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ABSTRACT 

The root cause of Parkinson's disease (PD) is the death of dopaminergic neurons in Substantia 

Nigra pars compacta (SNc). The exact cause of this cell death is still not known. Loss of SNc 

cells manifest as the cardinal symptoms of PD, including tremor, rigidity, bradykinesia, and 

postural imbalance. To investigate the PD condition in detail and understand the link between 

loss of cells in SNc and PD symptoms, it is important to have an integrated multiscale 

computational model that can replicate the symptoms at the behavioural level by evoking the 

key cellular and molecular underlying mechanisms that contribute to the pathology. In line 

with this objective, we present a multiscale integrated model of cortico-basal ganglia motor 

circuitry for arm reaching task, incorporating a detailed biophysical model of SNc 

dopaminergic neuron. Earlier researchers have shown that fluctuations in dopamine (DA) 

signals are analogous to reward/punishment signals, thereby prompting application of concepts 

from reinforcement learning (RL) to modelling the basal ganglia system. In our model, we 

replace the abstract representations of reward with the realistic variable of extracellular DA 

released by a network of SNc cells and incorporate it with the RL-based behavioural model, 

which simulates the arm reaching task. Our results showed that as SNc cell loss increases, the 

percentage success rate to reach the target decreases, and average time to reach the target 

increases. With levodopa (L-DOPA) medication, both the success rate and the average time to 

reach the target improved significantly. The proposed model also exhibits how differential 

dopaminergic axonal degeneration in basal ganglia results in various cardinal symptoms of PD 

as manifest in reaching movements. From the model results, we were able to show the side 

effects of L-DOPA mediation, such as wearing off and peak dosage dyskinesias. Moreover, 

from the results, we were able to predict the optimum dosage for varying degrees of cell loss 

and L-DOPA medication. The proposed model has a potential clinical application where drug 

dosage can be optimized as per patient characteristics. We conclude that our model presents a 

realistic and efficient way of simulating the PD pathology conditions and the effect of levodopa 

medication, thereby giving a reliable indicator towards the optimization of the drug dosage. 

 

Keywords: Parkinson’s disease; Levodopa; Dopamine; Basal Ganglia; Reinforcement 

Learning; Behavioral model; Substantia nigra pars compacta;  
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1. INTRODUCTION 

Parkinson’s Disease (PD) is the second most prominent neurodegenerative disease after 

Alzheimer’s (Gonzalez-Rodriguez et al., 2020; Marino et al., 2020; Muddapu and 

Chakravarthy, 2021). The onset of the disease is characterized by shaky movements, rigidity 

of joints, unregulated movements, and even loss of smell (Morley and Duda, 2010; Fullard et 

al., 2017; Armstrong and Okun, 2020; Balestrino and Schapira, 2020; Goldman and Guerra, 

2020; Marino et al., 2020). The major cause of this disease is the death of dopaminergic neurons 

in Substantia Nigra pars compacta (SNc) (Michel et al., 2016; Surmeier, 2018; Muddapu et al., 

2020a). Dopamine (DA) deficiency due to SNc cell loss manifest as the cardinal PD symptoms 

that include tremor, rigidity, bradykinesia and postural imbalance (Bereczki, 2010; Poewe et 

al., 2017; Balestrino and Schapira, 2020). Epidemiological data from the United States alone 

indicates that there has been an exponential growth of people suffering from PD over the last 

few decades (Dorsey et al., 2018; Marras et al., 2018). However, the exact cause of this cell 

death is still not known. Various lines of investigation, experimental and computational, are in 

progress and hopefully we will be able to narrow down the roots of this disease (Pissadaki and 

Bolam, 2013; Pacelli et al., 2015; Fu et al., 2018; Giguère et al., 2019; Muddapu et al., 2019, 

2020a, 2020b; Anilkumar et al., 2020; Gonzalez-Rodriguez et al., 2020; Muddapu and 

Chakravarthy, 2021). Understanding the cause and effect relationship between the underlying 

pathology and symptoms of any neurological disease has fundamental challenges since the 

roots of the disease are at molecular and cellular level while the symptoms are seen at the 

behavioural  level (Bakshi et al., 2019). Hence it is important to have a multi-scale model that 

spans molecular mechanisms to behavioral outputs. With this motivation in mind, we present 

a computational model that relates DA deficiency in PD to motor symptoms in ON and OFF 

conditions of medication. As an example of drug action, we simulate the effect of levodopa (L-

DOPA) drug administration in our model. 

Basal Ganglia & Dopamine 

Dopaminergic input from the SNc neurons modulates the DA receptors present in the striatal 

neurons, the input nuclei of the basal ganglia (BG) differentially. The striatum (STR) consists 

of the D1 and D2-type expressing medium spiny neurons (MSN) that project via two different 

pathways. D1-MSN neurons project along the direct pathway, D2-MSNs project along the 

indirect pathway. The direct pathway projects directly to the output nuclei, globus pallidus 

interna (GPi) and Substantia Nigra pars reticulata (SNr), whereas the indirect pathway projects 
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to the output nucleus, GPi, via globus pallidus externa (GPe) and subthalamic nucleus (STN). 

DA release from SNc neurons maintains the balance between activation of direct and indirect 

pathways. In order to understand the effect of DA deficiency as in PD conditions, or the 

mechanism of DA replenishment by administration of L-DOPA, we need to understand DA 

synthesis, uptake and release (Chakravarthy and Moustafa, 2018; Muddapu and Chakravarthy, 

2021). 

In this paper, we present a multiscale model of the cortical basal ganglia system to 

simulate arm reaching movements under conditions of PD pathology and L-DOPA medication. 

At the lowest level, the intracellular molecular pathways of SNc cells are modelled so as to 

capture dopamine synthesis, uptake and release. At the next level, the BG circuitry is modelled 

using rate coded neurons which is cast within the reinforcement learning framework with 

striatum acting as the neural correlate for critic and the direct and indirect pathways facilitating 

exploitation and exploration, respectively. At the highest level, arm reaching movements are 

modelled by a two-link arm model driven by a sensory-motor cortical loop. 

This article is organized into multiple sections. Section 2 describes the model 

architecture, equations and methods. Here we discuss various functional loops that constitute 

in the model and how they are interconnected. This section also covers the integration of the 

pharmacological intervention. In section 3 we showcase the results from the model starting 

with training the model, simulating the behavior of a control subject, replicating the PD ON 

condition and some of the cardinal symptoms, assessing the performance in terms of reaching 

time and verifying the effect of L-DOPA therapeutic intervention. The model results also gave 

an indicator of how to optimize the drug dosage. Section 4 discusses the simulation results in 

detail and based on that the conclusion derived is updated in section 5.  Section 6 presents the 

potential future scope. 

2. MATERIALS AND METHODS 

The proposed multiscale cortico-basal ganglia (MCBG) model was able to simulate the arm 

reaching in normal and Parkinsonian conditions which includes some of the cardinal symptoms 

of PD (Figure 1). In addition, the effect of L-DOPA medication on arm reaching in PD 

condition was simulated (Figure S1). 
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Figure 1: Model architecture of multiscale cortico-basal ganglia model for arm reaching. SNc, 
substantia nigra pars compacta; GPe, globus pallidus externa; GPi, globus pallidus interna; STN, 
subthalamic nucleus; Thal, thalamus; MC, motor cortex; MN, motor neuron; PC, proprioceptive cortex; 
PFC, prefrontal cortex. 𝑋𝑡𝑎𝑟𝑔, the target position; 𝑋𝑎𝑟𝑚, the current arm position; 𝜙𝑀𝑁, the motor 
neuron activations; 𝑀𝐿, muscle lengths; 𝐼𝑔𝑎𝑏𝑎, inhibitory GABAergic current; 𝐷𝐴𝑒, extracellular 

dopamine; ∆𝐺(𝑡), the MC output; ∆𝐺(𝑡 + 1), the BG-derived activity of thalamus. 

The proposed model can be broadly described in three parts. i) Outer loop – motor-

sensory loop, ii) Inner loop – cortico-basal ganglia loop and iii) Central loop – nigrostriatal 

loop (Figure 2). The outer loop consists of motor cortex (MC), motor neurons (MNs), arm, 

proprioceptive cortex (PC) and prefrontal cortex (PFC). The inner loop consists of MC, 

thalamus, and BG nuclei comprised of striatum, GPi, GPe, and STN. The central loop consists 

of striatum and SNc, which plays an important role in simulating PD conditions, where 

nigrostriatal and nigrosubthalamic pathways affected by SNc cell loss. For L-DOPA 

medication, a pharmacokinetic module was formulated where input will be L-DOPA dosage 

given to the PD patient and output will be the amount of DA released in striatum during the 

medication. The subsequent sections describe the dynamics involved in each of these three 

loops. 

2.1. Outer Loop – Sensory-Motor Loop 

The functional pathway of the outer loop is shown in Figure 2A. The outer loop consists of a 

two-link arm model driven by MNs. MNs receive motor commands from MC. The end effector 

position of the arm is sensed by PC and it forwards the signal to MC, which receives signals 
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from PFC and BG. MC issues the motor commands based on the integration of incoming 

signals.  

2.1.1. Arm Model 

The kinetic model of the two-joint arm simulates the movement of the arm in two-dimensional 

space (Izawa et al., 2004; Zadravec and Matjačić, 2013) (Figure S2). Each joint (shoulder and 

elbow) is controlled by an agonist (Ag) and antagonist (An) muscle pair where the shoulder 

joint is controlled by anterior deltoid (shoulder flexor, 𝑀1) and posterior deltoid (shoulder 

extensor, 𝑀2) and elbow joint is controlled by brachialis (elbow flexor, 𝑀3) and triceps brachii 

(elbow extensor, 𝑀4) (Jagodnik and van den Bogert, 2010). The activations to these muscle 

groups (𝜙𝑀𝑁) are transformed into joint angles for both shoulder and the elbow as follows, 

𝜃𝑆
𝐽𝐴(𝑡) = (𝜙𝑆𝐴𝑔

𝑀𝑁(𝑡) − 𝜙𝑆𝐴𝑛

𝑀𝑁(𝑡))
𝜋

2
+

𝜋

2
 (1) 

𝜃𝐸
𝐽𝐴(𝑡) = (𝜙𝐸𝐴𝑔

𝑀𝑁 (𝑡) − 𝜙𝐸𝐴𝑛

𝑀𝑁 (𝑡))
𝜋

2
+

𝜋

2
 

(2) 

where, 𝜃𝑆
𝐽𝐴

 and 𝜃𝐸
𝐽𝐴

 are the joint angles of shoulder and elbow with respect to the x-axis (Figure 

S1) and shoulder length (𝑙𝑆), respectively in two-dimensional space, 𝜙𝑆𝐴𝑔

𝑀𝑁  is the muscle 

activation of shoulder agonist muscle, 𝜙𝑆𝐴𝑛

𝑀𝑁  is the muscle activation of shoulder antagonist 

muscle, 𝜙𝐸𝐴𝑔

𝑀𝑁  is the muscle activation of elbow agonist muscle, and 𝜙𝐸𝐴𝑛

𝑀𝑁  is the muscle 

activation of elbow antagonist muscle. 

The coverage of the arm in two-dimensional space is controlled by these joint angles. 

The joint angles are used to calculate the muscle lengths for both shoulder and elbow as given 

below.  

𝜇𝐴𝑔
𝑆 (𝑡) = √𝑎𝑆

2 + 𝑏𝑆
2 + 2𝑎𝑆𝑏𝑆 cos(𝜃𝑆

𝐽𝐴)  
(3) 

𝜇𝐴𝑛
𝑆 (𝑡) = √𝑎𝑆

2 + 𝑏𝑆
2 − 2𝑎𝑆𝑏𝑆 cos(𝜃𝑆

𝐽𝐴)  
(4) 

𝜇𝐴𝑔
𝐸 (𝑡) = √𝑎𝐸

2 + 𝑏𝐸
2 + 2𝑎𝐸𝑏𝐸 cos(𝜃𝐸

𝐽𝐴)  
(5) 

𝜇𝐴𝑁
𝐸 (𝑡) = √𝑎𝐸

2 + 𝑏𝐸
2 − 2𝑎𝐸𝑏𝐸 cos(𝜃𝐸

𝐽𝐴)   
(6) 

where, 𝜇𝐴𝑔
𝑆 , 𝜇𝐴𝑛

𝑆 , 𝜇𝐴𝑔
𝐸 , and 𝜇𝐴𝑛

𝐸  are the agonist and antagonist muscle lengths of shoulder and 

elbow, respectively, 𝑎𝑆 is the distance between shoulder joint center and 𝑀1 or 𝑀2 moment 

lever, 𝑏𝑆 is the distance between shoulder joint center and 𝑀1 or 𝑀2 moment lever, 𝑎𝐸 is the 
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distance between elbow joint center and 𝑀3 or 𝑀4 moment lever, and 𝑏𝐸 is the distance between 

elbow joint center and 𝑀3 or 𝑀4 moment lever. 

Using these muscle lengths in the form of a four-dimensional vector (𝑀𝐿 =

[𝜇𝐴𝑔 
𝑆 𝜇𝐴𝑛 

𝑆 𝜇𝐴𝑔
𝐸  𝜇𝐴𝑛

𝐸 ]), a sensory (proprioceptive) map of the arm was generated. The end effector 

position of the arm (𝑋𝑎𝑟𝑚 = [𝑥1
𝑎𝑟𝑚 𝑥2

𝑎𝑟𝑚]) in the two-dimensional space is calculated as, 

𝑥1
𝑎𝑟𝑚 = (𝑙𝑆 − 𝑎𝑆) cos(𝜃𝑆

𝐽𝐴) + 𝑙𝐸 cos(𝜃𝑆
𝐽𝐴 + 𝜃𝐸

𝐽𝐴) (7) 

𝑥2
𝑎𝑟𝑚 = (𝑙𝑆 − 𝑎𝑆) sin(𝜃𝑆

𝐽𝐴) + 𝑙𝐸 sin(𝜃𝑆
𝐽𝐴 + 𝜃𝐸

𝐽𝐴) (8) 

𝑀𝐿 = [𝜇𝐴𝑔
𝑆  𝜇𝐴𝑛

𝑆  𝜇𝐴𝑔
𝐸  𝜇𝐴𝑛

𝐸 ] (9) 

where, 𝜃𝑆
𝐽𝐴

 and 𝜃𝐸
𝐽𝐴

 are the joint angles of shoulder and elbow with respect to the x-axis (Figure 

S1)  and shoulder length (𝑙𝑆), respectively in two-dimensional space, 𝑙𝑆 is the distance between 

the shoulder joint center (𝑆) and elbow joint center (𝐸), 𝑙𝐸 is the distance between the elbow 

joint center (𝐸) and end effector (𝐻), 𝑎𝑆 is the distance between shoulder joint center and 𝑀1 

or 𝑀2 moment lever, 𝜇𝐴𝑔
𝑆 , 𝜇𝐴𝑛

𝑆 , 𝜇𝐴𝑔
𝐸 , and 𝜇𝐴𝑛

𝐸  are the agonist (𝑀1 or 𝑀3) and antagonist (𝑀2 or 

𝑀4) muscle lengths of shoulder and elbow, respectively. 

2.1.2. Proprioceptive Cortex 

PC is modeled as self-organizing map (SOM) (Kohonen, 2001) of size 𝑁𝑃𝐶  𝑥 𝑁𝑃𝐶 where 

sensory map of the arm was generated. Using muscle length vector (𝑀𝐿(𝑡)) from the arm 

model (Eq. 9) as a feature vector, PC SOM was trained. The activation of a single node (𝑖, 𝑗) 

in the PC SOM is given as,  

 𝑈𝑖𝑗
𝑃𝐶(𝑡) = 𝑒𝑥𝑝 (

−‖𝑀𝐿(𝑡) − 𝑊𝑃𝐶,𝑖𝑗‖
2

𝜎𝑃𝐶
2 ) (10) 

where, 𝑊𝑃𝐶,𝑖 is the weight of the connection between the muscle length vector and 𝑖𝑡ℎ neuron 

of the two-dimensional PC network, 𝑀𝐿 is the muscle length vector and 𝜎𝑃𝐶  is the width of the 

Gaussian response of PC SOM. 

2.1.3. Prefrontal Cortex (PFC) 

PFC encodes the goal position where, in real time, the goal information is formed using the 

visual sensory feedback, which is passed on to the frontal areas. In our current model, we fix 

the goal or target position and denote it by 𝑋𝑡𝑎𝑟𝑔.  The motor command initially is driven by 

the PFC as the PFC specifies the goal to be reached. Similar to the PC, the PFC SOM is trained 
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using target position vector as a feature vector. The input features of the PFC are the spatial 

locations where the arm can possibly reach in the two-dimensional space. The target locations 

produce the activation in the PFC network is given as. 

 𝑈𝑖𝑗
𝑃𝐹𝐶(𝑡) = 𝑒𝑥𝑝 (

−‖𝑋𝑡𝑎𝑟𝑔(𝑡) − 𝑊𝑃𝐹𝐶,𝑖𝑗‖
2

𝜎𝑃𝐹𝐶
2

) (11) 

where, 𝑊𝑃𝐹𝐶,𝑖𝑗 is the weight of the connection between the target position vector and (𝑖, 𝑗)𝑡ℎ 

neuron of the two-dimensional PFC network, 𝑋𝑡𝑎𝑟𝑔 is the target position and 𝜎𝑃𝐹𝐶  is the width 

of the Gaussian response of PFC SOM. 

2.1.4. Motor Cortex 

MC is modeled as a combination of SOM and continuous attractor neural network (CANN) 

(Trappenberg, 2011) of size 𝑁𝑀𝐶  𝑥 𝑁𝑀𝐶. This type of architecture of MC is used to account for 

two distinct characteristics of cortical areas viz., low dimensional representation of input space 

and dynamics based on the connectivity in these cortical regions. A dynamic model like CANN 

is employed to facilitate the integration of multiple afferent inputs received from the PC, the 

BG and PFC. The output activity of the MC CANN (𝐺𝑀𝐶) is defined by, 

 
𝐺𝑀𝐶(𝑡) =

𝑔𝑀𝐶
2

1 + (
2𝜋

𝑁𝑀𝐶
2 ) 𝑏𝑀𝐶 ∑ 𝑔𝑀𝐶

2
 

(12) 

where, 𝑔𝑀𝐶 is the internal state of MC CANN, 𝑁𝑀𝐶 is the size of MC network, 𝑏𝑀𝐶 is the 

constant term. 

The internal state of the MC CANN (𝑔𝑀𝐶) is given by, 

 𝜏𝑀𝐶

𝑑𝑔𝑀𝐶

𝑑𝑡
= −𝑔𝑀𝐶 + 𝑊𝑀𝐶

𝐶  ⨂ 𝐺𝑀𝐶 + 𝐼𝑀𝐶  (13) 

where, 𝑊𝑀𝐶
𝐶  is the weight kernel representing lateral connectivity in MC CANN, which 

determines the local excitation/global inhibition dynamics, 𝐺𝑀𝐶  is the output activity of MC 

CANN, 𝐼𝑀𝐶  is the total input coming into MC CANN from PC, PFC and BG and ⨂ represents 

the convolutional operation. 

2.1.4.1. Lateral Connections in MC 

The lateral connectivity in the MC CANN is characterized by short range (local) excitation and 

long range (global) inhibition whose dynamics are defined by the weight kernel (𝑊𝑀𝐶
𝐶 ) is given 

by, 
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 𝑊𝑀𝐶,𝑖,𝑗
𝐶 = 𝐴𝑙𝑎𝑡

𝐶 exp (
−‖(𝑖𝑀𝐶 − 𝑖ℎ) + (𝑗𝑀𝐶 − 𝑗ℎ)‖2

2(𝜎𝑙𝑎𝑡
𝐶 )2

) − 𝐾𝐶  (14) 

where, [𝑖𝑀𝐶 , 𝑗𝑀𝐶] are the location of the nodes in MC, [𝑖ℎ, 𝑗ℎ] corresponds to the central node, 

𝐴𝑙𝑎𝑡
𝐶  is the strength of the excitatory connections, 𝐾𝐶 is the global inhibition constant and 𝜎𝑙𝑎𝑡

𝐶  

is the radius of the excitatory connections. 

2.1.4.2. Total Inputs into MC 

The total input (𝐼𝑀𝐶) coming into MC CANN from PC (information about current position of 

the arm), PFC (information about target position) and BG (error feedback signal) is given by, 

 𝐼𝑀𝐶(𝑡) = 𝐴𝑃𝐶𝐺𝑃𝐶(𝑡) + 𝐴𝑃𝐹𝐶𝐺𝑃𝐹𝐶(𝑡) + 𝐴𝐵𝐺𝐺𝐵𝐺(𝑡) (15) 

where, 𝐴𝑃𝐶, 𝐴𝑃𝐹𝐶 , 𝐴𝐵𝐺  are the respective gains of PC, PFC and BG, 𝐺𝑃𝐶 , 𝐺𝑃𝐹𝐶, 𝐺𝐵𝐺  are the 

output activities of PC-derived SOM part of MC, PFC-derived activation part of MC and BG-

derived network activity of thalamus. 

PC activity is used to generate low level feature maps in MC using SOM algorithm. 

The activation of the (𝑖, 𝑗)𝑡ℎnode in the SOM part of the MC (𝐺𝑃𝐶,𝑖𝑗) is given as, 

 𝐺𝑃𝐶,𝑖𝑗(𝑡) = 𝑒𝑥𝑝 (
−‖𝑈𝑃𝐶(𝑡) − 𝑊𝑀𝐶,𝑖𝑗‖

2

𝜎𝑀𝐶
2 ) (16) 

where, 𝑈𝑃𝐶 is the output activity of PC SOM network, 𝑊𝑀𝐶,𝑖 is the weight of the connection 

between the PC SOM network and 𝑖𝑡ℎ neuron of the two-dimensional MC SOM network, and 

𝜎𝑀𝐶  is the width of the Gaussian response of MC SOM. 

The input from PFC to MC (𝐺𝑃𝐹𝐶) is the product of weight matrix (𝑊𝑃𝐹𝐶→𝑀𝐶) and the 

output activity of PFC SOM is given by, 

 𝐺𝑃𝐹𝐶(𝑡) = 𝑊𝑃𝐹𝐶→𝑀𝐶 ∗ 𝑈𝑃𝐹𝐶(𝑡) (17) 

where, 𝑈𝑃𝐹𝐶 is the output activity of PFC SOM network, 𝑊𝑃𝐹𝐶→𝑀𝐶  is the weight matrix 

between PFC and MC. 

In an earlier line of modelling studies, we have shown that the classical Go-NoGo 

interpretation of the functional anatomy of the BG must be expanded to Go-Explore-NoGo, in 

view of the putative role of the Indirect Pathway in exploration (Sridharan et al., 2006; 

Chakravarthy and Balasubramani, 2014). This series of models had resulted in the so-called 

Go-Explore-NoGo policy, that refers to a stochastic hill climbing performed on the value 
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function computed inside the BG (Magdoom et al., 2011). When the arm reaches the target 

(𝜖 < 0.1), the connections between the PFC and MC are trained by, 

 ∆𝑊𝑃𝐹𝐶→𝑀𝐶 = 𝜂𝑃𝐹𝐶→𝑀𝐶 (𝐺𝑡𝑎𝑟𝑔
𝑀𝐶 (𝑡) − 𝐺𝑃𝐹𝐶

𝑀𝐶 (𝑡)) 𝑈𝑃𝐹𝐶(𝑡) (18) 

where, 𝜂𝑃𝐹𝐶→𝑀𝐶  is the learning rate between PFC and MC, 𝐺𝑡𝑎𝑟𝑔
𝑀𝐶  is the MC activation required 

for the arm to reach the target, and 𝐺𝑃𝐹𝐶
𝑀𝐶 (𝐺𝑃𝐹𝐶) is the MC activation due to PFC. 

2.1.5. Motor Neurons 

The output activity of MC CANN projects to the MN layer which consists of four MNs that 

drives four muscles of the arm whose activation is given by,  

 𝜙𝑀𝑁 = 𝐴𝑀𝑁𝑊𝑀𝐶→𝑀𝑁𝐺𝑀𝐶(𝑡) (19) 

where, 𝐴𝑀𝑁 is the gain of MN, 𝑊𝑀𝐶→𝑀𝑁 is the weight matrix between MC CANN and MN 

layer, and 𝐺𝑀𝐶  is the output activity of MC CANN. 

To close the sensory-motor loop, we perform a comparison with the initial activation 

to the MN layer that was used to produce desired activation 𝜙𝐷
𝑀𝑁(𝑡). The weights between the 

MN and MC are trained in a supervised manner by comparing the network derived MN 

activation 𝜙𝑀𝑁(𝑡) to the desired activation 𝜙𝐷
𝑀𝑁(𝑡). This gives a loop which is consistent in 

mapping the external arm space to the neuronal space and vice. The connection between MC 

and MN is trained by, 

 ∆𝑊𝑀𝐶→𝑀𝑁 = 𝜂𝑀𝐶→𝑀𝑁(𝜙𝐷
𝑀𝑁(𝑡) − 𝜙𝑀𝑁(𝑡))𝐺𝑀𝐶(𝑡) (20) 

where, 𝜂𝑀𝐶→𝑀𝑁 is the learning rate between MC and MN, 𝜙𝐷
𝑀𝑁 is the desired MN activation 

required for the arm to reach the target and 𝜙𝑀𝑁 is the network-derived MN activation due to 

MC, and 𝐺𝑀𝐶  is the output activity of MC CANN. The training schema for the outer loop 

(sensory-motor loop) is described in section S3 of the supplementary information. 

2.2 Inner Loop – Cortico-Basal Ganglia Loop 

The functional pathway of the inner loop is shown in Figure 2B. The inner loop consists of 

MC, BG and thalamus. MC receives information from BG via thalamus. MC sends information 

to BG based on the integration of incoming signals received from PFC (target goal position, 

𝑋𝑡𝑎𝑟𝑔), PC (current end effector position of the arm, 𝑋𝑎𝑟𝑚) and BG (via thalamus, error 

feedback signal, 𝐺𝐵𝐺). 
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Figure 2: Different structural and functional loops of the proposed multiscale cortico-basal ganglia 
model. A) Outer loop – sensory-motor loop B) Inner loop – cortico-basal ganglia loop C) Central loop – 
nigrostriatal loop. SNc, substantia nigra pars compacta; GPe, globus pallidus externa; GPi, globus 
pallidus interna; STN, subthalamic nucleus; STR, striatum; Thal, thalamus; MC, motor cortex; MN, 
motor neuron; PC, proprioceptive cortex; PFC, prefrontal cortex. 𝑋𝑡𝑎𝑟𝑔, the target position; 𝑋𝑎𝑟𝑚, the 
current arm position; 𝜙𝑀𝑁, the motor neuron activations; 𝑀𝐿, muscle lengths; 𝐼𝑔𝑎𝑏𝑎, inhibitory 

GABAergic current; 𝐷𝐴𝑒, extracellular dopamine; ∆𝐺(𝑡), the MC output; ∆𝐺(𝑡 + 1), the BG-derived 
activity of thalamus; 𝑉𝑆𝑁𝑐, the voltage membrane of SNc neuron; 𝐽𝑚,𝐶𝑎, the calcium flux of SNc neuron 
as a function of 𝑉𝑆𝑁𝑐; 𝐽𝑠𝑦𝑛𝑡, the dopamine synthesis flux as function of calcium; 𝑃𝑟𝑒𝑙, the probability 

release of dopamine extracellularly as a function of calcium. 

2.2.1 Basal Ganglia 

BG consists of the striatum, GPe, GPi, STN and SNc. The output signal from BG provides the 

necessary control for the arm to reach the target by modulating the MC activity. The output of 

the MC is as given in Eq. 12. 

2.2.1.1 Value Computation and Stochastic Hill Climbing 

The signal from the PC contains information about the current end effector position of the arm 

(𝑋𝑎𝑟𝑚) whereas the signal from PFC contains the target goal position (𝑋𝑡𝑎𝑟𝑔). These two 

signals are combined in the BG to form a value function, 𝑉𝑎𝑟𝑚(𝑡), that represents the error 

between the desired and the actual positions of the hand as, 
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 𝑉𝑎𝑟𝑚(𝑡) = 𝑒𝑥𝑝 (
−‖𝑋𝑡𝑎𝑟𝑔 − 𝑋𝑎𝑟𝑚‖2

𝜎𝑉
2 ) (21) 

where, 𝑋𝑡𝑎𝑟𝑔 is the target goal position, 𝑋𝑎𝑟𝑚 is the current end effector position of the arm, 

𝜎𝑉 is the spatial range over which the value function is sensitive for that particular target. 

The output of the BG performs a stochastic hill climbing over the value function 

(Chakravarthy and Moustafa, 2018; Narayanamurthy et al., 2019) and drives the MC to 

facilitate the arm in reaching the target. The value difference (𝛿𝑉) which is computed by 

comparing the current and previous values is given as, 

 𝛿𝑉 = 𝑉𝑎𝑟𝑚(𝑡) − 𝑉𝑎𝑟𝑚(𝑡 − 1) (22) 

where, 𝑉𝑎𝑟𝑚(𝑡) is the current value and 𝑉𝑎𝑟𝑚(𝑡 − 1) is the previous value. 

Based on this value difference signal (𝛿𝑉), the striatum will send the inhibitory 

GABAergic current (𝐼𝑔𝑎𝑏𝑎) to the SNc neurons while the SNc neurons will in turn release 

dopamine into the extracellular space (𝐷𝐴𝑒), which is absorbed by the striatum. 𝐷𝐴𝑒 is 

transformed into 𝛿𝑉
𝑆𝑁𝑐. 𝛿𝑉

𝑆𝑁𝑐 modulates the selection of direct and indirect pathways in the BG. 

The dynamics between the striatum and the SNc is described in greater detail in the subsequent 

section, ‘The Central Loop’. 

2.2.1.2 Action Selection 

Striatum 

The resultant 𝛿𝑉
𝑆𝑁𝑐 acts as a modulatory signal on D1R-MSNs and D2R-MSNs of the striatum, 

which process the input signal, ∆𝐺𝑀𝐶(𝑡), and send outputs 𝑦𝐷1 & 𝑦𝐷2 via direct and indirect 

pathways, respectively. 

 𝑦𝐷1 = 𝜆𝐷1𝑊𝐶𝑇𝑋→𝐷1𝛥𝐺𝑀𝐶 (23) 

 

 𝑦𝐷2 = 𝜆𝐷2𝑊𝐶𝑇𝑋→𝐷2𝛥𝐺𝑀𝐶 (24) 

 

 𝜆𝐷1 =
1

1 + exp(−𝑎𝐷1(𝛿𝑉
𝑆𝑁𝑐 − 𝜃𝐷1))

 (25) 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.10.430544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.10.430544


13 
 

 𝜆𝐷2 =
1

1 + exp(−𝑎𝐷2(𝛿𝑉
𝑆𝑁𝑐 − 𝜃𝐷2))

 (26) 

where, 𝜆𝐷1 and 𝜆𝐷2 represent the effect of dopamine (value difference) on the D1 and D2 

MSNs, respectively, 𝑊𝐶𝑇𝑋→𝐷1 and 𝑊𝐶𝑇𝑋→𝐷2 represent connections between cortex and D1 

MSNs and cortex and D2 MSNs, respectively, 𝛥𝐺𝑀𝐶 is the output activity of MC, 𝛿𝑉
𝑆𝑁𝑐 is the 

SNc-derived value difference, 𝜃𝐷1 and 𝜃𝐷2 are the thresholds of the D1 and D2 MSNs, 

respectively, 𝑎𝐷1 and 𝑎𝐷2 are the sigmoidal gains of the D1 and D2 MSNs, respectively. Since  

𝑎𝐷1 = −𝑎𝐷2, the activation of direct and indirect pathways depends on the 𝛿𝑉
𝑆𝑁𝑐 such that when 

𝛿𝑉
𝑆𝑁𝑐 is positive (negative) the direct (indirect) pathway is selected. 

STN-GPe Subsystem 

In the indirect pathway, D2 MSNs of the striatum project to the GPe, where 𝑦𝐷2 influences GPe 

neural dynamics, which in turn influences STN neural dynamics. STN-GPe forms a loop with 

inhibitory projections from GPe to STN and excitatory projections from STN to GPe. Such 

excitatory-inhibitory pairs of neuronal pools have been shown to exhibit limit cycle oscillations 

(Gillies et al., 2002) which was modeled as coupled Van der Pol oscillator (Kawahara, 1980). 

The dynamics of STN-GPe system is defined as, 

 𝜏𝐺𝑃𝑒

𝑑𝑥𝐺𝑃𝑒

𝑑𝑡
= −𝑥𝐺𝑃𝑒 + 𝜀𝑔 ∑ ∑ 𝑊𝑔𝑙𝑎𝑡 𝑥𝐺𝑃𝑒 + 𝑤𝑠𝑔𝑦𝑆𝑇𝑁 + 𝑦𝐷2 (27) 

 

 𝜏𝑆𝑇𝑁

𝑑𝑥𝑆𝑇𝑁

𝑑𝑡
= −𝑥𝑆𝑇𝑁 + 𝜀𝑠 ∑ ∑ 𝑊𝑠𝑙𝑎𝑡 𝑦𝑆𝑇𝑁 − 𝑤𝑔𝑠𝑥𝐺𝑃𝑒 (28) 

 

 𝑦𝑆𝑇𝑁 = tanh(𝜆𝑆𝑇𝑁𝑥𝑆𝑇𝑁) (29) 

 

where, 𝑥𝐺𝑃𝑒 and 𝑥𝑆𝑇𝑁 are the internal states of GPe and STN neurons, respectively, 𝑦𝑆𝑇𝑁 is the 

output of STN neuron, 𝜀𝑔 and 𝜀𝑠 are the strengths of lateral connections in GPe and STN 

networks, respectively, 𝑊𝑔𝑙𝑎𝑡 and 𝑊𝑠𝑙𝑎𝑡 are weight kernels representing lateral connectivity in 

GPe and STN networks, respectively, 𝑦𝐷2 is the output of D2 MSN, 𝜏𝐺𝑃𝑒 and 𝜏𝑆𝑇𝑁 are the time 

constants of GPe and STN, respectively, 𝑤𝑠𝑔 is the connection strength from STN to GPe, 𝑤𝑔𝑠 

is the connection strength from GPe to STN, and 𝜆𝑆𝑇𝑁 is the parameter which controls the slope 

of the sigmoid in STN. 
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Lateral Connections in STN-GPe 

The lateral connectivity in STN or GPe network is modeled as Gaussian neighbourhood 

(Muddapu et al., 2019) which is defined by the weight kernel (𝑊𝑔𝑙𝑎𝑡/𝑠𝑙𝑎𝑡) as, 

 𝑊𝑖,𝑗,𝑘,𝑙
𝑔𝑙𝑎𝑡/𝑠𝑙𝑎𝑡

= exp (−
𝑑𝑖,𝑗,𝑘,𝑙

2

(𝜎𝑙𝑎𝑡
𝑔/𝑠

)
2) (30) 

 

 𝑑𝑖,𝑗,𝑘,𝑙
2 = (𝑖𝑔/𝑠 − 𝑘𝑔/𝑠)

2
+ (𝑗𝑔/𝑠 − 𝑙𝑔/𝑠)

2
 (31) 

 

where, 𝑑𝑖,𝑗,𝑘,𝑙
2  is the distance of neuron (𝑖, 𝑗) from center neuron (𝑘, 𝑙), 𝜎𝑙𝑎𝑡

𝑔/𝑠
 is the spread of the 

lateral connections for GPe or STN network. The detailed analysis of STN-GPe subsystem is 

described in section S9 of the supplementary information. 

GPi 

The signals arriving from D1 MSN (𝑦𝐷1) and STN (𝑦𝑆𝑇𝑁) via direct and indirect pathways, 

respectively combines in GPi which is defined as, 

 𝑦𝐺𝑃𝑖 = 𝐴𝐷1𝑦𝐷1 − 𝐴𝐷2𝑦𝑆𝑇𝑁 (32) 

where, 𝑦𝐷1 is the output of D1 MSN via direct pathway, 𝑦𝑆𝑇𝑁 is the output of STN via indirect 

pathway, 𝐴𝐷1 and 𝐴𝐷2 are the gains of direct and indirect pathways, respectively. 

2.2.2 Thalamus 

The combined inputs (𝑦𝐺𝑃𝑖) at GPi from direct (𝑦𝐷1) and indirect (𝑦𝑆𝑇𝑁) pathways are then 

passed on to thalamus. To integrate and filter the information from the GPi output, thalamus 

was modeled as a CANN which is defined as, 

 
𝐺𝑡ℎ𝑎𝑙(𝑡) =

𝑔𝑡ℎ𝑎𝑙
2

1 + (
2𝜋

𝑁𝑡ℎ𝑎𝑙
2 ) 𝑏𝑡ℎ𝑎𝑙 ∑ 𝑔𝑡ℎ𝑎𝑙

2
 

(33) 

where, 𝑔𝑡ℎ𝑎𝑙 is the internal state of thalamus CANN, 𝑁𝑡ℎ𝑎𝑙 is the size of thalamus network, 

𝑏𝑡ℎ𝑎𝑙 is the constant term. 

The internal state of the thalamus CANN (𝑔𝑡ℎ𝑎𝑙) is given by, 
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 𝜏𝑡ℎ𝑎𝑙

𝑑𝑔𝑡ℎ𝑎𝑙

𝑑𝑡
= −𝑔𝑡ℎ𝑎𝑙 + 𝑊𝑡ℎ𝑎𝑙

𝐶  ⨂ 𝐺𝑡ℎ𝑎𝑙 + 𝐼𝐵𝐺  (34) 

 

 𝐼𝐵𝐺 = 𝑦𝐺𝑃𝑖  (35) 

 

 𝐺𝐵𝐺 = 𝐺𝑡ℎ𝑎𝑙   (36) 

 

where, 𝑊𝑡ℎ𝑎𝑙
𝐶  is the weight kernel representing lateral connectivity in thalamus CANN, which 

determines the local excitation/global inhibition dynamics, 𝐺𝑡ℎ𝑎𝑙 is the output activity of 

thalamus CANN, 𝐼𝐵𝐺  is the total input coming into thalamus CANN from BG, 𝑦𝐺𝑃𝑖 is the output 

of GPi, 𝐺𝐵𝐺  is the BG-derived network activity of thalamus, and ⨂ represents the convolution 

operation. 

2.3 Central Loop – Nigro-Striatal Loop 

The functional pathway of the central loop is as represented in Figure 2C. The central loop 

consists of the striatum (the input nucleus of BG) and SNc. SNc projects to the striatum via 

dopaminergic axons (𝐷𝐴𝑒) and striatum in turn projects to SNc via inhibitory GABAergic 

axons (𝐼𝑔𝑎𝑏𝑎). Based on the sensory feedback signal received from the PC (𝑋𝑎𝑟𝑚) and the 

target information from the PFC (𝑋𝑡𝑎𝑟𝑔), the striatum performs value computation (𝑉𝑎𝑟𝑚). 

Based on the values from current (𝑉𝑎𝑟𝑚(𝑡)) and previous (𝑉𝑎𝑟𝑚(𝑡 − 1)) instants, the value 

difference (error, 𝛿𝑉) is computed. Based on the value difference (𝛿𝑉), appropriate amount of 

GABAergic current (𝐼𝑔𝑎𝑏𝑎) is sent to SNc, which in turn releases dopamine into the striatum 

(𝐷𝐴𝑒) accordingly. 

2.3.1 SNc 

2.3.1.1 SNc Neuron (soma) 

The detailed single-compartmental biophysical model of the SNc neuron is adopted from 

(Muddapu and Chakravarthy, 2021). The model incorporates all the essential molecular level 

mechanisms such as ion channels, active pumps, ion exchangers, dopamine turnover processes 

etc. 

Based on the value difference signal (𝛿𝑉), the inhibitory GABAergic current (𝐼𝑔𝑎𝑏𝑎), 

flows from striatum to SNc. 𝐼𝑔𝑎𝑏𝑎along with excitatory glutamatergic current (𝐼𝑛𝑚𝑑𝑎/𝑎𝑚𝑝𝑎) 
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contributes to the overall synaptic input current flux (𝐽𝑠𝑦𝑛) to the SNc neurons. 𝐽𝑠𝑦𝑛 regulates 

the membrane voltage of the SNc along with the sodium, calcium and potassium fluxes as 

given by, 

 
𝑑(𝑉𝑆𝑁𝑐)

𝑑𝑡
=

𝐹 ∗ 𝑣𝑜𝑙𝑐𝑦𝑡

𝐶𝑠𝑛𝑐 ∗ 𝐴𝑅𝑝𝑚𝑢
∗ [ 𝐽𝑚,𝑁𝑎 + 2 ∗ 𝐽𝑚,𝐶𝑎 + 𝐽𝑚,𝐾 + 𝐽𝑠𝑦𝑛] (37) 

 

 𝐽𝑠𝑦𝑛 = −
1

𝐹 ∗ 𝑣𝑜𝑙𝑐𝑦𝑡
∗ (𝐼𝑔𝑎𝑏𝑎 +  𝐼𝑛𝑚𝑑𝑎/𝑎𝑚𝑝𝑎) (38) 

 

 𝐼𝑔𝑎𝑏𝑎 = 𝐹(𝛿𝑉) (39) 

 

where, 𝐹 is the Faraday’s constant, 𝐶𝑠𝑛𝑐 is the SNc membrane capacitance, 𝑣𝑜𝑙𝑐𝑦𝑡 is the 

cytosolic volume, 𝐴𝑅𝑝𝑚𝑢 is the cytosolic area, 𝐽𝑚,𝑁𝑎 is the sodium membrane ion flux, 𝐽𝑚,𝐶𝑎 

is the calcium membrane ion flux, 𝐽𝑚,𝐾 is the potassium membrane ion flux, 𝐽𝑠𝑦𝑛 is the overall 

input current flux, 𝛿𝑉 is the value difference, 𝐼𝑔𝑎𝑏𝑎 is the inhibitory GABAergic current flux, 

and 𝐼𝑛𝑚𝑑𝑎/𝑎𝑚𝑝𝑎 is the excitatory glutamatergic (NMDA/AMPA) current flux. 

 The membrane voltage of SNc (𝑉𝑆𝑁𝑐) regulates the calcium membrane ionic flux which 

results in calcium oscillations inside SNc neuron. The calcium membrane ionic flux (𝐽𝑚,𝐶𝑎) is 

given by, 

 𝐽𝑚,𝐶𝑎 = −
1

𝑧𝐶𝑎 ∗ 𝐹 ∗ 𝑣𝑜𝑙𝑐𝑦𝑡
∗ (𝐼𝐶𝑎𝐿 +  2 ∗ 𝐼𝑝𝑚𝑐𝑎 − 2 ∗ 𝐼𝑁𝑎𝐶𝑎𝑋) (40) 

where, 𝐹 is the Faraday’s constant, 𝑧𝐶𝑎 is the valence of calcium ion, 𝑣𝑜𝑙𝑐𝑦𝑡 is the cytosolic 

volume, 𝐼𝐶𝑎𝐿 is the L-type calcium channel current, 𝐼𝑝𝑚𝑐𝑎 is the ATP-dependent calcium pump 

current, and 𝐼𝑁𝑎𝐶𝑎𝑋 is the sodium-potassium exchanger current. 

 The intracellular calcium oscillation or dynamics ([𝐶𝑎𝑖]) is defined as, 

 
𝑑[𝐶𝑎𝑖]

𝑑𝑡
= 𝐽𝑚,𝐶𝑎 − 𝐽𝑐𝑎𝑙𝑏 − 4 ∗ 𝐽𝑐𝑎𝑚 (41) 

where, 𝐽𝑚,𝐶𝑎 is the flux of calcium ion channels, 𝐽𝑐𝑎𝑙𝑏 is the calcium buffering flux by calbindin, 

and 𝐽𝑐𝑎𝑚 is the calcium buffering flux by calmodulin. A detailed description of the SNc neuron 

is provided in section S4 of the supplementary information. 
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2.3.1.2 SNc Terminal 

The three-compartmental biochemical model of the SNc terminal is adopted from (Muddapu 

and Chakravarthy, 2021). The SNc terminal model incorporates all the necessary molecular 

level mechanisms of dopamine turnover process such as synthesis, packing, release and 

reuptake. 

Calcium-Dependent Dopamine Release 

Dopamine synthesis and release by SNc terminal depends on calcium oscillations. The flux of 

dopamine release (𝐽𝑟𝑒𝑙) from the SNc terminal is given by, 

 𝐽𝑟𝑒𝑙 = 𝜓 ∗ 𝑛𝑅𝑅𝑃 ∗ 𝑃𝑟𝑒𝑙([𝐶𝑎𝑖]) (42) 

where, [𝐶𝑎𝑖] is the intracellular calcium concentration in the SNc terminal, 𝑃𝑟𝑒𝑙 is the release 

probability as a function of intracellular calcium concentration, 𝑛𝑅𝑅𝑃 is the average number of 

readily releasable vesicles, and 𝜓 is the average release flux per vesicle within a single synapse. 

Calcium-Dependent Dopamine Synthesis 

The flux of calcium-dependent dopamine synthesis is defined as, 

 𝑉𝑠𝑦𝑛𝑡(𝐶𝑎𝑖) = 𝑉̅𝑠𝑦𝑛𝑡 ∗
[𝐶𝑎𝑖]

4

𝐾𝑠𝑦𝑛𝑡
4 + [𝐶𝑎𝑖]

4
 (43) 

where, 𝐾𝑠𝑦𝑛𝑡 is the calcium sensitivity, 𝑉̅𝑠𝑦𝑛𝑡 is the maximal velocity for L-DOPA synthesis, 

and [𝐶𝑎𝑖] is the intracellular calcium concentration. 

The flux of synthesized L-DOPA, 𝐽𝑠𝑦𝑛𝑡, whose velocity is the function of intracellular 

calcium concentration and L-DOPA synthesis is regulated by the substrate (TYR) itself, 

extracellular DA (via autoreceptors) and intracellular DA concentrations, is given by, 

 
𝐽𝑠𝑦𝑛𝑡 =

𝑉𝑠𝑦𝑛𝑡

1 +
𝐾𝑇𝑌𝑅

[𝑇𝑌𝑅]
∗ (1 +

[𝐷𝐴𝑐]
𝐾𝑖,𝑐𝑑𝑎

+
[𝐷𝐴𝑒]
𝐾𝑖,𝑒𝑑𝑎

)
 

(44) 

where, 𝑉𝑠𝑦𝑛𝑡 is the velocity of synthesizing L-DOPA, [𝑇𝑌𝑅] is the tyrosine concentration in 

terminal bouton, 𝐾𝑇𝑌𝑅 is the tyrosine concentration at which half-maximal velocity was 

attained, 𝐾𝑖,𝑐𝑑𝑎 is the inhibition constant on 𝐾𝑇𝑌𝑅 due to cytosolic DA concentration, 𝐾𝑖,𝑒𝑑𝑎 is 

the inhibition constant on 𝐾𝑇𝑌𝑅 due to extracellular DA concentration, [𝐷𝐴𝑐] is the cytoplasmic 

DA concentration, and [𝐷𝐴𝑒] is the extracellular DA concentration. A detailed description of 

the SNc terminal is provided in section S5 of the supplementary information. 
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Extracellular Dopamine 

The three major mechanisms that determine the dynamics of extracellular DA ([𝐷𝐴𝑒]) in the 

extracellular compartment (ECS) given by, 

 
𝑑([𝐷𝐴𝑒])

𝑑𝑡
= 𝐽𝑟𝑒𝑙 − 𝐽𝐷𝐴𝑇 − 𝐽𝑒𝑑𝑎

𝑜  (45) 

 

 𝛿𝑉
𝑆𝑁𝑐 = 𝐹(𝐷𝐴𝑒) (46) 

where, 𝐽𝑟𝑒𝑙 represents the flux of calcium-dependent DA release from the DA terminal, 𝐽𝐷𝐴𝑇 

represents the unidirectional flux of DA translocated from the ECS into the intracellular 

compartment (cytosol) via DA plasma membrane transporter (DAT), 𝐽𝑒𝑑𝑎
𝑜  represents the 

outward flux of DA degradation, which clears DA from ECS, and 𝛿𝑉
𝑆𝑁𝑐 is the SNc-derived 

value difference. A detailed description of the SNc terminal is provided in section S4 of the 

supplementary information. 

The cortical input to the striatum is modulated by the 𝛿𝑉
𝑆𝑁𝑐 derived from the network of 

SNc neurons. When 𝛿𝑉
𝑆𝑁𝑐 is high, the direct pathway will be selected, else the indirect pathway 

is selected. 

2.4 Simulating Parkinsonian Conditions 

To simulate the Parkinsonian condition in the present model, the number of neurons in SNc 

population (network) was reduced. In order to kill the SNc neuron, we clamped their membrane 

voltage (𝑉𝑆𝑁𝑐) to resting membrane voltage (−80 𝑚𝑉). As the number of SNc neurons die the 

total amount of dopamine (𝐷𝐴𝑒) that is made available to the striatum decreases. This 

influences the selection of the indirect pathway in BG system over the direct pathway resulting 

in pathological condition. In the present model, two types of PD conditions were simulated: in 

the first type, SNc cell loss affects striatum alone (PD1) and in the second type, SNc cell loss 

affects both striatum and STN (PD2). 

 In normal condition, the SNc-derived value difference (𝛿𝑉
𝑆𝑁𝑐) will be similar to actual 

value difference computed (𝛿𝑉). In case of PD1, the SNc-derived value difference (𝛿𝑉
𝑆𝑁𝑐) will 

be lesser than actual value difference computed (𝛿𝑉). In case of PD2, along with 𝛿𝑉
𝑆𝑁𝑐 < 𝛿𝑉, 

𝛿𝑉
𝑆𝑁𝑐 impacts the STN lateral connections, thereby influencing the complexity of STN-GPe 

subsystem. The STN-GPe subsystem is an integral component of the indirect pathway and is 
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believed to play a major role in exploratory behaviour (Sridharan et al., 2006; Chakravarthy 

and Balasubramani, 2014). 

 In normal condition: 

 

𝛿𝑉
𝑆𝑁𝑐 = F(𝐷𝐴𝑒) 

𝐷𝐴𝑒 = SNc(𝐼𝑔𝑎𝑏𝑎, 𝑃𝑆𝑁𝑐) ; 𝑃𝑆𝑁𝑐 = 100% 

𝐼𝑔𝑎𝑏𝑎 = F(𝛿𝑉) 

𝜀𝑠 = F(𝛿𝑉
𝑆𝑁𝑐) 

(47) 

 

In PD1 condition: 

 

𝛿𝑉
𝑆𝑁𝑐 = F(𝐷𝐴𝑒) 

𝐷𝐴𝑒 = SNc(𝐼𝑔𝑎𝑏𝑎, 𝑃𝑆𝑁𝑐) ; 𝑃𝑆𝑁𝑐 < 100% 

𝐼𝑔𝑎𝑏𝑎 = F(𝛿𝑉) 

𝜀𝑠 = F(𝛿𝑉) 

(48) 

In PD2 condition: 

 

𝛿𝑉
𝑆𝑁𝑐 = F(𝐷𝐴𝑒) 

𝐷𝐴𝑒 = SNc(𝐼𝑔𝑎𝑏𝑎, 𝑃𝑆𝑁𝑐) ; 𝑃𝑆𝑁𝑐 < 100% 

𝐼𝑔𝑎𝑏𝑎 = F(𝛿𝑉) 

𝜀𝑠 = F(𝛿𝑉
𝑆𝑁𝑐) 

(49) 

where, 𝛿𝑉
𝑆𝑁𝑐 is the SNc-derived value difference, 𝛿𝑉 is the value difference computed, 𝐷𝐴𝑒 is 

the extracellular dopamine, 𝐼𝑔𝑎𝑏𝑎 is the inhibitory GABAergic current from striatum, 𝑃𝑆𝑁𝑐 is 

the percentage of SNc neurons, and 𝜀𝑠 is the lateral connection strength in STN network. 

2.5 Levodopa Medication 

When a drug is administered to a patient, the medication action is broadly classified into two 

major branches: pharmacokinetics (what the body does to the drug) and pharmacodynamics 

(what the drug does to the body) (Shanbhag and Shenoy, 2020). 

2.5.1 Pharmacokinetics 

Pharmacokinetics deals with absorption, distribution, metabolism and excretion of drugs. In 

the present study, we have adapted a two-compartment pharmacokinetic model of levodopa 

(L-DOPA) (Baston et al., 2016), which consists of central and peripheral compartments (Figure 
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3). Orally consumed L-DOPA is absorbed in the intestine and reaches the blood stream. The 

blood stream carries the drug all over the body. Proteins break down L-DOPA and around 

three-fourth of the drug is deactivated before it even reaches the brain. The central compartment 

where L-DOPA is administered and plasma L-DOPA concentration was measured which is 

defined as,  

 𝑉𝐶𝐶

𝑑[𝐿𝐷𝑂𝑃𝐴𝐶𝐶]

𝑑𝑡
= 𝑘01𝐿𝐷0 + 𝑘21[𝐿𝐷𝑂𝑃𝐴𝑃𝐶] − (𝑘12 + 𝑘1𝑒)[𝐿𝐷𝑂𝑃𝐴𝐶𝐶] (50) 

where, 𝑉𝐶𝐶 is the volume of central compartment, [𝐿𝐷𝑂𝑃𝐴𝐶𝐶] is the L-DOPA concentration in 

central compartment, 𝐿𝐷0 is the L-DOPA dose (in milligram), [𝐿𝐷𝑂𝑃𝐴𝑃𝐶] is the L-DOPA 

concentration in peripheral compartment, 𝑘01 is the infusion rate of 𝐿𝐷0 into central 

compartment, 𝑘21 is the rate constant from peripheral to central compartments, 𝑘12 is the rate 

constant from central to peripheral compartments, and 𝑘1𝑒 is the total clearance rate constant 

from central compartment. 

 

Figure 3: Schematic diagram of pharmacokinetics and pharmacodynamics of levodopa medication. 
BBB, blood-brain barrier; LDOPA, intracellular levodopa; 𝐿𝐷𝑂𝑃𝐴𝐶𝐶, levodopa in central compartment; 
𝐿𝐷𝑂𝑃𝐴𝑃𝐶, levodopa in peripheral compartment; 𝑉𝐶𝐶, volume of central compartment; 𝑉𝑃𝐶, volume of 
peripheral compartment; 𝑇𝑌𝑅𝑒, extracellular tyrosine; 𝑇𝑅𝑃𝑒, extracellular tryptophan; 𝑘21, rate 
constant from peripheral to central compartments, 𝑘12, rate constant from central to peripheral 
compartments, 𝑘1𝑒, total clearance rate constant from central compartment, 𝑘01, infusion rate of 𝐿𝐷0 
into central compartment, 𝐿𝐷0, levodopa dose; 𝐽𝑎𝑎𝑡, flux of exogenous L-DOPA transported into the 
terminal through aromatic L-amino acid transporter; ECS, extracellular space; 𝐷𝐴𝑐, cytosolic 
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dopamine; 𝐷𝐴𝑣, vesicular dopamine; 𝐷𝐴𝑒, extracellular dopamine; TYR, tyrosine; TRYPOOL, tyrosine 
pool; HVA, homovanillic acid; bh2, dihydrobiopterin; bh4, tetrahydrobiopterin; NADP+, nicotinamide 
adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide phosphate hydrogen; TH, 
tyrosine hydroxylase; DDR, dihydropteridine reductase; AADC, aromatic amino acid decarboxylase; 
VMAT, vesicular monoamine transporter; DAT: dopamine transporter; AUTO, dopamine 
autoreceptors; MAO, monoamine oxidase; COMT, catecholamine methyltransferase; 

 The interaction between plasma L-DOPA and other body fluids, which occurs in the 

peripheral compartment, is defined as, 

 𝑉𝑃𝐶

𝑑[𝐿𝐷𝑂𝑃𝐴𝑃𝐶]

𝑑𝑡
= 𝑘12[𝐿𝐷𝑂𝑃𝐴𝐶𝐶] − 𝑘21[𝐿𝐷𝑂𝑃𝐴𝑃𝐶] (51) 

where, 𝑉𝑃𝐶 is the volume of peripheral compartment, [𝐿𝐷𝑂𝑃𝐴𝐶𝐶] is the L-DOPA concentration 

in central compartment, [𝐿𝐷𝑂𝑃𝐴𝑃𝐶] is the L-DOPA concentration in peripheral 

compartment, 𝑘21 is the rate constant from peripheral to central compartments, and 𝑘12 is the 

rate constant from central to peripheral compartments. 

2.5.2 Pharmacodynamics 

Pharmacodynamics deals with molecular, biochemical, and physiological effects of drugs, 

including drug mechanism of action, receptor binding (including receptor sensitivity), 

postsynaptic receptor effects, and chemical interactions. In the present study, we have adapted 

three-compartment dopaminergic terminal model (Reed et al., 2012) which consists of 

extracellular, vesicular and cytoplasmic compartments. 

 When L-DOPA medication is administered, the flux of exogenous L-DOPA 

([𝐿𝐷𝑂𝑃𝐴𝐶𝐶]) transported into the terminal through aromatic L-amino acid transporter (AAT) 

while competing with other aromatic amino acids (such as tyrosine (TYR) and tryptophan 

(TRP)) (Reed et al., 2012) is given by, 

 
𝐽𝑎𝑎𝑡 = 𝑉̅𝑎𝑎𝑡 ∗

[𝐿𝐷𝑂𝑃𝐴𝐶𝐶]

(𝐾𝑙𝑑𝑜𝑝𝑎𝑒
∗ (1 + (

[𝑇𝑌𝑅𝑒]
𝐾𝑡𝑦𝑟𝑒

) + (
[𝑇𝑅𝑃𝑒]
𝐾𝑡𝑟𝑝𝑒

)) + [𝐿𝐷𝑂𝑃𝐴𝐶𝐶])

 
(52) 

where, 𝐾𝑙𝑑𝑜𝑝𝑎𝑒
 is the extracellular L-DOPA concentration at which half-maximal velocity was 

attained, 𝑉̅𝑎𝑎𝑡 is the maximal velocity with which extracellular L-DOPA was transported into 

the cytosol, [𝐿𝐷𝑂𝑃𝐴𝐶𝐶] is the extracellular (central compartment) L-DOPA concentration, 

[𝑇𝑌𝑅𝑒] is the extracellular TYR concentration, [𝑇𝑅𝑃𝑒] is the extracellular TRP concentration, 

𝐾𝑡𝑦𝑟𝑒
 is the affinity constant for [𝑇𝑌𝑅𝑒], 𝐾𝑡𝑟𝑝𝑒

 is the affinity constant for [𝑇𝑅𝑃𝑒]. 

The L-DOPA concentration ([𝐿𝐷𝑂𝑃𝐴]) dynamics inside the terminal is given by, 
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𝑑([𝐿𝐷𝑂𝑃𝐴])

𝑑𝑡
= 𝐽𝑎𝑎𝑡 − 𝐽𝑙𝑑𝑜𝑝𝑎 + 𝐽𝑠𝑦𝑛𝑡 (53) 

where, 𝐽𝑎𝑎𝑡 represents the flux of exogenous L-DOPA ([𝐿𝐷𝑂𝑃𝐴𝐶𝐶]) transported into the 

cytosol, 𝐽𝑙𝑑𝑜𝑝𝑎 represents the conversion flux of exogenous L-DOPA ([𝐿𝐷𝑂𝑃𝐴𝐶𝐶]) into 

dopamine, and 𝐽𝑠𝑦𝑛𝑡 represents the flux of synthesized L-DOPA from tyrosine. A detailed 

description of the dopaminergic terminal is provided in Section S6 of the supplementary 

information. 

2.6 Timescales in the Model 

Reaching movements, like several other behavioral events, involve dynamics at multiple 

timescales: the neuronal activity which is generally in milliseconds, and the actual movement 

which unfolds over the order of seconds. In the present model, the outer (sensory-motor) loop 

is assumed to run slightly slower than the inner (cortico-basal ganglia) and central (nigro-

striatal) loops. As the dynamics of the STN–GPe loop in the indirect pathway needs some time 

to settle, we run this loop for 2500 iterations (𝑑𝑡 = 0.02 𝑚𝑠), before sending the output to the 

MC (MC runs for 100 iteration with 𝑑𝑡 = 50 𝑚𝑠). Thus, a single update of the MC activity 

happens after every 50 𝑚𝑠 during which the BG dynamics run. Similarly, since the dynamics 

of the SNc neuron needs some time to settle, we run SNc neuron for 2000 iterations (𝑑𝑡 =

0.025 𝑚𝑠), before sending the output to the BG. Thus, a single update of the MC activity 

happens after every 50 𝑚𝑠 during which the SNc dynamics run. All the results presented are 

at the timescale of the MC. 

In the present model, the SNc neurons run in milliseconds timescale whereas the 

pharmacokinetic-pharmacodynamic model of L-DOPA medication runs in hourly timescale. 

In order to show the drug effect, we sample various points across L-DOPA medication curve 

(Figure S7.1) and simulated the MCBG model for arm reaching task for each sampled point. 

3. RESULTS 

Here, we showcase the performance of the model starting with training the MCBG model and 

comparing with previous cortico-basal ganglia model (Figure 4, 5). Next, simulating the PD 

condition and readout their effects on behavioral outcome (Figure 6). Further, demonstrating 

the effect of differential dopaminergic axonal loss manifest into some of the cardinal symptoms 

of PD (Figure 7, 8). Next, assessing the performance in terms of reaching time and verifying 

the effect of L-DOPA therapeutic intervention (Figure 9, 10). Finally, describing the model 
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results which gave an indicator of how to optimize the drug dosage across the course of the 

disease progression (Figure 11, 12, 13). 

3.1. MCBG Model for Arm Reaching Task 

3.1.1. Training Phase 

The MCBG model was trained for 50 trials for the arm to reach the target. The performance of 

MCBG model was compared with the cortico-basal ganglia (CBG) model of (Muralidharan et 

al., 2018) in arm reaching task during training phase (Figure 4). After 50 trials, MCBG model 

reaches the target in 0.55 ± 0.05 𝑠𝑒𝑐 compared to CBG model which reaches in  0.67 ±

0.43 𝑠𝑒𝑐 (Figure 4A, 4B). After 50 trials, MCBG model obtained peak velocity of 1.91 ±

0.04 𝑚. 𝑠𝑒𝑐−1 compared to CBG model which obtained peak velocity of  1.84 ±

0.34 𝑚. 𝑠𝑒𝑐−1 during the arm trajectory towards the target (Figure 4C, 4D). After 50 trials, the 

performance of MCBG model was better compared to CBG model as the variance in terms of 

movement time required for the arm to reach the target and peak velocity obtained during the 

trajectory of the arm moving towards the target was significantly lesser with more number of 

trials. 

 

Figure 4: Performance of MCBG model compared with CBG model. A) Movement time and C) Peak 
velocity in CBG model, B) Movement time and D) Peak velocity in MCBG model. CBG, cortico-basal 
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ganglia model; MCBG, multiscale cortico-basal ganglia model; sec, second; m.sec-1, meter per 
second. 

3.1.2. Testing Phase 

The performance of MCBG model was tested, the model results were compared to that of CBG 

model (Muralidharan et al., 2018) and the experimental data (Majsak et al., 1998) for both 

control and PD conditions. In MCBG model, PD conditions simulated were subdivided into 

two categories: in PD1, the SNc cell loss impacts only striatum whereas in PD2, the SNc cell 

loss impacts both striatum and STN. The MCBG and the CBG model was tested and the 

performance was evaluated with respect to movement time, peak velocity, time-to-peak 

velocity and average velocity along with the experimental results. In control case, MCBG 

model reaches the target in 0.46 ± 0.02 𝑠𝑒𝑐 compared to CBG model and experimental 

subject which reaches the target in 0.560 ± 0.10 𝑠𝑒𝑐 and 0.3432 ± 0.04 𝑠𝑒𝑐, respectively 

(Figure 5A, dark blue bar). The MCBG model obtained peak velocity of 2.23 ± 0.05 𝑚. 𝑠𝑒𝑐−1 

compared to CBG model and experimental subject which obtained peak velocity of  1.88 ±

0.15 𝑚. 𝑠𝑒𝑐−1  and 2.15 ± 0.27 𝑚. 𝑠𝑒𝑐−1, respectively during the arm reaching towards the 

target in case of control (Figure 5C, dark blue bar). The time taken to reach the peak velocity 

in case of control was 0.21 ± 0.02 𝑠𝑒𝑐 for MCBG model, 0.29 ± 0.09 𝑠𝑒𝑐 for CBG model and 

0.19 ± 0.02 𝑠𝑒𝑐 for experimental subject (Figure 5B, dark blue bar). Finally, the average 

velocities for MCBG and CBG models were found to be 1.49 ± 0.05 𝑚. 𝑠𝑒𝑐−1 and 1.26 ±

0.15 𝑚. 𝑠𝑒𝑐−1, respectively in case of control (Figure 5D, dark blue bar). 

In case of PD, the experimental subject recorded an average movement time of 0.52 ±

0.63 𝑠𝑒𝑐 respectively (Figure 5A, cyan bar), while CBG model reaches the target in 1.17 ±

0.63 𝑠𝑒𝑐 (Figure 5A, cyan bar) whereas MCBG model took 1.88 ± 1.42 𝑠𝑒𝑐 and 1.60 ±

1.35 𝑠𝑒𝑐 for PD1 (Figure 5A, cyan bar) and PD2 (Figure 5A, yellow bar), respectively. The 

experimental subject recorded peak velocity of 1.35 ± 0.18 𝑚. 𝑠𝑒𝑐−1 (Figure 5C, cyan bar)  

compared to CBG model which obtained peak velocity of 1.74 ± 0.13 𝑚. 𝑠𝑒𝑐−1 (Figure 5C, 

cyan bar) whereas MCBG model obtained peak velocities of 1.18 ± 0.35 𝑚. 𝑠𝑒𝑐−1 (Figure 

5C, cyan bar) and 0.98 ± 0.31 𝑚. 𝑠𝑒𝑐−1 (Figure 5C, yellow bar), respectively during the arm 

trajectory towards the target. The time taken to reach the peak velocity in PD case was 0.27 ±

0.03 𝑠𝑒𝑐  for experimental subject (Figure 5B, cyan bar), 0.35 ± 0.07 𝑠𝑒𝑐 for CBG model 

(Figure 5B, cyan bar) and 0.56 ± 0.28 𝑠𝑒𝑐, and 0.79 ± 0.35 𝑠𝑒𝑐 in PD1 (Figure 5B, cyan 

bar) and PD2 (Figure 5B, yellow bar) cases respectively for MCBG model. Finally, the average 

velocity for CBG model was found to be 0.77 ± 0.21 𝑚. 𝑠𝑒𝑐−1 in PD (Figure 5D, cyan bar), 
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and the average velocities for MCBG model were found to be 0.68 ± 0.27 𝑚. 𝑠𝑒𝑐−1 and 

0.59 ± 0.23 𝑚. 𝑠𝑒𝑐−1 in PD1 (Figure 5D, cyan bar) and PD2 (Figure 5D, yellow bar), 

respectively. 

 

Figure 5: Comparison of performance of the proposed model (during testing phase) with CBG model 
(Muralidharan et al., 2018) and experimental data adapted from (Majsak et al., 1998). A) Movement 
time B) Time-to-peak velocity, C) Peak velocity, D) Average velocity. EXP, experiment; CBG, cortico-
basal ganglia model; MCBG, multiscale cortico-basal ganglia model; PD1, only striatum affected; PD2, 
both striatum and subthalamic nucleus affected; sec, second; m/sec, meter per second. 

3.2. Simulating Parkinsonian Conditions 

To simulate PD conditions in the model, SNc cells were killed and their effects on basal ganglia 

were considered in two aspects. In the first scenario, only striatum is affected by SNc cell loss 

(PD1 – cell loss affecting nigrostriatal pathway only) and in second scenario, both striatum and 

STN are affected by SNc cell loss (PD2 – cell loss affecting both nigrostriatal and 

nigrosubthalamic pathways). 
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Figure 6: Performance of arm reaching for various PD conditions across different percentage of SNc 
cell loss. A) Movement time B) Time-to-peak velocity C) Peak velocity D) Average velocity. SNc, 
substantia nigra pars compacta; PD1, SNc cell loss affecting striatum only; PD2, SNc cell loss affecting 
both striatum and subthalamic nucleus; sec, second; m.sec-1, meter per second. 

3.2.1. Effect of SNc Cell Loss on MCBG Behavioral Outcome 

To assess the performance metrics with respect to dopaminergic cell loss affecting striatum and 

both striatum and STN, a comparison study was done with respect to the movement time, peak 

velocity, time required to peak velocity and average velocity (Figure 6). In both cases (PD1 & 

PD2), the time required to reach the target (Figure 6A) and time-to-reach the peak velocity 

(Figure 6B) increases with increase in SNc cell loss. In PD1 case, the peak velocity increases 

with increase in SNc cell loss when compared to PD2 case where the peak velocity decreases 

with increase in SNc cell loss (Figure 6C). The reason behind this discrepancy in both cases 

will be explored in next sections where one leads to tremor-like behavior and other leads to 

rigidity-like behavior. In both the cases, the average velocity across the trajectory decreases 

with increase in SNc cell loss (Figure 6D). 

3.2.2. Differential Dopaminergic Axonal Degeneration Manifests into Various PD 

Motor Symptoms 

Both the PD scenarios (PD1 & PD2) simulated in the model can be attributed to differential 

degeneration of dopaminergic projections to various targets in the basal ganglia, and how 

degeneration manifests into various motor symptoms of PD. In control case, the arm reaches 
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the target in 0.55 𝑠𝑒𝑐 (Figure 7A(i)) with the peak velocity of 1.91 𝑚. 𝑠𝑒𝑐−1 (Figure 7A(ii)). 

The population activity of STN exhibits desynchronous activity during the arm movement 

which is indicated in the STN spectrogram (Figure 7A(iii)) and synchrony (average value= 

0.03) (Figure 7A(iv)) (synchrony measure is described in section S10 of the supplementary 

information). Dopamine released by SNc neurons in the striatum during the arm reaching 

peaked at ~ 264 𝑛𝑀 which was in the range of 150 – 400 nM (Schultz, 1998) (Figure 7A(v)). 

In 25% PD1, the arm reaches the target in 1.5 𝑠𝑒𝑐 (Figure 7B(i)) with reduced peak 

velocity of 0.71 𝑚. 𝑠𝑒𝑐−1, exhibiting bradykinesia-like behaviour in the arm (Figure 7B(ii)). 

Population activity of STN exhibits a greater synchrony compared to control case during the 

arm movement which is also indicated in STN spectrogram (Figure 7B(iii)) and synchrony 

with average value of 0.11  (Figure 7B(iv)). Dopamine released by SNc neurons in the striatum 

during the arm reaching peaked at ~ 148 𝑛𝑀 which was lesser than in the control case (Figure 

7B(v)).  

In 25% PD2, the arm reaches the target in 1.2 𝑠𝑒𝑐 (Figure 7C(i)) with the peak velocity 

of 0.71 𝑚. 𝑠𝑒𝑐−1, exhibiting bradykinesia-like behavior in the arm (Figure 7C(ii)). Population 

activity of STN exhibits desynchronous activity, same as control case during the arm 

movement which is indicated in the STN spectrogram (Figure 7C(iii)) and synchrony with 

average value of > 0.01 (Figure 7C(iv)). Dopamine released by SNc neurons in striatum during 

the arm reaching peaked at ~ 154 𝑛𝑀 which was lesser than the control case (Figure 7C(v)). 

 

Figure 7: Differential dopaminergic axonal degeneration manifesting in terms of various PD motor symptoms. 
i) Distance to target ii) Velocity of the arm iii) Spectrogram of STN population iv) Synchrony in STN population v) 
Dopamine released by SNc extracellularly. SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR, 
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striatum; DA, dopamine; PD, Parkinson’s disease; sec, second; m/sec, meter per second; Hz, hertz; nM, 
nanomolar. 

In 50% PD1, the arm reaches the target in 2.7 𝑠𝑒𝑐 (Figure 7D(i)) with the peak velocity 

of 0.84 𝑚. 𝑠𝑒𝑐−1 showing tremor-like behavior in the arm (Figure 7D(ii)).  Population activity 

of STN exhibits low synchronous activity during the arm movement which indicates in STN 

spectrogram (Figure 7D(iii)) and synchrony with average value of 0.17 (Figure 7D(iv)). 

Dopamine released by SNc neurons in the striatum during the arm reaching peaked at 

~ 101 𝑛𝑀 which was lesser than the control case (Figure 7D(v)). In 50% PD2, the arm reaches 

the target in 4.7 𝑠𝑒𝑐 (Figure 7E(i)) with the peak velocity of 0.84 𝑚. 𝑠𝑒𝑐−1 as a result of 

cogwheel-like behavior in the arm (Figure 7E(ii)). The population activity of STN exhibits 

high synchronous activity during the arm movement which indicates in STN spectrogram 

(Figure 7E(iii)) and synchrony with average value of 0.55 (Figure 7E(iv)). Dopamine released 

by SNc neurons in striatum during the arm reaching peaked at ~ 90 𝑛𝑀 which was lesser than 

the control case (Figure 7E(v)). 

In 75% PD1, the arm did not reach the target within 5 𝑠𝑒𝑐 (Figure 7F(i)) with the peak 

velocity of 1.54 𝑚. 𝑠𝑒𝑐−1 displaying a tremor-like behavior in the arm (Figure 7F(ii)).  

Population activity of STN exhibits low synchronous activity during the arm movement which 

indicates in STN spectrogram with increased power in 5 − 25 𝐻𝑧 region (Figure 7F(iii)) and 

synchrony with an average value of 0.15 (Figure 7F(iv)). Dopamine released by SNc neurons 

in the striatum during the arm reaching peaked at ~ 51 𝑛𝑀 which was lesser than the control 

case (Figure 7F(v)). In 75% PD2, the arm did not reach the target within 5 𝑠𝑒𝑐 (Figure 7G(i)) 

with zero peak velocity as a result of rigidity-like state of the arm (Figure 7G(ii)). Population 

activity of STN exhibits high synchronous activity during the arm movement which is indicated 

in STN spectrogram with increased power in 15 − 50 𝐻𝑧 region (Figure 7G(iii)) and 

synchrony with average value of > 0.99 (Figure 7G(iv)). Dopamine released by SNc neurons 

in the striatum during the arm reaching peaked at ~ 13 𝑛𝑀, which was lesser than in the control 

case (Figure 7G(v)). 

3.2.3. Quantifying Tremor-Like and Rigidity-Like Motor Symptoms 

To quantify between tremor-like and rigidity-like motor symptoms of PD, Root Mean Square 

(RMS) acceleration was computed across movement trajectory for various PD conditions 

where RMS acceleration can be used as an indicator of random non-deterministic movements 

(Figure 8). In PD1 scenario, the RMS acceleration increases with increase in SNc cell loss 

which indicates irregular changes in velocity of arm movement (Figure 8A). This irregular 
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velocity profile in PD1 is a result of tremor-like motor behavior. In PD2 scenario, the RMS 

acceleration increases with increase in SNc cell loss till 50% and beyond 50% RMS 

acceleration decreases with increase in SNc cell loss (Figure 8B). The tremor-like motor 

behavior is indicated by the RMS acceleration increases until 50% SNc cell loss and from there 

on, we can see a sudden decrease, which marks the onset of rigidity. 

 

Figure 8: RMS acceleration with respect to percentage loss of SNc cells. A) RMS acceleration when SNc cell loss 
affecting STR B) RMS acceleration when SNc cell loss affecting STR & STN. SNc, substantia nigra pars compacta; 
STN, subthalamic nucleus; STR, striatum; PD1, SNc cell loss affecting STR; PD2, SNc cell loss affecting STR & STN; 
RMS, root mean squared; m/sec2, meter per second squared. 

3.3. Effect of Levodopa Medication 

In order to show L-DOPA medication effect on MCBG model, we simulated different scenarios 

where various L-DOPA dosages were administrated across various PD conditions and 

movement time was monitored. 

3.3.1. Comparison of MCBG Model with Experimental Results 

The L-DOPA therapeutic effect was monitored by recording the performance in terms of the 

average movement time across the time course of the dosage for the next 10 hours. The 

performance of the model was also recorded 2 hours prior to the administration of the drug.  

The MCBG model results were compared with experimental study where PD patients were 

evaluated based on UPDRS Part III score (Nomoto et al., 2018) (Figure 9). The experimental 

PD subjects were categorized into two groups based on the UPDRS part III score (motor 

evaluation) where the group 1 PD subjects have a mean UPDRS III score of  28.0 (13-51) and 

the group 2 PD have a mean UPDRS III score of 30.3 (22-41) (Nomoto et al., 2018). An average 

L-DOPA dosage of 141 mg was given to both the experimental groups. The MCBG model was 

simulated with 62% SNc cell loss and 150 mg of L-DOPA administered at second hour of the 

simulation. 
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Figure 9: Performance of the model (150 mg L-DOPA and 62% SNc cell loss) compared with experimental study 
(approx. 140 mg L-DOPA) (Nomoto et al., 2018) for various PD conditions. A) Movement time of PD1 MCBG 
model was compared with UPDRS Part III score of experimental group-2 after L-DOPA administration B) 
Movement time of PD2 MCBG model was compared with UPDRS Part III score of experimental group-1 after L-
DOPA administration. MCBG, multiscale cortico-basal ganglia model; L-DOPA, levodopa; PD, Parkinson’s disease; 
PD1, when SNc cell loss affecting STR alone; PD2, when SNc cell loss affecting both STR & STN; SNc, substantia 
nigra pars compacta; STR, striatum; STN, subthalamic nucleus; UPDRS, unified Parkinson disease rating scale; 
Expt, experiment; mg, milligram; sec, second; hr, hour. 

The PD1 MCBG model performance in terms of movement time (Figure 9A, blue curve) 

matched with experimental group 2 result in terms of UPDRS III score (Figure 9A, orange 

curve). Similarly, PD2 MCBG model performance in terms of movement time (Figure 9B, blue 

curve) matched with experimental group 1 result in terms of UPDRS III score (Figure 9B, 

orange curve). 

3.3.2. Effect of L-DOPA Medication with Disease Progression 

The effect of L-DOPA (150 mg) medication on the model performance was studied across 

different percentages (25%, 37%, 50%, 62% and 75%) of SNc cell loss for both PD1 and PD2 

scenarios. The L-DOPA medication was given at the second hour in the simulation. The 

simulated results show that as SNc cell loss increases, the model performance deteriorates and 

also the therapeutic effect decreases as the disease progresses in both PD1 and PD2 scenarios 

(Figure 10). The maximum therapeutic effect of L-DOPA was seen for 50% and 62% SNc cell 

loss in both PD1 and PD2 scenarios (Figure 10E, 10F). In 75% SNc cell loss, the model 

performance was poor in case of PD1 when compared to PD2 (Figure 10G, 10H). The model 

performance was categorized into three regions based on the following criteria: If the arm 
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reaches the target within 2 seconds then that region was marked in green color which indicates 

the normal movement. If the arm reaches the target between 2 and 4 seconds then that region 

was marked in yellow color, indicating slow movement or bradykinesia. If the arm reaches the 

target beyond 4 seconds then that region was marked in red color which indicate very slow 

movement or akinesia. The simulated results show that as the SNc cell loss increases the 

movement time curve shift from green to yellow region when medication was ON and the 

movement time curve shift from yellow to red region when medication was OFF (Figure 10). 

 

 

Figure 10: Average time to reach the target for 150 mg L-DOPA medication for various PD conditions. 
Average movement time for SNc cell loss of 25% (A, B), 37% (C, D), 50% (E, F), 62% (G, H), 75% (I, J) 
when SNc cell loss affecting STR (PD1) and STR & STN (PD2) during L-DOPA medication (administrated 
at second hour, indicated by red arrow). The performance of the model during L-DOPA medication is 
categorized into three regions based on movement time. Green region – when arm reaches the target 
within 2 seconds; Yellow region – when arm reaches the target between 2 and 4 seconds; Red region 
– when arm reaches the target beyond 4 seconds. PD1, SNc cell loss affecting STR; PD2, SNc cell loss 
affecting STR & STN; SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR, striatum; L-
DOPA, levodopa; sec, second; hr, hour. 

3.3.3. Effect of L-DOPA Dosage and SNc Cell Loss on Therapeutic Window 

As discussed in previous section, the model performance was categorized into three regions: 

green (normal movement), yellow (slow movement, bradykinesia) and red (very slow 

movement, akinesia). The therapeutic window is computed by taking the time difference 

between the points when the performance improved after taking medication and entered into 
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the green shaded region until it started wearing off and crosses back to the yellow shaded region 

(where the effects of L-DOPA start wearing off). 

 

Figure 11: Model performance for different L-DOPA dosage across various percentage SNc cell loss 
where SNc cell loss affecting STR – PD1. CL, cell loss; LD or L-DOPA, levodopa; SNc, substantia nigra 
pars compacta; STR, striatum. 

In case of 25%, SNc cell loss (PD1), as the L-DOPA dosage increases the therapeutic 

window (green region) decreases (Figure 11, first column). But at higher percentage loss of 

cells (37%, 50%, 62% and 75% SNc cell loss), as the L-DOPA dosage increases the therapeutic 

window (green region) increased (Figure 11). However, in case of PD2 for all percentages of 

SNc cell loss, as the L-DOPA dosage increases the therapeutic window (green region) 

increased (Figure 12). 

4. DISCUSSION 

4.1. MCBG Model 

The proposed model tries to present a biologically realistic model of the effect of L-DOPA on 

PD symptoms, specifically in terms of movement parameters. In our modelling approach, a 

large-scale cortico-basal ganglia model forms the back bone of our network. The two-link arm 

model that is interfaced to the MNs simulates the movement of the hand and the feedback 
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related to the hand position and distance from the target is processed by the PC and passed on 

to MC. MC uses the corrective signals from the BG to initiate the next action. The BG dynamics 

is highly influenced by the dopaminergic input from the SNc and by incorporating a detailed 

biophysical model of the SNc into the network model, we were able to show the effect of loss 

of dopaminergic cells on the movement parameters. Going forward we aim to relate the 

pathological behavior with respect to the dynamics at molecular level happening inside the 

SNc. 

 

Figure 12: Model performance for different L-DOPA dosage across various percentage SNc cell loss 
where SNc cell loss affecting STR & STN – PD2. CL, cell loss; LD or L-DOPA, levodopa; SNc, substantia 
nigra pars compacta; STR, striatum.  

The proposed model was able to explain a wide range of pathological behaviours 

associated with the PD by controlling the release of dopamine into the extracellular space and 

reducing the complexity of the STN-GPe network. By reducing the supply of dopamine, the 

slowness of movement or bradykinesia could be simulated, and in combination with 

modulating the complexity of STN-GPe network, symptoms like tremor and rigidity were 

simulated. The complexity of STN-GPe network was varied by controlling the dopaminergic 

projections of the SNc neurons towards the STN, thereby affecting the lateral connections 
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within the STN subsystem. By progressively reducing the number of dopaminergic cells in 

SNc, we could replicate some of the cardinal symptoms of PD - bradykinesia, tremor and 

rigidity. 

Once the PD condition and the associated symptoms were simulated, we integrated a 

pharmacokinetic-pharmacodynamic (PK-PD) model of L-DOPA medication (Baston et al., 

2016; Véronneau-Veilleux et al., 2020), which showed improved results in reaching 

performance. L-DOPA medication is one of the first line treatment methodologies for 

Parkinson’s disease (Suzuki et al., 2020). Our model incorporates the medication effect by 

interfacing the SNc with the PK-PD model of L-DOPA drug administration. Depending on the 

dosage of drug administered, L-DOPA is absorbed into the blood. After interacting with other 

bodily fluids, a portion of the L-DOPA crosses the BBB and gets absorbed by the dopaminergic 

terminals. Our results show that consumption of L-DOPA improves the PD symptoms to a 

great extent. Using our model, we could also see that the extent of improvement on the PD 

condition depend on the dosage. 

 

Figure 13: Effect of L-DOPA dosage on therapeutic window for various PD conditions. A) Therapeutic 
window across different L-DOPA dosage for various percentage of SNc cell loss when SNc cell loss 
affecting STR B) Therapeutic window across different L-DOPA dosage for various percentage of SNc 
cell loss when SNc cell loss affecting STR & STN. PD1, SNc cell loss affecting STR; PD2, SNc cell loss 
affecting STR & STN; SNc, substantia nigra pars compacta; STN, subthalamic nucleus; STR, striatum; L-
DOPA, levodopa; mg, milligram; hr, hour. 

A higher level of serum L-DOPA results in dyskinesias and a low-level result in 

wearing off. Hence, an optimum dosage of medication has to be selected. In order to optimize 

the drug dosage, we performed our tests with various dosages of L-DOPA medication. We 

could see that as the percentage of SNc cell loss increases, higher dosage of L-DOPA was 
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required to sustain the medication effect. With increase in percentage of SNc cell loss, the 

therapeutic effect keeps decreasing. Hence our study focused on the variation of therapeutic 

effect with respect to the varying percentage SNc cell loss and L-DOPA dosage. The results 

observed are promising enough to suggest optimal tuning strategies of drug dosage for PD 

patients (Figure 13). The performance characteristics with respect to the variation in cell loss 

and the dosage helps us to tune the optimum dosage in terms of the quantity and the frequency 

of dosage. 

From the simulation results, we can explain L-DOPA wearing off mechanism to a great 

extent. Our hypothesis is that the natural progression of the disease characterized by the 

increase in loss of SNc cells is one of the mechanisms that contributes to L-DOPA wearing off. 

There could be other factors as well that can accelerate this wearing off phenomenon. Another 

hypothesis is that the loss of dopaminergic terminals will lead to synchronized activity in STN 

which in turn causes overexcitation of SNc neurons resulting in a phenomenon called 

excitotoxicity in SNc (Muddapu et al., 2019; Muddapu and Chakravarthy, 2020). Thus, fewer 

dopaminergic terminals and higher L-DOPA dosage results in an accelerated loss of the 

dopaminergic terminals leading to a faster wearing off.  There might be other contributing 

factors as well that may advance the shortening of the therapeutic window. There is potential 

scope of carrying out a detailed study on the various causes of the L-DOPA wearing off and 

we believe our model serves as a good platform to conduct such comprehensive research. 

4.2. Future Scope 

We could reliably replicate some of the cardinal symptoms of PD using our MCBG model. 

Along with simulating the PD ON/OFF mechanisms, our model could also successfully 

demonstrate the medication effect of L-DOPA. With the L-DOPA PK-PD model integration 

with the MCBG model, we could also explain the side effects of L-DOPA medication such as 

dyskinesias and wearing off. We hypothesize that the natural progression of the disease and 

the excitotoxicity could be potential factors that result in L-DOPA wearing off. Increase in 

cytosolic DA will lead to excitotoxicity as unregulated cytosolic DA leads to 

neurodegeneration (Chen et al., 2008). In this line, the pharmacological model can be extended 

by incorporating administration of other drugs that blocks the vesicular transporter (Pregeljc et 

al., 2020). In addition to dopamine-induced excitotoxicity, L-DOPA-induced toxicity can also 

cause neurodegeneration (Fahn, 2005; Lipski et al., 2011; Witt and Fahn, 2016; Muddapu et 

al., 2020b). However, there could be other contributing factors too and this model can serve as 
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a starting step to explore research in similar direction. As highlighted in the discussion section, 

more detailed study of the L-DOPA wearing off mechanism can be carried out to understand 

the mechanism and devising the alternate or improved medication regimes. Another line of 

extension is to explore the phenomenon of different types of dyskinesias such as peak dosage 

and diphasic dyskinesias (Kim et al., 2019b). We also want to extend the model to show the 

effect of deep brain stimulation (DBS) on motor deficiencies in PD condition and explore the 

comorbidity effects of both L-DOPA and DBS on PD motor symptoms (Muthuraman et al., 

2018; Muddapu et al., 2019; Muddapu and Chakravarthy, 2020; Mueller et al., 2020). One of 

the limitations of our model is that our model does not consider the influence of hyperdirect 

pathway, which involves direct cortical connections to the STN (Nambu et al., 2002; Cai et al., 

2019).  Also, the model does not take into consideration the influence of cholinergic 

interneurons in the striatum (Crossley et al., 2016; Kim et al., 2019a). These can be considered 

as further enhancements to the current model. Currently, our model is focusing on the motor 

deficiencies in the PD pathology. It would be interesting to model PD non-motor symptoms 

(Goldman and Postuma, 2014; Goldman and Guerra, 2020). 

5. CONCLUSIONS 

A comprehensive test bench for demonstrating the effect of drug action on symptoms can be 

powerful tool in the therapeutic toolkit of neurodegenerative diseases such as Parkinson’s 

disease. Our model is a first step towards this bigger goal. In the current study we were able to 

successfully simulate the relationship between drug dosage, cell loss and PD ON and OFF 

conditions. We could also demonstrate some of the cardinal symptoms of PD. We also 

integrated a PK-PD model of L-DOPA medication, which enabled us to simulate the 

medication effects of the L-DOPA. We also simulated various combinations of L-DOPA 

medication and percentage of SNc cell loss which enabled us to understand the general trends 

in drug effects. These modelling results have the potential to optimize the medication in terms 

of the amount of dosage and the frequency of dosage. 

6. CODE ACCESSIBILITY 

The MATLAB code of the proposed MCBG model (http://modeldb.yale.edu/266907) is 

available on ModelDB server (McDougal et al., 2017) and access code will be provided on 

request. 
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