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Abstract 

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection presents with 

varied clinical manifestations1, ranging from mild symptoms to acute respiratory distress 

syndrome (ARDS) with high mortality2,3. Despite extensive analyses, there remains an 

urgent need to delineate immune cell states that contribute to mortality in severe COVID-

19. We performed high-dimensional cellular and molecular profiling of blood and 

respiratory samples from critically ill COVID-19 patients to define immune cell genomic 

states that are predictive of outcome in severe COVID-19 disease. Critically ill patients 

admitted to the intensive care unit (ICU) manifested increased frequencies of 

inflammatory monocytes and plasmablasts that were also associated with ARDS not due 

to COVID-19. Single-cell RNAseq (scRNAseq)-based deconvolution of genomic states of 

peripheral immune cells revealed distinct gene modules that were associated with 

COVID-19 outcome. Notably, monocytes exhibited bifurcated genomic states, with 

expression of a cytokine gene module exemplified by CCL4 (MIP-1b) associated with 

survival and an interferon signaling module associated with death. These gene modules 

were correlated with higher levels of MIP-1b and CXCL10 levels in plasma, respectively. 

Monocytes expressing genes reflective of these divergent modules were also detectable 

in endotracheal aspirates. Machine learning algorithms identified the distinctive monocyte 

modules as part of a multivariate peripheral immune system state that was predictive of 

COVID-19 mortality. Follow-up analysis of the monocyte modules on ICU day 5 was 

consistent with bifurcated states that correlated with distinct inflammatory cytokines. Our 

data suggests a pivotal role for monocytes and their specific inflammatory genomic states 
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in contributing to mortality in life-threatening COVID-19 disease and may facilitate 

discovery of new diagnostics and therapeutics.  

 

Introduction 

The emergence of SARS-CoV-2 has led to over 104 million cases of COVID-19 

worldwide, with more than 2.2 million global deaths4. In the United States alone, more 

than 26 million cases and over 450,000 deaths have been reported4. Despite the rapid 

development and deployment of vaccines5,6, thousands of patients are currently 

hospitalized with severe COVID-19. COVID-19 is also projected to be a major cause of 

critical illness and hospitalizations throughout 2021 and beyond, before world-wide 

vaccine campaigns can control the pandemic. Furthermore, the recent emergence of 

more highly transmissible viral variants (i.e. B.1.1.7 in the United Kingdom and N501Y in 

South Africa) is predicted to increase infections and hospitalizations in the coming 

months7. Among initial clinical trials examining several pharmacologic interventions in 

severe COVID-19, non-specific immunosuppression with corticosteroids has shown clear 

efficacy8-10, and recent work has shown efficacy of IL-6 blockade in patients treated soon 

after ICU admission11. Therefore, severe COVID-19 continues to carry a high mortality 

risk. Thus, in depth analyses of cellular and molecular states, particularly of the immune 

system, that are associated with survival or death in severe COVID-19 disease are 

urgently needed. Such analyses will accelerate the development of new diagnostics and 

therapeutics that could save lives. 

SARS-CoV-2 infection can cause acute lung injury leading to ARDS1, dysregulated 

inflammation12 and hyper-coagulability13. Studies dissecting the immunopathology of 
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COVID-19 have evaluated patients across a spectrum of disease severity (mild to critical), 

and noted lymphopenia1 accompanied with high levels of multiple inflammatory cytokines, 

CRP14 and D-dimer13 in the context of severe disease. In particular, elevated levels of the 

cytokines IL-6, TNFa, IP-10 (CXCL10), IL-8 (CXCL8) and IL-10 have been reported in 

severe COVID-19 disease15,16. Notably, the dysregulated levels of IL-6 in COVID-19 

patients are lower compared with those in non-COVID ARDS, cytokine release syndrome 

or sepsis, suggesting differences in the underlying etiology17. Type I interferon (IFN) 

signaling is essential in moderating COVID-19 disease, as patients with either IFN auto-

antibodies18 or inborn errors of type I interferon19 production have a much higher risk of 

severe COVID-19. Paradoxically, a delayed and excessive type I IFN response is 

implicated in severe disease and leads to mortality in a mouse model of SARS-CoV-2 

infection20-22. To date, no molecular pathways or components that can accurately predict 

mortality in severe COVID-19 patients (i.e. patients in the ICU) have been described. 

Thus, we undertook high-dimensional cellular and molecular analyses of the immune 

system in critically ill ICU patients, utilizing flow cytometry, scRNAseq and cytokine 

profiling and coupled them with machine learning to reveal divergent cellular states and 

gene modules that predicted mortality. 

 

Results 

Clinical cohorts, subject characteristics and study design 

Following informed consent, we enrolled 41 consecutive critically ill patients with acute 

hypoxemic respiratory failure and symptoms suggestive of COVID-19 in a prospective, 

observational cohort study, with limited longitudinal sampling. Based on reference-
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standard nasopharyngeal swab SARS-CoV-2 qPCR, COVID-19 was diagnosed in 35 

patients (COVID-19 group), whereas a non-COVID etiology of acute respiratory illness 

was identified in 6 patients who had negative SARS-CoV-2 qPCR (non-COVID ARDS 

group). Clinical details of this cohort have recently been described in detail23. As controls 

in the study, we also included 10 healthy blood donors (healthy donor group). The median 

ages of non-COVID ARDS and COVID-19 patients were 62 and 65 years, and many 

patients had pre-existing conditions (Table S1) including diabetes (17% non-COVID 

ARDS, 47% COVID-19) and either current or former smoking (67% non-COVID ARDS, 

60% COVID-19). Mortality at 90 days was 33% and 40% in non-COVID ARDS and 

COVID-19 patients, respectively (Table S1). Comparisons of clinical covariates by death 

or survival (day 90) showed trends towards higher mortality in older patients and patients 

with lower BMI. We note that patients who received glucocorticoids were more likely to 

survive (Table S2). We obtained peripheral blood as well as endotracheal aspirates from 

COVID-19 patients to perform high-dimensional profiling of cellular genomic states and 

cytokines. Only blood samples were obtained from non-COVID ARDS and healthy donors 

(Fig. 1a, Methods). We leveraged flow cytometry, scRNAseq and cytokine datasets from 

blood samples to thoroughly interrogate immune system states across these clinical 

groups (Fig. 1a, Table S3).    

 

Expansion of intermediate monocytes and plasmablasts in COVID-19 

We utilized high-dimensional flow cytometry to evaluate peripheral blood mononuclear 

cells (PBMC) of critically ill patients (COVID-19 and non-COVID ARDS) at post-

enrollment day 1 in the ICU (Fig. 1b and Fig. S1a-c). Overall, we found that at day 1, 
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COVID-19 and non-COVID ARDS patients had significantly higher levels of intermediate 

monocytes and plasmablasts versus healthy controls. We did not find significant 

associations between cell frequencies and death or survival (Fig. S2a-b). Although cycling 

CD8+ T cells that co-express HLA-DR and CD38 are associated with viral infection in 

general and COVID-19 in particular24, there were no differences in frequencies of this 

CD8+ T cell subset on day 1 between deceased and surviving patients in our cohort (Fig. 

S2c-d). We performed principal component analysis (PCA) using the immune cell 

frequencies (from Fig. 1b) to determine whether these multi-variate features could stratify 

patients by clinical group. When visualized along the PC1 axis, distributions of patient 

samples demonstrated considerable heterogeneity (Fig. 1c). However, COVID-19 as well 

as non-COVID ARDS samples were shifted rightwards on PC1, while healthy donors 

were shifted leftwards. Consistent with analysis in Fig. 1b, higher frequencies of myeloid 

cells and plasmablasts contributed to the PC1 distribution of samples from critically ill 

patients, while higher frequencies of T and B cells distinguished the healthy donors (Fig. 

1d). Although assessment of cell frequencies revealed shifts in the composition of 

immune cells in COVID-19 and non-COVID ARDS patients versus healthy donors, these 

frequencies yielded no statistically significant associations between COVID-19 and non-

COVID ARDS or in COVID-19 patient outcome.  

 

Dynamic gene modules derived from scRNAseq stratify subjects by clinical group 

To query the dynamic genomic states of immune cells and generate finer-grained 

predictive features, we performed scRNAseq analysis of PBMC from COVID-19 and non-

COVID ARDS patients and healthy donors (Methods). Samples were obtained from 
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critically ill patients on days 1, 5 and 10 post-enrollment whereas those from healthy 

donors were obtained at one timepoint (Table S3). In total, we profiled 99,618 cells (Fig. 

1e). Canonical immune cell types were identified as previously described(Methods)25, and 

were visualized across clinical groups. In agreement with the flow cytometric analysis, 

there were increased frequencies of intermediate monocytes and plasmablasts. 

Qualitatively, there appeared to be distinguishable transcriptional states of classical 

monocytes in COVID-19 and non-COVID ARDS patients versus healthy donors reflected 

by the unique area occupied by classical monocytes in the uniform manifold 

approximation and projections (UMAPs)26.  

We next sought to determine whether the aforementioned clinical groups could be 

stratified by the transcriptional states of their immune cells. To analyze transcriptional 

states across immune cell types, we used Arboreto within the pySCENIC 

framework27(Methods). First, we bioinformatically isolated all major canonical immune cell 

types across all samples and timepoints (Fig. S3a-b) and then utilized tree-based 

regression analysis in Arboreto to identify modules of co-expressed genes presumptively 

co-regulated by given transcription factors (Fig. S3c). Each transcription factor-

associated gene module was linked with a cell type, and individual genes within a module 

were assigned a weight derived from the tree-based regression analysis (Supp. Data S1). 

Finally, we scored each gene module across all of its linked cells and assigned each 

patient sample a single score for that module based on its median module score across 

all linked cells of that patient at a given timepoint (Fig. S3c). The immune cell type linked 

gene module scores are a reflection of dynamic transcriptomic states of such cells. We 

then asked whether we could use the resultant gene module activity matrix generated 
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from patient scRNAseq datasets to distinguish between the study groups. To do this, we 

first identified the top 10 most significantly different gene modules for each immune cell 

type between the patient groups (Supp. Data S2). We then performed PCA with these 

selected gene modules and visualized the top 2 PCs. This analysis revealed that PC1 

stratified patients by critical illness and that PC2 partially stratified COVID-19 patients 

from non-COVID ARDS (Fig. 1f). Interestingly, 3 of the top 5 gene modules that enabled 

separation of COVID-19 and non-COVID ARDS patients from healthy controls were 

linked to monocytes (Fig. 1g), raising the possibility that monocytic activation states may 

play an important role in critical illness and outcomes.  

 

Divergent monocyte activation states in severe COVID-19 

After using day 1 gene module scores to stratify patients by clinical group, we next queried 

whether these cellular and molecular features were associated with COVID-19 patient 

outcome. To address this question, we first performed a Wilcoxon rank sum test to 

determine whether gene module scores were significantly associated with mortality. We 

found a total of 56 statistically significant gene modules (Supp. Data S3), and when we 

visualized these gene modules across all patients and performed co-clustering analysis, 

we observed a demarcation between patients who survived and those who did not (Fig. 

2a). Notably, we identified several monocyte gene modules that were associated either 

with survival (e.g., Mono_cells_PDE6H) or with death (e.g., Mono_cells_NOC2L).  

To further explore these divergent monocytic states in COVID-19 patients, we performed 

an orthogonal analysis based on differentially expressed genes (DEGs) associated with 

death versus survival across all monocyte subsets (Fig. 2b). Analysis of DEGs revealed 
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that 9 of the top 20 genes associated with survival were derived from the 

Mono_cells_PDE6H module. These genes included the chemokines CXCL1, CXCL3, 

CCL4 (MIP-1β), CXCL2 and CCL3 (MIP-1α). Conversely, a set of interferon response 

genes (MX2, MX1, ISG15, IFI44L, OAS3, ISG20, IFIT3, and IFIT1) were associated with 

death in COVID-19 patients. Although these genes were not part of the 

Mono_cells_NOC2L module, the latter contained genes that encoded components of viral 

sensing and the RIG-I pathway (Supp. Data S1). Thus, the analyses of monocytic gene 

modules and DEGs complemented one another while expanding the gene features that 

distinguished the divergent monocytic states.   

To distinguish the activation states of canonical monocyte subsets, we performed gene 

set enrichment analysis25 (Fig. 2c, Supp. Data S4). Gene sets for interferon signaling 

were highly enriched in intermediate monocytes and suggestive of viral entry into such 

cells. To explore this possibility, we utilized flow cytometry to analyze the expression 

levels of the SARS-CoV-2 entry receptor ACE2 and cofactor neuropilin-1 (NRP1). ACE2 

expression was significantly higher on both classical and intermediate monocytes in 

COVID-19 as well as non-COVID-19 ARDS patients compared to healthy donors (Fig. 

2d-e). Notably only intermediate monocytes from COVID-19 patients expressed NRP1 at 

significantly higher levels versus healthy controls (Fig. 2f-g). Expression of these two 

entry receptors suggests activated monocytes are permissive for SARS-CoV-2 entry. 

However, we were unable to detect SARS-CoV-2 transcripts in these monocytic cells by 

scRNAseq (Methods). Consistent with a systemic inflammatory state, both intermediate 

and classical monocytes expressed higher levels of the chemokine receptor CCR5 (Fig. 

S4a-b). Thus, our analysis of gene module scores on baseline samples stratified COVID-
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19 patients based on outcome. In particular, genes involved in interferon signaling in 

monocytes were associated with mortality. 

 

Distinctive monocyte inflammatory states in COVID-19 patient lungs 

Upon uncovering the distinctive inflammatory gene modules in monocytes that were 

associated with outcomes, we sought to determine if they were reflective of discrete cell 

states (canonical or non-canonical) within the heterogeneous monocytic compartment. 

To achieve this, we re-clustered all PBMC monocytes from all samples, and visualized 

these cells using either canonical monocyte markers (Fig. 3a), or by unsupervised 

clustering (Fig. 3b).  Cluster 4 represented intermediate monocytes, while clusters 1, 2, 

3, 7 and 8 were classical monocytes with cluster 6 representing non-classical monocytes. 

Next, we analyzed the association between the monocyte clusters and differentially 

expressed genes associated with outcome. Based on the aforementioned gene modules, 

we focused on key cytokine and interferon response genes. This analysis mapped the 

expression of CCL3, CCL4, CXCL1, CXCL2 and CXCL3 to the classical monocyte 

clusters 7 and 8, while the interferon response genes such as IFI44L, MX1, MX2, OAS3 

and others mapped to intermediate monocyte cluster 4 (Fig. 3c). These findings suggest 

that a distinctive chemokine programmed state of classical monocytes in the ICU is 

associated with eventual survival, while high levels of interferon response in intermediate 

monocytes is associated with death. 

To determine if these distinctive inflammatory monocytic states revealed in PBMC were 

also reflective of cells within patients’ lungs in severe COVID-19 disease, we analyzed 

endotracheal aspirate (ETA) samples from mechanically ventilated patients by 
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scRNAseq. UMAP visualization of ETA samples in comparison with PBMC showed the 

major immune cell clusters to be largely overlapping, with some distinct regions reflecting 

enrichment of cells within ETA samples (Fig. 3d). To quantify the degree of difference in 

gene expression space between corresponding immune cell clusters in matched ETA and 

PBMC samples, we utilized a high dimensional distance metric known as Bhattacharyya 

distance (BD; Fig. 3e). A larger BD corresponds to a more dissimilar transcriptional state. 

Based on this approach, classical monocytes were the most different between ETA and 

PBMC (Fig. 3e). We were unable to compare the states of intermediate or non-classical 

monocytes in the ETA samples with this approach, due to limited numbers of these cells. 

We next performed DEG analysis of classical monocytes from PBMC versus ETA 

samples to determine if genes reflective of divergent monocytic states in PBMCs were 

also evident in lung infiltrating cells (Fig. 3f). This analysis revealed 3 groups of cytokine 

genes that were upregulated in subsets of ETA classical monocytes. One group consisted 

of CXCL8 (IL-8), CXCL2, CCL20, CXCL3, CCL3 and CCL4 (MIP-1β); a second consisted 

of CCL2, CCL7, and IL1B (IL-1β); and a third consisted of IFI6, IFI27, IFI44L, CXCL10 

(IP-10) and CCL8. Notably, the clusters of genes including CCL4 and CXCL3 were 

components of the Mono_cells_PDE6H gene module in peripheral monocytes, while the 

interferon response genes were connected to the Mono_cells_NOC2L gene module in 

such cells. We note that both classical and intermediate monocytes in COVID-19 patients 

expressed higher levels of the homing receptor CCR5 which could facilitate their 

trafficking from the periphery into the lung (Fig. S4a-b). Thus, the bifurcated genomic 

states of monocytes in peripheral blood samples from COVID-19 patients are also 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.10.430499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.10.430499
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

observed in such cells derived from ETA samples, suggesting that the divergent states 

reflect distinct responses to systemic infection and inflammation.  

 

Immune cell gene modules are predictive of COVID-19 mortality 

Following our discovery that distinctive inflammatory monocyte profiles are part of 

immune cell genomic states that correlate with COVID-19 outcome, we next sought to 

determine whether a multivariate signature based on gene module scores of immune cell 

states on day 1 in the ICU are predictive of mortality. To evaluate whether there is a robust 

multivariate gene module signature associated with 90-day mortality, we first utilized the 

56 significant gene module scores on day 1 to perform a PCA (Fig 4a). We found that 

these down-selected modules stratified the patients who died from those that survived 

using PC1 and PC2 (Fig. 4a). The separation between outcome evident in the first two 

PCs suggested that gene modules could be predictive of mortality. We next performed 

leave-one-out cross-validation (LOOCV) to evaluate the predictive power of this approach 

with data held out. In a LOOCV framework, using either a random forest or support vector 

machine classifier with a linear kernel on the down-selected gene modules (with down-

selection done separately within each fold to avoid signal leakage) yielded accurate 

stratification of the patients who survived versus those that died (Methods). These 

machine learning approaches demonstrated area under the ROC curve scores of 0.78 

and 0.88 for random forest and the support vector machine (Fig. 4b-c), respectively, 

suggesting that gene module scores on day 1 are predictive of eventual outcome. 

Given our findings that bifurcated monocyte inflammatory states may play an important 

role in COVID-19 patient outcome, we next evaluated whether the Mono_cells_NOC2L 
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and Mono_cells_PDE6H gene module scores were correlated with levels of inflammatory 

cytokines in plasma (Methods). Briefly, we measured levels of 44 cytokines on days 1, 5 

and 10 from COVID-19 patients using the Meso Scale Discovery platform (Methods). The 

Mono_cells_PDE6H module trended towards a significant correlation with MIP-1β in 

plasma (Fig. 4d), consistent with the inclusion of the gene for MIP-1β (CCL4) in this 

module. We next evaluated the extent to which this chemokine was associated with 

survival. Using Cox proportional hazards regression (Methods), we found that higher 

levels of plasma MIP-1β on day 1 were associated with improved survival (Fig. 4e). 

Conversely, the Mono_cells_NOC2L module correlated with CXCL10 in plasma on day 1 

(Fig 4f), consistent with CXCL10 being strongly associated with response to interferon in 

monocytes and suggesting that the Mono_cells_NOC2L module is reflective of an 

interferon response in monocytes. We also found that higher levels of CXCL10 in plasma 

on day 1 trended towards an association with greater risk of death (Fig. 4g). The survival 

trends associated with these cytokines demonstrate putative biological links with the 

monocyte gene modules. Therefore, the monocyte gene modules capture key aspects of 

divergent systemic inflammatory states in severe COVID-19 disease that are predictive 

of mortality. 

 

Stable inflammatory monocyte state that portends immune sequelae and outcome  

We next used longitudinal data from COVID-19 patient samples to investigate the stability 

of the initial monocytic cell states (day 1 ICU) and their temporal relationships with 

inflammatory cytokines.  We first used a rank sum test to determine if monocyte gene 

modules were associated with outcome on days 5 and 10, and found that there were 60 
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monocyte modules associated with outcome on day 5 but none on day 10 (using a two-

sided alpha of 10% as a cutoff; Supp. Data S3). We next evaluated which monocyte 

modules on day 5 were correlated with Mono_cells_NOC2L or Mono_cells_PDE6H 

monocyte modules on day 1 (Supp. Data S5). This analysis revealed the 

Mono_cells_NOC2L module to be strongly correlated with itself at days 1 and 5 (Fig. 4h) 

whereas the Mono_cells_PDE6H module was positively correlated with 

Mono_cells_KIF22 (Fig. 4i). Importantly, there was a strong negative correlation between 

Mono_cells_NOC2L on day 1 and Mono_cells_KIF22 on day 5 (Fig. 4j) as well as 

Mono_cells_NOC2L on day 5 with Mono_cells_PDE6H day 1 (Fig. 4k). These data 

suggest that the inflammatory monocyte state demarcated by the NOC2L module, 

predictive of mortality, is stable over a 5-day period in the ICU. This monocytic state can 

be distinguished from one delineated by the PDE6H module at day 1 that undergoes a 

temporal dynamic associated with survival. 

Finally, we sought to evaluate the relationships of the Mono_cells_NOC2L module on day 

5 was with the various inflammatory cytokines. To address this question, we correlated 

Mono_cells_NOC2L module scores on day 5 with levels of cytokines in plasma on day 5 

(Fig. 4l). This analysis revealed that Mono_cells_NOC2L was strongly correlated with 

inflammatory cytokines such as CXCL10, IL-6, TNFα and IL-8 on day 5. Taken together, 

these data suggest that sustained viral sensing and interferon signaling by monocytes, 

inferred by high Mono_cells_NOC2L module scores that are strongly correlated at days 

1 and 5 of ICU enrollment, may promote an inflammatory immune state involving a 

network of cytokines leading to immunopathogenesis and organ damage. 
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Discussion 

In this study, we sought to evaluate cellular and molecular features associated with the 

immunopathogenesis of severe COVID-19 illness that in turn were predictive of mortality  

(summarized in Fig. S5). This systems immunology approach involved high-dimensional 

longitudinal phenotyping of PBMC and cytokines of blood samples from critically ill 

COVID-19 patients and lower respiratory tract specimens (when possible). In agreement 

with other reports, we found that COVID-19 patients tended to have higher frequencies 

of plasmablasts24,28 and inflammatory monocytes29 and lower frequencies of CD4+ T 

cells24. Concomitant expansion of intermediate monocytes and plasmablasts have been 

noted in other viral diseases, such as Dengue virus30. In this context, the inflammatory 

monocytes have been shown to promote the differentiation of naïve B cells into 

plasmablasts which can be the source of protective or pathogenic antibodies. In this 

regard we note that severe COVID-19 has been associated with various types of auto-

antibodies31-33.  

Our study highlights the importance of analyzing the initial immune state of COVID-19 

patients early in their ICU course by deconvolution of genomic states of peripheral 

immune cells based on gene modules. Earlier work in non-COVID ARDS has defined 

monocyte signatures in PBMC that are indicative of progression to ARDS34; our work 

demonstrates distinctive monocyte gene modules as part of a multivariate peripheral 

immune system state that is predictive of severe COVID-19 disease mortality. Among the 

gene modules on day 1 that are predictive of outcome, we uncovered a striking bifurcation 

of monocyte inflammatory modules. Viral sensing and interferon response genes were 

reflective of a monocytic state (NOC2L module) that was sustained over 5 days in the 
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ICU and correlated with serum cytokines CXCL10, IL-6, TNFα, and IL-8.  CXCL10 has 

been associated with severe COVID-1915 and IL-6, TNFα and IL-8 have been associated 

with increased risk of death from COVID-1916. In contrast, a divergent inflammatory 

monocytic state (PDE6H module) involving expression of the chemokine genes CCL3 

(MIP-1a), CCL4 (MIP-1b), CXCL1, and CXCL2 was associated with survival. Importantly, 

monocytic cells manifesting both of these divergent states were detected in ETA samples 

of severe COVID-19 patients, highlighting the relevance of analyzing PBMC. 

We propose that the pathogenic viral sensing and IFN signaling monocytic state may be 

induced by virus entry. Intriguingly, our flow cytometry analysis identified increased 

expression of the SARS-Cov-2 entry receptor ACE235,36 in classical and intermediate 

monocytes in PBMC, and increased expression of the entry cofactor NRP137,38 in 

intermediate monocytes, suggesting that these cells may be permissive to viral entry and 

possibly replication, especially within the lung. We were not able to detect viral transcripts 

in monocytic cells of COVID-19 patients possibly due to low numbers of such transcripts 

resulting from non-productive infection. Even if the virus cannot replicate, after entry 

through ACE2 or through opsonization it could trigger innate viral sensors such as RIG-I 

in monocytes.  

Studies of Middle East Respiratory Syndrome (MERS) Coronavirus have demonstrated 

infection of monocyte-derived macrophages with subsequent secretion of inflammatory 

cytokines such as CXCL10 and CXCL8 (IL-8)39. Conversely, SARS-COV abortively 

infects human macrophages, but triggers production of CXCL10 and CCL240,41. 

Consistent with our findings of activated monocytes with induced expression of viral 

sensing and IFN response genes, an earlier study has shown that lower respiratory tract 
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myeloid cells can harbor SARS-COV-2 and display an inflammatory phenotype42. 

Furthermore, recent work demonstrated that infected monocytes in bronchoalveolar 

lavage samples from patients with COVID-19 participate in a positive feedback loop in 

which infected myeloid cells produce T cell chemoattractants, recruiting T cells into the 

lung43. These T cells then secrete IFN- γ, contributing to release of inflammatory cytokines 

from alveolar macrophages, thereby promoting further T cell activation43. Importantly, 

both this emergent work and our current findings invoke activated monocytes that have 

sensed virus and instigate persistent alveolar inflammation. We further demonstrate that 

this monocyte inflammatory state is predictive of mortality in critically ill COVID-19 

patients.    

Type I IFN signaling has been proposed to play both a protective and pathogenic role in 

COVID-19 disease depending on its kinetics20-22. It is essential early on in infection in 

moderating COVID-19 disease, as patients with either IFN autoantibodies18 or inborn 

errors of type I interferon19 production have a much higher risk of severe COVID-19. 

However dysregulated interferon signaling at later times during COVID-19 disease 

progression appears to be pathogenic44,45.  

The finding that CCL4 (MIP-1b) was associated with survival is consistent with its positive 

prognostic role in dengue infection46. In hepatitis C infection, higher MIP-1b was 

associated with viral control following treatment with antiviral therapy47. Interestingly, MIP-

1b is a type I interferon dependent gene but does not directly inhibit viral replication. 

Instead, it promotes the recruitment of monocytes to infected tissue to prevent viral 

spread throughout the tissue48. In this context, our findings suggest a model in which 
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preferential expression of MIP-1b in relation to other IFN response genes by monocytes 

protects infected tissue in the lung during severe COVID-19. 

High levels of inflammatory cytokines are associated with increased risk of death in 

COVID-19 patients16, but the immunologic drivers of these cytokine levels remain 

incompletely understood. Our analysis revealed that monocyte gene modules on day 1 

dictate distinct disease trajectories, with the high levels of the interferon response 

associated Mono_cells_NOC2L module on day 1 correlating with its levels on day 5 in 

individual patients. Additionally, the Mono_cells_NOC2L module on day 5 is correlated 

with numerous cytokines associated with disease severity and death, including CXCL10, 

IL-6, TNFα and IL-8. Conversely, the high levels of the favorable monocyte state on day 

1 (Mono_cells_PDE6H) was negatively correlated with Mono_cells_NOC2L on day 5, 

suggesting that these initially bifurcated states lead to divergent immune system 

dynamics. Thus, we infer that protracted interferon signaling (as reflected by consistently 

high Mono_cells_NOC2L module scores, ICU day 1-5) promote an immune state with 

correlated expression of multiple inflammatory cytokines that contributes to 

immunopathogenesis, organ damage, and death. 

Our data regarding the temporal evolution of severe disease and the multi-faceted nature 

of inflammatory cytokines has important implications for COVID-19 treatment strategies. 

Our results suggest that the correlated expression of multiple inflammatory cytokines may 

partially explain conflicting results from trials of IL-6 blockade11,49,50, and highlight that IL-

6 blockade is likely to be most beneficial early in the course of disease before multiple 

inflammatory cytokines become elevated. Recently, evidence from a mouse model51 and 

observational studies of rheumatic52,53  and inflammatory bowel disease54 have 
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suggested that COVID-19 patients may benefit from anti-TNF therapy. Our results 

suggest that selective intervention based on new molecular diagnostics informed by our 

analysis of divergent inflammatory monocytic states could attenuate the coordinated 

elevation of multiple inflammatory cytokines and subsequent tissue damage and death.  

Our study adds important details of immune pathogenesis in severely ill COVID-19 

patients to what is known across the spectrum of disease. Limitations of our study include 

the relatively small sample size of our COVID-19 patient cohort, precluding in depth 

analysis of relationships between flow cytometry measurements, transcriptional states of 

immune cells and cytokines with clinical covariates such as diabetes, age and biological 

sex. These covariates are important contributors to outcome and need to be more fully 

integrated with the high-dimensional immune system analyses in larger studies. 

Furthermore, emergent datasets consisting of critically ill patients that have been 

phenotyped as densely as our patient cohort will facilitate external validation of the 

findings presented here. Nevertheless, our study of severely ill COVID-19 patients 

admitted to the ICU has uncovered a striking bifurcation in inflammatory monocyte 

genomic states that is predictive of mortality outcome. These bifurcated monocytic states 

manifest differing temporal dynamics and are in turn linked to distinct inflammatory 

cytokines. Taken together, our findings may facilitate discovery of new diagnostics and 

therapeutics to improve outcome in severe COVID-19. 
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Materials and methods  

Clinical cohort 

Following acquisition of written informed consent from patients or their legally authorized 

representatives, we enrolled 41 consecutive critically ill patients with acute hypoxemic 

respiratory failure and symptoms/signs suggestive of COVID-19 in a prospective, 

observational cohort study (University of Pittsburgh Institutional Review Board study 

number 20040036). Patients were hospitalized in ICUs at two hospitals (Presbyterian and 

Shadyside) within the University of Pittsburgh Medical Center system. All patients 

underwent at least one nasopharyngeal swab testing for SARS-CoV-2 qPCR (reference 

standard diagnosis at our Institution), which could be repeated at the discretion of the 

treating physicians when the first test was negative and significant clinical suspicion for 

COVID-19 remained. Based on SARS-CoV-2 qPCR results, 35 patients with at least one 

positive test were diagnosed with COVID-19 (COVID-19 group), whereas 6 patients had 

at least one negative SARS-CoV-2 qPCR test and were diagnosed with a non-COVID 

etiology of acute respiratory illness (non-COVID group). For comparisons against healthy 

controls, we also included a single blood biospecimen from 10 healthy donors. 

From enrolled critically ill patients, we collected blood specimens upon enrollment (day 

1), and then if the patients remained in the ICU, we collected follow-up blood samples on 

days 5 and 10 post-enrollment. From intubated patients, we also collected endotracheal 

aspirate (ETA) samples for profiling of the lower respiratory tract. 

Sample processing 

Whole blood was drawn by venipuncture into EDTA tubes. Plasma was separated from 

whole blood by centrifugation at 400xg for 5 mins with the brake off. Following removal of 
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plasma, blood was diluted with Hank’s Buffered Saline Solution (HBSS), and diluted blood 

was layered of Ficoll-Hypaque. Density gradient centrifugation was performed by spinning 

at 400xg for 20 minutes with the brake turned off, and the PBMC layer was removed. 

PBMC were then washed twice with HBSS, and carry-over red blood cells were lysed 

using BD Pharm Lyse per the manufacturer’s instructions. Viable cells were counted 

using a Nexcelom Cellometer with acridine orange and propidium iodide. Endotracheal 

aspirates (ETA) were collected from intubated patients in the ICU based on the condition 

of the patient; samples were not collected if the patient’s status was poor. ETA were 

processed by diluting 1.5 mL of samples up to 15 mL with HBSS, pipetting vigorously to 

break up aggregated sputum. Cells from ETA were then pelleted by centrifugation at 

400xg for 5 minutes, and red blood cells were lysed using BD Pharm Lyse per the 

manufacturer’s instructions. Viable cells were counted using a Nexcelom Cellometer as 

described above. PBMC and ETA cells were cryopreserved in 90% FBS and 10% DMSO. 

Plasma was frozen at -80°C. All experiments with COVID-19 patient samples were 

performed in a Biosafety Level 2+ facility (with appropriate precautions) at the University 

of Pittsburgh’s Center for Vaccine research.  

Flow cytometry analyses 

PBMC were stained for flow cytometry as previously described25. Briefly, cryopreserved 

PBMC were thawed in a water bath at 37°C, then diluted to 15 mL with warm RPMI with 

10% FBS. 1-2x105 cells were placed in 96 well plates and centrifuged at 400xg for 5 

minutes. Supernatant was then removed, and cells were resuspened in antibody cocktails 

consisting of phosphate buffered saline with 10% FBS (PBS/FBS) and appropriately 

diluted antibodies. All antibodies were used at a 1:100 final dilution. Samples were stained 
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for 15 minutes a 4°C, and were then washed by adding PBS/FBS and centrifuging for 5 

minutes a 400xg. Viability dye in PBS (1:4000 dilution) was then added, and samples 

were once again incubated for 15 minutes at 4°C, followed by a subsequent wash step in 

PBS. Next, samples were fixed using Becton Dickinson (BD) Fix/Perm solution as per the 

manufacturer’s instructions. Following fixation and permabilization, intracellular 

antibodies were added in BD Perm/Wash solution at appropriate concentrations; samples 

were once again incubated at 4°C and washed.  Samples were then resuspended in 

PBS/FBS and acquired on the appropriate flow cytometer. Samples were stained for 

subsequent assessment on either a Cytek Aurora 5-laser spectral flow cytometer or a 

Becton Dickinson 5 laser Fortessa II for standard flow cytometry. We used the following 

28 antibodies::fluorophore conjugates and clones to enumerate major immune lineages 

using the Cytek Aurora: HLA-DR::BUV395 (BD; G46-6), CD8::BUV496 (BD; RPA-T8), 

CD4::BUV563 (BD; RPA-T4), CD103::BUV615 (BD; Ber-ACT8), CD45::BUV661 (BD; 

HI30), CD14::BUV737 (BD; M5E2), CD19::BUV805 (BD; HIB19), Ki67::BV421 

(Biolegend; KI-67), FoxP3::eFluor450 (ThermoFisher; PCH101), CD38::BV480 (BD; 

HIT2), CD1c::PE-Cy5 (conjugated in-house; antibody from ThermoFisher, clone L161), 

CD45RA (Biolegend; HI100), CD62L::BV605 (Biolegend; DREG-56), CD15::BV650 

(Biolegend; SSEA-1), CD25::BV711 (Biolegend, BC96), CD20::BV750 (BD; 2H7), 

CD141::BV785 (BD; M80), CD36::FITC (Biolegend, 5-271), CD3::Spark Blue 550 

(Biolegend; SK7), CD11b::PerCP-Cy5.5 (Biolegend; LM2), CD56::PerCP-EF710 

(Invitrogen, CMSSB), ACE2::PE (R&D Systems; 171606), CD16::PE-TexasRed 

(Biolegend; 3G8), CD27::BV510 (Biolegend; O323), CD138::APC (Biolegend; MI15), 

CD11c::Alexa700 (Biolegend; 3.9), and CCR2::APC-Cy7 (Biolegend::K036C2). We also 
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used Zombie NIR fixable viability dye (Biolegend) at a 1:1000 dilution for this panel. For 

our monocyte specific Fortessa II panel, we used the following 14 antibodies::fluorophore 

conjugates and clones: HLA-DR::BUV395 (BD; G46-6), CD14::BUV737 (BD; M5E2), 

CD16::BV412 (Biolegend; 3G8), CCR5::BV510 (Biolegend; J418F1), CD3::BV650 

(Biolegend; UCHT1), CD19::BV650 (Biolegend; UCHT), CD20::BV650 (Biolegend; 2H7), 

CD56::BV650 (Biolegend; 5.1H11), CD163::BV711 (Biolegend; GHI/61), CCR2::BV785 

(Biolegend; K036C2), ACE2::APC (R&D Systems; 171606), CD11c::Alexa700 

(Biolegend; 3.9), NRP1::PE (Biolegend 12C2), and CD36::PE-Cy7 (Biolegend; 5-271). 

We also used eFluor 780 Fixable Viability Dye (ThermoFisher) for this panel at a 1:4000 

dilution. Flow cytometry was performed in the Hillman Cancer Center Flow Cytometry 

Facility.  

Soluble cytokine/chemokine quantification by Meso Scale Discovery 

We utilized the V-PLEX Human Cytokine 44-plex Kit from Meso Scale Discovery (MSD) 

to quantify levels of chemokines and cytokines in plasma of patients with COVID-19. The 

following soluble markers were included: Eotaxin, Eotaxin-3, GM-CSF, IFN-g, IL-1a, IL-

1b, IL-1RA, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-8 (HA), IL-9, IL-10, IL-12/IL-23p40, IL-

13, IL-15, IL-16, IL-17A, IL-17A/F, IL-17B, IL-17C, IL-17D, IL-21, IL-22, IL-23, IL-27, IL-

31, IP-10, MCP-1, MCP-4, MDC, MIP-1a, MIP-1b, MIP-3a, TARC, TNFa, TNFb, TSLP, 

and VEGF-A. Assays were performed as per the manufacturer’s instructions. Briefly, 

plasma samples were thawed and on average 25 µL of plasma samples were diluted as 

recommended in a MSD 96-well assay plate. Calibrators were added to wells on each 

plate in parallel. Plates were then sealed and incubated overnight at 4°C. Next, the plates 

were washed 3 times with 150 µL per well of MSD wash buffer. Following washing, 25 µL 
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of detection antibodies was added to each well, and plates were then sealed and 

incubated at room temperature for 2 hours with shaking. After 2 hours, the plates were 

once again washed 3 times with MSD wash buffer and 150 µL of MSD Read Buffer T was 

added to each well and the plates were analyzed on the MESO QuickPlex SQ 120MM. 

Sample concentrations for each marker were then calculated based on the respective 

standard curve. For analysis, the limit of detection was set at 50% of the lowest limit of 

detection across all analytes (i.e. 0.045 pg/mL). 

Single-cell RNAseq library generation and sequencing 

Single-cell RNAseq (scRNAseq) was performed using 5’ v1 kit from 10X Genomics as 

per the manufacturer’s instructions. Libraries were created from either fresh PBMC or 

were prepared from batches of cryopreserved PBMC. For fresh processing, libraries were 

created immediately following isolation of cells. For cryopreserved samples, samples 

were thawed as described above for flow cytometry. Sample multiplexing was performed 

using CITEseq. To achieve this, cells were first stained with TotalSeq-C antibodies for 15 

minutes at 4°C, followed by washing in PBS with 10% FBS and centrifugation for 5 

minutes at 400xg. Two samples (each stained with unique TotalSeq-C antibodies) were 

then pooled and loaded per lane of the 10X chip to permit sample multiplexing. Libraries 

were prepared following the manufacturer’s instructions, with the additional preparation 

of cell hashing libraries using the manufacturer’s protocol for Feature Barcode libraries. 

Final libraries concentration and size distributions were quantified using a BioAnalyzer as 

per the manufacturer’s instructions. Samples were sequenced on a NovaSeq at the 

UPMC Genome Core using a read 1 length of 28 cycles, read 2 length of 91 cycles and 

an i7 read length of 8 cycles. 
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Generation of gene expression and feature barcode matrices 

Following sequencing, NovaSeq runs were downloaded from the UPMC Genome Core 

to the University of Pittsburgh Center for Research Computing High Throughput Cluster. 

Samples were then demultiplex using bcl2fastq (Illumina), using a base mask of Y28, I8, 

Y91 and setting the stringency to allow no barcode mismatches. Following demultiplexing, 

gene expression reads were then aligned to the reference genome using CellRanger 

v3.1.0, and feature barcode matrices were created for each sample. Importantly, we 

added the reference sequence for SARS-CoV-2 (NC_045512.2) to the genome and the 

GTF to facilitate detection of SARS-CoV-2 transcripts. Cell hashing libraries were aligned 

to TotalSeq-C barcodes using CITE-seq-Count v1.4.355, using a sample-specific cell 

barcode whitelist (i.e., only cell barcodes from cells identified by CellRanger from each 

sample were included in the whitelist).  

Identification of individual samples from cell hashing 

After generation of gene expression and feature barcode matrices, downstream analysis 

was performed using Seurat v3.1.456 in R 3.6.0. Gene barcode matrices and associated 

feature barcode matrices containing cell hash expression values were read into R. To 

identify individual samples, feature barcode matrices were first log-normalized using a 

centered log ratio transformation (CLR) implemented in Seurat. Individual samples were 

identified by unique expression of the anticipated TotalSeq-C antibody and the absence 

of alternative TotalSeq-C antibodies. To permit automated identification of samples, k-

means clustering was performed on CLR normalized expression values for each sample 

to identify cut-offs for negative and positive TotalSeq-C counts. Samples were visualized 

on bi-variate x/y plots to confirm adequate cutoffs. Cells with expression levels above the 
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cut-offs for both TotalSeq-C antibodies were considered doublets, and were excluded 

from downstream analysis.  

Visualization of scRNAseq data and identification of cell types 

We utilized the data integration workflow56 provided in Seurat to integrate between fresh 

and cryopreserved samples. Briefly, we independently identified highly variable features 

between fresh and cryopreserved samples and selected 2,000 integration features from 

this combined set of highly variable features. Selected integration features were then 

independently scaled across all cells in both fresh and cryopreserved samples, and PCA 

was performed using the scaled expression levels in each dataset. Next, integration 

anchors were identified using a reciprocal PCA across the first 30 PCs. Integrated data 

was then used for downstream PCA, visualization and clustering. Dimensionality 

reduction for visualization was next performed using Uniform Manifold Approximation 

Embedding (UMAP)26 implemented in Seurat. Clusters were identified using graph-based 

clustering in Seurat, and inspection of canonical lineage markers and their association 

with each cluster was used to identify cell types. One cluster of cells expressed high levels 

of genes involved in the cell cycle, but included multiple cell types. Cell types were 

resolved from this cluster by bioinformatically isolating these cells and inspecting lineage 

specific markers and then applying those labels to the cells in the overall UMAP.  

Generation of gene module scores for immune lineages 

To quantify gene co-express modules within each immune lineage, we first 

bioinformatically isolated each major immune lineage (i.e. CD4+ T cells, CD8+ T cells, B 

cells, plasmablasts, monocytes and NK cells) and verified there were no contaminating 

immune cells from other lineages present (e.g. there were no clusters expressing MS4A1 
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in the CD4+ T cell data, no clusters expressing CD14 in the CD8+ T cells, et cetera). 

Next, we utilized both the SCENIC57 R package (version 1.1.2-2) and the Arboreto 

package (version 0.1.0) implemented in PySCENIC27 in Python (Bioconda 3.7-2019.03). 

In R, genes were filtered based on a minimum count of 3 in 1% of cells, and expression 

in at least 1% of cells. Filtered expression matrices and a list of expressed transcription 

factors were then exported to be used in GRNBoost2 from the Aboreto package in Python. 

Gene modules identified by GRNBoost2 were filtered based on having greater than 20 

genes and fewer than 200 genes, then scored across all cells in an expression dataset 

using the AddModuleScore function in Seurat. Median module scores were derived for 

each patient across all immune lineages, providing great than 20 cells of a particular 

lineage was present.  

Principal component analysis and machine learning analysis 

Principal component analysis was performed using the R package irlba. Centered and 

scaled values of either immune cell frequencies or median gene module scores per 

patient derived from Arboreto were used as input. If a patient did not have a score for a 

module (i.e. due to insufficient cells present in that sample), the median module score 

across all patients for that module was used as the interpolated value. Sample 

embeddings and variable loadings were extracted from resulting PCA and used for 

visualization.  

To assess the ability of gene modules to predict outcome, we utilized the R package 

caret58 to perform machine learning with cross-validation using a random forest and a 

support vector machine (SVM) with a linear kernel. Cross-validation was performed using 

a leave-one-out analysis. To prevent data leakage between folds of cross validation, gene 
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modules from day 1 samples that had a p<0.05 for a Wilcoxon rank sum test between 

patients who survived versus those that died were selected within each fold. Then, 

modules were scaled and PCA was performed for dimensionality reduction in each fold, 

and PC1 and PC2 were used as predictive variables. Tuning parameters for each 

algorithm were selected internally within each round of cross-validation. Receiving 

operating curves and area under the curve were calculated using the R package pROC59.  

In-depth analysis of myeloid lineages 

Further dissection of myeloid lineages was performed by bioinformatically isolating and 

re-clustering all myeloid cells. Datasets were once again integrated for downstream 

visualization and clustering based on fresh versus frozen status using the workflow 

described above. Differentially expressed genes were identified using a Wilcoxon rank 

sum test as implemented in Seurat. Gene set enrichment analysis was performed as 

previously described using the R package singleseqgset25. Statistically significant gene 

sets were identified as those that had p values corrected for false discovery rate of less 

than 5%. 

Statistical analyses 

Survival analysis was performed using Cox’s proportional hazard regression analysis as 

implement in the R package survival60,61. Likelihood ratio tests were used to determine 

the statistical significance of the survival models. Wilcoxon rank sum tests were used to 

evaluate differences in immune cell frequencies and mean fluorescence intensity by flow 

cytometry, to calculate differentially expressed genes from the scRNAseq analysis, and 

identify gene modules that were statistically different between patients who survived and 

those that died. Spearman’s correlation was used to calculate the correlation between 
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gene module scores and cytokine levels in plasma, between gene modules on day 1 and 

day 5, and between cytokines and gene modules on day 5. A two-sided alpha of 5% was 

considered significant unless otherwise noted.  

Data availability 

Both raw and processed transcriptomic data will be available through the Gene 

Expression Omnibus database.  

Code availability 

The Seurat package was used for scRNAseq normalization, scaling, dimensionality 

reduction, UMAP visualization, clustering, and differential gene expression analysis. 

Code for these steps is available through Seurat’s website (https://satijalab.org/seurat/). 

Code for gene set enrichment analysis is available at 

www.github.com/arc85/singleseqgset. Additional code is available upon request. 
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Figures 
 

 
 
Figure 1. Expansion of intermediate monocytes and plasmablasts is associated with 
COVID-19. a) Schema highlighting the 3 clinical groups along with biological specimens 
obtained and assays performed. b) Flow cytometric analysis of immune cell frequencies in 
peripheral blood of healthy donors (one timepoint), non-COVID ARDS patients (day 1 ICU), and 
COVID-19 patients (day 1 ICU). c) Principal component analysis (PCA) of immune cell 
frequencies displayed in panel (b). d) Weightings of immune cell frequencies that contribute to 
the PC1 embeddings in panel (c) and distinguish critically ill patients (non-COVID 
ARDS/COVID-19) versus healthy donors. e) Single-cell RNAseq analysis of 98,327 cells 
showing the canonical immune lineages from peripheral blood of healthy donors (14,271 cells), 
non-COVID ARDS patients (13,060 cells) and COVID-19 patients (78,922 cells). f) PCA 
performed by using differentially expressed immune cell gene modules (delineated with 
Arboreto, see Methods), as molecular features of study participants in the three clinical groups. 
g) Weightings of the immune cell gene modules that are dominant contributors to PC1 and PC2 
embeddings in panel (f) and distinguish critically ill non-COVID ARDS or COVID-19 patients 
from healthy donors.  
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Figure 2. Bifurcated monocyte activation states in severe COVID-19. a) Heatmap displaying 
hierarchical clustering of Arboreto delineated gene modules that were statistically significantly 
associated with COVID-19 outcome. Patient samples (day 1 ICU) are arrayed in columns and 
gene modules in rows. Color bar on the left indicates linkage of gene modules with particular 
immune cell types. b) Heatmap displaying hierarchical clustering of differentially expressed 
genes associated with outcome from scRNAseq of peripheral blood monocytes from COVID-19 
patients (day 1 ICU). Cells from patient samples with the indicated outcomes are arrayed in 
columns and genes are annotated in rows. c) Gene set enrichment analysis of canonical 
monocyte subsets in the scRNAseq dataset. d) Representative flow plots of ACE2 expression 
on classical and intermediate monocytes. e) Expression levels (mean fluorescence intensity, 
MFI), on classical and intermediate monocytes in indicated patient groups versus healthy 
donors. f) Representative flow plots of NRP1 expression on classical and intermediate 
monocytes. g) Expression levels of NRP1 (MFI) on classical and intermediate monocytes in 
indicated patient groups versus healthy donors. 
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Figure 3. Bifurcated monocytes inflammatory states map to distinct subsets and are 
reflected in lungs of COVID-19 patients. a) UMAPs showing canonical monocytes clusters in 
peripheral blood of patients who died versus those who survived. b) Same UMAPs as panel (a) 
but monocytes are delineated using graph-based clustering. c) Frequency and magnitude of 
expression of genes reflective of bifurcated inflammatory monocytes states. The frequency of 
cells expressing the indicated gene (size of the dot) and its mean expression level in that cluster 
(color of the dot). d) UMAPs of immune cells in COVID-19 patient samples derived from blood 
or endotracheal aspirates (ETA). e) Plot of Bhattacharyya distances, a similarity measure of 
distributions of cellular gene expression states, of the indicated immune cells in blood versus 
ETA of COVID-19 patients. f) Heatmap displaying hierarchical clustering of single-cell 
expression profiles of monocytes from COVID-19 patient ETA samples. Cells from patient 
samples are arrayed in columns and annotated genes that were differentially expressed 
between PBMC and ETA monocytes are in rows. 
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Figure 4. Monocyte gene modules and associated cytokines are predictive of COVID-19 
mortality. a) PCA of COVID-19 patients and their outcomes based on down-selected immune 
gene modules scores derived from scRNAseq of PBMC samples (day 1 ICU). b-c) Area under 
the curve (AUC) scores derived from leave-one-out cross-validation using random forest (b) or 
support vector machine (c) algorithms. The diagonal line in each AUC plot represents a model 
with no predictive power (i.e. a 50% probability of death or survival). Random forest and support 
vector machine models achieved AUC scores of 0.79 and 0.88, respectively. d) Correlation plot 
of Mono_cells_PDE6H gene module scores with levels of MIP-1b in plasma on day 1. e) 
Proportional hazards regression analysis of MIP-1b levels on day 1 and mortality. f) Correlation 
plot of Mono_cells_NOC2L gene module scores with levels of CXCL10 in plasma on day 1. g) 
Proportional hazards regression analysis of CXCL10 levels on day 1 and mortality. h-k) 
Correlation plots of indicated monocyte modules using day 1 and day 5 scores. Mortality 
outcomes of COVID-19 patients analyzed by such longitudinal sampling are indicated by 
colored dots. I) Heatmap displaying correlation analysis of Mono_cells_NOC2L gene module 
scores with a network of inflammatory cytokines in plasma on day 5 in COVID-19 samples. 
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Supplementary information 
 
Table S1. Clinical characteristics of study participants across cohorts. 
 
Table S2. Associations between clinical covariates and outcome. 
 
Table S3. Patient samples utilized for flow cytometry, single-cell RNAseq, and 
measurement of cytokine levels. 
 
Figure S1. Gating strategy to quantify immune cell frequencies in PBMC. 
 
Figure S2. Evaluation of immune cell frequencies by outcome in non-COVID ARDS and 
COVID-19 patients. 
 
Figure S3. Description of the Arboreto pipeline for identification of transcription factor 
associated co-expression modules.  
 
Figure S4. Monocytes from COVID-19 patients have higher levels of CCR5 versus 
healthy donors. 
 
Figure S5. Factors associated with death versus survival in critically ill COVID-19 patients. 
 
Extended Data 
 
Supplementary Data S1. Gene modules and top 200 genes from each module across all 
cell types. 
 
Supplementary Data S2. Gene modules associated with differences between clinical 
groups. 
 
Supplementary Data S3. Gene modules associated with differences in COVID-19 
outcome. 
 
Supplementary Data S4. Gene set enrichment analysis of classical, intermediate, and 
non-classical monocytes. 
 
Supplementary Data S5. Correlations between monocyte modules on day 1 and day 5.  
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