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Abstract  

Genome-wide association (GWA) studies have uncovered DNA variants associated with individual 

differences in general cognitive ability (g), but these are far from capturing heritability estimates obtained 

from twin studies. A major barrier to finding more of this ‘missing heritability’ is assessment – the use of 

diverse measures across GWA studies as well as time and cost of assessment. In a series of four studies, we 

created a 15-minute (40-item), online, gamified measure of g that is highly reliable (alpha = .78; two-week 

test-retest reliability = .88), psychometrically valid and scalable; we called this new measure Pathfinder. In a 

fifth study, we administered this measure to 4,751 young adults from the Twins Early Development Study. 

This novel g measure, which also yields reliable verbal and nonverbal scores, correlated substantially with 

standard measures of g collected at previous ages (r ranging from .42 at age 7 to .57 at age 16). Pathfinder 

showed substantial twin heritability (.57, 95% CIs = .43, .68) and SNP heritability (.37, 95% CIs = .04, .70). 

A polygenic score computed from GWA studies of five cognitive and educational traits accounted for 12% 

of the variation in g, the strongest DNA-based prediction of g to date. Widespread use of this engaging new 

measure will advance research not only in genomics but throughout the biological, medical, and behavioural 

sciences.
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Running Head: Pathfinder 

Introduction 

Given its association with crucial life outcomes, it is essential to understand the genetic and environmental 

mechanisms that support the development of general cognitive ability (g). A major barrier in identifying the 

genetics of g is measurement heterogeneity. Traditional cognitive assessment is expensive and time-

consuming and therefore unsuited to large biobanks; consequently, gene discovery studies have had to 

integrate data from multiple cohorts that differ widely in the quality of measurement of g. We present a 

brief, reliable, valid, and engaging new measure of g, Pathfinder, developed over four studies. In a fifth 

study we administered this measure to a large sample of young adult twins and assessed the psychometric 

and genetic properties of the measure.  

 

General cognitive ability (g) is the best behavioural predictor of many educational, social and health 

outcomes (1). The symbol g was proposed more than a century ago to denote the substantial covariance 

among diverse tests of cognitive abilities. This underlying dimension runs through diverse cognitive abilities 

such as abstract reasoning, spatial ability and verbal ability and dominates the predictive validity of 

cognitive tests for educational, occupational, and life outcomes (2–4). In a meta-analysis of over 460 

datasets, the average correlation among such diverse tests was about .30, and a general factor (first unrotated 

principal component) accounted for about 40% of the tests’ total variance (5).  

 

Model-fitting analyses that simultaneously analyze the mountain of family, adoption, and twin data on g 

indicate that about half of the differences between individuals (i.e., variance) can be attributed to inherited 

DNA differences, a statistic know as heritability (6,7). Shared environmental influences that make family 

members similar to one another contribute 20% of the variance in parent-offspring studies, 25% in sibling 

studies and 35% in twin studies (6). However, one of the most interesting and perhaps counterintuitive 

findings about g is the developmental change in these estimates. Heritability increases from 45% in 

childhood to 55% in adolescence to 65% in adulthood, while shared environmental influence decreases from 

30% to 15% in twin studies (7,8) and is even less in adoption studies (9).  

 

Multivariate genetic analysis, which examine associations between multiple traits, shows that genetic 

overlap among cognitive tests is much greater than their phenotypic overlap. The average genetic correlation 

among diverse cognitive tests is about .80, indicating that many of the same genes affect different cognitive 

abilities (10–12). Recent evidence applying genomic methods has shown that this genetic covariance is 

largely reflected in the g factor (12). 

 

Progress in identifying some of the many DNA differences that account for the heritability of g would result 

in advances not only in genomics, but across the psychological, biological and medical sciences (13). This is 

because g pervades virtually all aspects of life, including education (14), job satisfaction and earnings 

(15,16) and health and longevity (17–20). A substantial portion of the observed associations between g and 

education, wealth and health is rooted in genetic variation (21,22). For example, substantial genetic 

correlations have been observed between g and educational attainment (r = 0.73),  longevity (r = 0.43) and 

age of first birth (r = 0.46; (23)).  This widespread pleiotropy (i.e. the same genetic variants contributing to 

two or more traits) suggests that g can be a useful translational target for any area of research in the life 

sciences –biology, brain as well as behaviour (24).  
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Given the genetic overlap observed between g and physical and mental health (25), advances in uncovering 

the DNA variants associated with individual differences in g are likely to enhance our understanding of the 

genetics of health, illness and psychiatric disorders. This becomes particularly meaningful when considering 

the major challenges related to gene discovery in specific areas of the psychological and medical sciences, 

most prominently psychiatric disorders (26). With the notable exception of schizophrenia, for which a 

polygenic score constructed from the latest GWA study (27) was found to account for 7.7% of the variance 

in liability in independent samples, genomic prediction of psychiatric traits and disorders has been 

considerably less successful (28,29) than for g (25,30). Leveraging on pleiotropy, progress in uncovering the 

genetics of g might therefore exert important spillover effects for our understanding of the genetics of 

physical and mental health.  

 

We now know that the biggest effects of specific DNA variants associated with most complex traits, 

including g, account for less than 0.1% of the variance (31). Genome-wide association (GWA) studies that 

attempt to identify these DNA associations need very large samples to reliably detect the tiny effects; 

however, testing large samples on g is challenging. As a result, it has been necessary to meta-analyze GWA 

results across studies that have used different methods and measures to assess g.  

 

The largest meta-analytic GWA study of g included a total of 270,000 individuals from 14 cohorts, all of 

which used different measures of g (23). Despite the heterogeneity of measures, this GWA study was able to 

identify 242 independent loci significantly associated with variation in g. A polygenic score derived from 

this GWA meta-analysis predicted 7% of the variance in g at age 16 in the sample used in the present study 

(30). A polygenic score for g is a genetic index of g for each individual that represents the sum across the 

genome of thousands of DNA differences associated with g weighted by the effect size of each DNA 

variant’s association with g in GWA studies. Adding a polygenic score derived from a GWA meta-analysis 

for years of schooling (32) to the polygenic score for g boosts the prediction of g to 10% at age 16 (30). 

 

Nonetheless, 10% is a long way from the heritability estimate of 50% from twin studies. This gap is known 

as ‘missing heritability’, which is a key genetic issue for all complex traits in the life sciences (33). 

Increasing GWA sample size and employing whole-genome sequencing approaches that can capture rare 

variants are among the approaches in use to narrow the missing heritability gap (34). Better measurement of 

the phenotype can also help. Differences between the psychometric quality of measures have been shown to 

reduce the statistical power to detect genetic associations, the effect sizes of the detected associations, and 

the predictive power and specificity of the polygenic scores that derive from GWA studies (36–38). For 

example, a simulation study showed that with heterogeneity of 50%, the sample size needed to achieve the 

same statistical power obtained from homogeneous samples increased by approximately three times (36). 

Extant GWA studies of g differ widely in the quality of measurement, from individually administered full-

scale IQ tests to scores on a college entrance exam or a single reading test or six items on a digit-span test 

(Savage et al., 2018). Rather than combining small heterogeneous GWA studies with diverse measures of g, 

a better strategy is to incorporate the same high-quality measure of g in large biobanks that already have 

genotype data on their participants. Cognitive testing has not been conducted in most biobanks because 

traditional in-person testing is expensive and time-consuming.  

 

This issue of heterogeneity of measurement in GWA studies motivated us to create a brief, reliable and valid 

online measure of g that could be offered to participants in extant biobanks. In addition to the criterion of 

brevity (15-minute) and ease of access and use, we set out to develop a g measure characterized by an 

additional important feature: gamification. Evidence points to the positive impact of gamification on 

participants’ engagement and motivation (39,40), which boosts the value of on-line gamified tests, for two 
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reasons. First, increasing engagement and motivation is likely to reduce distractions and drift in attention, 

leading to more reliable estimates of performance, especially in online testing conditions outside the 

controlled environment of the laboratory. Second, participants’ satisfaction increases participation and 

retention rates, which is especially important for large cohort studies (41).  

 

Gamification sets our measure apart from the few other existing online batteries that are capable of reliably 

assessing g. The two most prominent examples are the battery of cognitive tests that has been developed for 

and administered to UK Biobank participants (42) and the Great British Intelligence Test (43), a citizen 

science project launched in late December 2019 by BBC2 Horizon. The Great British Intelligence Test 

includes a selection of 9 cognitive tests from a broader library of 12 tests available via the Cognitron 

repository, which takes 20-30 minutes to complete. The cognitive tests administered to UK Biobank 

participants, which take on average 21 minutes to complete, assess five abilities: visual memory, processing 

speed, numeric working memory, prospective memory, and verbal and numerical reasoning. Recent analyses 

found the tests to have moderate concurrent validity, with a mean correlation between the shortened version 

and a validated reference test of 0.53, but ranging widely from 0.22 to 0.83, and moderate short-term 

stability, with a mean four-week test-retest correlation of 0.55, ranging between 0.40 and 0.89 for individual 

tests (44). In addition, although the five tests yielded a measure of g that correlated 0.83 with a measure of g 

constructed from their corresponding standardized reference tests, the estimate of g provided by the battery 

appears to reflect the fluid, largely not dependent on prior learning, aspects of intelligence more strongly 

than the crystallized, academic forms of cognitive function, such as vocabulary and verbal knowledge (12).  

 

Our g battery overcomes these limitations by providing a highly reliable, balanced assessment of g, 

constructed from measures of verbal and nonverbal abilities. Importantly, and different from all existing 

measures, our measure is gamified and engaging, accessible by all researchers through our open science 

research framework, and easy to integrate within existing data collection platforms. It is also at least five 

minutes shorter than existing measures, which is particularly meaningful when considering data collection in 

large cohorts. 

 

The current paper describes our work developing and validating 

this new, brief, easy-to-administer, gamified measure of g in a 

series of four studies (see Figure 1). In a fifth study, we 

administered this measure to 4,751 young adults from the Twins 

Early Development Study (TEDS; Rimfeld et al., 2019) and 

assessed the psychometric and genetic properties of the measure. 

Our analyses were preregistered in line with the Open Access 

Framework (https://osf.io/pc9yh/), and included the following three 

core hypotheses: 

 

First, we hypothesized that our 15-minute online measure of g 

would:  

a) Capture more than 40% of the variance of diverse tests of 

verbal and nonverbal abilities in a first principal component. 

b) Yield test-retest reliability greater than 0.80. 

Second, we predicted that, using the classical twin design, our 

measure of g would: 

c) Yield heritability estimates greater than 50%. 

Figure 1. Flowchart depicting the 

roadmap to the development and testing 

of Pathfinder over our five studies.  
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d) Yield estimates of shared environmental influence less than 20%. 

Third, we predicted multivariate approaches to calculating polygenic scores would predict over 10% of the 

variance in individual differences in g in our sample of young adults. 

  

Materials and Methods 

Study 1 

Participants 

Participants (N = 142) were recruited from the Twins Early Development Study (TEDS) sample(46). 

Specifically, for this first study we invited a group of TEDS twins whose co-twin was no longer actively 

participating in the TEDS longitudinal data collection. Sixteen out of the 142 participants who agreed to take 

part in the study did not complete the full battery, which resulted in N = 126 participants with complete data. 

Participants’ ages ranged between 21.60 and 22.30 (M = 21.98, SD = .19). The sample included more 

females (N = 97) than males (N = 45).  Participants varied in their education level (58% had completed A-

level exams).  

Measures 

Cognitive battery. Participants were administered a battery of 18 well-established cognitive tests covering 

four core domains of cognitive performance, including a total of 293 items: Nonverbal reasoning (6 tests for 

a total of 75 items), Verbal reasoning (4 tests for a total of 98 items), Spatial ability (3 tests for a total of 45 

items) and Memory (5 tests for a total of 75 items, 2 tests assessed long-term memory and 3 tests short-term 

memory). A full list of tests is reported in Supplementary Table 1 and examples for each test can be found 

at the following link: https://www.youtube.com/watch?v=TA38bsgp7Lg&ab_channel=TEDSProject. The 18 

tests were selected after a careful literature review and were chosen with three core features in mind: (1) 

each test had to demonstrate high validity and reliability; (2) altogether, tests had to tap a wide array of 

cognitive domains, from verbal and nonverbal reasoning to memory; and (3) they had to be tests that were 

either developed or adapted for online administration, or tests that could easily be adapted by our team for 

online administration. 

The final battery was administered online using forepsyte.com, an online data collection platform. Tests 

were presented in a fixed order and the order of presentation is reported in Supplementary Table 1. The 

median time participants took to complete the battery was 68 minutes.  

 

Study 2 

Participants 

Participants (N = 144) were recruited using Prolific.co (www.prolific.co), an online research recruitment 

platform.  Of the total sample, 30% (n = 43) were males, 68% (n = 98) females, and 2% (n = 3) did not 

specify their gender. Participants’ ages ranged from 18 to 49 years (M =  30.99, SD  = 8.67).  Recruitment 

was based on four selection criteria: 1) age between 18 and 50 years; 2) English as first language; 3) UK 

nationality; and 4) education level which was selected in two groups, one of which had completed tertiary 

education and the other not (this resulted in 40.9% of the total sample who had completed tertiary education 

and 59.1% not, which is representative of educational levels in the UK population; see 
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https://www.oecd.org/unitedkingdom/United%20Kingdom-EAG2014-Country-Note.pdf). Supplementary 

Table 2 presents a breakdown of the participants’ education level and ethnicity.   

Measures   

Cognitive battery.  The cognitive battery included 138 items (78 verbal and 60 non-verbal) from seven 

well-established cognitive tests, which were selected from a larger battery based on the results of Study 1. 

The three tests assessing verbal ability were: (1) the Mill Hill Vocabulary Scale (47), (2) a Missing Letter 

Test and (3) a Verbal Analogies Test. The Mill Hill Vocabulary Scale consists of items assessing 

individuals’ ability to select semantically related words.  For each item a target word is displayed, and 

participants are asked to select the word that is closest in meaning from six response options. In the Missing 

Letter Test, participants were exposed to pairs or strings of words, each with a blank space indicating a 

missing letter.  Participants were asked to identify the missing letter that would meaningfully complete all 

the words presented on the screen simultaneously and select the letter from a displayed alphabet. An 

example of items is ban(?) (?)ave – fla(?) (?)ain and the missing letter in this instance is “g”. In the Verbal 

Analogies Test, participants were presented with verbal analogies, having either one or two missing words. 

An example of a one-word problem is: “Sadness is to happiness as defeat is to x”. Participants could solve x 

by choosing between four options: Joy, Victory, Victor, Tears. An example of a two-word problem is: 

“Robin is to x as Spider is to y”. Participants could choose between four options to solve x (Batman, Bird, 

Christmas, Tree) and four options to solve y (Spiderman, Easter, Arachnid, Insect).  Participants were asked 

to select the word(s) that would correctly and meaningfully complete the missing part of the sentence.  For 

items containing one missing word, participants selected their answer from a choice of four or five. For 

items with two missing words a choice of four was presented for every word missing.   

 

The four tests assessing  nonverbal ability were: (1) the Raven’s Standard Progressive Matrices (48), and 

three Visual Puzzles tests: (2) Non-verbal Analogies, (3) Non-verbal groupings and (4) Nonverbal Logical 

Sequences. The Raven’s progressive matrices test measures non-verbal abstract reasoning.  Participants are 

presented with a series of incomplete matrices and are asked to select the missing part from a choice of 

eight.  In the non-verbal analogies test, participants are presented with a series of images that contain a 

logical statement phrased as "x is to y as z is to ___", where x/y/z are replaced by images. Participants are 

asked to select the correct missing image to complete this statement.  In the non-verbal groups test, 

participants are presented with the image of a group of shapes and are asked to identify which other shape, 

out of five options, belongs to the group. In the non-verbal sequences test, participants are presented with 

items containing a sequence of images, in which one is removed and replaced by a question mark and they 

are asked to select the image that completes the sequence from five options. 

 

The seven tests (three verbal and four nonverbal) were presented to participants in a randomized order.  

Within each test, items were presented in fixed order, starting from easier items (determined from the results 

of study 1) and moving on to progressively more difficult ones. Each item was presented for a maximum of 

60 seconds. 

 

Study 3 

Participants   

About two weeks (mean = 13.00 days) after the completion of Study 2, participants were invited back to 

participate in Study 3. Of those invited back, 91.7% completed Study 3 (N = 132).  Out of the total sample 

for Study 3, 30.3% (n = 40) were males, 67.4% (n = 89) were females, and 2.3% (n = 3) did not specify their 
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gender; the mean age was 31.3 years (SD = 8.7), and age ranged between 18 and 49 years.  Supplementary 

Table 2 presents a breakdown of the participants’ education levels and ethnicities.   

Measures 

Cognitive battery. The cognitive battery included the 40 items selected based on the results of Study 2. 

These 40 items covered five tests: 3 capturing verbal ability (Vocabulary, Verbal analogies and Missing 

letter) and 2 nonverbal ability (Matrix reasoning and Visual puzzles, the latter being a composite of the best-

performing items from each of the three visual puzzles tests administered in Study 2). The order of 

presentation of these tests was randomized to account for the potential effects of test-taking fatigue on 

cognitive performance. Within each test, items were presented in order of difficulty, based on accuracy 

results from Study 2 (see Supplementary Table 3).  Each item was presented for between 20 to 40 seconds, 

the time limit decisions were made based on the means and standard deviations for response time obtained 

from Study 2 (see Supplementary Table 3). During this phase we also added four quality control (QC) 

items. These were presented in the same form as test items, but they were extremely easy to solve; their aim 

was to help us identifying ‘clickers’, i.e., participants who were just clicking through the test and providing 

random responses. Control items did not contribute to either the tests or total score. A fifth standard quality 

control question ‘This is a quality control question, please select option B’ was also added.  QC items were 

presented half-way through each test, except for the standard quality control question that was presented 

between two tests in randomized order. Response accuracy for each QC item is presented in Supplementary 

Table 4. 

 

Study 4 

Participants  

Approximately one month after Study 3 (mean = 29, range = 23 to 35 days), participants who completed 

both Study 2 and Study 3 were invited back to complete Study 4.  Of those invited back, 85.4% completed 

Study 4 (N = 123).  Out of the total sample for Study 4, 30.1% (n = 37) were males, 68.3.% (n = 84) were 

females, and 1.6% (n = 2) did not specify their gender; the mean age was 31.82 years (SD = 8.61), and age 

ranged between 18 to 50 years. Supplementary Table 2 presents a breakdown of the participants’ education 

levels and ethnicities.   

Measures 

Gamified cognitive battery. In Study 4 we administered the same battery of 40 items included in Study 3, 

but this time the items were embedded in a gamified storyline, the Pathfinder, which took participants 

through five ‘journeys’. A detailed description of each journey can be found in the TEDS data dictionary at 

the following link: http://www.teds.ac.uk/datadictionary/studies/webtests/21yr_ggame_description.htm. 

Figure 2 provides a visual summary of the graphics of how items were presented in the gamified test and 

Figure 2F provides an example of the feedback that participants were given at the end of the gamified test.  

Study 5 

Participants 

In study 5, Pathfinder was administered to an initial sample of 4,751 twins (1,491 twin pairs and 1,769 

individual twins) from the Twins Early Development Study (TEDS) (45). All families with twins born in 

England and Wales between 1994 and 1996, identified through birth records, were invited to take part in 
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TEDS. Over 15,000 families took part in the first data collection wave and over 10,000 families are still 

actively participating in TEDS 25 years on. TEDS is an ongoing project and TEDS twins have contributed 

data longitudinally from birth to the present day. The last major wave of assessment was conducted in 2018 

when the twins were 21-23 years old. TEDS remains reasonably representative of the UK population in 

terms of ethnicity and socioeconomic status (SES; see (46) for a detailed description). Data from twins 

known to suffer from a severe medical condition including autism, cerebral palsy, chromosomal or single-

gene disorders and organic brain problems, were excluded from the current analyses, together with twins 

whose sex and/or zygosity was unknown (N = 137 participants excluded).  In addition, ‘clickers’ were 

identified from a combination of the incorrect responses in QC items, rapid responding (based on the mean 

item response time), low sub-test score and uniform responding (i.e.  a pattern of clicking on the same 

response over a series of items). This resulted in the exclusion of data from 69 additional participants. The 

final sample consisted of 4,545 participants (1,416 twin pairs –639 monozygotic and 777 dizygotic pairs, 

and 1,713 unpaired twins). The sample mean age was 24.81 (SD = 0.85), ranging between 23.29 and 26.41. 

Genotyped DNA data was available for a subsample of 1,365 unrelated individuals. Genotypes underwent 

phasing using EAGLE2 and imputation into Haplotype Reference Consortium (release 1.1.), employing the 

Positional Burrows-Wheeler Transform method via the Sanger Imputation Service (see (49) for additional 

information). TEDS data collections have been approved by the King’s College London ethics committee.  

Measures 

Pathfinder. In Study 5 we 

administered the same tests 

administered in Study 4. The 

15-minute (median time taken 

to complete the battery = 15.95 

minutes), gamified Pathfinder 

g measure included two core 

components assessing verbal 

and nonverbal cognitive ability. 

The verbal ability block 

included 20 items from 3 tests: 

vocabulary, verbal analogies 

and missing letter. The 

nonverbal ability block 

included 20 items from 2 tests: 

matrix reasoning and visual 

puzzles (which grouped items 

from three tests: non-verbal 

analogies, non-verbal 

groupings and nonverbal 

logical sequences). The items 

were embedded in a gamified 

storyline as participants solved 

puzzles while moving through 

different journeys (represented 

as background images, which 

changed after every 1-3 items): 

The “Mountain” journey 

Figure 2. Screenshots of each of the five ‘journeys’ included in the Pathfinder 

gamified test (panels A-E) and a visual representation of the final feedback page (panel 

F). Panel A depicts the “Mountain” journey (Vocabulary test); panel B the “Tower” 

journey (Missing letter test); panel C the “Woodland” journey (Verbal analogies test); 

panel D the “Space” journey (Visual puzzles); and panel E the “Ocean” journey 

(Matrix reasoning test). 
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(Vocabulary test) included 8 items, the “Tower” journey (Missing letter) included 6 items, the “Woodland” 

journey (Verbal analogies) included 6 items, the “Space”  journey (Visual puzzles) included 9 items, and the 

“Ocean” journey (Matrix reasoning) included 11 items (see Figure 2). The test included the same 5 QC 

items described in Study 3 and included in Study 3 and 4. Screen size. Participants could complete 

Pathfinder using a variety of devices, including laptops, tablets and mobile phones. To account for the 

potentially confounding effects of screen size we created a categorical variable reflecting three screen size 

categories in order to statistically control for the effects of screen size. These categories were “small screen 

(< 768 pixels)”, “medium screen (768-1199 pixels)” and “large screen (>=1200 pixels)”. 

 

Cognitive ability at earlier ages. TEDS includes measures of cognitive ability collected at multiple waves 

from childhood to late adolescence. 

At age 7 cognitive ability was measured using four cognitive tests that were administered over the telephone 

by trained research assistants.  Two tests assessed verbal cognitive ability: a 13-item Similarity test and 18-

item Vocabulary test, both derived from the Wechsler Intelligence Scale for Children (WISC; (50)).  

Nonverbal cognitive ability was measured using two tests: a 9-item Conceptual Groupings Test (51), and a 

21-item WISC Picture Completion Test (50). Verbal and nonverbal ability composites were created taking 

the mean of the standardized test scores within each domain. A g composite was derived taking the mean of 

the two standardized verbal and two standardized nonverbal test scores. 

At age 9 cognitive ability was measured using four cognitive tests that were administered as booklets sent to 

TEDS families by post. Verbal ability was measured using the first 20 items from WISC-III-PI Words test 

(52) and the first 18 items from WISC-III-PI General Knowledge test (52). Nonverbal ability was assessed 

using the Shapes test (CAT3 Figure Classification; (53) and the Puzzle test (CAT3 Figure Analogies; Smith 

et.  al., 2001). Verbal and nonverbal ability composites were created taking the mean of the standardized test 

scores within each domain. A g composite was derived taking the mean of the two standardized verbal and 

two standardized nonverbal test scores. 

At age 12, cognitive ability was measured using four cognitive tests that were administered online. Verbal 

ability was measured using the full versions of the verbal ability tests administered at age 9: the full 30 items 

from WISC-III-PI Words test (52) and 30 items from WISC-III-PI General Knowledge test (52). Nonverbal 

ability was measured with the 24-item Pattern test (derived from the Raven’s Standard Progressive Matrices; 

(54) and the 30-item Picture Completion test (WISC-III-UK) (50). Verbal and nonverbal ability composites 

were created taking the mean of the standardized test scores within each domain. A g composite was derived 

taking the mean of the two standardized verbal and two standardized nonverbal test scores. 

 

At age 16 cognitive ability was measured using a composite of one verbal and one nonverbal test 

administered online. Verbal ability was assessed using an adaptation of the Mill Hill Vocabulary test (47), 

Nonverbal ability was measured using an adapted version of the Raven’s Standard Progressive Matrices test 

(47). A g composite was derived taking the mean of the two standardized tests. 

 

Academic achievement at earlier ages. Measures of academic achievement have been obtained in TEDS 

throughout compulsory education. 

At age 7 academic achievement was measured with standardized teacher reports and consisted of 

standardised mean scores of students’ achievements in English and mathematics, in line with the National 

Curriculum Levels.  Performance in English was assessed in four key domains: speaking, listening, reading 
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and writing abilities; performance in maths was assessed in three key domains: applying mathematics, as 

well as knowledge about numbers, shapes, space and measures. 

At age 9, academic achievement was again assessed using teacher reports. The domains assessed were the 

same for English and mathematics (although on age-appropriate content). In addition, performance in 

science was assessed considering two key domains: scientific enquiry and knowledge and understanding of 

life processes, living things and physical processes.  

 

At age 12, academic achievement was assessed in the same way as at age 9, with the exception of 

mathematics, which was added a fourth domain: data handling, and science, which added a third domain: 

materials and their properties; these additions were in line with the changes made to the to the National 

Curriculum teacher ratings.  

 

At age 16, academic achievement was measured using the General Certificate of Secondary Education 

(GCSE) exam scores. The GCSEs are the UK nationwide examination usually taken by 16-year-olds at the 

end of compulsory secondary education (55). Twins’ GCSE scores were obtained via mailing examination 

results forms to the families shortly after completion of the GCSE exams by the twins.  For the GCSE, 

students could choose from a wide range of subjects. In the current analyses the mean score of the 

compulsory GCSE subjects English Language and/or English Literature, mathematics and a science 

composite (a mean score of any of the scientific subjects taken, including physics, chemistry and biology).  

 

At age 18, academic achievement was measured based on the A-Level (Advanced Level) grade. The A-

Level is a subject-based qualification conferred as part of the General Certificate of Education, as well as a 

school leaving qualification. A Levels have no specific subject requirements. We used standardized mean 

grade from all of the A-levels taken.  Sample size was limited to those twins who who continued with 

academic education beyond GCSE level, typically in preparation for university, thus reducing range as well.   

  

Family socioeconomic status (SES). At first contact, parents of TEDS twins received a questionnaire by 

post, and were asked to provide information about their educational qualifications and employment and 

mothers’ age at first birth. SES was created by taking the mean of these three variables standardized. The 

same measures, except for mother’s age at first birth, were used to assess SES at age 7. At age 16, the SES 

was assessed based on a web questionnaire, and comprised a standardized mean score obtained from 5 

items:  household income, mother’s and father’s highest qualifications, mother’s and father’s employment 

status. 

Analyses 

Phenotypic analyses 

Phenotypic analyses were conducted in R version 4.0 (R Core Team, 2020) and Mplus version 8 (56).  The 

variables were adjusted for the effects of sex, age (and screen size for the Pathfinder measures) using linear 

regression. Sex and age-controlled data were used in all downstream analyses.  Because of the normal 

distribution of the Pathfinder measures no transformations were applied.   

We conducted univariate analysis of variance (ANOVAs) to explore phenotypic sex differences and 

Pearson’s correlations to examine phenotypic associations between measures. We conducted Principal 

Component Analysis (PCA) and Confirmatory Factor Analysis (CFA) to examine the factor structure of the 

Pathfinder measures.  
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We applied Item Response Theory (IRT) modelling to reduce the cognitive battery, selecting items based on 

their psychometric properties.  IRT refers to a set of mathematical models that describe the relationship 

between an individual’s response to test items and their level of the latent variable being measured by the 

scale – in this case, g.  IRT allows estimation of item information, difficulty, and discrimination parameters 

(57). An item’s information properties are reflected in its item information curve, and its difficulty and 

discrimination properties are reflected in its item characteristic curve.  Item information reflects the 

reliability of an item at a particular level of latent ability. The flatter the item information curve, the less 

reliable the item.  An information curve positioned further along the x-axis suggests that an item is 

informative at the upper end of latent ability.  Item difficulty is the level of latent ability at which the 

probability of correct response is 50%.  The more difficult the question, the further the item characteristic 

curve will be to the right (more latent ability is needed to get it correct).  Item discrimination indicates how 

much an item is influenced by the latent trait and is thus similar to a factor loading.  High discriminative 

ability is indicated by a steep item characteristic curve.  An item discriminates well at a particular level of g 

if a small change in ability results in a large increase in the probability of correct response.  We fitted a 

binary 2-PL Model in the MPLUS software including all 138 verbal and non-verbal items. This model uses 

maximum likelihood and estimates item difficulty and discrimination (whereas the 1 PL model assumes 

items are equally discriminative). The 2 PL model provided a better fit for the data (Akaike Information 

Criterion (AIC) = 18327.596, Bayesian Information Criterion (BIC) = 19158.532, sample-size adjusted 

BIC= 18285.045) than a three-item parameter (3 PL) model (AIC = 18496.790, BIC = 19743.193, sample-

size adjusted BIC= 18432.962), as indicated by the lower AIC, BIC and sample-size adjusted BIC indices 

obtained for the 2 PL IRT model, and a 1PL model which failed to converge.  

 

Genetic and genomic analyses 

The twin method. We applied the univariate twin method to partition the variance in each phenotype into 

genetic, shared and unique environmental influences. The twin method capitalizes on the genetic relatedness 

between monozygotic twins (MZ), who share 100% of their genetic makeup, and dizygotic twins (DZ), who 

share on average 50% of the genes that differ between individuals.  The method is further grounded in the 

assumption that both types of twins who are raised in the same family share their rearing environments to 

approximately the same extent (58).  By comparing how similar MZ and DZ twins are for a trait (intraclass 

correlations), it is possible to estimate the relative contribution of genetic and environmental factors to 

individual variation.  Heritability (h2), the amount of variance in a trait that can be attributed to genetic 

variance (A), can be roughly estimated as double the difference between the MZ and DZ twin intraclass 

correlations (59). The ACE model further partitions the variance into shared environment (C), which 

describes the extent to which twins raised in the same family resemble each other beyond their shared 

genetic variance, and non-shared environment (E), which describes environmental variance that does not 

contribute to similarities between twin pairs (and also includes measurement error).  Structural equation 

modelling provides more formal estimates of A, C, and E and calculates confidence intervals for all 

estimates.  We performed twin analyses using OpenMx 2.0 for R (60) and Mplus version 8 (56).  

 

Model fit was measured using the difference between the likelihood (-2LL) of the assumed model (with 

fewer parameters) and the likelihood of the saturated model, which provides a baseline summary of the data 

prior to decomposition into variance components (61).  Difference in -2LL is distributed as chi-square (2) 

with 2 degrees of freedom (df) representing the difference in number of parameters between the baseline 

and more restrictive models. 2 and df are used to create a p value for model fit comparisons, with a non-
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significant p-value indicating that the more restrictive model does not fit the data significantly worse than 

the saturated model (61).  

 

The twin method was then extended to the exploration of the covariance between pairs of traits (bivariate 

twin models), by modelling cross-twin cross-trait covariances.  Cross-twin cross-trait covariances describe 

the association between two variables, with twin 1’s score on variable 1 correlated with twin 2’s score on 

variable 2, which are calculated separately for MZ and DZ twins.  We employed the bivariate twin models to 

explore genetic and environmental overlap between the Pathfinder composites and educationally relevant 

traits over development, using OpenMx 2.0 for R. 

 

SNP heritability (SNP h2).  SNP heritability was estimated using the Genome-wide complex trait analysis 

(GCTA) software that employs a genome-based restricted maximum likelihood method (GREML). GREML 

estimates the proportion of the variance in a trait that is captured by all genotyped single nucleotide 

polymorphisms (SNPs) in samples of unrelated individuals (62).  GREML uses individual-level genotypic 

data to estimate narrow-sense SNP h2,  the proportion of phenotypic variation explained by the additive 

effects of genetic variants measured using a genotype array and subsequent imputation (62). Cryptic 

relatedness was controlled for by setting the relatedness threshold to .05, which resulted in removing pairs of 

individuals who are genetically as similar as 4th-degree relatives (63). The grm-adj 0 option was used to 

control for incomplete tagging of causal variants. Due to the fact that causal regions are likely to show lower 

MAF (minor allele frequency) compared to the genotyped set of genetic variants, weak LD (linkage 

disequilibrium) estimates may result.  Incomplete tagging of causal loci may therefore be mitigated by 

assuming similar allele frequencies of causal loci and genotyped SNPs (63). 

 

Genome-wide polygenic scores (GPS). We constructed GPS using LD-pred (64) with an infinitesimal 

prior, which corrects for local linkage disequilibrium (LD), correlations between SNPs.  We used the 1000 

genomes phase 1 sample as a reference for the LD structure (see (65) for a detailed description of LD-pred 

analytic strategies used in calculating GPS in the TEDS sample). Three univariate polygenic scores were 

calculated from GWA summary statistics of intelligence (IQ3; N= 266,453 (23)), years of education (EA3; 

excluding 23andMe; N= 766,345 (66)) and childhood IQ (N= 12,441;(67)). Because the original IQ3 GWA 

meta-analysis included the TEDS sample, we used summary statistics that excluded TEDS to avoid bias due 

to sample overlap. The EA3 summary statistics employed here do not include 23andMe data (~300k 

individuals) due to their data availability policy. 

 

In addition to examining the predictions from individual GPS, we investigated the extent to which 

multivariate approaches boost the GPS prediction of g, verbal and nonverbal ability. Following the pipeline 

developed by Allegrini et al. (2019), multivariate polygenic scores were constructed using MTAG (68) and 

Genomic SEM (69), and combined the IQ3 and EA3 GPS with summary statistics of three additional 

educationally relevant traits: household income (N= 96,900; (70)), age at completion of full-time education 

(N= 226,899; (69)) and time spent using computer (N= 261,987; (71)).   

Linear regression analyses were performed in R to investigate the association between the GPS and 

Pathfinder composites (R Core Team, 2017).  We report results for the GPS constructed assuming a fraction 

of casual markers of 1 (assuming that all markers have non-zero effects). GPS results for other fractions (p-

value thresholds) are included in the Supplementary Material. Phenotypic data, polygenic scores and 

covariates were standardized prior to the regression analysis to achieve the z-distribution and obtain R2 

estimates in units of standard deviation. Variance explained by the GPS was determined as the difference 

between variance explained by the full model (including both GPS and covariates as predictors) and the null 
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model (including the covariates alone). Each linear regression analysis included the following covariates: 

batch, chip and 10 principal components of population structure. All analyses were performed on samples of 

unrelated individuals. 

Results 

Over four studies we adopted multiple psychometric approaches to develop the shortest possible, yet highly 

valid and reliable, measure of general cognitive ability (g).  

 

Study 1: Identifying the most informative verbal and nonverbal cognitive tests: Principal component 

analysis 

In study 1 we administered a battery of 18 widely used cognitive tests, which we identified through an in-

depth review of the literature. The sample and procedures are detailed in the Methods section. The final 

battery included 293 items that spanned four key areas of cognitive performance: nonverbal reasoning (75 

items), verbal reasoning (98 items), spatial ability (45 items) and memory (75 items). Supplementary Table 

1 presents a full list of tests, which are described in greater detail in the Methods section, a demonstration of 

each test is provided at the following link: 

https://www.youtube.com/watch?v=TA38bsgp7Lg&ab_channel=TEDSProject. We conducted Principal 

Component Analysis (PCA) of these 18 tests to reduce the number of tests and select those that best 

represent verbal and nonverbal cognitive ability, the two core subdomains of cognitive skills which also 

reflect the key distinction between verbal and performance IQ.  

 

We ran two separate PCAs, one for the 12 nonverbal measures and a second for the six verbal measures. The 

first PCA (Supplementary Table 5a) identified four tests that most reliably captured nonverbal reasoning, 

indexed by the highest loadings onto the first principal component (PC) of nonverbal ability. These 

nonverbal tests assessed Matrix reasoning (Raven’s progressive matrices), and Visual puzzles (Groups, 

Sequences and Nonverbal analogies). The second PCA (Supplementary Table 5b) indicated three tests that 

captured the majority of the variance in verbal ability: Similarities (Verbal analogies), Vocabulary (Mill Hill 

vocabulary test) and Information (Missing letter test). A first principal component including these seven 

tests accounted for 60% of the total variance. A composite g score (the scores summed) created from these 

seven tests, including a total of 138 items (average correlation across all individual items = .10), was 

strongly correlated (r = .85, p < .001, N = 126) with a g composite constructed from the entire battery (293 

items). Cronbach’s alpha for each of the seven tests is reported in Supplementary Table 5c; the average 

alpha across the seven tests was .75 (min = .65, max = .86).  

 

Study 2: Selecting the items that best captured variation in g: Item Response Theory  

With the aim of further reducing our g battery and selecting only the best performing items for each test, in a 

second study (study 2) we administered the seven tests selected in study 1 to an independent sample. We 

conducted an item response theory (IRT; (72)) analysis to identify items that best capture individual 

differences in g and estimated their difficulty, discrimination, and information parameters (see Methods).  

Since one of the main assumptions of IRT is the unidimensionality of the latent construct, we first fitted a 

principal component analysis (PCA) and a principal component parallel analysis including all 138 items to 

determine the number of components or factors to retain from PCA and examine whether the assumption of 

unidimensionality held. Although results of the parallel analysis suggested the existence of 3 components, 
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the adjusted eigenvalue for the first component (15.73) was substantially larger than the eigenvalues 

obtained for the second and third components (2.50 and 1.24, respectively). Further examination of the scree 

plot obtained from PCA (Supplementary Figure 1a) indicated one dimension, which explained 15.3% of 

the total variance. In addition, when plotting the first three principal components against one another, we 

found no evidence for multidimensionality (see Supplementary Figure 1b, 1c and 1d). Therefore, we 

proceeded to perform IRT analysis. Our IRT analysis proceeded in three stages. First, we inspected item 

information curves for each of the 138 items included in the seven tests. Information curves indicate how 

informative (reliable) each item is over a particular range of the latent trait. We identified 37 items 

characterized by horizontal (completely flat) information curves, indicating items that did not discriminate 

well at any level of the latent trait; these items were removed.  

 

Second, we removed 51 additional items with flat information curves under a threshold of 0.2 or with 

information curves out of range, either extremely high or low, indicating that the items were either too hard 

or too easy. This selection process resulted in 20 nonverbal and 30 verbal items.  

 

Third, we focused on refining the verbal battery in order to further reduce the number of items capturing 

verbal ability. We identified 3 items showing significantly lower information scores than all others; 3 other 

items with flat item characteristic curves, therefore not discriminating at any level of the latent trait; and 4 

additional items that had item characteristic curves that were identical to other items, therefore not providing 

unique information. These 10 verbal items were deleted, resulting in a battery of 20 nonverbal and 20 verbal 

items. This 40-item battery included items from all seven tests (see Supplementary Table 6 for a summary 

of the reduction process) ranging from very easy (96% of correct responses) to very difficult (7% of correct 

responses). Information and characteristic curves for the selected items are reported in Supplementary 

Figures 2 and 3, and discrimination and difficulty parameters for all items are reported in Supplementary 

Table 7.  Percentages of correct responses and average response times are reported in Supplementary 

Table 3.   

 

These 40 items spanned five tests: 3 verbal ability tests (Vocabulary, Verbal analogies, and Missing letters) 

and 2 nonverbal ability tests (Matrix reasoning and Visual puzzles). A PCA of the composite scores for the 

five subdomains showed that the first PC accounted for 67% of the total variance, with factor loadings 

ranging between .78 and .86 (see Supplementary Table 8 for the factor loadings).  

 

Studies 3 and 4: Test-retest reliability and gamification  

In studies 3 and 4 we assessed the test-retest reliability of the 40-item measure. In study 3 we examined two-

week test-retest reliability, which was excellent for g, verbal and nonverbal ability, with phenotypic 

correlations ranging between .78 (95% CIs= .70, .84) and .89 (95% CIs= .85, .92) (Supplementary Table 

9). Information on the time limits and order of presentation of each item and subdomain is included in 

Supplementary Table 10.  

 

We proceeded with the process of gamification. Items from each subdomain were embedded into a gamified 

story line, the Pathfinder, which took participants through five ‘journeys’: mountain, tower, woodland, 

space and ocean (this 2-minute video demonstrates how items were incorporated into the gamified 

environment: 

https://www.youtube.com/watch?v=KTk1Ej4F8zE&ab_channel=TEDSProject).  
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In study 4 we administered Pathfinder to the same participants who participated in studies 2 and 3 in order 

to assess whether the gamification process affected the psychometric properties of the test. Supplementary 

Table 10 presents a summary of the Pathfinder journeys and the number and type of items included in each 

test.  Within each sub-domain, items were presented for the same amount of time and in the same order as in 

study 3. Additional information on Pathfinder can be found at the following link: 

http://www.teds.ac.uk/datadictionary/studies/webtests/21yr_ggame_description.htm.   

 

Study 4, which was conducted approximately 1 month (mean = 29, range = 23 to 35 days) after study 3, 

showed that test-retest reliability and external validity (i.e., association with education level) remained 

excellent for g, verbal and nonverbal ability even following the gamification of the 40 items .The test-retest 

correlations ranged between .78 and .91, while the correlations between g, verbal and nonverbal ability and 

education level ranged from .36 to .45 (Supplementary Table 9). We also compared the factor structure 

obtained across the two versions of the test (i.e., study 3 vs. the gamified version administered in study 4) by 

including the 40 items in two separate CFA model, one for each study. The factor scores derived from each 

one-factor CFA model correlated at .86, p< .0001, as shown in Supplementary Figure 4.  

 

 

Study 5: Testing the new g measure in a large sample of young adults: Distributions, sex differences, 

dimensionality and intercorrelations 

In study 5, we administered the new g measure (Pathfinder) to 4,751 twins from the Twins Early 

Development Study (see Method section and (46) for an in-depth description of the sample). This allowed us 

to conduct in-depth developmental and genetic analyses to further characterize Pathfinder. The first 

requirement of a good measure of g is that it should be distributed normally. We found that the scores for the 

g, verbal and nonverbal ability composites were normally distributed (see Figure 3A). We subsequently 

investigated sex differences in g, verbal ability and nonverbal ability using univariate analysis of variance 

(ANOVA). Sex differences were significant but small, accounting for between 1 and 3% of the variance. 

Males outperformed females across the three composites and in four out of five tests, the only exception was 

performance in the Missing Letter test, for which we found no significant sex differences (Figure 3B and 

Supplementary Table 11 and 12 for the same analyses in cognitive measures collected over development).  

A second requirement of a good measure of g is that it should tap into correlated, yet distinct components of 

cognitive functioning. We explored this examining the observed correlations between performance in the 

five subdomains of cognitive ability, which ranged from moderate to strong, as shown in Figure 3C. The 

network plot in Figure 3C shows how performance in verbal tests, particularly vocabulary and verbal 

analogies created a verbal ability cluster, which was correlated with, but more distant from, the nonverbal 

ability cluster that comprised matrix reasoning and visual puzzles. Performance in the missing letter test was 

moderately correlated with verbal tests (r = .47 and .35 with verbal analogies and vocabulary, respectively) 

and nonverbal tests (r = .43 and .37 with matrix reasoning and visual puzzles, respectively). Correlations 

between all tests are reported in Supplementary Table 13.  

A third requirement of a good measure of g is that it should produce a first PC accounting for a substantial 

portion of variance across several cognitive tests, typically about 40%. A PCA of our five tests yielded a 

first PC that accounted for 52% of variance (Figure 3D and Supplementary Table 14a). Scores on this first 

PC correlated .99 with a composite score of g created by taking the sum of performance across the 40 verbal 

and nonverbal items and .99 with a latent factor of g created using confirmatory factor analysis (CFA). The 

results of this CFA analysis are reported in Supplementary Table 14b. A one-factor CFA provided a good 

fit for the data (CFI = 0.95, TLI = 0.90, SRMS = 0.03) and accounted for 73% of the common variance and 
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between 30.1% and 53.1% of the variance in each of the five tests (see Supplementary Figure 5). 

Reliability for this novel g measure was high, as indicated by a Cronbach’s alpha of 0.78 and a hierarchical 

omega coefficient of 0.68.  

Considering the nearly perfect correlations between different way of aggregating across cognitive tests, we 

henceforth consider a composite of g constructed from the sum of all items (see Method), a more 

straightforward approach to compositing. As expected, this g composite correlated strongly with verbal 

ability (.89) and nonverbal ability (.88), while the verbal and nonverbal ability composites correlated with 

each other to a lesser extent (.57; Figure 3E).  

 
 

Figure 3. Visual summary of the descriptive properties of the Pathfinder measure administered in study 5. (a) distributions of 

standardized test scores for the g, verbal and nonverbal ability composites as well as for each subdomain. The colored dots 

indicate individuals’ performance in each test, black dots represent means and error bars indicate standard deviations for the 

standardized scores. (b) sex differences in performance across all subdomains and composite scores, *** = p< .001 (two-tailed).  

(c) Network plot showing the correlations between subdomains, the greater the proximity between points, the greater the 

correlation between pairs of subdomains. (d) Scree plot of the proportion of variance explained by the principal 

components. (e) phenotypic correlations between pathfinder composite scores: g, verbal and nonverbal ability.   
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External validity: Performance in Pathfinder correlates strongly with cognitive performance 

measured using well-established cognitive tests, with academic achievement and with family 

socioeconomic status during childhood and adolescence.   

Given the developmental nature of the TEDS sample and the rich cognitive and educational data collected 

from early childhood to emerging adulthood, in study 5 we also examined how well performance in 

Pathfinder mapped onto well-established developmental indicators of cognitive and academic performance 

assessed at ages 7 to 18. Correlations between the Pathfinder composites (g, verbal and nonverbal ability) 

and the corresponding composites created from these other cognitive measures are presented in Figure 4A-

C. Overall, correlations were strong and increased with age, ranging from .42 at age 7 to .57 at age 16 for g, 

from .39 to .45 for verbal ability and from .28 to .52 for nonverbal ability (Supplementary Table 15). 

 

Pathfinder composites were also found to be strongly linked to academic achievement during the period of 

compulsory education, correlations were observed to increase developmentally, ranging from .45 at age 7 to 

.58 at age 16 for g, from .45 to .57 for verbal ability and from .34 to .46 for nonverbal ability (Figure 4D-F 

and Supplementary Table 15). The correlation between Pathfinder composites and academic performance 

at age 18, measured with A-level exam grades (see Method) was found to be lower, ranging between .20 and 

.30, likely due to a restriction of variance as the measure included only those individuals who had continued 

their education and had 

taken A-level exams.  

 

In order to further 

examine how 

Pathfinder related to 

constructs known to be 

associated with 

traditional measures of 

cognitive ability, we 

examined the 

association between 

the Pathfinder 

composites and family 

socioeconomic status 

(SES). In line with the 

research literature, 

correlations with SES 

over development were 

modest to moderate 

and similar across the 

Pathfinder composites 

(average r = .30 for g 

and verbal ability and 

.25 for nonverbal 

ability; Figure 4G-I 

and Supplementary 

Table 15). 

 

Figure 4. External validity: phenotypic correlations between Pathfinder g, verbal, and nonverbal 

composites and cognitive (A-C), achievement (D-F) and family socioeconomic status (G-I) 

measures over development. vb = verbal ability, nv = nonverbal ability, ach = academic 

achievement, ses = family socioeconomic status. The numbers following each variable name 

indicate age in years. The length of each bar represents the size of the correlation, and the error 

bars indicate 95% confidence interval (CIs). 
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In a further set of analyses, we examined the extrinsic convergent validity (73–75) of Pathfinder relative to 

other well-known measures of cognitive functioning. Specifically, we compared the external correlational 

profile of Pathfinder to those of other standardized measures of g as well as verbal and nonverbal ability 

collected in the TEDS sample over development. These external criteria included measures of academic 

achievement and SES. Supplementary Table 16 reports the results of these analyses, which show excellent 

extrinsic convergent validity for g, verbal, and nonverbal Pathfinder composites. All these measures are 

functionally equivalent and empirically interchangeable and appear to be indexing the same underlying 

source of individual difference, general intellectual ability (or g). 

 

Pathfinder g, verbal and nonverbal ability show substantial heritability in twin and DNA analyses  

A further key requirement for this novel measure was that it should show substantial heritability for two 

reasons. First, a meta-analysis of cognitive measures across the lifespan yielded an average heritability of 

47% (Polderman et al. 2015).  Second, substantial heritability is crucial in order for Pathfinder to foster 

genomic discoveries in the cognitive domain.  We quantified the heritability of Pathfinder g, verbal and 

nonverbal ability indirectly from the classical twin design and directly from variation in single nucleotide 

polymorphisms (SNPs) in unrelated individuals (see Method for a description of both techniques).  

 

Twin correlations profiled by zygosity (see Supplementary Table 17) revealed substantial differences in 

MZ and DZ resemblance across the three Pathfinder composites: DZ correlation were about half the MZ 

correlations (Supplementary Table 17). In line with the twin correlations, univariate twin model fitting 

revealed substantial heritability (h2) for Pathfinder g (h2 = .57; 95% CIs = .43, .68), verbal ability (h2 = .63; 

95% CIs = .49, .69) and nonverbal ability (h2 = .46; 95% CIs = .29; .55) and minor shared environmental 

influences (.08, .03 and .05, respectively) (Figure 5A). (See Supplementary Table 18 for model-fitting 

estimates and Supplementary Table 19 for model fit indices). Twin correlations calculated separately for 

sex and zygosity indicated potential qualitative sex differences (Supplementary Table 17) (i.e., differences 

in same-sex and opposite-sexes DZ twin correlations) for g (r = .35 for same sex vs. .25 for opposite sex 

twins), verbal (.33 vs. .24) and non-verbal (.26 vs. .18) ability. However, formal twin sex-limitation model 

fitting (Supplementary Table 20) showed that both qualitative and quantitative (i.e., differences in MZ-DZ 

similarity between males and females) sex differences were not significant, indicating that the same genetic 

effects operate in males and females (76).  

 

SNP-based heritability, calculated using GCTA-GREML (see Method), was substantial for the three 

Pathfinder composites (SNP h2 = .37 (SE = .17) for g, h2 = .31 (SE = .17) for verbal ability and h2 = .39 (SE 

= .17) for nonverbal ability, see Figure 5B and Supplementary Table 21), around half of the twin 

heritability estimates. The large standard errors around the estimates indicate that the point estimates were 

not significantly different, a product of the modest sample size (N = 1,365 unrelated individuals). 

 

We also examined polygenic score heritability: the extent to which genome-wide polygenic scores (GPS, see 

Method) constructed from GWA studies of cognitive and educationally relevant traits predicted variance in 

performance in Pathfinder g, verbal and nonverbal ability. Specifically, we examined the extent to which the 

individual GPS based on predictions of childhood IQ (67), adult cognitive performance (IQ3)(23) and 

educational attainment (EA3)(32) predicted variation in Pathfinder g, verbal ability and nonverbal ability. 

These GPS accounted for between 2% and 9% of the variance in Pathfinder g, between 1% and 9% in verbal 

ability and between 2% and 6% in nonverbal ability (Figure 5C, bottom three lines in each case, and 

Supplementary Table 22).  
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Following examination of how individual GPSs related to variation in performance, we applied multivariate 

genomic methods to construct GPS aggregating findings from GWAS based on predictions of five cognitive 

and educationally relevant traits: IQ3, EA3, household income (70), age at completion of full-time education 

(69) and time spent using computer. Multivariate GPS improved prediction of cognitive measures, 

accounting for up to 12% of the variance in Pathfinder g ( = 0.35, SE = 0.02, t = 19.85, p < .001), up to 

12% of the variance in verbal ability ( = 0.35, SE = 0.02, t = 19.67, p <.001) and up to 8% of the variance 

in nonverbal ability ( = 0.28, SE = 0.02, t = 15.52, p<.001; Figure 5C). Supplementary Table 22 presents 

these results separately for males and females: GPS prediction were comparable between males and females. 

This provides support for the potential utility of administering Pathfinder to large cohorts to advance our 

knowledge of the genetics of cognitive ability.   

 

 
Figure 5. Twin, SNP and polygenic score heritability for Pathfinder composites, and genetic and environmental associations with 

measures of g during childhood and adolescence. A. Proportion of variance in Pathfinder g, verbal and nonverbal ability 

accounted for by heritability, shared environment and nonshared environment calculated using twin design. B. SNP heritability 

estimates (represented by the length of the red bars) and standard errors (represented by the error bars) for Pathfinder g, verbal and 

nonverbal ability composites calculated using GCTA/GREML. C. Univariate and multivariate genome-wide polygenic score 

(GPS) predictions of Pathfinder g, verbal and nonverbal ability. D. Proportion of the phenotypic correlation between Pathfinder g 

and cognitive and achievement measures accounted for by their genetic (rA), shared environmental (rC) and nonshared 

environmental (rE) correlation using the twin design. The length of each bar indicates the size of the phenotypic correlation.  
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A further characteristic of tests of cognitive ability is that they overlap genetically with many other traits 

(indexing pleiotropy), and particularly so with other cognitive and educational traits. Genetic correlations 

(rA) between Pathfinder and other traits were derived from bivariate twin model fitting (see Method). 

Genetic correlations were substantial between the three Pathfinder composites (rA ranging between .73 (95% 

CIs = .68, .81) and .94 (95% CIs = .92; .96)) and with cognitive and educational measures at earlier ages (rA 

ranging between .43 (95% CIs = .39, .60) and .95 (95% CIs = .89, 1.00)) (Supplementary Table 23).  In 

addition to estimating the extent to which two traits overlap genetically, bivariate twin model fitting also 

estimates the extent to which they overlap for environmental reasons. Shared environmental correlations, 

indicating how similarities between family members contribute to the association between traits, were 

mostly not significant. On the other hand, nonshared environmental correlations, pointing to how 

environmental experiences that differ between siblings contribute to the association between two traits, were 

modest between Pathfinder composites (rE = .33; 95% CIs = .26, .39) but small with cognitive and 

educational measures obtained at earlier ages, with rE ranging between -0.03 (95% CIs = -.12, .07) and 0.28 

(95% CIs = .18, .37) (Supplementary Table 23).   

 

Bivariate associations between traits can also be expressed in terms of the proportion of their phenotypic 

correlations that is accounted for by genetic, shared environmental and nonshared environmental factors, 

respectively. For example, genetic factors accounted for 64.9% of the correlation between Pathfinder verbal 

ability and nonverbal ability, shared environmental factors accounted for 10.5% of their correlation and 

nonshared environmental factors accounted for 24.6% of their correlation. (Figure 5D, with fit statistics in 

Supplementary Table 24). Figure 5D also shows the proportional contribution of genetics (A), shared 

environment (C) and nonshared environment (E) to the phenotypic correlation between Pathfinder g and 

cognitive performance over development. Estimates for verbal and nonverbal composites are reported in 

Supplementary Table 25.   

 

Discussion  

Pathfinder is a 15-minute gamified online test whose construction was guided by item response theory and 

principal component analysis to be a maximally efficient and reliable measure of g. The first principal 

component accounts for 52% of the total variance, which reflects the communalities among the five tests. 

The g score is normally distributed and its one-month test-retest reliability is .88. Despite the strong g factor, 

we were able to differentiate verbal and non-verbal cognitive abilities, which correlated .57 and yielded one-

month test-retest reliabilities of .90 for verbal and .75 for nonverbal. This engaging, freely available and 

easily accessible measure is a fundamental resource that enables scientists easily to incorporate general 

cognitive ability in research across the biological, medical, and behavioural sciences.  

 

We were especially interested in the application of Pathfinder in genetic studies. In the midst of a replication 

crisis in science (77), it is noteworthy that genetic and genomic results replicate reliably (78). On the basis of 

previous research, we predicted (https://osf.io/pc9yh/) that twin heritability for g would be greater than 50%, 

that shared environmental influence would be less than 20% and that multivariate polygenic scores would 

predict more than 10% of the variance. Our results confirmed these hypotheses: Heritability was 57%, 

shared environmental influence was 8% and multivariate polygenic scores predicted up to 12% of the 

variance.  

 

The latter finding – that 12% of the variance of Pathfinder g can be predicted by DNA – makes this the 

strongest polygenic score predictor of g reported to date (13). Although 12% is only one fifth of the twin 

study estimate of heritability, we hope that adding Pathfinder g in large biobanks will improve the yield of 
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meta-analytic GWAS analyses by increasing sample sizes and decreasing heterogeneity of cognitive 

measures. It should be possible to use the brute force method of increasing sample sizes, especially with less 

heterogeneity of measures, to close the missing heritability gap from 12% to the SNP heritability of about 

30%.  

 

A more daunting challenge is to break through the ceiling of 30% SNP heritability to reach the 60% 

heritability estimated by twin studies of adults. Both GPS heritability and SNP heritability are limited to the 

additive effects of the common SNPs assessed on SNP chips used in GWAS studies. Going beyond SNP 

heritability will require whole-genome sequencing that can assess rare variants and methodologies to 

analyze gene-gene and gene-environment interactions (13). 

 

Nonetheless, predicting 12% of the variance of g is a notable achievement for two reasons. First, until 2016 

polygenic scores could predict only 1% of the variance in general cognitive ability (13). Predicting a 

substantial amount of variance (more than 10% in this case) is an important milestone for genetic research 

on intelligence because effect sizes of this magnitude are large enough to be ‘perceptible to the naked eye of 

a reasonably sensitive observer’ (79). Second, effect sizes like this, are rare in the behavioural sciences. For 

example, one of the most widely used predictors of children’s g and educational achievement is family SES. 

We showed that family SES predicts 9% of the variance of Pathfinder-assessed g. At 2 years of age, infant 

intelligence tests predict less than 5% of the variance of g in late adolescence (80,81). It is not until the early 

school years that children’s cognitive test scores predict more than 10% of the variance of adult g. The 

unique value of polygenic scores is that their prediction of adult g is just as strong from early in life as it is 

in adulthood because inherited DNA differences do not change. Increasing the predictive power of 

polygenic scores also opens important new avenues for investigating the mechanisms underlying this 

prediction, including the environmental experiences that mediate this pathway from genotype to phenotype 

(24).     

 

We were primarily motivated to create a measure of g that could be used in large biobanks to improve the 

power of meta-analytic GWA studies to identify the minuscule SNP associations we now know to be 

responsible for the heritability of g. However, because g pervades so many aspects of life – education, 

occupation, wealth, and health – we hope that Pathfinder will open new avenues for research into the causes 

and consequences of general cognitive ability throughout the life sciences. Incorporating g in biological, 

medical, and behavioural research can add a new dimension that capitalizes on the pleiotropic power of g. 

Using Pathfinder as a standard measure of g will also improve the reproducibility of research in the life 

sciences, which is critical in light of the replication crisis (82). For these reasons, we have designed a 

platform to make it easy to use Pathfinder. Further information on how to access Pathfinder can be found at 

the following webpage, specifically created for the purpose of sharing the test: 

www.pathfindertestgame.com  

 

Limitations of the present study point the way to future research. Like most genetic and genomic research, 

the results of our study cannot be safely generalized beyond its UK sample whose ancestry is 90% northern 

European. Although twin study heritability estimates of g are substantial in other countries and ancestries 

(83,84), polygenic scores derived largely from GWAS of northern European samples are not yet as 

predictive in other ancestral groups (85). The present study has three more practical limitations. First, 

Pathfinder is as yet limited to English, although the test’s language load is light, which will render 

translation, including appropriate linguistic and cultural adaptation, manageable. Second, no alternate forms 

have as yet been created, which would be useful for longitudinal designs that require repeated testing, 

although the high one-month test-retest reliability suggests that the Pathfinder test can be used for repeated 
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testing. Third, Pathfinder was created in samples of adults from 18 to 49 years of age, so its utility for 

younger or older groups remains to be investigated.  

 

One of the most widely adopted definition of g describes it as “…a very general mental capability that, 

among other things, involves the ability to reason, plan, solve problems, think abstractly, comprehend 

complex ideas, learn quickly and learn from experience.” (Gottfredson, 1997, p. 13). Alternative 

conceptualizations and interpretations have also been proposed, most notably the view that g does not reflect 

a set of a domain general abilities, but is in fact mental energy (86), or a property of the mind (87), 

potentially simply indexing overall cognitive potential. However the statistical abstraction of g is 

interpreted, its remarkable ability to predict important functional and life outcomes, and its likely 

universality supported by cross-cultural research (88,89), a deeper understanding of g has the potential to 

lead to major scientific advances in our understanding of human development from several scientific angles, 

from molecular genetics to psychology and evolutionary biology.  

 

To conclude, over four studies we have created a very brief (15-minute), reliable and valid measure of g, 

Pathfinder, that given its gamified features, is also engaging. Pathfinder can be accessed by all researchers, 

and easily integrated within existing data collection platforms. It is our hope that widespread use of this 

engaging new measure will advance research not only in genomics but throughout the biological, medical, 

and behavioural sciences. 
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