data Fig. 4, Extended Data Table 5). 

Hierarchical clustering of ΔCt values could discriminate E group from C 

group and M group, which was consistent with our sequencing data (Fig. 

4e, f). Although most selected genes could be validated in qPCR 

experiments, the quantities of several platelet RNA samples were too low 

for 36-gene-panel qPCR experiments. Therefore, 10 samples were 

excluded for subsequent analysis. Moreover, some markers such as 

Clca3a1, Ifng or Prf1, yielded invalid Ct value in over 20% of samples 

from each group, probably due to low abundance in platelets (Extended 

Data Table 5). Therefore, 7 genes including Clca3a1, F13a1, Gzmb 

(granzyme B), Icam1, Ifng, Klrg1 (killer cell lectin-like receptor 

subfamily G, member 1), and Prf1, were not used for subsequent 

regression analysis of E and C group. However, Gzmb was included in 

regression analysis of E and M group since it yielded valid Ct results in 

more than 90% of samples in each group (Extended Data Table 5). 

Ultimately there were 29 genes and 30 genes included as independent 

variables in subsequent regression analyses of E vs. C group and E vs. M 

group.  

LASSO binomial logistic regression was applied to generate the 

prediction model with a multi-gene expression signature as the best 

predictor for occult tumor progression in mice. Cross-validation was 
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carried out in 10 folds to prevent overfitting (internal training sets and 

internal validation sets constructed randomly) (Extended Data Fig. 5a, b). 

Finally the optimal gene signature consisting of Cd19 (CD19 antigen), 

Cdkn1a (cyclin-dependent kinase inhibitor 1A (P21)), S100a9, Tap1 

(transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)), Tnfrsf1b 

(tumor necrosis factor receptor superfamily, member 1b) for E vs. C 

group, and Ccr7, Cd4 (CD4 antigen), Kmt2d (lysine (K)-specific 

methyltransferase 2D), Ly6e (lymphocyte antigen 6 complex, locus E) for 

E vs. M group, as well as the corresponding coefficients were identified 

by the regularization process of LASSO regression (Extended Data Fig. 

5c). Predictive scores for tumor progression were calculated from qPCR 

data using the training set of 63 mice for E vs. C group and 60 mice for E 

vs. M group. The scores were then tested in the validation set of 27 and 

25 mice for E vs. C and for E vs. M group respectively. The biomarker 

score formula for E vs. C group could discriminate E group from C group 

with an area under curve (AUC) of 0.935 (training data) and 0.912 

(testing data) (Fig. 5a). Moreover, the score formula for E vs. M group 

could also distinguish E group from M group with an AUC of 0.920 

(training data) and 0.936 (testing data) (Fig. 5b).  

Although platelets have been suggested as a valuable platform for 

cancer diagnostics
3,20,21

, studies have yet to address their potential as a 

cancer screening platform. By using a mouse model that is simple, 
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affordable and efficient, we identified differentially expressed RNAs in 

platelet signatures of mice injected with a suboptimal number of tumor 

cells, compared with mice with large melanomas and negative controls. 

These genes presented strong positive correlations with RNAs implicated 

in immune response and regulation. This possibly reflects the interactions 

between tumor cells and the immune system in the early stage of 

tumorigenesis. Moreover, the lack of enriched biological pathways from 

PBMC samples suggests platelets are the optimum biosource for early 

detection of cancer.  

Indeed there are previous longitudinal studies using pre-diagnostic 

serums to screen for novel biomarkers of early cancer detection. However, 

these studies utilized pre-diagnostic serum to detect tumor-specific 

antigens or auto-antibodies for cancer risk prediction with limited 

sensitivity
2,22-24

. Novel cancer markers such as circulating tumor cells 

(CTCs) and circulating tumor DNA (ctDNA) offer new genomic 

approaches to screen for cancer through liquid biopsies. However, recent 

studies indicate CTCs assay cannot differentiate between patients with 

early-stage malignancy and people with no cancer and it has limited 

specificity as a screening tool
1,4

. On the other hand, ctDNA has promised 

to be a sensitive and specific test for cancer screening
25,26

. Still, ctDNA 

testing has several limitations for a screening platform compared with 

platelet RNA testing. First, the quantity of ctDNA is very limited even in 
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cancer patients, not to mention in patients with early-stage cancer, while 

blood platelets are quite abundant. So the volume of blood needed in 

platelet testing is about 0.1 ml while ctDNA testing requires at least 10 ml. 

Second, the isolation and conversion process may cause damages to 

ctDNA, while platelet isolation procedure is simple and sample is stable 

and easy for storage. Third, ctDNA analysis could only detect frequently 

mutated genes in common cancers. The evolutionary and heterogeneity 

nature of cancer demands a large amount of possible mutations to be 

screened to achieve a consistent biomarker. Platelet biomarkers, on the 

other hand, are genes correlated with immune response and regulation 

according to our findings. Hence, platelet RNA testing may not be 

affected by cancer type or heterogeneity. Fourth, ctDNA extraction 

requires an expensive kit while platelet isolation needs no expensive 

consumables. The subsequent sequencing analysis of ctDNA is also more 

expensive than platelet sequencing in our study. Furthermore, our study 

used LASSO regression to select the optimum gene-expression-signature 

for the prediction of cancer risk via quantitative real-time PCR. Hence 

our strategy with the prediction models including 4 or 5 biomarkers as 

variables is much more cost-effective than ctDNA testing for hundreds of 

hotspots. Fifth, our platelet RNA prediction model could discriminate 

early-stage cancer from both healthy control and macroscopic tumor 

group, while biomarkers or screening models from previous studies often 
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cannot distinguish samples from different stages of cancer. Thus platelet 

RNA testing may easily determine the best time for possible intervention. 

Last but not the least, platelet RNA testing described in our 

proof-of-concept study takes hours via qPCR while ctDNA testing takes 

days or weeks via next-generation sequencing and require skilled biology 

and bioinformatics technicians. Hence platelet testing is much less 

time-consuming and requires less training of technicians. This 

demonstrates the potential of platelets as a non-invasive screening 

platform for the detection of occult cancer.  

The sensitivity and specificity of our model could further improve by 

including more samples or increasing RNA quantities to avoid invalid 

qPCR results from low-abundant genes, or by employing machine 

learning of large sequencing data for validation. Since it has been shown 

that platelet profiles are influenced by tumor type
3
, it is feasible to add 

tumor type markers into the gene-panel to determine the origin of cancer. 

It would also be interesting to investigate platelet profiles in 

immunoediting animal models to further understand the role of platelets 

in cancer-immune interactions. Combined, our study provides evidence 

for potential clinical relevance of blood platelets as a platform for liquid 

biopsy-based early detection of cancer.  
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Methods 

Mice.  

C57BL/6 mice were bred in the Laboratory Animal Center, Health 

Science Center, Xi'an Jiaotong University. All mice were female and 

aged between 6–8 weeks at the beginning of all experiments. Animal 

experiments were approved by the Animal Ethics Committee of Xi'an 

Jiaotong University. All animal experiments were set with a maximum 

endpoint at a tumor volume of 1,000 mm
3
.  

B16F10 cell line.  

B16F10 cells negative for mycoplasma contamination were cultured and 

passaged in RPMI-1640 medium containing 10% fetal calf serum (FCS) 

at 37 °C/5% CO2. For animal inoculations, cells were cultured in 

Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% 

FCS and 5 µg/ml plasmocin prophylactic reagent (InvivoGen, Cat.: 

ant-mpp) at 37 °C/5% CO2 to induce better melanin production. B16F10 

cell line was generously provided by Dr Hui Zhang from Institute of 

Human Virology, Sun Yat-sen University and originally purchased from 

the ATCC.  

B16F10 melanoma inoculation.  

For melanoma inoculation, B16F10 melanoma cells were harvested by 

washing with phosphate buffer saline (PBS), then incubating cells at 

37 °C for 1–2 min with 1 × Trypsin/EDTA solution and washing with 
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Hanks’ balanced saline solution (HBSS) twice. For B16F10 inoculation, 

the right flanks of mice were shaved with a mini-razor and cells (2 × 10
3
, 

5 × 10
3
, 1 × 10

4
 and 1 × 10

5
 cells per mouse for each group) were 

suspended in 100 μl HBSS and then injected under the right flank 

subcutaneously using a 30G needle. Tumor formation was monitored by 

inspecting via a magnifying scope and measured with a caliper 

periodically (tumor volume was estimated using this formula: volume = 

length × width × height × 0.5)
27

.  

Blood sample collection.  

Blood samples were collected from retro-orbital sinuses of C57BL/6 mice 

14 days after inoculation. For terminal or nonterminal blood collection, 

mice were fully anesthetized with isoflurane and blood samples were 

collected by puncturing the retro-orbital sinuses of mice using 

microhematocrit capillary tubes. Blood was collected into a tube 

containing the anti-coagulant EDTA. After nonterminal blood collection 

(less than 1% of body weight, approximately 150-200 μl), the tube was 

withdrawn and a slight pressure was put on the eye with a sterile cotton 

swab to ensure hemostasis. After terminal blood collection, mice were 

euthanized by cervical dislocation.  

Isolation of platelet and PBMC RNA.  

Blood platelets isolation was performed as described previously
3,28

. 

Briefly, anti-coagulated blood was centrifuged at 180 × g at room 
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temperature for 10 min, yielding platelet-rich plasma. Platelets were 

isolated from the platelet-rich plasma by centrifugation at room 

temperature for 10 min at 1,250 × g. The platelet pellet was lysed in 

TRIzol Reagent (Invitrogen, Thermofisher Scientific) and frozen at 

-80 °C for future use.  

The bottom layer of the centrifuged blood sample from the first step of 

platelet isolation was further used for peripheral blood mononuclear cell 

(PBMC) isolation using mouse PBMC isolation kit (TBD science, Tianjin) 

following the manufacturer’s instructions. Briefly, the aforementioned 

bottom layer was mixed with the same volume of diluting solution 

provided by the manufacturer and the mixture was carefully layered on 

the PBMC isolation reagent of the same volume in a sterile centrifuge 

tube. The tube was then centrifuged at 950 × g for 30 min at room 

temperature. PBMC layer was transferred into a new tube from the 

interphase with a transfer pipette and washed twice by mixing with 10 ml 

washing solution (also provided by the manufacturer) followed by 

centrifuging at 250 × g for 10 min. The final PBMC pellet was lysed in 

TRIzol and kept in -80 °C for further use.  

Next generation sequencing.  

Next generation sequencing was performed in Novogene (Tianjin, China). 

Briefly, platelet or PBMC RNA samples were assessed for quantity, 

purity and integrity using NanoPhotometer® spectrophotometer 
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(IMPLEN, CA, USA) and RNA Nano 6000 Assay Kit of Bioanalyzer 

2100 system (Agilent Technologies, CA, USA). Samples were pooled to 

satisfy the quantity criteria of RNA sequencing and a minimum amount 

of 20 ng RNA per pooled sample was used as input material for the RNA 

sample preparations. For platelet samples, the numbers of mice sacrificed 

for 5 pooled samples in three groups were as follows: 3, 4, 5, 3 and 5 

mice for O group (optimal inoculation group, mice inoculated with 1 × 

10
5
 B16F10 cells); 10, 10, 9, 11 and 10 mice for S group (suboptimal 

inoculation group, mice inoculated with 2 × 10
3
 B16F10 cells); 10, 5, 5, 

10 and 10 mice for C group (negative control group, mice injected with 

HBSS). For PBMC samples, the numbers of mice sacrificed for 5 pooled 

samples in three groups were as follows: 3, 4, 5, 3 and 5 mice for O group; 

5, 4, 5, 5 and 5 mice for S group; 5 mice for each sample in C group.  

Sequencing libraries were generated using NEBNext
®
 UltraTM RNA 

Library Prep Kit for Illumina
®
 (NEB, USA) following the manufacturer’s 

recommendations with index codes added to attribute sequences to each 

sample. Briefly, mRNA was purified from total RNA using poly-T 

oligo-attached magnetic beads. Fragmentation of mRNA was carried out 

followed by cDNA synthesis. Sequencing libraries were created by 

converting RNA to cDNA via reverse transcription and adding 

specialized adapters to both ends. Next, library fragments were purified 

and then PCR was performed with Phusion High-Fidelity DNA 
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polymerase. PCR products were purified (AMPure XP system) and 

library quality was assessed on the Agilent Bioanalyzer 2100 system 

(Agilent Technologies, CA, USA). Finally, qualified libraries were 

sequenced on an Illumina Novaseq platform.  

Sequencing data analysis.  

Novogene provided sequence alignment, data mapping and differential 

expression analysis. Briefly, raw data of fastq format were processed to 

obtain clean reads with high quality by removing reads containing adapter, 

reads containing ploy-N and reads of low quality from raw data. Clean 

reads were aligned to mus musculus reference genome using Hisat2 

v2.0.5 alignment program. The R package featureCounts v1.5.0-p3 was 

applied to count the reads numbers mapped to each gene
29

. And then 

FPKM (fragments per kilobase of transcript sequence per millions base 

pairs sequenced) of each gene was calculated based on the length of the 

gene and read count mapped to this gene.  

Differential expression analysis was performed using DESeq2 R 

package 1.16.1
30

. The resulting P values were adjusted using the 

Benjamini and Hochberg’s approach for controlling the false discovery 

rates. Genes with P values < 0.05 were assigned as differentially 

expressed for pairwise comparisons. Differentially expressed genes for 

subsequent screening of distinct markers of early-early cancer (eDEGs) 

must meet these requirements: log2(S vs. C Fold Change) > 0, P < 0.05, 
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log2(S vs. O Fold Change) > 0, P < 0.05; or log2(S vs. C Fold Change) < 

0, P < 0.05, log2(S vs. O Fold Change) < 0, P < 0.05. O group, optimal 

inoculation group, mice inoculated with 1 × 10
5
 B16F10 cells; S group, 

suboptimal inoculation group, mice inoculated with 2 × 10
3
 B16F10 cells; 

C group, negative control group, mice injected with HBSS.  

Bioinformatics analyses and data visualizations.  

Data visualizations were performed using R (version 3.6.3)
31

. Heatmaps 

and clusterings were generated using pheatmap package
32

. Dot plots and 

bubble plots were generated using ggplot2 and corrplot packages
33,34

. 

Pathway enrichment analyses of differentially expressed genes in 

suboptimal inoculation group (eDEGs) were performed using 

clusterProfiler package with reference from KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathways with P values adjusted by Benjamini 

and Hochberg method
35,36

. The protein-protein interaction (PPI) network 

of eDEGs was retrieved from STRING database
18

 and reconstructed 

using Cytoscape
37

. Each node’s degree of connectivity in the network was 

calculated. Molecular COmplex DEtection (MCODE)
38

 was used to find 

gene clusters based on topology locating densely connected regions.  

Quantitative real-time PCR.  

Blood platelet RNA was isolated as described above. Platelet RNA was 

then converted to complementary cDNA using PrimeScript RT Master 

Mix (Takara) according to the manufacturer’s instructions. Quantitative 
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real-time PCR (qPCR) was performed with TB Green Premix Ex Taq 

(Takara) using LightCycler 96 System (Roche Life Science) with 

parameters adjusted according to the PCR cycler and the enzyme’s 

manuals. The reaction process was as follows: preincubation at 95 °C for 

30 s; 40 cycles of 5 s at 95 °C and 30 s at 55 °C for annealing and 

extension; melting at 95 °C for 5 s, 60 °C for 60 s and 95 °C for 1 s; 

cooling for 30 s at 50 °C. Cycle-threshold (Ct) values were determined 

for each gene and normalized to the housekeeping genes Actb, Gapdh, 

Gusb, Gnas and Oaz1, which were validated previously as reliable 

reference genes for platelet RNA qPCR
39,40

.  

Statistic analyses.  

All statistical analyses were performed in SPSS 18.0 or Prism 8 

(Graphpad) and were two-sided. All experiments were performed with 

replicates as indicated, either with representative data shown, or with 

pooled data shown. Figures with pooled data from multiple experiments 

included all experiments performed. All data reflected multiple 

independent experiments with at least 3 mice per experiment, in which 

similar results were obtained.  

Kaplan-Meier curves were generated to illustrate the relationship 

between percentage of tumor-free mice and time after inoculation. 

Mantel-Cox tests were used to test statistic significance.  

Joinpoint software version 4.8.0.1 was used to analyze tumor growth 
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data for multi-phase regression in order to determine when the tumor 

went from occult state into fast progressing phase
19

. A maximum of 1 

joinpoint was allowed based on the number of data points and previous 

studies on the role of angiogenesis in tumor dormancy
41

. The statistic 

significance of the change in tumor growth trend over time was tested 

using a Monte Carlo Permutation method embedded in the Joinpoint 

software
19

. Blood samples from mice whose tumor became visible more 

than 5 days after blood collection (19 days post-inoculation) were 

categorized as early-early group (E group). Alternatively, samples from 

mice with a mini-tumor (tumor volume < 1 mm
3
) on the day of blood 

collection (14 days post-inoculation) that did not progress for at least 20 

days since inoculation (joinpoint ≥ 20, Permutation test P value < 0.05) 

were also classified as early-early group (E group). Blood samples from 

mice with macroscopic and palpable tumors (tumor volume > 30 mm
3
) 

were categorized as melanoma group (M group) and blood samples from 

mice injected with HBSS were in negative control group (C group).  

Statistic analyses of qPCR results were performed via SPSS 18.0. 

Kruskal-Wallis non-parametric test was executed and adjusted P value 

below 0.05 was assigned as significant. Samples with more than 10 genes 

with invalid Ct values (no signal within 40 cycles of PCR due to low 

RNA quantity) out of 36 markers were excluded. Then genes with invalid 

Ct values in at least 5 samples in both dependent variable groups 
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(probably due to low expression levels of certain chosen markers in 

platelets) were not included for subsequent variable selection via LASSO 

binary regression analysis.  

The Least Absolute Shrinkage and Selection Operator (LASSO) model 

is a shrinkage method for regression with high-dimensional predictors, 

which can preserve valuable variables from a large and potentially 

multicollinear set of variables, and avoid overfitting. This method is 

suited for analyzing gene expression data where multicollinearity of 

selected genes in related biological pathways may occur. We performed 

LASSO binary logistic regression using glmnet R package
42

. Data were 

randomly divided into training set (70%) and testing set (30%). We 

utilized ten-fold cross-validation to select the penalty term λ. The 

binomial deviance was set as measures of the predictive performance of 

the fitted models. The built-in function in glmnet package produced the λ 

that minimized the binomial deviance. The coefficients of selected 

variables were obtained through the penalizing process. The seed was set 

to 10 for data replication. The prediction score formulas for the 

discrimination of early-early tumor (occult tumor, E group) from negative 

control group (C group) or from macroscopic melanoma group (M group) 

were established as follows: Score = Intercept + Σ Coefficient × (CtVariable 

– CtRef).  

Receiver operating characteristic (ROC) curves were constructed and 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.09.430530doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.09.430530


area under curve (AUC) was calculated using SPSS 18.0. Probability 

statistics for ROC were calculated according to the prediction score 

formulas generated from LASSO regression analyses described above: 

Probability = e
Score 

/ (1 + e
Score

). 

Data availability 

The accession number for the raw sequencing data reported in this study 

is GEO: GSE160650.  
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Fig. 1 Tumor growth kinetics in C57BL/6 mice inoculated with different 

numbers of B16F10 cells.  

a, Tumor growth curves after inoculation with optimal and suboptimal 

numbers of B16F10 cells. b, c, Proportion of tumor-free and 

tumor-bearing mice following inoculation with B16F10 cells. Data 

pooled from n = 8 (1 × 10
5
 cells per mouse, red), n = 12 (1 × 10

4
 cells per 

mouse, dark blue), n = 29 (5 × 10
3
 cells per mouse, blue) and n = 14 (2 × 

10
3
 cells per mouse, light blue) biologically independent experiments 

with n = 37 mice (1 × 10
5
 cells per mouse), n = 54 mice (1 × 10

4
 cells per 

mouse), n = 131 mice (5 × 10
3
 cells per mouse) and n = 60 mice (2 × 10

3
 

cells per mouse). ****P < 10
-10

, log-rank Mantel-Cox test (b).  
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Fig. 2 Platelet RNA profiles of mice inoculated with a suboptimal number 

of B16F10 cells are distinct from those of control mice and mice with 

macroscopic tumors.  

a, Animal model and platelet mRNA sequencing workflow, as starting 

from B16F10 cell injection, terminal blood collection, to platelet isolation, 

and mRNA sequencing. C group: negative control group, mice injected 

with HBSS (Hank's Balanced Salt Solution); S group: suboptimal 

inoculation group, mice inoculated with 2 × 10
3
 B16F10 cells; O group, 

optimal inoculation group, mice inoculated with 1 × 10
5
 B16F10 cells 

(a-d). b, Correlation plots of mRNAs detected in platelets of S group, C 

group and O group mice, including highlighted increased (red) and 

decreased (blue) platelet mRNAs. NRC, normalized read counts (mean of 

group). r value calculated from Pearson's correlation test. c, Venn diagram 

of differentially expressed genes from pairwise comparisons. d, Heatmap 
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of hierarchical clustering of platelet mRNA profiles of S group (beige), C 

group (green) and O group (orange). Data pooled (b-c) from n = 5 

biologically independent experiments with n = 50 (S group) or n = 40 (C 

group) and n = 20 (O group) mice, or data representing all 5 independent 

experiments (d).  
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Fig. 3 Bioinformatics analyses of differentially expressed genes from 

suboptimal inoculation group.  

a, Schematics of screening strategy for differentially expressed genes for 

screening early cancer biomarkers (eDEGs). Eligible genes differentially 

expressed between S (suboptimal inoculation group, mice inoculated with 

2 × 10
3
 cells) and C group (negative control group, mice injected with 
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HBSS), and also between S and O group (optimal inoculation group, 

mice inoculated with 1 × 10
5
 cells), shown in red columns (eligible 

eDEGs criteria see details in “Methods”). b, Top GO terms of pathway 

enrichment analysis of eligible eDEGs with reference from KEGG 

pathways. Adjusted P value < 0.05, Benjamini and Hochberg method. c-e, 

Top 3 PPI networks modules of eligible eDEGs. Color of a node in the 

PPI network: log2 (Fold change, FC) value of normalized read counts of 

genes from S group compared with C group; Size of a node: number of 

interacting proteins with the designated protein (c-e). f, Panel of 36 genes 

screened from mRNA sequencing data besides 5 reference genes.  
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Fig. 4 Validation of the expression levels of selected 36 genes via 

quantitative real-time PCR in a mouse cohort.  

a, The construction workflow of a murine validation cohort, as starting 

from B16F10 cell inoculation, nonterminal blood collection, to platelet 

isolation, and observation of tumor developments. C group: negative 

control group, mice injected with HBSS (Hank's Balanced Salt Solution); 

E group: early-early group, mice with occult tumors 14 days 

post-injection (details in “Methods”); M group, mice with macroscopic 

tumors 14 days post-injection (a-f). b, Tumor volumes of three groups of 

mice 14 days after inoculation. ***P < 0.001, Kruskal-Wallis 
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non-parametric test, Error bars representing SD values. c, Tumor growth 

kinetics of three groups from the mouse cohort. d, Proportion of 

tumor-free and tumor-bearing mice in three groups of the mouse cohort. 

****P < 10
-10

, log-rank Mantel-Cox test. e, f, Heatmap of hierarchical 

clustering of expression levels of 36 selected genes from platelet mRNA 

sequencing data (normalized read counts) (e) or from quantitative 

real-time PCR results (CtRef ― CtGene) (f) in C group (green), E group 

(beige) and M group (orange). QPCR Data pooled from n = 11 

biologically independent experiments with n = 51 (C group, black), n = 

44 (E group, blue), and n = 50 (M group, red) mice (b-d, f).  
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Fig. 5 Receiver operating characteristic (ROC) curve analyses for the 

diagnostic performances of optimal gene signatures as predictors for 

occult tumor progression in mice.  

ROC curves for the diagnostic performances of the prediction score 

formulas generated from LASSO regression in the mouse cohort. ROC 

curves for the discrimination of early-early tumor (occult tumor, E group) 

from negative control group (C group) (a, E vs. C) or from macroscopic 

melanoma group (M group) (b, E vs. M). Probability statistics calculated 

according to the prediction score formulas generated from LASSO 

regression analyses: Probability = e
Score 

/ (1 + e
Score

). 95% CI of AUC: 

training data 0.872-0.999, testing data 0.799-1.000 (a); training data 

0.852-0.988, testing data 0.837-1.000 (b).  
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Extended Data Fig. 1 Platelet RNA profiles of mice inoculated with 

B16F10 cells are consistent with platelet signatures in previous studies.  

a, Images of mice after terminal blood collection. Representative images 

of mice in O group (optimal inoculation group, mice inoculated with 1 × 

10
5
 B16F10 cells) (left) and S group (suboptimal inoculation group, mice 

inoculated with 2 × 10
3
 B16F10 cells) (right). b, Platelet mRNA 

sequencing data of known platelet-abundant genes with a dashed line 

showing the average read count of our data. c, Pearson’s correlation 

(color bar) matrix of our mRNA sequencing data of platelets and PBMCs 

(columns and rows). S: platelet suboptimal inoculation group; O: platelet 

optimal inoculation group; C: platelet negative control group. PS: PBMC 

suboptimal inoculation group; PO: PBMC optimal inoculation group; PC: 

PBMC negative control group. d, Heatmap of previously reported 

differentially expressed genes between platelets and PBMCs from our 
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sequencing data.  
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Extended Data Fig. 2 PBMC RNA profiles of mice inoculated with an 

optimal and a suboptimal number of B16F10 cells.  

a, Correlation plots of mRNAs detected in PBMCs of suboptimal 

inoculation group (S group, mice inoculated with 2 × 10
3
 B16F10 cells), 

negative control group (C group, mice injected with HBSS) and optimal 

inoculation group (O group, mice inoculated with 1 × 10
5
 B16F10 cells) 

mice, including highlighted increased (red) and decreased (blue) PBMC 

mRNAs. NRC, normalized read counts (mean of group). r value 

calculated from Pearson's correlation test. b, Venn diagram of 

differentially expressed genes from pairwise comparisons. c, Heatmap of 

hierarchical clustering of PBMC mRNA profiles of S group (beige), C 

group (green) and O group (orange). Data pooled from (a, b) n = 5 
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biologically independent experiments with n = 24 (S group) or n = 25 (C 

group) and n = 20 (O group) mice or data representing all 5 independent 

experiments (c). d, Top GO terms of pathway enrichment analysis of 

eligible eDEGs (strategy same as Fig. 3a, details in “Methods”) in 

PBMCs with reference from KEGG pathways. Adjusted P value < 0.05, 

Benjamini and Hochberg method.  
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Extended Data Fig. 3 An example of the selected models from Joinpoint 

multi-phase regression analyses.  

Tumor growth data from one mouse in early-early tumor group (E group).  
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Extended Data Fig. 4 Quantitative real-time PCR verifications of the 

expression levels of selected 36 genes in the mouse cohort.  

Violin plots of normalized gene expression levels (2
ΔCt(Ref-Gene)

) of 36 

selected genes in three groups of the mouse cohort. C: negative control; E: 

early-early tumor; M: macroscopic melanoma. *P < 0.05, **P < 0.01, 

***P < 0.001, Kruskall-Wallis test. Data without significance tags 
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representing non-significant for analyses between three groups (h, n, u, 

ad, ae) (detailed statistics including n values and P values see Extended 

Data Table 5).  
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Extended Data Fig. 5 LASSO regression model construction and variable 

selection for predicting occult tumor progression in the mouse cohort.  

a, b, Ten-fold cross-validation for the selection of the penalty term λ with 

the binomial deviance as measures of the predictive performance of the 

fitted models. The dependent variable groups: E vs. C (a) or E vs. M (b). 

c, Coefficients derived from LASSO regression. E, early-early tumor 

(occult tumor that progressed into macroscopic tumor later); C, negative 

control group; M, macroscopic melanoma group. Numbers of samples 

included in LASSO regression: E, n = 40; C, n = 50; M, n = 45. Numbers 

of variables included in LASSO regression: E vs. C, n = 29; E vs. M, n = 

30. The prediction score formulas for the discrimination of E group from 

C group (ScoreEC) or from M group (ScoreEM) established as follows: 

ScoreEC = 6.337 – 0.156 × (CtCd19 – CtRef) – 0.345 × (CtCdkn1a – CtRef) + 
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0.187 × (CtS100a9 – CtRef) – 1.582 × (CtTap1 – CtRef) + 0.615 × (CtTnfrsf1b – 

CtRef); ScoreEM = 4.664 – 0.149 × (CtCcr7 – CtRef) – 0.900 × (CtCd4 – CtRef) 

+ 0.326 × (CtKmt2d – CtRef) – 0.313 × (CtLy6e – CtRef).  
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Extended Data Table 1 Enriched KEGG pathways of differentially 

expressed mRNAs in platelets of suboptimal inoculation group compared 

with optimal inoculation group and control group.  
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Extended Data Table 2 Enriched KEGG pathways of differentially 

expressed mRNAs in PBMCs of suboptimal inoculation group compared 

with optimal inoculation group and control group.  
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Extended Data Table 3 Joinpoint multi-phase regression statistics for all 

mice in early-early group of the mouse cohort. 

 

P value, the statistic significance of the change in tumor growth trend 

over time calculated via a Monte Carlo Permutation method 
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Extended Data Table 4 Primers for qPCR experiments.  

 

*Reference genes 
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Extended Data Table 5 Statistic analyses of the normalized expression 

levels of selected 36 genes in the mouse cohort. 

 

P value between groups, Kruskal-Wallis non-parametric test.  

P value of pairwise comparison, adjusted P value of Kruskal-Wallis 

non-parametric test for 3 groups.  

NA, not applicable for pairwise comparisons.  
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Group C/E/M, number of samples with valid Ct values out of the total 

number of samples in each group. (C: negative control (total n = 51); E: 

early-early tumor (total n = 44); M: macroscopic melanoma (total n = 

50)).  
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Additional information 

Supplementary Table 1 Differentially expressed mRNAs in platelets of 

suboptimal inoculation group compared with optimal inoculation group 

and control group.  

Supplementary Table 2 Differentially expressed mRNAs in PBMCs of 

suboptimal inoculation group compared with optimal inoculation group 

and control group. 
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