The foraging gene affects alcohol sensitivity, metabolism and memory in Drosophila

Anne S. Oepena,b, Jamie Catalanoa,c, Reza Azanchia, and Karla R. Kaund,21

aDepartment of Neuroscience, Brown University, Providence, USA
bMasters Program in Developmental, Neuronal and Behavioral Biology, Georg-August-University, Goettingen, Germany
cMolecular Pharmacology and Physiology Graduate Program, Brown University, Providence, USA

Correspondence: karla_kkaun@brown.edu

The genetic basis of alcohol use disorder (AUD) is complex. Understanding how natural genetic variation contributes to alcohol phenotypes can help identify mechanisms underlying the genetic contribution of AUD. Recently, a single nucleotide polymorphism in the human foraging (\textit{for}) gene ortholog, Protein Kinase cGMP-Dependent 1 (PRKG1), was found to be associated with stress-induced risk for alcohol abuse. However, the mechanistic role that PRKG1 plays in AUD is not well understood. We use natural variation in the \textit{Drosophila} for foraging gene to describe how variation of cGMP-dependent protein kinase (PKG) activity modifies ethanol-induced phenotypes. We found that variation in \textit{for} affects ethanol-induced increases in locomotion and memory of the appetitive properties of ethanol intoxication. Further, these differences may stem from the ability to metabolize ethanol. Together, this data suggests that natural variation in PKG modulates cue reactivity for alcohol, and thus can influence alcohol cravings by differentially modulating metabolic and behavioral sensitivities to alcohol.

\textit{foraging | PRKG1 | cGMP-dependent protein kinase | alcohol | memory | metabolism | locomotion | AUD | Drosophila}

Introduction

Determining the mechanisms through which individual genes influence natural variation in behavior has been difficult due to the complexity of the genetic basis of heritable behavior. A notable exception to the genetic complexity underlying behavior is the foraging gene in \textit{Drosophila} melanogaster (1). Variants of \textit{for} show increased (rovers or \textit{for}R) or decreased (sitters or \textit{for}S) cGMP-dependent protein kinase (PKG) activity, which affects food search behavior (2). Rovers show increased pathlength while foraging, whereas sitters show decreased pathlength and stay longer at one food source (1, 3) \textit{for} also causes phenotypical pleiotropy in flies, in part due to multiple promoters driving expression in different cell types (4), and at different developmental stages (5–7). The foraging gene affects foraging behavior (1, 8–13), fat and glucose stores (4, 14), food intake (14, 15), sucrose response (16, 17), sleep (18), habituation (17, 19, 20), nociception (21), oviposition (22), stress response (23–25), as well as learning and memory (17, 20, 26–30).

Moreover, \textit{for}’s role as a behavioral modifier in a wide range of behaviors is conserved across species including \textit{Apis mellifera} (31), Xenopus laevis (32), Mus musculus (33), Caenorhabditis elegans (34, 35), and Homo sapiens (36, 37). Given \textit{for}’s conserved role, understanding the mechanistic actions through which \textit{for} affects behavior may lead to insight regarding conserved functions of how natural genetic variation alters behavior.

More recently, Protein Kinase cGMP-Dependent 1 (PRKG1), the human ortholog of \textit{for} (36, 38), was implicated in stress-induced risk for alcohol abuse (39, 40). A gene-by-environment genome-wide interaction study (GEWIS) investigating mechanisms by which traumatic life events influence genetic variation in relation to alcohol misuse, revealed several risk alleles for alcohol use disorder (AUD) including PRKG1 (40). Similarly, a genome-wide association study (GWAS) implicated PRKG1 in other stressed induces phenotypes like post-traumatic stress disorder (41).

Other components of cGMP signaling have also been implicated in alcohol-associated phenotypes. Consumption of alcohol increases cGMP levels in the rat cortex, striatum and hippocampus (42). Increasing cGMP levels in the rat ventral tegmental area (VTA) or medial prefrontal cortex (mPFC) reduces the ability of alcohol deprivation to enhance drinking, which is reversed by inhibiting PKG (43). Finally, deletion of PKG type II in mice reduces alcohol’s sedative effects and increases alcohol consumption (44). NO/cGC/cGMP/PKG signaling also causes neuroadaptive changes in synaptic activity, thereby affecting distinct forms of learning and memory, such as object recognition, motor adaptation and fear conditioning (45–48). This signaling pathway similarly inhibits dopamine release in brain regions that are involved in addiction (49–51), and contributes to cocaine self-administration (52) and morphine induced neuroadaptation (53). This compounding evidence suggests PRKG1 plays a critical role in alcohol consumption, and calls for a better understanding of \textit{for}’s mechanistic role in alcohol induced behaviors.

\textit{Drosophila} has proven to be a valuable model organism for identifying genes and elucidating mechanisms associated with AUD (54–56). In addition to genomic, transcriptomic and proteome approaches, simple forward and reverse genetic approaches can be performed to identify genes that affect alcohol-induced behaviors, and to elucidate the cellular and molecular mechanisms underlying candidate genes linked to AUD. Due to the huge variety of genetic tools available in \textit{Drosophila}, many cell types, neural circuits and genes have been linked to an alcohol phenotype (57–73). Therefore, investigating \textit{for}’s role in relation to alcohol phenotypes in the fly might help to unravel the function of PRKG1 in alcohol addiction in humans.
Fig. 1. for does not affect spontaneous open field behavior. A) The flyGrAM arena consists of 4 circular arenas each filled with 10 flies of different strains. Flies were tracked while being given humidified air for 5min, ethanol for 10min, then humidified air for 5min. (B) Group activity within each arena was analyzed with the FlyGrAM software while recording the flies during the behavioral paradigm. (C) Ctrax was used to estimate the position and orientation of the 10 flies in each arena per frame. (D) The interactive machine learning for automatic annotation of animal behavior (JAABA) was fed per-frame feature information from ctrax to reveal information about social interaction of the flies. (E,F) Lines depict mean±/standard error. (F-J) Graphs show mean±/standard error. The spontaneous activity levels of flies given humidified air remain at 15% and show no significant difference between strains. (G) Velocity of flies given humidified air for 5min is between 1-3mm/s with no significant difference between strains. (H) Flies cover distances between 30-100cm in five minutes, with no significant differences between strains. (I) Less than 5% of the flies touch per second when given humidified air, with no significant differences between strains. (J) More than 60% of the flies show stopping behavior per second when given humidified air, with no significant differences between strains.

Material and Methods

Fly Stocks and Rearing Conditions. The following fly strains were used: for\(^{s}\) (sitter), for\(^{R}\) (rover) and for\(^{s2}\). for\(^{s}\) and for\(^{R}\) flies carry the natural rover/sitter polymorphisms in for. for\(^{s2}\) flies have a rover genetic background but carry a gamma radiation-induced mutation in for that results in lower PKG activity levels and sitter behavior in many of the for-related phenotypes (2, 10, 11). However, the for\(^{s2}\) mutant does not always affect for\(^{s}\)-dependent phenotypes, and to our knowledge, specific alterations in DNA sequence as a result of the s2 mutation are unknown (74, 75). Flies were raised on standard cornmeal agar food media with tegosept anti-fungal agent. Flies were kept at 24°C and 65% humidity with a 14/10-hour light/dark cycle. Male flies for all strains were collected 1-2 days after hatching and used for behavioral experiments at day 3-5 after eclosion.

Group Activity. In order to analyze the ethanol-induced changes in activity, we used a video based behavioral apparatus and software that enables an automatic quantification of group locomotion activity in Drosophila (70) (Fig 1A). The fly Group Activity Monitor (FlyGrAM) consists of four circular arenas that are all individually connected to an air and vacuum source to allow for a constant airflow (Fig 1A,B). Each arena is 37 mm diameter, 2.5 mm tall, and covered with a clear acrylic sheet allowing the flies to walk freely in the arena, but preventing them from flying. Flies were kept at 24°C and 65% humidity with a 14/10-hour light/dark cycle. Male flies for all strains were collected 1-2 days after hatching and used for behavioral experiments at day 3-5 after eclosion.

Ten flies were gently placed via mouth pipette into each arena, and initially provided humidified air for 5min to habituate the flies to the arena environment. Next, the arena with the flies was placed in the tracking apparatus, and flies were provided a constant humidified airflow of 115 units (1856 ml/min) for 15 minutes, which allowed their locomotion to decrease to a stable baseline (Fig 1A). Subsequently, vaporized ethanol was introduced to the flies in the arena by changing the gas flow-through to a mix of ethanol:air ratio (high concentration: 50:65, low concentra-
tion: 10:105) for 10 minutes. Finally, the airflow was shifted back to 100% air for 10 minutes (Fig 1A). The group activity of the flies are automatically recorded for the entire duration (70). Each experiment was replicated 8 times (n=8 comprises 8 groups of 10 flies per group, thus 80 flies). In order to ensure no strain-specific effects were due to a single arena and no spatial bias of placement within the apparatus, the strains tested were counterbalanced across arenas. Experiments were run at a steady temperature around 24°C ± 1.5°C in a dark chamber to reduce the influence of visual cues on group activity.

High Content Tracking. FlyGrAM videos were analyzed using Ctrax (Branson et al., 2009) to extract information about individual flies’ position, orientation and trajectories (Fig 1B). The output of Ctrax tracking is an ellipse fit to each fly within an arena throughout the experiment. It is defined by the centroid, the fly’s orientation as well as the length of two body axis, the minor and major body axis, needed for the calculation of the perframe features. For example, velocity is defined as the speed of the center of rotation, being the point on the fly that translates the least from one frame to the next. The velocity is calculated by the magnitude of the vector between the fly’s center of rotation in frames t 1 to t, normalized by the frame rate (76). This allowed us to gain information about the velocity of the flies per frame. Total distance travelled (pathlength) before, during and after ethanol exposures was calculated as the integral of speed, i.e. summing the perframe (30fps) velocities (mm/s) measured during 5 minutes. JAABA Classifiers (77) were trained on the Ctrax perframe features to gain information about specific social and locomotion behaviors: Touch and Stop (Fig 1C). The JAABA learning algorithm is fed with specific pre-defined behavioral classifiers in order to scan across all frames for the classified behavior. In this study we made use of the existing classifiers for stopping and touching behavior introduced by Branson and colleagues (77). To further analyze the effect of ethanol on these behavioral features, the data was split into 4 phases each lasting 5 minutes, baseline(0-5min), early ethanol(5-10min), late ethanol(10-15min) and recovery(15-20min). The Stop and Touch data was normalized to the baseline behavior to detect changes in these features caused by alcohol exposure.

Memory for Ethanol Reward. To test whether for affected the ability to associate a cue with ethanol, we exposed forR, for and forR2 flies to two consecutive odor cues (1:36 isomyl alcohol or ethyl acetate in mineral oil) with the second odor paired with an intoxicating dose of 60% ethanol vapor (90:60 ethanol:air) (78,79). Flies were exposed to 10 min of the first odor followed by 10 min of the second odor, which is paired with 60% ethanol vapor. Flies were trained three times with 50 min breaks between each session. Flies were placed in perforated 14mL canonical tubes with mesh lids, and placed in 30cmx15cmx15cm training boxes with passive vacuum while being exposed to odors and ethanol.
Alcohol Metabolism. To investigate how the different for strains absorb and metabolize alcohol, we exposed flies to 60% vaporized ethanol (90:60 ethanol:air) for 10 min and measured internal ethanol concentration immediately after or 30 min after ethanol exposure. The internal ethanol concentrations were determined from whole fly homogenates of 50 flies per sample (78). A conditioned preference index was calculated by averaging the preference index of the two reciprocal training sessions. 60 flies were used for each N=1, 30 flies for each reciprocal conditioning. N=20-26 for each strain per condition.

Statistical Analysis. For statistical analysis the locomotion activity data were split in four phases, baseline (0-300s), early ethanol (300-600s), late ethanol (600-900s), and recovery(900-1200s). All early ethanol, late ethanol and recovery data was normalized to baseline. Data for activity, velocity, touch and stop for each phase was averaged and analysed. Due to low sample size (n=8) in behavior tracking experiments, we used more conservative non-parametric tests for the statistical analysis. This increased rigor, ensured consistency in analyses, and allowed for easier comparisons between experiments. For comparisons between the three non-paired strains, a Kruskal Wallis test followed by Dunnnett’s multiple comparisons was performed. In order to analyze changes in behavior of each strain over time (paired data), a Friedman test followed by paired Wilcoxon multiple comparisons was performed (n.s.=p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001). The statistical analysis was performed in PRISM 7 (GraphPad).

Results

foraging does not affect open field behaviour in the absence of a stimulus. We first tested whether rovers (for^R) and sitter mutants with a rover background (for^2^s) differ in spontaneous behavior in an open field arena without an ethanol stimulus, which we termed ‘baseline’ (Fig 1A,B). We found all for strains showed the same levels of group activity (H(3, 24)=0.29, P=0.8) (Fig 1E,F), velocity (H(3, 24)=4.63, P=0.1) (Fig 1G), touching (H(3, 24)=0.08, P=0.9) (Fig 1I) and stopping (H(3, 24)=0.4, P=0.8) (Fig 1J).
The pathlength of for² flies was significantly shorter compared to for¹ and for¹R (Fig 1H) (H(3, 24)=7.88, P=0.01). In general, flies showed a high percentage of stopping behavior (70%, Fig 1J), and only around 4% of the flies in each arena interacted with each other (Fig 1I).

Foraging affects locomotion in response to an ethanol odor. We then looked at whether for elicited foraging behavior in response to a non-intoxicating ethanol dose similar to that found in fermenting fruit (Levey, 2004). When the flies were exposed to a non-intoxicating 10 min exposure of 10:15 ethanol:air ratio, the percent of flies’ activity increased to up to 40% in for¹R flies (p=0.008) and only 25% in for¹ (p=0.008) and for² (p=0.008) flies compared to baseline activity levels (Fig 2A). for¹R flies demonstrated an increased group activity throughout the 10-minute ethanol exposure whereas for¹ and for² flies steadily decreased activity over time, resulting in a significantly lower activity at the end of ethanol exposure compared to for¹R flies (H(3, 24)=7.96, P=0.02, for¹R vs for¹ (p=0.01), for¹R vs for² (p=0.02)) (Fig 2B). Rovers travelled significantly longer distances during low dose ethanol exposure compared to sitters (0-5 min: H(3, 24)=13.92, P <0.0001, for¹R vs for² (p=0.0006), 5-10min: H(3, 24)=13.72, P=0.0011, for¹R vs for¹ (p=0.02), for¹R vs for² (p=0.001)) (Fig 2C). for¹R flies also show a significantly higher velocity over the time of low dose ethanol exposure compared to for¹ and for² flies (H(3, 24)=18, P=0.0001, for¹R vs for¹ (p=0.002) for¹R vs for² (p<0.0001)) (Fig 2D). Our values are comparable to a previous study that reported in the presence of food rovers walked 36.17cm/30sec (361.7cm/5min), and sitters walked 17.38cm/30sec (173.8cm/5min), suggesting that the low dose ethanol here represents a food-like odor to the fly (10, 81). Ethanol odor increased touching (for¹R (p=0.008), for¹ (p=0.02), for² (p=0.04)) and decreased stopping (for¹R (p=0.008), for¹ (p=0.008), for² (p=0.008)) in all strains (Fig 2 E,F). for did not significantly affect touching (H(3, 24)=1.665, P=0.43) (Fig 2E). However, rovers stopped significantly more than sitters after five minutes of ethanol exposure (H(3, 24)=9.38, P=0.009, for¹R vs for¹ (p=0.03), for¹R vs for¹ (p=0.02)) (Fig 2F).

Foraging does not affect behavior post-ethanol odor stimulus. We hypothesized that once the ethanol odor stimulus was removed, all strains would recover to baseline behavior, resulting in no differences in behavioral measures between the three for strains. As predicted, there were no significant differences in group activity between rovers and sitters (Fig 3A) (for¹R vs for¹ (p=0.06), for¹R vs for² (p=0.99)). Although there was a reduction in pathlength (H(3, 24)=15.7, P=0.004), and velocity (H(3, 24)=15.61, P=0.0004) in for² flies, and in stopping in for¹R flies (H(3, 24)=9.97, P=0.007), there were no consistent significant differences between for¹R and the two sitter strains in any of the metrics reported, so we do not attribute these differences to variation in for (Fig 3 A-F). There were no significant differences in touching between...
foraging affects ethanol-induced increases in locomotion and touching. We next investigated how variants of for affected these behavioral metrics in response to a dose of ethanol that typically induces sustained increases in locomotor activity (Scaplen et al., 2019), by exposing flies to a 50:65 ethanol:air mixture (43% ethanol vapor) for 10 minutes. Sitter strains increased group activity by 40% (for^s (p=0.008), for^r (p=0.008) whereas rovers only showed 30% activity increase (for^R (p=0.02) compared to baseline (Fig 4A). During ethanol exposure, for^R flies showed a significantly lower activity than sitters (H(3, 19)=10.9, P=0.004, for^R vs for^s (p=0.006), for^R vs for² (p=0.04)) (Fig 4B). However, for^R did not show significantly less distance moved (p>0.9) or velocity (p>0.9) compared to for^s, for² flies showed significantly reduced pathlength (H(3, 19)=12.33, P=0.0002) and velocity compared to for^s and for² flies (H(3, 19)=9.47, P=0.004), but since for^R flies did not differ from both sitter strains, we do not attribute these differences to variation in for. This dose of ethanol increased touching (for^R (p=0.02), for^s (p=0.03), for² (p=0.04)) (Fig 4E and decreased stopping (for^R (p=0.03), for^s (p=0.03), for² (p=0.04)) in all strains (Fig 4F). During early ethanol exposure, for^R flies showed significantly more touching (H(3, 19)=12.19, p=0.0002) than for^s (p=0.002), whereas this effect trended towards significance with for² (p=0.06).

In contrast, for^R flies showed significantly more touching (H(3, 19)=6.53, p=0.03) than for^s (p=0.04) but not for² (p=0.2) during late ethanol exposure (Fig 4E). for^R flies showed significantly more stopping (H(3, 19)=9.17, P=0.005) than for^s (p=0.01, p=0.04) but not for² (p=0.1, p=0.9) flies during early and late high-dose ethanol exposure (Fig 4E).

foraging affects recovery from the pharmacological properties of ethanol. We hypothesized that since for affected the percent of flies active during ethanol intoxication, it may also affect recovery from the pharmacological properties of ethanol. Indeed, significantly fewer rover flies were active compared to sitters after the offset of ethanol (H(3, 19)=14.22, P=0.0008, for^R vs for^s (p=0.0009), for^R vs for² (p=0.02)) (Fig 5A,B). However, for^R flies moved significantly more distance than for² flies (p=0.04) but not for^s flies (p>0.9) (Fig 5C). for^R pathlengths returned to baseline within 5min of recovery (p=0.4), which was not the case for for^s (p=0.03) or for² (p=0.03). Similarly, for^R flies moved significantly faster than for² flies (p=0.03) but not for^s flies (p<0.9) (Fig 5D). These activity and locomotion metrics suggest that the 50:65 ethanol:air dose did not sedate the flies, and that rovers recover from the pharmacological properties of ethanol faster than sitters.

Touching behavior remained higher than baseline levels for all strains (for^R (p=0.02), for^s (p=0.03), for² (p=0.04)), and was significantly greater in for^R flies than for² (p=0.01) but not for^s flies (p=0.9) (Fig 5E). for^R flies stopping behavior returned to baseline levels (p=0.6) whereas for^s (p=0.03) and for² (p=0.03) flies continued to show significantly less stopping compared to baseline. n.s.=p>0.05, *=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001.
forages affects reward memory for a cue associated with ethanol. We next hypothesized that the alcohol behavioral sensitivity differences between rovers and sitters would influence how for affects memory for an odor cue associated with ethanol (Fig 6A,B). Typically flies demonstrate aversive memory for ethanol when tested within 9 hours after training, and an appetitive memory when tested 15 hours or more after training (78). Since for has been shown to affect both short-term and long-term memory, we hypothesized that forR would show increased 30-minute aversive memory and reduced 24-hour appetitive memory compared to forA and forS2. No statistical differences were found between strains when flies were tested 30 minutes after training (H(3, 71)=0.63, P=0.73) (Fig 1C). However, 24 hours after training, forR flies show reduced memory for ethanol compared to forA and forS2 flies (H(3, 71)=10.27, P=0.006, forR vs forA (p=0.03), forR vs forS2 (p=0.002)) (Fig 1D). No statistical differences were identified in the ability of the strains to smell the odors used in the conditioning assay (IAA(H(3, 24)=3.79, P=0.15), EA(H(3, 24)=1.28, P=0.53)) (Fig 1E).

Discussion

We found that for affects alcohol induced locomotion (path-length, velocity, activity, and stopping), social behavior (touching), cue-associated memory for the intoxicating properties of ethanol, and ethanol metabolism.

We first recapitulated previously published work demonstrating that rovers move more than sitters in response to a food stimulus. Rovers showed significantly longer path-length and moved faster compared to the sitter strains in response to a low-dose ethanol odor. This is consistent with previous work describing how rovers walk longer distances while searching for food whereas sitters tend to stay at one food source once they find it (12).

In contrast to these ethologically-relevant ethanol...
odor responses, we found that a pharmacologically-relevant ethanol concentration induces a sustained increase in the number of flies active within a group of sitters, but not rovers. However, rovers move similar distances and at the same speed as sitters under these conditions. They also touch more often, and stop less than sitters. This suggests that sitters are more sensitive than rovers to pharmacologically relevant stimulating doses of ethanol. This behavioral phenotype is consistent with the slower return to baseline levels after removal of an ethanol stimulus, and with a slower metabolism of ethanol in sitters.

Here we also showed that the foraging gene affects memory for the intoxicating properties of ethanol, since rovers show reduced preference for an ethanol associated odor cue 24 hours after the association. This is consistent with known roles of for in learning and memory. Rover larvae are better able to acquire and remember three but not eight odor-sucrose pairings compared to sitter larvae (82). Similarly, adult rover flies have better short-term olfactory memory, but worse long-term olfactory memory than sitters (28). This phenotypic difference is also seen in visual learning paradigms and is conserved in mammals (83, 84). Rovers also show higher retroactive interference, which occurs when the retrieval of previously learned information is less available owing to the acquisition of recently acquired information (27, 29, 30).

In the case of ethanol reward memory in Drosophila, we speculate that the difference in ethanol sensitivity between for strains alters perception of the intoxicating experience, causing reward to be processed differently in rovers and sitters. This may explain why for does not affect aversive short-term memory for ethanol, as this type of memory is not dependent on intoxicating concentrations of ethanol (79). Since for affects sensitivity to sucrose and other food substances, altering perception of the reward stimulus may be a more general mechanism through which PKG influences alcohol preference (3, 75).

Alternatively, as for also affects alcohol-induced increases in activity, this change in behavior could be affecting memory acquisition independent of reward perception. Notably, for would not affect the behavioral choice during the memory test since the flies are no longer intoxicated during odor choice (Fig 6A) and for does not appear to significantly affect preference for the odors used (Fig 6E).

Ethanol sensitivity has been associated with greater consumption and risk for developing an AUD (85–87). In human and rodents, sensitivity to the effects of alcohol intoxication is partially influenced by genes, whereas reduced sensitivity predicts the development of alcoholism (88–90). Thus, both heightened alcohol stimulation and reward sensitivity, and lower sensitivity to alcohol sedation robustly predicts more AUD symptoms over time in humans (86, 90). Studies in Drosophila recapitulate this, where genes influence the level of response to an intoxicating dose of ethanol (62, 91–94). Genome-wide association studies (GWAS) for alcohol sensitivity using the sequenced, inbred lines of the Drosophila genetic reference panel (DGRP) together with quantitative trait locus (QTL) mapping in an advanced intercross outbred population derived from sensitive and resistant DGRP lines, revealed 247 candidate genes affecting alcohol sensitivity, 58 of which, including the foraging gene, form a genetic interaction network (95).

Notably, our work did not demonstrate a consistent effect of for on touching. Although we observed a small trend where rovers demonstrated increased touching compared to sitters in the high-ethanol context (Fig 4E), this trend was not
observed in any other behavioral contexts. Relatedly, for affected locomotion in the presence of a food odor in a similar way in our group assay as it did when flies are isolated in previously published studies (10, 12). Our lack of findings here was surprising as for affects social behaviors including aggregation behavior (96) and aggression (97), and influences behaviors that are dependent on a social context such as olfactory learning (98), and oviposition (99). Similarly, for orthonologues influence social behaviors in other taxa including bees (100–102), wasps (103) and ants (104, 105). Our results failed to demonstrate an observed decrease in social dynamics in rovers compared to sitters that was recently observed in a similar assay (106). We speculate that sensory cues necessary for spontaneous social behaviors may have been obscured in our paradigm by a constant flow of hydrated air or odors through the behavioral chambers. This suggests that our behavioral paradigm was not optimal for identifying how for affected social behavior, or how social context could influence for dependent behaviors.

Taken together, the work here contributes to a mechanistic understanding of alcohol sensitivity as indication for AUD by demonstrating how natural variation in metabolic phenotypes can impact behavioral response to an additive substance. Our data predict that variants of for with lower PKG activity in other species will show increased ethanol sensitivity, and increased lasting ethanol preference.

This is consistent with results on the role of PKG in ethanol-induced behaviors from rodent models, suggesting the effects of PKG on alcohol behaviors are highly conserved. cGMP-dependent protein kinase type II (cGKII) knockout mice showed elevated alcohol preference in a 2-bottle free choice test (44), demonstrating that reduction in PKG is associated with increased alcohol preference in both mice and flies. Moreover, cGMP activates NO, which inhibits dopamine release in the striatum in rats resulting in decreasing reward response for alcohol (43, 49). These studies are consistent with rovers showing decreased ethanol preference, as they have higher PKG activity than sitters. Whether this is the mechanism through which variation in PKRG1 increases risk for alcohol abuse in humans remains to be seen (39, 40).

Declaration of Interest

The authors declare no conflict of interest

ACKNOWLEDGEMENTS

We would like to thank Dr. Ulrike Heberlein (Janelia Research Campus) for helpful early discussions about the alcohol-associated preference and metabolism data. Thanks to Dr. Kristin Branson (Janelia Research Campus), Dr. Alice Robie (Janelia Research Campus), Dr. Mayank Kabra (Janelia Research Campus) and members of the Citra and JAAAS google groups for ongoing assistance with Citra and JAAAS. Thanks to members of the Kaun Lab and Dr. Kristin Scaplen (Biola University) for providing helpful feedback on data visualization, analysis, and writing. Thanks to Dr. Marla Sokolowski for providing the for strains. This work was funded by the National Institutes of Health (R01AA024434 to K.R.K.).

With gratitude to Dr. Marla Sokolowski:
Thanks especially to Dr. Marla Sokolowski (University of Toronto), whose guidance was integral to the conceptualization of this work. It is important to note that we work with, including incredible mentors like Maria, that help shape us as scientists. Maria has been a huge inspiration to me (Karla), and more broadly an entire generation of behavioral geneticists. Her contributions have made an important and indelible mark on the field. I’m extremely grateful to her for her rigorous scientific training and continued patience, encouragement and immense knowledge. Maria is a lifelong mentor, and I consider myself incredibly fortunate to have the opportunity to conduct my study related to her research in my own lab. This work was completed with immense gratitude to Maria, for setting the stage and making it possible for generations of scientists to use foraging as an example of how natural genetic variation affects behavior. We all thank-you Maria, for being the amazing mentor and scientist that you are.

Bibliography

The foraging gene affects alcohol sensitivity, metabolism and memory

bioRxiv preprint doi: https://doi.org/10.1101/2021.02.09.430533; this version posted February 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-By-NC 4.0 International license.