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Abstract
Single-cell RNA-seq (scRNA-seq) o�ers opportunities to study gene expression of tens of thousands of single cells
simultaneously, to investigate cell-to-cell variation, and to reconstruct cell-type-specific gene regulatory networks.
Recovering dropout events in a sparse gene expression matrix for scRNA-seq data is a long-standing matrix completion
problem. We introduce Bfimpute, a Bayesian factorization imputation algorithm that reconstructs two latent gene and cell
matrices to impute final gene expression matrix within each cell group, with or without the aid of cell type labels or bulk
data. Bfimpute achieves better accuracy than other six publicly notable scRNA-seq imputation methods on simulated
and real scRNA-seq data, as measured by several di�erent evaluation metrics. Bfimpute can also flexibly integrate any
gene or cell related information that users provide to increase the performance. Availability: Bfimpute is implemented in
R and is freely available at https://github.com/maiziezhoulab/B�mpute .
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Introduction

Single-cell RNA-seq (scRNA-seq) has been widely used to
study genome-wide transcriptomes in single cell resolution.
The cellular resolution made possible by scRNA-seq data
distinguishes it from bulk RNA-seq and makes it advantageous
in investigating cell-to-cell variation [1]. Today, di�erent
commercial platforms are available to perform scRNA-seq,
including Fluidigm C1, Wafergen ICELL8 and 10X Genomics
Chromium. Droplet-based methods via 10X Genomics
Chromium can process tens of thousands of cells; microwell-
based, microfluidic-based methods via Fluidigm C1 and
Wafergen ICELL8 process fewer cells but with a higher
sequencing depth. For all these platforms, missing values
make up a large proportion of scRNA-seq data, ranging from
40% - 90% in the gene expression count matrix [2, 3, 4,
5, 6]. In scRNA-seq data, this large percentage of missing
events is defined as the so-called ‘dropout’ phenomenon [7].

Gene ‘dropout’ means a gene is observed at a moderate
expression level in one cell but it is not detected in
another cell of the same type. Analyses of scRNA-seq data,
including dimensionality reduction, clustering, and Di�erential
Expression (DE) analysis have shown that e�ective imputations
for dropout events improve downstream analyses and assist
biological interpretations [8, 9, 10, 11].

To date, several notable imputation methods have been
proposed: scImpute [12], DrImpute [13], MAGIC [14], SAVER
[15], VIPER [16] and SCRABBLE [17]. scImpute first performs
clustering to identify cell subpopulations and further identifies
dropout events through a Gamma-Normal mixture model,
finally imputes dropout events by a non-negative least squares
regression [12]. DrImpute optimizes the step o�dentifying
cell subpopluations to impute dropout events by averaging
the imputation from multiple clustering results [13]. MAGIC
builds a Markov a�nity-based graph for imputation relying
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on cell to cell interactions [14]. SAVER uses a Bayesian-

based model by various prior probability, and alters all gene

expression values [15]. VIPER imputes dropout events relying

on local neighborhood cells via non-negative sparse regression

models [16]. SCRABBLE has been recently introduced to

impute dropout events by adopting the bulk RNA-seq data

[17]. Even though a lot of efforts have been taken into

analyzing and imputing real dropout events, imputation of

dropout events is still a difficult problem because of the

high dropout rate and complex cellular heterogeneities for

different scRNA-seq datasets. Relying on matrix completion to

impute missing values is a long-standing question and has been

investigated in biological sciences, including gene expression

prediction, miRNA–disease, protein-protein interaction [18]

etc. Even though similar mathematical models could be applied

to different biological problems, to solve matrix completion

problem in scRNA-seq (recovering the dropout events), it is

crucial to take the features of scRNA-seq into consideration.

Most of existing scRNA-seq imputation methods have shown

it is advantageous for imputation to borrow and leverage

information from similar cells. In recent years, researchers also

start to integrate additional gene or cell related information

(e.g. bulk data for SCRABBLE) to assist imputation which is

important in matrix completion problem.

In this study, we present Bfimpute, a powerful imputation

tool for scRNA-seq data that recovers dropout events by

factorizing the count matrix into the product of gene-specific

and cell-specific feature matrices [19, 20]. Bfimpute uses full

Bayesian inference to describe the latent information for genes

and cells and carries out a Markov chain Monte Carlo scheme

which is able to easily incorporate any gene or cell related

information to train the model and perform the imputation [18]

(Figure 1). We demonstrate that Bfimpute performs better than

the six other notable published imputation methods mentioned

above (scImpute, SAVER, VIPER, DrImpute, MAGIC, and

SCRABBLE) in both simulated and real scRNA-seq datasets on

improving clustering and differential gene expression analyses

and recovering gene expression temporal dynamics (pseudotime

analysis) [21].

Methods

Cell clustering and dropout detection

Bfimpute first provides an optional normalization step to

smooth the gene expression values (counts per million, followed

by logarithm base 10 with bias 1.01). Bfimpute then performs

a local imputation within each cell group. We adopt the

same approach as scImpute [12] to detect cell clusters, which

applies spectral clustering methods on the result of Principal

Component Analysis (PCA) to reduce the impact of dropout

events. We integrate spectral clustering by using the ’Spectrum’

function of the Spectrum R package [22] or the ’specc’ function

of the kernlab R package [23]. Bfimpute also adopts the

Gamma-Normal mixture distribution model from scImpute to

determine dropout events [12].

Probabilistic model for scRNA-seq expression matrix

imputation

After above-mentioned steps, we adapted a multi-variate

priors model from Bayesian Probabilistic Matrix Factorization

(BPMF) [20] to recover dropouts for scRNA-seq datasets. Since

every cell group is mathematically equivalent, we arbitrarily

choose one to demonstrate local imputation in Bfimpute.

Suppose we have N genes and M cells in one cell group, and

the expression matrix is E ∈ RN×M . Each entity Eij represents

the expression level of gene i in cell j. Bfimpute factorizes E

into G ∈ RD×N and C ∈ RD×M which are defined as gene

and cell latent matrix, respectively, where D is the dimension

of the latent factor. Column vector Gi and Cj represent the

gene-specific and cell-specific latent vector, respectively. The

imputed matrix to recover E will be given as Ê = GTC.

We introduce the Gaussian noise model for the gene

expression profile E with precision α, which was firstly

proposed by Probabilistic Matrix Factorization (PMF) [19]:

p(E|G,C, α) =
N∏
i=1

M∏
j=1

[
N (Eij |GiTCj , α−1

)
]Iij

(1)

where Iij is the indicator function that is 0 if the Eij is a

dropout and equal to 1 otherwise.

To get use of gene or cell related information such as

bulk data or other data user provided, we add entity features

SG ∈ RFG×N and SC ∈ RFC×M as gene and cell feature

matrix, respectively, where FG and FC are the dimentionalities

of these additional features. The Gaussian model for the prior

distributions over genes and cells latent vectors adapted from

Macau [18] will be given by:

p(Gi|SGi , µG,ΛG, βG) = N (Gi|µG + βG
TSGi ,Λ

−1
G )

p(Cj |SCj , µC ,ΛC , βC) = N (Cj |µC + βC
TSCj ,Λ

−1
C )

(2)

where {µG, µC} and {ΛG,ΛC} are the means and precisions,

and βG ∈ RFG×D and βC ∈ RFC×D are the weight matrices for

the entity features. Weight initialization by a zero mean normal

distribution is used and they will be updated iteratively by the

Bayesian inference steps (details described later). Also, direct

imputation of single cell RNA-seq data could be applied by

initiating zeros into feature vectors SG and SC(where FG =

FC = 1) if no additional information is given.

To perform Bayesian inference, we introduce the priors

referring to BPMF [20] for {µG,ΛG} and {µC ,ΛC}.

p(µG,ΛG|µ0, β0, ν0,W0) = N (µG|µ0, (β0ΛG)
−1

)

×W(ΛG|W0, ν0)

p(µC ,ΛC |µ0, β0, ν0,W0) = N (µC |µ0, (β0ΛC)
−1

)

×W(ΛC |W0, ν0)

(3)

where W is the Wishart Distribution with ν0 as the degrees of

freedom and W0 as the scale matrix.

We also set a zero mean normal distribution as βG and βC ’s

priors and a gamma distribution as the problem dependent αG

and αC ’s hyperpriors adapted from Macau [18]:

p(βG|ΛG, αG) = N (vec(βG)|0,ΛG−1 ⊗ (αGI)−1)

p(βC |ΛC , αC) = N (vec(βC)|0,ΛC−1 ⊗ (αCI)−1)

(4)

p(αG|k, θ) = G(αG|k/2, 2θ/k)

p(αC |k, θ) = G(αC |k/2, 2θ/k)

(5)

where vec(βX) is the vectorization of βX , ⊗ represents the

Kronecker product and αX is the precision (X ∈ {G,C}).
k/2 and 2θ/k are shape and scale, respectively. k and θ are

hyperparameters which are set to 1.
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Fig. 1. A brief illustration blueprinting the architecture of Bfimpute method. In each group, Bfimpute borrows information from true values and

factorizes the expression matrix into two latent matrices using MCMC. After training, Bfimpute imputes dropouts by performing product of the latent

matrices. The details are shown in Methods section.

Gibbs sampler to impute dropout events

We use Markov Chain Monte Carlo (MCMC) algorithm to

train Bfimpute, which is a sampling based approach to tackle

the Bayesian inference problem. Bfimpute constructs a Markov

Chain from a random initial value and after running the

chain for K̃ steps, it will eventually converge to its stationary

distribution. Bfimpute then uses the average of (K − K̃)

stationary stages to approximate the real distribution of E and

gain the estimated values Êij for dropouts:

p(Êij |E,G,C) ≈
1

K − K̃

K∑
k=K̃+1

p(Êij |Gi(k)
, Ci

(k)
, α) (6)

More specifically, Bfimpute chooses Gibbs sampler to

achieve Bayesian matrix factorization. In every cycle, we sample

the conditional distribution from the posterior distribution in

Bayes’ theorem. Since the probabilistic models of genes and

cells are symmetric, the conditional distributions over genes

and the conditional distribution over cells have the same form.

In particular, based on (1) and (2), the conditional probability

for Gi is:

p(Gi|E,C, α, SGi , µG,ΛG, βG) = N (Gi|µ(G)′

i ,Λ
(G)′

i ) (7)

∝
M∏
j=1

[
N (Eij |GiTCj , α−1

)
]Iij × p(Gi|SGi , µG,ΛG, βG)

where Λ
(G)′

i = ΛG + α
∑
j

(
SjSj

T
)Iij

µ
(G)′

i =
(
[Λ

(G)′

i ]−1
) [

ΛG
(
µG + βG

Tx
(G)
i

)
+ α

∑
j (EijCj)

Iij
]

According to (2) and (3), we can derive the conditional

probability for µG and ΛG:

p(µG,ΛG|G,SG, βG, αG, µ0, β0, ν0,W0)

= N (µG|µ0
′
,
(
β0
′
ΛG
)−1

)W(ΛG|W0
′
, ν0
′
) (8)

∝ p(Gi|SGi , µG,ΛG, βG)× p(µG,ΛG|µ0, β0, ν0,W0)

where

µ0
′ = β0µ0+NḠ

β0+N

β0
′ = β0 +N

ν0
′ = ν0 +N + FG

W0
′ = [W0

−1 +NH̄ + β0µ0µ0
T − β0

′µ0
′µ0
′T + αGβG

TβG]−1

Ḡ = 1
N

∑N
i=1

(
Gi − βGTSGi

)
H̄ = 1

N

∑N
i=1

(
Gi − βGTSGi

) (
Gi − βGTSGi

)T
Considering (4) and (5), we get the conditional probability

for αG:

p(αG|βG,ΛG, k, θ) = G(αG|k′/2, 2θ′/k′) (9)

∝ p(βG|ΛG, αG)× p(αG|k, θ) (10)

where {
k′ = (FGD+θ)k

θ+θ·tr(βGTβGΛG)

θ′ = FGD + θ

From (2) and (4), we are able to know the conditional

probability for βG:

p(βG|ΛG, αG, G, SG, µG) = N (µβG ,ΛβG) (11)

∝ p(βG|ΛG, αG)×
∏
i

p(Gi|SGi , µG,ΛG, βG)
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Algorithm 1 Gibbs sampling in Bfimpute

1. Initialize {G0, C0, βG
(0), βC

(0), αG
(0), αC

(0)}
2. For k = 1, 2, . . . , K

a. Sample the means {µG, µC} and precisions {ΛG,ΛG} of gene and cell latent matrices:

µG
(k)
,ΛG

(k) ∼ p(µG,ΛG|G(k−1)
, S
G
, βG

(k−1)
, αG

(k−1)
)

µC
(k)
,ΛC

(k) ∼ p(µC ,ΛC |C(k−1)
, S
C
, βC

(k−1)
, αC

(k−1)
)

b. Sample gene and cell latent matrices {G,C}:

• For each i = 1, . . . , N sample gene latent vectors in parallel:

Gi
(k) ∼ p(Gi|E,C(k−1)

, S
G
i , µG

(k)
,ΛG

(k)
, βG

(k−1)
)

• For each i = 1, . . . ,M sample cell latent vectors in parallel:

Ci
(k) ∼ p(Ci|E,G(k)

, S
G
i , µG

(k)
,ΛG

(k)
, βG

(k−1)
)

c. Sample the precisions {αG, αC} of weight matrices:

αG
(k) ∼ p(αG|βG(k−1)

,ΛG
(k)

)

αC
(k) ∼ p(αC |βC (k−1)

,ΛC
(k)

)

d. Sample weight matrices {βG, βC}:

βG
(k)

=
(
S
GT

S
G

+ αG
(k)

I
)−1 (

S
GT

(
G̃

(k)
+ E1

)
+
√
αG(k)E2

)
βC

(k)
=
(
S
CT

S
C

+ αC
(k)

I
)−1 (

S
CT

(
C̃

(k)
+ E1

)
+
√
αC (k)E2

)

Because the size of the precision matrix ΛβG is too large to

compute, we consider to do this part in an alternative way

which is firstly proposed by Macau [18] by calculating:

β̃G =
(
S
GT

S
G

+ αGI
)−1 (

S
GT

(
G̃+ E1

)
+
√
αGE2

)
(12)

where G̃ = (G− µG)T , and each row of E1 ∈ RN×D and E2 ∈
RFG×D is sampled from N (0,ΛG

−1).

The Gibbs sampling steps of Bfimpute are shown in

Algorithm 1:

Generation of simulated data

We first simulated a single cell RNA-seq count matrix with

20000 genes and 500 cells evenly split into 5 groups using the

scater(v1.16.2) [24] package and Splatter(v1.12.0) [25] package.

The parameter which controls the probability that a gene will

be selected as DE was set to 0.08 while the location and

scale factor were set to 0.3 and 0.5, respectively. We used

’experiment’ to add the global dropout for every cell. In order

to show the universal applicability of Bfimpute, we further

generated 6, 7, 8 groups of cells with 600, 700, 800 as total

cell numbers and 10 runs for each data with different seeds

using the same parameters mentioned above.

Quality Control for real datasets

We did quality control (QC) (https://github.com/gongx030/

scDatasets) for all real datasets to ensure fairness for all

methods before imputation except for PBMCs dataset (see

details in Github). As the PBMCs dataset is based on 10X

Genomics platform with an extremely high dropout rate, the

QC step for PBMCs datasets could remove and lose nearly 80%

genes.

Evaluation metrics of clustering results

We used four evaluation methods: adjusted Rand index [26],

Jaccard index [27], normalized mutual information (nmi) [28],

and purity score, to analyse the agreement between true cluster

labels and the spectral clustering [22] results on the first

two Principle Components (PCs) of imputed matrix. Most of

these four measurements vary from 0 to 1, with 1 indicating

perfect match between them, except the adjusted Rand index

which could yield negative values when agreement is less than

expected by chance. The adjusted Rand index is an adjusted

version of Rand’s statistic [29] which is the probability that a

randomly selected pair is classified in agreement. The Jaccard

index is similar to Rand Index, but disregards the pairs of

elements that are in different clusters for both clusterings

[30]. The normalized mutual information combines multiple

clusterings into a single one without accessing the original

features or algorithms that determine these clusterings. The

purity score shows the rate of the total number of cells that are

classified correctly.
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Results

We demonstrated the performance of Bfimpute in gene

expression recovering, data visualization, cell subpopulation

clustering, pseudotime and DE analysis on five publicly

available scRNA-seq datasets (Supplementary Table 1), and

we compared Bfimpute with six state-of-the-art imputation

methods: scImpute, SAVER, VIPER, DrImpute, MAGIC, and

SCRABBLE in the following sections.

Bfimpute improves both visualization and cell type

identification

PCA and t-distributed stochastic neighbor embedding (t-SNE)

[31, 24] are two popular dimensionality reduction techniques

often used to visualize high-dimensional scRNA-seq datasets.

Since the dropout values were unknown in real datasets, we

first tested accuracy of all different imputation methods using

a simulated dataset where the ground truth was known. We

applied the Splatter method to generate simulated datasets,

which simulated many features observed in the scRNA-seq data,

including zero-inflation, gene-wise dispersion, and differing

sequencing depths between cells. To test the strength and

robustness of different imputation methods, we simulated a

wide range of datasets to include 5, 6, 7 and 8 different cell

types (Methods section). Bfimpute achieved the most compact

and well separated clusters on the simulation, followed by

scImpute and DrImpute (Figure 2). For all different cell types

simulations, we also evaluated the clustering performances by

the evaluation metrics, where Bfimpute achieved the best scores

for adjusted Rand index, Jaccard index, normalized mutual

information and purity score compared to the raw data and

other five imputation methods (Methods section).

We further used two real datasets for this analysis and the

first two principal components (PCs) from PCA were plotted

to compare every dataset across seven different conditions: raw

dataset, and six imputed ones through the Bfimpute, scImpute,

SAVER, VIPER, DrImpute, and MAGIC methods. We first

applied all imputation methods to a real scRNA-seq dataset

from a human embryonic stem (ES) cell differentiation study

[2] to demonstrate the capacity of Bfimpute for improving

the performance of data visualization. The dataset contains

1018 single cells from seven cell groups: Neuronal progenitor

cells (NPCs), definitive endoderm cell (DEC), endothelial

cells (ECs) and trophoblast-like cells (TBs) are progenitors

differentiated from H1 human ES cells. H9 human ES cells and

human foreskin fibroblasts (HFFs) were used as controls cells.

The raw dataset (i.e. without imputation) clearly identified the

cluster of HFF cells, however five other cell types were clustered

very closely. After imputation by Bfimpute, the homogeneous

subpopulations of H1 and H9 human ES cells were observed

to substantially overlap and well separated from the rest of

the progenitors. The DECs, ECs, HFFs, NPCs and TBs were

also compactly clustered and well separated on the PCA plot

(Figure 3a). Compared with the raw dataset, SAVER, VIPER

and DrImpute had no significant improvement for cell groups

identification. scImpute was the second best and generated

similar compact cell groups as Bfimpute. We then compared

clustering results of the spectral clustering algorithms [22] on

the first two PCs to demonstrate the capability of Bfimpute

to improve clustering accuracy in cell type identifications. For

the true labels, we had seven cell types for this dataset,

and we evaluated the clustering results by four different

metrics: adjusted Rand index, Jaccard index, normalized

mutual information (nmi), and purity (Methods section). All

four metrics suggested Bfimpute achieved the best clustering

accuracy compared with raw and other five imputation methods

(Figure 3b). We also showed the comparison of visualization

performance through t-SNE. t-SNE on the raw dataset can

better identify the seven cell types comparing to PCA.

Bfimpute, DrImpute and SAVER can further separate different

cell groups and improve the visualization, however the other

four imputation methods demonstrated worse t-SNE results

than raw data (Supplementary Figure 1).

To illustrate the recovering of dropouts in individual cells

by imputation, we calculated the Pearson correlation from

log10-transformed read counts between every pair of cells in

the same type and from different cell types. This result

indicated imputation did recover the zero counts in every cell

and the Pearson correlation increased from 0.70 to 0.87 for

Bfimpute, 0.85 for scImpute, 0.72 for SAVER, 0.73 for VIPER,

0.78 for DrImpute, and 0.97 for MAGIC (Figure 3c, blue

bars). One scatter plot of correlations between two randomly

selected stem cells of the same cell type was demonstrated

in Supplementary Figure 2. As we expected, imputation

methods usually increased the Pearson correlation between

any two cells in the same cell type. Imputation should not

increase the correlation between cells in different cell types by

disregarding the biological variation between them. Among all

imputation methods, MAGIC achieved the highest correlation

in the same cell type, but the correlation between different

cell types was also the highest (Figure 3c, red bars). Bfimpute

demonstrated the best balance, by maximizing the difference

between correlation for the same over different cell types.

We further investigated Bfimpute’s performance of visuali-

zation and cell type identification on another zebrafish [3]

scRNA-seq dataset. This dataset contains 246 single cells from

six cell groups, and Hematopoietic stem and progenitor cells

(HSPCs) and HSPCs/thrombocytes among them come from

one defined cell type with expected heterogeneity. After the

QC step, the zebrafish dataset was still sparse with zeros

composing over 87.5% of the total counts. The comparison

of visualization performance via PCA on the raw and six

imputed datasets is shown in Supplementary Figure 3. The

raw dataset only roughly identified the cluster for neutrophil

cells, whereas cells from other cell types were mixed and spread

wildly. After imputation by Bfimpute, four distinct immune cell

subpopulations can be identified for neutrophils, T, Natural

Killer (NK) and B cells, where the cluster members were

much more compact compared to those of the raw dataset.

Neutrophils, T, NK and B cells were distantly positioned

on the PCA plot. HSPCs and HSPCs/thrombocytes were

from one defined cell type with expected heterogeneity, so

after Bfimpute’s imputation, they were still spatially closer

than other cells (Supplementary Figure 3a). The raw data

and the imputed data by other five imputation methods did

not correctly identify the four immune cell subpopulations.

Clustering accuracy results from the four metrics for Bfimpute

were better than the other five imputation methods, and

Bfimpute achieved a better correlation for the same cell

type without loosing variation between different cells types

(Supplementary Figure 3b,c).

Bfimpute improves DE and pseudotime analysis

DE analysis is widely used in bulk RNA-seq data. Performing

DE analysis for scRNA-seq data to reveal the stochastic nature

of gene expression in single cells is challenging since scRNA-

seq data suffers from high dropout events. However, it has
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been proven that good imputation methods could lead to a

better agreement between scRNA-seq and bulk RNA-seq data

of the same biological condition on genes known to have little

cell-to-cell heterogeneity. We utilized a real dataset by Chu

et al [2] with both bulk and scRNA-seq data available on

human embryonic stem cells and definitive endoderm cells

(DEC) [32, 33], to compare Bfimpute with the raw dataset and

other five imputation methods for DE analysis. This dataset

contained six samples of bulk RNA-seq (four in H1 ES cells and

two in DEC) and 350 samples of scRNA-seq (212 in H1 ES cells

and 138 in DEC). The percentages of zero entries were 8.8% in

bulk data and 44.9% in scRNA-seq data, respectively. We first

performed DE analysis in the bulk data and identified the top

200 DE genes by DESeq2 [10]. We then plotted these 200 genes’

expression profiles in scRNA-seq data for seven conditions: raw

dataset, Bfimpute, scImpute, SAVER, VIPER, DrImpute, and

MAGIC. We found these top 200 genes’ expression profiles after

Bfimpute’s imputation demonstrated better concordance with

those in bulk data (Figure 4a). To further evaluate whether

imputation improves DE analysis in scRNA-seq data, we first

used DESeq2 to identify DE genes for raw scRNA-seq dataset

and scRNA-seq datasets after six different imputations. We

then generated different lists of DE genes for the bulk data

by applying different thresholds for false discovery rates of

genes. Finally for every threshold, we compared the DE genes

for the bulk data and scRNA-seq data of those seven different

conditions and calculated the AUC values for each condition.

The AUC values suggested all imputation methods improved

DE analysis. Bfimpute generated DE genes most consistent

with the bulk data (AUC values raw: 0.568, Bfimpute: 0.670,

scImpute: 0.665, SAVER: 0.624, VIPER: 0.639, DrImpute:

0.657 and MAGIC: 0.668).

Bulk data for the same biological condition was provided

and could be used as a gold standard to compare the average

gene expression level with the scRNA-seq data, even though

the scRNA-seq data presented more cell-to-cell variation. We

expected that average gene expression level in the scRNA-

seq data was highly correlated with bulk RNA-seq data.

To investigate this, we plotted correlations between gene

expression in single-cell and bulk data and found that all

imputation methods did improve the correlation between bulk

and scRNA-seq data, and Bfimpute, MAGIC and scImpute had

the best improvement (Supplementary Figure 4). We further

selected several genes (e.g., ANGPT1,GDF3, BMP4, EPB41L5)

of DECs from different time points to plot their average gene

expression levels in both bulk and scRNA-seq data. These genes

were annotated with the GO term “endoderm development”,

and they were likely to be affected by dropout events [13, 34].

Imputed read counts for these genes by Bfimpute showed higher
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Fig. 3. Bfimpute improves PCA visualization and cell type identification. a. The first two PCs calculated from the raw data, and the imputed data by

Bfimpute, scImpute, VIPER, DrImpute, MAGIC, and SAVER. b. The adjusted Rand index, Jaccard index, nmi, and purity scores of clustering results

based on the raw and imputed data. c. Average Pearson correlations between any two cells from same type and different type.

gene expression correlation and better consistency with the bulk

data (Figure 4b and Supplementary Figure 5, 6).

In addition to the DE analysis, we also used the time

course scRNA-seq data [2] from the same Chu et al study to

show Bfimpute improved gene expressions temporal dynamics

through pseudotime analysis. In this dataset, a total of 758

single cells were captured and profiled by scRNA-seq at 0,

12, 24, 36, 72, and 96 h of differentiation. We first applied

Bfimpute, scImpute and Drimpute to the raw scRNA-seq data

with true cell type labels, and then study how the time-course

expression patterns change in the imputed data. The PCA

results showed that imputed read counts by Bfimpute better

distinguished cells of different time points and the six time

points cell groups were compact (Supplementary Figure 7a),

and the first principle component from PCA indicated that

imputed read counts from Bfimpute reflected more accurate

transcriptome dynamics along the different time course (Figure

4d). Bfimpute could better differentiate the last two time points

(72h and 96h). In the next section, we will discuss impuation

with the aid of cell type labels more in details.

Bfimpute improves performance with the aid of

additional experimental information

Imputation methods including Bfimpute, scImpute and

DrImpute all first identified similar cells based on clustering,

and imputation was then performed by leveraging the

expression values from similar cells. Being able to first identify

the appropriate cell groups enhanced the ability of imputing

the dropout events. A substantial number of scRNA-seq studies

have identified cell types from experimental design or marker

genes. We applied Bfimpute, scImpute and DrImpute to the

raw scRNA-seq data with true cell type labels in three real

datasets we have used before, and two more new real datasets.

In this study, SAVER, VIPER, DrImpute, and MAGIC were

excluded since they were not applicable to use cell labels. We

then investigated again the PCA and t-SNE visualizations for

cell subpopulations identification. Our results showed Bfimpute

outperformed the other two methods and clearly differentiated

almost every cell group in different datasets (Figure 5 and

Supplementary Figure 7, 8). For the human embryonic stem
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cell dataset, Bfimpute further correctly identified three outlier

cells into correct groups compared to the previous imputation

without cell labels (see Figure 5a versus Figure 3a: one

EC (orange point), one DEC (blue point), and one NPC

(yellow point) cell were brought back to the corresponding EC,

DEC and NPC cell groups, respectively). H9 cells were also

further apart from H1 cells in the vertical dimension. For the

zebrafish dataset, even the most mixed B, NK, T cells (blue,

green, and yellow colors) from the raw dataset were separated

from each other after Bfimpute’s imputation, and HSPCs and

HSPCs/thrombocytes cells were spatially close, but split into

two cell groups (Figure 5b and supplementary Figure 7b).

To test Bfimpute with another kind of cell-label information,

we used a human preimplantation embryonic development

dataset (t-SNE and pseudotime analyses are shown in Figure

5c). The Petropoulos dataset [4] included single cells from

five stages of human preimplantation embryonic development,

ranging from developmental day (E) 3 to 7. The five

different stages were clearly distinguished from each other after

Bfimpute’s imputation.

We also applied three imputation methods to a large

10X dataset generated by the high-throughput droplet-based

system. To generate this dataset, we randomly selected 500 cells

from nine immune cell types, so it contained a total of 4500

peripheral blood mononuclear cells (PBMCs) [12, 5]. In the
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Fig. 5. Bfimpute with labels improves PCA and t-SNE visualizations and cell type identification. a. The first two PCs calculated from the raw data,
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plotted to show cells of different time points along the embryonic development.

raw data, 98.3% read counts are exactly zeros. Our PCA and

t-SNE results indicated that Bfimpute’s imputation identified

nine immune cell types from raw data (5d). In summary,

these results suggested that Bfimpute with the aid of labels

always further improved visualization and identification of cell

subpopulations, and the downstream analysis.

SCRABBLE is another recent approach integrating bulk

data to impute dropout events in scRNA-seq data. Since

Bfimpute can easily adopt bulk data as additional information

into the gene latent matrix, we have also tested if bulk data

can further improve performance. In the scRNA-seq dataset of

human embryonic stem cells with bulk data, we did not observe

significant differences between Bfimpute and Bfimpute with

bulk data as additional information (Supplementary Figure 8

versus Figure 5a). The reason could be that similar gene level

information has less effect than similar cell level information for

the imputation of dropout events. We also found that in these

scRNA-seq datasets, SCRABLE’s performance after integrating

cell labels information with bulk data, was not better than

Bfimpute (Supplementary Figure 8).
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Discussion and Conclusion

ScRNA-seq has become an indispensable tool in recent years, as

it has made it possible to study genome-wide transcriptomes in

single cell resolution. Due to sequencing technical issues, a large

proportion of dropout events exist in scRNA-seq data, which

limit its usefulness. Several approaches have been proposed

to solve this problem, with modest results. In this study, we

introduced Bfimpute to recover dropout events in scRNA-seq

data. We have shown that Bfimpute can improve performance

in recovering gene expression detected by bulk RNA-seq, as well

as in downstream analyses, including identification of cell sub-

populations, differential expressed genes and gene expressions

temporal dynamics.

Bfimpute uses a fully Bayesian probabilistic matrix

factorization by substituting hyperparameters with hyperpriors

and performing Gibbs sampling for the approximate inference.

The advantage of this Bayesian model is that it provides

a predictive distribution instead of just a single number

during recovering each dropout event, and the confidence

in the prediction can be quantified and considered into the

model. The use of a full Bayesian model proved to be

a considerable advantage for Bfimpute to outperform other

imputation methods.

Bfimpute imputes two latent cell and gene matrices for

each cell group through a Gibbs sampling process, and reaches

a stationary state to generate the final cell-gene expression

matrix, in which the dropout events will be recovered. Another

advantage of Bfimpute is being able to integrate any gene

or cell related information of scRNA-seq data into these

two latent gene and cell matrices to impute missing values.

Information from both similar cells or/and bulk data can be

easily integrated into our model. Even though scImpute and

DrImpute have a similar functionality in this respect, that

allows them to impute dropout events with the aid of number of

cell types or cell labels, they fail to achieve as good performance

as Bfimpute for most of scRNA-seq data that we tested. Any

resource provided by the users from the cell level and gene level

could be used as additional information to improve dropout

events imputation in scRNA-seq data in the future.

Key Points

• Imputation to recover dropout events for scRNA-

seq data is important for determining genome-wide

transcriptomes in single cell resolution.

• Bfimpute uses a fully Bayesian probabilistic matrix

factorization by substituting hyperparameters with

hyperpriors and performing Gibbs sampling for

approximate inference.

• The advantage of this Bayesian model is that it

provides a predictive distribution instead of just a

single number during recovering each dropout event,

and the confidence in the prediction can be quantified

and considered into the model.

• Bfimpute is able to integrate any gene or cell related

information of scRNA-seq data into these two latent

gene and cell matrices to impute missing values.

• Bfimpute achieves better accuracy than other six

widely used scRNA-seq imputation methods on

simulated and real scRNA-seq data, as measured by

several different evaluation metrics.
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