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8 Abstract  
9 Inferring  cellular  trajectories  using  a  variety  of  omic  data  is  a  critical  task  in  single-cell  data  science.                  

10 However,  accurate  prediction  of  cell  fates,  and  thereby  biologically  meaningful  discovery,  is  challenged              
11 by  the  sheer  size  of  single-cell  data,  the  diversity  of  omic  data  types,  and  the  complexity  of  their                   
12 topologies.  We  present  VIA,  a  scalable  trajectory  inference  algorithm  that  overcomes  these  limitations  by               
13 using  lazy-teleporting  random  walks  to  accurately  reconstruct  complex  cellular  trajectories  beyond            
14 tree-like  pathways  (e.g.  cyclic  or  disconnected  structures).  We  show  that  VIA  robustly  and  efficiently               
15 unravels  the  fine-grained  sub-trajectories  in  a  1.3-million-cell  transcriptomic  mouse  atlas  without  losing             
16 the  global  connectivity  at  such  a  high  cell  count.  We  further  apply  VIA  to  discovering  elusive  lineages                  
17 and  less  populous  cell  fates  missed  by  other  methods  across  a  variety  of  data  types,  including  single-cell                  
18 proteomic,   epigenomic,   multi-omics   datasets,   and   a   new   in-house   single-cell   morphological   dataset.   

19 Background  
20 Single-cell  omics  data  captures  snapshots  of  cells  that  catalog  cell  types  and  molecular  states  with  high                 
21 precision.  These  high-content  readouts  can  be  harnessed  to  model  evolving  cellular  heterogeneity  and              
22 track  dynamical  changes  of  cell  fates  in  tissue,  tumour,  and  cell  population.  However,  current               
23 computational  methods  face  four  critical  challenges.  First,  it  remains  difficult  to  accurately  reconstruct              
24 high-resolution  cell  trajectories  and  detect  the  pertinent  cell  fates  and  lineages  without  relying  on  prior                
25 knowledge  of  input  parameter  settings.  This  is  a  foundational  but  unmet  attribute  of  trajectory  inference                
26 (TI)  that  could  make  lineage  prediction  less  biased  towards  input  parameters,  and  thus  minimize  the                
27 confounding  factors  that  impact  the  underlying  hypothesis  testing.  However,  even  the  few  algorithms              
28 which  automate  cell  fate  detection  (e.g.,  SlingShot 1 ,  Palantir 2  and  Monocle3)  exhibit  low  sensitivity  to               
29 cell  fates  and  are  highly  susceptible  to  changes  in  input  parameters.  Second,  current  trajectory  inference                
30 (TI)  methods  predominantly  work  well  on  tree-like  trajectories  (e.g.  Slingshot),  but  lack  the              
31 generalisability  to  infer  disconnected,  cyclic  or  hybrid  topologies  without  imposing  restrictions  on             
32 transitions  and  causality 4 .  This  attribute  is  crucial  in  enabling  unbiased  discovery  of  complex  trajectories               
33 which  are  commonly  not  well  known  a  priori,  especially  given  the  increasing  diversity  of  single-cell  omic                 
34 datasets.  Third,  the  growing  scale  of  single-cell  data,  notably  cell  atlases  of  whole  organisms 6 ,7 ,  embryos 8 ,9                
35 and  human  organs 10 ,  exceeds  the  existing  TI  capacity,  not  just  in  runtime  and  memory,  but  in  preserving                  
36 both  the  fine-grain  resolution  of  the  embedded  trajectories  and  the  global  connectivity  among  them.  Very                
37 often,  such  global  information  is  lost  in  current  TI  methods  after  extensive  dimension  reduction  or                
38 subsampling.  Fourth,  fueling  the  advance  in  single-cell  technologies  is  the  ongoing  pursuit  to  understand               
39 cellular  heterogeneity  from  a  broader  perspective  beyond  transcriptomics.  A  notable  example  is  the              
40 emergence  of  single-cell  imaging  technologies  that  now  allow  information-rich  profiling  of            
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41 morphological  and  biophysical  phenotypes  of  single-cells  and  thus  offer  novel  mechanistic  cues  to              
42 cellular  functions  that  cannot  be  solely  inferred  by  proteomic  or  sequencing  data  (e.g.  in  cancer 59 ,                
43 ageing 60 ,  drug  responses 61 ).  However,  the  applicability  of  TI  to  a  broader  spectrum  of  single-cell  data  has                 
44 yet   to   be   fully   exploited.   
45  
46 To  overcome  these  recurring  challenges,  we  present  VIA,  a  graph-based  TI  algorithm  that  uses  a  new                 
47 strategy  to  compute  pseudotime,  and  reconstruct  cell  lineages  based  on  lazy-teleporting  random  walks              
48 integrated  with  Markov  chain  Monte  Carlo  (MCMC)  refinement  ( Fig.  1 ).  VIA  relaxes  common              
49 constraints  on  traversing  the  graph,  and  thus  allows  capture  of  cellular  trajectories  not  only  in                
50 multi-furcations  and  trees,  but  also  in  disconnected  and  cyclic  topologies.  The  lazy-teleporting  MCMC              
51 characteristics  also  make  VIA  robust  to  a  wide  range  of  pre-processing  and  input  algorithmic  parameters,                
52 and  allow  VIA  to  consistently  identify  pertinent  lineages  that  remain  elusive  or  even  lost  in  other                 
53 top-performing  and  popular  TI  algorithms,  e.g.  PAGA 28 ,  Palintir,  SlingShot,  Monocle3  and  CellRank 13 .             
54 We  validate  the  performance  of  VIA  and  thus  its  ability  to  offer  better  interpretation  of  the  underlying                  
55 biology  across  a  variety  of  transcriptomic,  epigenomic  and  integrated  multi-omic  datasets  (seven             
56 biological  datasets  with  a  further  two  datasets  presented  in Supplementary ).  Notably,  we  show  in               
57 subsequent  sections  that  VIA  accurately  detects  minor  dendritic  sub-populations  and  their  characteristic             
58 gene  expression  trends  in  human  hematopoiesis;  automatically  identifies  pancreatic  islets  including  rare             
59 delta  cells;  and  recovers  endothelial  and  cardiomyocyte  bifurcation  in  integrated  data  sets  of  single-cell               
60 RNA-sequencing  (scRNA-seq)  and  single-cell  sequencing  assay  for  transposase-accessible  chromatin          
61 (scATAC-seq).   
62  
63 Another  defining  attribute  of  VIA  is  its  resilience  in  handling  the  wide  disparity  in  single-cell  data  size,                  
64 structure  and  dimensionality  across  modalities.  Specifically,  VIA  is  highly  scalable  with  respect  to              
65 number  of  cells  (10 2  to  >10 6  cells)  and  features,  without  requiring  extensive  dimensionality  reduction  or                
66 subsampling  which  compromise  global  information.  We  showcase  this  scalability  in  analyzing  the             
67 fine-grained  developmental  sub-trajectories  in  the  1.3-million-cell  mouse  organogenesis  atlas  in  terms  of             
68 fast  runtime  and  preservation  of  global  cell-type  connectivity,  which  is  otherwise  lost  in  existing  TI                
69 methods.  We  also  show  that  VIA  is  robust  against  the  dimensionality  drop  (down  to  10’s  -  100’s                  
70 dimensions)  in  mass  cytometry  (proteomics)  and  imaging  cytometry  (morphological)  data.  For  instance,             
71 VIA  consistently  reconstructs  the  pseudotime  that  recapitulates  murine  embryonic  stem  cells  (ESCs)             
72 differentiation  toward  mesoderm  cells  in  CyTOF  data,  where  the  lazy-teleporting  MCMCs  contribute  to              
73 the  high  accuracy  of  inference.  Lastly,  we  hypothesize  that  VIA  can  also  be  applied  to  imaging  cytometry                  
74 for  gaining  a  mechanistic  biophysical  understanding  of  cellular  progress.  To  this  end,  we  profiled  the                
75 biophysical  and  morphological  phenotypes  of  single-cell  live  breast  cancer  cells  with  our  recently              
76 developed  high-throughput  imaging  flow  cytometer,  called  FACED 33 .  Validated  with  the  in-situ            
77 fluorescence  image  capture,  we  found  that  VIA  reliably  reconstructs  the  continuous  cell-cycle             
78 progressions   from   G1-S-G2/M   phase,   and   reveals   subtle   changes   in   cell   mass   accumulation.  
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79

80 Figure  1.  General  workflow  of  VIA  algorithm. Step  1: Single-cell  level  graph  is  clustered  such  that  each  node                   
81 represents  a  cluster  of  single  cells  (computed  by  our  clustering  algorithm  PARC 11 ).  The  resulting  cluster  graph  forms                  
82 the  basis  for  subsequent  random  walks. Step  2: 2-stage  pseudotime  computation:  (i)  The  pseudotime  (relative  to  a                  
83 user  defined  start  cell)  is  first  computed  by  the  expected  hitting  time  for  a  lazy-teleporting  random  walk  along  an                    
84 undirected  graph.  At  each  step,  the  walk  (with  small  probability)  can  remain  (orange  arrows)  or  teleport  (red  arrows)                   
85 to  any  other  state.  (ii)  Edges  are  then  forward  biased  based  on  the  expected  hitting  time  (See  forward  biased  edges                     
86 illustrated  as  the  imbalance  of  double-arrowhead  size).  The  pseudotime  is  further  refined  on  the  directed  graph  by                  
87 running  Markov  chain  Monte  Carlo  (MCMC)  simulations  (See  3  highlighted  paths  starting  at  root). Step  3: Consensus                  
88 vote  on  terminal  states  based  on  vertex  connectivity  properties  of  the  directed  graph. Step  4 :  lineage  likelihoods                  
89 computed  as  the  visitation  frequency  under  lazy-teleporting  MCMC  simulations. Step  5 :  visualization  that  combines               
90 network  topology  and  single-cell  level  pseudotime/lineage  probability  properties  onto  an  embedding  using  GAMs,  as               
91 well   as   unsupervised   downstream   analysis   (e.g.   gene   expression   trend   along   pseudotime   for   each   lineage).   

92 Results  

93 Algorithm  
94 VIA  first  represents  the  single-cell  data  as  a  cluster  graph  (i.e.  each  node  is  a  cluster  of  single  cells),                    
95 computed  by  our  recently  developed  data-driven  community-detection  algorithm,  PARC,  which  allows            
96 scalable  clustering  whilst  preserving  global  properties  of  the  topology  needed  for  accurate  TI 11  ( Step  1  in                 
97 Fig.  1) .  The  cell  fates  and  their  lineage  pathways  are  then  computed  by  a  two-stage  probabilistic  method,                  
98 which  is  the  key  algorithmic  contribution  of  this  work  ( Step  2  in  Fig.  1 ,  see Methods for  detailed                   
99 explanation).  In  the  first  stage  of  Step  2,  VIA  models  the  cellular  process  as  a  modified  random  walk  that                    

100 allows  degrees  of laziness  (remaining  at  a  node/state)  and teleportation  (jumping  to  any  other  node/state)                
101 with  pre-defined  probabilities.  The  pseudotime,  and  thus  the  graph  directionality,  can  be  computed  based               
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102 on  the  theoretical  hitting  times  of  nodes  (See  the  theory  and  derivation  in Methods  and  Supplementary                 
103 Note  2 ).  The  lazy-teleporting  behavior  prevents  the  expected  hitting  time  from  converging  to  a  local                
104 distribution  in  the  graph  as  otherwise  occurs  in  regular  random  walks,  especially  when  the  sample  size                 
105 grows 12 .  More  specifically,  the  laziness  and  teleportation  factors  regulate  the  weights  given  to  each               
106 eigenvector-value  pair  in  the  expected  hitting  time  formulation  such  that  the  stationary  distribution  (given               
107 by  the  local-node  degree-properties  in  regular  walks)  does  not  overwhelm  the  global  information              
108 provided  by  other  ‘eigen-pairs’.  Moreover,  the  computation  does  not  require  subsetting  the  first k               
109 eigenvectors  (bypassing  the  need  for  the  user  to  select  a  suitable  threshold  or  subset  of  eigenvectors)  since                  
110 the  dimensionality  is  not  on  the  order  of  number  of  cells,  but  is  equal  to  the  number  of  clusters.  Hence  all                      
111 eigenvalue-eigenvector  pairs  can  be  incorporated  without  causing  a  bottleneck  in  runtime.  Consequently             
112 in  VIA,  the  modified  walk  on  a  cluster-graph  not  only  enables  scalable  pseudotime  computation  for  large                 
113 datasets  in  terms  of  runtime,  but  also  preserves  information  about  the  global  neighborhood  relationships               
114 within  the  graph.  In  the  second  stage  of  Step  2,  VIA  infers  the  directionality  of  the graph  by  biasing  the                     
115 edge-weights  with  the  initial  pseudotime  computations,  and  refines  the  pseudotime  through            
116 lazy-teleporting   MCMC   simulations   on   the   forward   biased   graph.   
117  
118 Next (Step  3  in  Fig . 1),  the  MCMC-refined  graph-edges  of  the  lazy-teleporting  random  walk  enable                
119 accurate  predictions  of  terminal  cell  fates  through  a  consensus  vote  of  various  vertex  connectivity               
120 properties  derived  from  the  directed  graph.  The  cell  fate  predictions  obtained  using  this  approach  are                
121 more  accurate  and  robust  to  changes  in  input  data  and  parameters  compared  to  other  TI  methods  ( Fig.2                  
122 simulated  complex  topologies and  Fig.  S1  summary  of  lineage  detection  accuracy  for  all  benchmarked               
123 real  datasets ) .  Trajectories  towards  identified  terminal  states  are  then  resolved  using  lazy-teleporting             
124 MCMC  simulations  ( Step  4  in  Fig.  1 ).  Together,  these  four  steps  facilitate  holistic  topological               
125 visualization  of  TI  on  the  single-cell  level  (e.g.  using  UMAP  or  PHATE 14 ,15 )  and  other  data-driven                
126 downstream   analyses   such   as   recovering   gene   expression   trends   ( Methods ).   ( Step   5   in   Fig.1 ).  

127 VIA   accurately   captures   complex   topologies   obscured   in   other   TI   methods  
128 We  first  generate  and  analyze  simulated  datasets  (see Methods )  to  demonstrate  that  VIA’s  probabilistic               
129 approach  to  graph-traversal  allows  it  to  infer  cell  fates  when  the  underlying  data  spans  combinations  of                 
130 multifurcating  trees  and  cyclic/disconnected  topologies  -  topologies  and  lineages  often  obscured  in             
131 existing  TI  methods.  In  VIA,  the  relaxation  of  edge  constraints  in  computing  lineage  pathways  and                
132 pseudotime  enables  accurate  detection  of  cell  fates  and  complex  trajectories  by  avoiding  prematurely              
133 imposing  constraints  on  node-to-node  mobility.  Other  methods  resort  to  constraints  such  as  reducing  the               
134 graph  to  a  tree,  imposing  unidirectionality  by  thresholding  edges  based  on  pseudotime  directionality,              
135 removing   outgoing   edges   from   terminal   states 13 , 2    and   computing   shortest   paths   for   pseudotime 2 ,1 .   
136  
137 In  a  4-leaf  multifurcation  topology  ( Fig.  2a) ,  VIA  accurately  captures  the  two  cascading  bifurcations               
138 which  lead  to  4  leaf  nodes.  In  particular,  VIA  detects  the  elusive  ‘M2’  terminal  state  whereas  other                  
139 methods  (Palantir,  PAGA,  Slingshot  and  Monocle3)  merge  it  with  the  ‘M8’  lineage.  Monocle3  typically               
140 only  captures  a  single  bifurcation  and  thus  merges  the  pairs  of  leaves  that  otherwise  arise  from  the  second                   
141 layer  of  bifurcation  ( Fig.  2a) .  Even  for  the  fairly  simple  cyclic  topology  ( Fig.  2b) ,  other  methods  tend  to                   
142 fragment  the  structure  to  varying  degrees  depending  on  the  parameter  choice  whereas  VIA  consistently               
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143 preserves  the  global  cyclic  structure.  This  is  not  to  say  VIA  is  invariant  to  parameter  choice,  but  rather                   
144 that  VIA  predictably  modulates  the  graph  resolution  across  a  wide  range  of  K  without  disrupting  the                 
145 underlying  global  topology  (see  the  increase  in  the  number  of  nodes  in  K=30  versus  K=5  in Fig.  2b ).  This                    
146 characteristic  is  important  for  robustly  analyzing  multiple  levels  of  resolution  in  complex  graph              
147 topologies,  as  also  shown  in  our  later  investigation  of  the  1.3-million-cell  mouse  atlas.  We  quantify                
148 graph-edge  accuracy  in  the  cyclic  and  disconnected  datasets  by  identifying  false/true  positive/negative             
149 edges  relative  to  the  reference  truth  in  order  to  compute  an  F1-score.  The  performance  comparison  for  the                  
150 disconnected  hybrid  topologies  ( Fig.  2c )  shows  that  VIA  disentangles  the  cyclic  and  bifurcating  lineages               
151 and  captures  the  key  leaf-states  in  the  bifurcation  as  well  as  the  ‘tail’  extending  from  the  cyclic  topology.                   
152 Palantir   overly   fragments   the   two   trajectories,   whereas   Monocle3   and   Slingshot   merge   them.   
153  

154

 
155 Figure  2  Performance  on  complex  hybrid  topologies  (a)  Toy  Multifurcating: 1000  ‘cells’  multifurcating  to  four                
156 terminal  states.  One  of  the  terminal  states  (M2)  is  very  close  to  another  terminal  state  (M8),  and  thus  merged  by  other                      
157 methods  (Slingshot,  Palantir,  PAGA  and  Monocle3).  The  F1-scores  show  prediction  accuracy  of  the  4  terminal  states                 
158 when  the  number  of  Principal  Components  varies  (5-200  input  PCs).  PAGA  does  not  automatically  detect                
159 lineages/cell  fates  and  is  thus  excluded  from  the  F1-score  analysis (b)  Toy  Cyclic: VIA  recovers  a  cyclic  network  for                    
160 a  range  of  K  (in  KNN).  Slingshot  does  not  use  a  K(NN)  parameter  and  identifies  3  different  lineages  (top  to  bottom).                      
161 PAGA,  Monocle3  and  Palantir  show  linear  or  fragmented  structures,  however  PAGA’s  performance  for  this  dataset                
162 improves  for  higher  KNN  as  the  underlying  graph  representation  becomes  more  connected.  (Right)  Graph-edge               
163 accuracy  compared  to  the  reference  truth  for  a  varying  number  of  K(NN),  where  true  positive  edges  are  those  that                    
164 connect  milestones  in  the  reference  graph (c)  Disconnected: This  dataset  has  two  disconnected  trajectories  (T1  and                 
165 T2).  T2  is  cyclic  with  an  extra  branch  (M5  to  M6)  and  T1  has  a  bifurcation  at  M3.  (Right)  TI  performance  comparison                       
166 of  graph  accuracy  across  different  numbers  of  input  PCs  .  Palantir  is  heavily  fragmented  and  hence  excluded  from                   
167 graph-edge  accuracy  computations.  Slingshot,  Monocle3  and  sometimes  PAGA  place  an  edge  (false  positive)              
168 between   T1   and   T2   connecting   the   two   trajectories,   and   the   bifurcation   is   typically   merged.   
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169 VIA  reveals  rare  lineages  in  epigenomic  and  transcriptomic  landscapes  of           
170 human   hematopoiesis.  
171 To  assess  the  performance  of  VIA  on  inferring  real  cellular  trajectory,  we  first  considered  a  range  of                  
172 scRNA-seq  datasets,  including  hematopoiesis 2 , 27 ,  endocrine  genesis,  B-cell  differentiation 26  and          
173 embryonic  stem  (ES)  cell  differentiation  in  embryoid  bodies 15 .  We  present  the  analyses  of  CD34+  human                
174 hematopoiesis  and  endocrine  differentiation  here,  whereas  the  generalizable  performance  of  VIA  on  other              
175 scRNA-seq  datasets  are  presented  in Supplementary  Fig.  S1,  S2  and  S7 .  We  highlight  human               
176 hematopoiesis  as  it  has  been  extensively  studied  not  only  with  scRNA-seq,  but  also  other  single-cell                
177 omics  modalities,  notably  scATAC-seq.  Hence,  it  allows  us  to  reliably  assess  lineage  identification              
178 performance   and   downstream   analyses   using   VIA.   
179  
180 First,  we  show  that  VIA  consistently  reveals  from  the  scRNA-seq  dataset  the  typical  hierarchical               
181 bifurcations  during  hematopoiesis  that  result  in  key  committed  lineages  of  hematopoietic  stem  cells              
182 (HSCs)  to  monocytic,  lymphoid,  erythroid,  classical  and  plasmacytoid  dendritic  cell  (cDCs  and  pDCs)              
183 lineages  and  megakaryocytes  ( Fig.  3a ).  The  automated  detection  of  these  terminal  states  in  VIA,  as                
184 quantified  by  F1-scores  on  the  annotated  cells,  remains  robust  to  varying  the  number  of  neighbors  in  the                  
185 KNN  graph,  and  the  number  of  principal  components  (PCs)  ( Fig.  3c ).  Specifically,  VIA’s  sustained               
186 sensitivity  to  rarer  cell  types  (e.g.  DCs  and  megakaryocytes)  can  be  attributed  to  a  better  underlying  graph                  
187 structure  where  nodes  are  well  delineated  by  PARC  (as  rare  cell  types  are  well  separated  by  graph  pruning                   
188 in   the   clustering   stage)   and   edges   are   not   prematurely   removed   due   to   restrictions   on   causality.   
189  
190 In  contrast,  the  sensitivity  of  Palantir  and  Slingshot  in  detecting  rarer  lineages  drops  significantly  outside                
191 a  favourable  ''sweet  spot''  of  parameters.  Slingshot  can  only  recover  the  major  cell  populations               
192 (monocytes,  erythroid  and  B  cells)  and  confuses  the  DC  populations  with  the  monocytes  and  the                
193 megakaryocytes  with  the  erythroid  cells.  Palantir  can  only  identify  the  DCs  and  megakaryocytes  for  a                
194 handful  of  parameter  options,  whereas  VIA  achieves  this  goal  across  a  much  wider  range  of  parameters                 
195 ( Fig.  3c ).  Since  PAGA  does  not  offer  automated  cell  fate  prediction  or  lineage  paths,  it  is  not                  
196 benchmarked  on  this  dataset.  To  verify  that  VIA  reliably  delineates  the  megakaryocyte,  cDC  and  pDC                
197 lineages,  we  used  VIA  to  automatically  plot  the  lineage  specific  trends  for  selected  marker  genes.  We                 
198 showed  that  while  both  DC  lineages  exhibit  elevated IRF8 ,  the CSF1R  is  specific  to  the  cDC,  and  the                   
199 CD123  remains  elevated  for  pDCs  whereas  it  is  first  up-regulated,  then  down-regulated  in  cDCs  ( Fig.3b                
200 and   Fig.   S3-S4) .  
201  
202 We  find  that  VIA’s  interpretation  of  the  human  scATAC-seq  profiles  ( Fig.  3d )  mirrors  the  continuous                
203 landscape  of  scRNA-seq  human  hematopoietic  data  ( Fig.  3a ).  We  use  two  common  preprocessing              
204 pipelines 31 ,27 (see Methods ),  intended  to  alleviate  challenges  posed  by  the  sparsity  of  scATAC-seq  data,  to                
205 show  that  VIA  consistently  predicts  the  expected  hierarchy  of  lineages  furcating  from  hematopoietic              
206 progenitors  to  their  descendants.  The  graph  topology  of  VIA  (colored  by  pseudotime)  captures  the               
207 progression  of  multipotent  progenitors  (MPPs)  towards  the  lymphoid-primed  MPPs  (LMPP)  and  the             
208 common  myeloid  progenitors  (CMPs)  which  in  turn  give  rise  to  the  CLP  and  MEP  lineages  respectively.                 
209 The  known  joint  contribution  of  LMPPs  and  CMPs  towards  the  GMP  lineage  is  also  captured  by  the  VIA                   

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.02.10.430705doi: bioRxiv preprint 

https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=14ruyzz6p81
https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=y5ixemnm3tac
https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=hpu96rs05k0s
https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=9ohfvgceg55
https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=cpy816x2qcr
https://doi.org/10.1101/2021.02.10.430705
http://creativecommons.org/licenses/by-nc/4.0/


/

210 graph.  We  verified  the  lineages  identified  by  VIA  by  analyzing  the changes  in  the  accessibility  of  TF                  
211 motifs  associated  with  known  regulators  of  the  lineage  commitments,  e.g. GATA1  (erythroid), CEBPD              
212 (myeloid)  and  IRF8  (DCs) (Fig  3e,  Supplementary  Fig.  S5c).  Again,  we  note  that  the  detection  of  these                  
213 lineages  is  less  straightforward  in  other  methods,  which  generally  face  a  sharp  drop  in  accuracy  of                 
214 detecting  relevant  cell  fates  as  the  input  number  of  PCs  exceeds  ~50PCs  (e.g.  Palantir  often  misses  the                  
215 CLP  and  monocyte  lineages, see  Supplementary  Fig.  S6 for  Palantir’s  outputs  across  parameters  and               
216 Fig.  3f for  the  corresponding  prediction  accuracy).  We  emphasize  that  VIA’s  robustness  in  handling  both                
217 of  these  scRNA-seq  and  scATAC-seq  datasets  demonstrates  its  unique  ability  to  achieve  stable  prediction               
218 and  thus  faithful  query  of  the  underlying  biology  without  biasing  specific  sets  of  input  parameters  which                 
219 nontrivially  vary  across  datasets  -  as  also  evident  from  our  series  of  “stress  tests”'  on  VIA’s  performance                  
220 ( Supplementary   Fig.   S1 ).  
221  

222

 
223 Figure  3  VIA  analysis  of  human  hematopoiesis  based  on  scRNA-seq  and  scATAC-seq 13  data  (a)  VIA  graph                 
224 colored  by  inferred  pseudotime.  Identified  terminal  state  nodes  are  outlined  in  red  and  labeled  according  to  their                  
225 representative  annotated  cell  type (b)  pseudo-temporal  trends  of  marker  genes  for  key  minor  populations  (see                
226 Supplementary  Fig.  S3-S5  for  gene  trends  of  all  lineages) (c)  F1-scores  for  terminal  state  detection  of  mDC,  pDC,                   
227 Mega,  Ery,  Mono  and  B  cell  lineages (d)  Graph  topology  of  scATAC-seq  hematopoietic  data  using  Buenrostro 13                 
228 pre-processing  protocol,  nodes  colored  by  inferred  pseudotime (e)  pseudo-temporal  trends  of  transcription-factor             
229 motifs (f)  F1-scores  for  terminal  state  detection  of  MEP,  CLP,  pDC  and  Mono  lineages  for  fixed  KNN=20  and  different                    
230 number  of  PCs.  Pre-processed  using k-mer  Z  Scores  protocol  which  is  a  more  challenging  input  as  evidenced  by  the                    
231 performance   drop   for   other   methods   beyond   50PCs.   VIA's   F1-scores   are   more   robust   to   choice   of   number   of   PCs  
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232 VIA   detects   small   endocrine   Delta   lineages   and   Beta   subtypes   
233 We  also  use  a  scRNA-seq  dataset  of  E15.5  murine  pancreatic  cells  to  again  examine  whether  VIA  can                  
234 automatically  detect  multiple  lineages,  in  particular  less  populous  ones.  This  data  spans  all  developmental               
235 stages  from  initial  endocrine  progenitor-precursor  (EP)  state  (low  level  of Ngn3  ,  or Ngn3 low ),  to               
236 intermediate  EP  (high  level  of Ngn3  ,  or Ngn3 high )  and  Fev +  states,  to  terminal  states  of  hormone-producing                 
237 alpha,   beta,   epsilon   and   delta   cells 5    ( Fig.   4a ).  
238  
239 A  key  challenge  in  analyzing  this  dataset  is  the  automated  detection  of  the  small  delta-cell  population  (a                  
240 mere  3%  of  the  total  population),  which  otherwise  requires  manual  assignment  in  CellRank  and  Palantir                
241 ( see  Supplementary  Fig.  S9-S10  for  sample  outputs  at  different  parameters).  In  contrast,  the              
242 well-delineated  nodes  of  the  VIA  cluster-graph  (as  a  result  of  sensitive  terminal  state  prediction  enabled                
243 by  the  lazy-teleporting  MCMC  property  of  VIA)  lends  itself  to  automatically  detecting  this  small               
244 population  of  delta  cells,  together  with  all  other  key  lineages  (alpha,  beta  and  epsilon  lineages)  ( Fig.                 
245 4a-b ).  As  evidenced  by  the  corresponding  gene-expression  trend  analysis,  VIA  detects  all  of  the               
246 hormone-producing  cells  including  delta  cells  which  show  exclusively  elevated  Hhex,  Sst  and  Cd24a              
247 ( Fig.  4c-d ).  To  show  that  this  is  not  a  co-incidence  of  parameter  choice,  we  verify  that  these  populations                   
248 can   be   identified   for   a   wide   range   of   chosen   highly   variable   genes   (HVGs)   and   number   of   PCs   ( Fig.   4b ).   
249  
250 Interestingly,  we  find  that  VIA  often  automatically  detects  two  Beta-cell  subpopulations  (Beta-1  and              
251 Beta-2) (Fig.4b-e) that  express  the  common  Beta-cell  markers,  such  as Dlk1,  Pdx1 , but  differ  in  their                 
252 expressions  of Ins1  and Ins2 (Fig.  4c-d  and  Fig.S8d) .  The  pseudotime  order  within  this  Beta-cell                
253 heterogeneity 29 ,30 ,  undetectable  by  other  TI  methods  on  this  dataset,  can  further  be  reconciled  in  the  VIA                  
254 graph  where  the  immature  Beta-2  population  precedes  the  mature  Beta-1  population.  We  find  that  the                
255 immature  Beta-2  population  strongly  expresses Ins2 ,  and  weakly  expresses Ins1 ,  followed  by  the  mature               
256 Beta-1  population  which  expresses  both  types  of Ins 30 (Fig.  4c-d  and  Fig.S8d for  VIA  graphs  colored  by                  
257 Ins1    and    Ins2    further   show   the   difference   in    Ins    expression   by   the   two   Beta   populations ).  
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258  

259

 
260 Figure  4.  VIA  detects  small  populations  in  endocrine  progenitor  cells  differentiation.  (a)  VIA  graph  topology                
261 Pancreatic  Islets:  Colored  by  VIA  pseudotime  with  detected  terminal  states  shown  in  red  and  annotated  based  on                  
262 known  cell  type  as  Alpha,  Beta-1,  Beta-2,  Delta  and  Epsilon  lineages  where  Beta-2  is Ins1 low Ins2+  Beta  subtype                  
263 ( Supplementary  Fig.  S8 for  graph  node-level  gene  expression  intensity  of  Ins1  and  Ins2). (b)  Prediction  accuracy  of                  
264 the  4  major  endocrine  cell  types  when  varying  the  number  of  HVGs  selected  in  pre-processing,  and  the  number  of                    
265 PCs. (c)  VIA  inferred  cluster-level  pathway  shows  gene  regulation  along  endocrine  progenitor  (EP)  to Fev+  cells                 
266 followed  by  expression  of  islet  specific  genes. (d) shows  gene-expression  trends  along  pseudotime  for  each                
267 pancreatic   islet.  
268  

269 VIA   recovers   Isl1+   cardiac   progenitor   bifurcation   in   multi-omic   data  
270 We  next  demonstrate  the  applicability  of  VIA  in  single-cell  multi-omics  analysis  by  investigating  murine               
271 Ils1+  cardiac  progenitor  cells  (CPC)  which  are  known  to  bifurcate  towards  endothelial  and              
272 cardiomyocyte  fates  ( Fig.  5b-e ).  VIA  consistently  uncovers  the  bifurcating  lineages  using  both  single-cell              
273 transcriptomic  (scRNA-seq)  and  chromatin  accessibility  (scATAC-seq)  information 20 ,  as  well  as  their  data             
274 integration ( see  Methods for  data  integration  using  Seurat).  Other  methods  such  as  Palantir  and               
275 Slingshot,   that   are   also   applicable   to   non-transcriptomic   data,   fail   to   uncover   the   two   main   lineages.   
276  
277 Palantir  and  Slingshot  typically  only  detect  the  cardiomyocyte  lineage  (this  is  exacerbated  when  the               
278 number  of  input  principal  components  (PCs)  increases),  and  instead  falsely  detect  several  intermediate              
279 and  early  stages  as  final  cell  fates  ( see  Supplementary  Fig.  S12-S13 for  outputs  by  Slingshot  and                 
280 Palantir ,  and  Fig.  5f for  the  corresponding  prediction  accuracy).  PAGA  does  not  offer  automated  cell  fate                 
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281 prediction  or  lineage  paths  and  is  therefore  not  benchmarked  for  this  dataset.  The  disparity  in  trajectory                 
282 inference  is  most  evident  in  the  scRNAseq  and  integrated  data  where  Slingshot  and  Palantir  do  not                 
283 resolve  either  of  the  two  cell  fates  ( Supplementary  Fig.  S12-S13 for  sample  outputs  corresponding  to  the                 
284 prediction  accuracy  shown  in Fig.5f) .  We  hypothesized  that  lowering  the  K  (number  of  nearest  neighbors)                
285 in  Palantir  and  VIA  would  be  more  appropriate  given  the  extremely  low  cell  count  (~200  cells)  of  the                   
286 scRNA-seq  dataset.  Whilst  this  approach  did  not  alter  the  outcome  for  Palantir,  we  found  that  VIA  is  able                   
287 to   capture   the   transition   from   early   to   intermediate   CPCs   and   finally   lineage   committed   cells.   
288  
289 More  importantly,  VIA  automatically  generates  a  pseudotemporal  ordering  of  relevant  cells  (without             
290 requiring  manual  selection  of  relevant  cells  as  done  in  Jia  et  al. 20 )  along  each  lineage  and  their  marker-TF                   
291 pairs  ( Fig.  5f  and  Supplementary  Fig.  S11g for  differential  gene  expression  analysis) . Hence,  VIA  can                
292 be  used  to  faithfully  interpret  relationships  between  transcription  factor  dynamics  and  gene  expression  in               
293 an  unsupervised  manner.  The  highlighted  gene  and  TF  pairs  in  the  cardiac  lineage  show  a  strong                 
294 correlation  between  expression  and  accessibility  of Gata and  Homeobox Hox  genes  which  are  known  to                
295 be  related  to  the  regulation  of  cardiomyocyte  proliferation 23,24,25 .  VIA’s  reliable  performance  against             
296 user-reconfiguration  (number  of  PCs,  individual  or  integrated  omic  data)  suggests  its  utility  in              
297 transferable   interpretation   between   scRNA-seq   and   scATAC-seq   data.  
298  

299

 
300 Figure  5.  Multi-omic  integrated  analysis  of  scRNA-seq  and  scATAC-seq  cardiac  progenitors  (a)  scRNA-seq              
301 and  scATAC-seq  data  of  Isl1+  Cardiac  Progenitors  (CPs)  integrated  using  Seurat3  before  PHATE.  Colored  by                
302 annotated  cell-type  and  experimental  modality (b)  Colored  by  VIA  pseudotime  with  VIA-inferred  trajectory  towards               
303 Endothelial  and  Myocyte  lineages  projected  on  top. (c) gene-TF  pair  expression  along  VIA  inferred  pseudotime  for                 
304 each  CM  lineage  (see Supplementary  Fig.S11  for  Top  5  most  differentially  expressed  genes  for  each  VIA  node                  
305 along  each  lineage  as  well  as  node-level  TF  motif  accessibility) (d) VIA  graph  for  scRNA-seq  data  only  and (e)                    
306 scATAC-seq  data  only.  (f)  Accuracy  of  detecting  the  CM  and  Endo  lineages  in  the  individual  and  integrated  data.  This                    
307 is  challenging  for  Palantir  and  Slingshot  which  either  detect  several  early  and  intermediate  stages  or  no  terminal                  
308 states   at   all   (see   visual   outputs   for   these   methods   in    Supplementary   Fig.S12-S13 )  
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309 VIA   preserves   global   connectivity   when   scaling   to   millions   of   cells   
310 VIA  is  designed  to  be  highly  scalable  and  offers  automated  lineage  prediction  without  extensive               
311 dimension  reduction  or  subsampling  even  at  large  cell  counts.  To  showcase  this,  we  use  VIA  to  explore                  
312 the  1.3-million  scRNA-seq  mouse  organogenesis  cell  atlas  (MOCA) 8 .  While  this  dataset  is  inaccessible  to               
313 most  TI  methods  from  a  runtime  and  memory  perspective,  VIA  can  efficiently  resolve  the  underlying                
314 developmental  heterogeneity,  including  9  major  trajectories  ( Fig.  6a,b )  with  a  runtime  of  ~40  minutes,               
315 compared  to  the  next  fastest  method  PAGA  which  has  a  runtime  of  3  hours,  and  Palantir  which  takes  over                    
316 4  hours.  Other  methods  like  Slingshot  and  CellRank  were  deemed  infeasible  due  to  extremely  long                
317 runtimes  on  much  smaller  datasets.  ( Supplementary  Table  S3 for  a  summary  of  runtimes).  Going               
318 beyond  the  computational  efficiency,  VIA  also  preserves  wider  neighborhood  information  and  reveals  a              
319 globally  connected  topology  of  MOCA  which  is  otherwise  lost  in  the  Monocle3  analysis  which  first                
320 reduces   the   input   data   dimensionality   using   UMAP.   
321  
322 The  overall  cluster  graph  of  VIA  consists  of  three  main  branches  that  concur  with  the  known                 
323 developmental  process  at  early  organogenesis. 16  ( Fig.  6a) .  It  starts  from  the  root  stem  which  has  a  high                  
324 concentration  of  E9.5  early  epithelial  cells  made  of  multiple  sub-trajectories  (e.g.  epidermis,  and              
325 foregut/hindgut  epithelial  cells  derived  from  the  ectoderm  and  endoderm).  The  stem  is  connected  to  two                
326 distinct  lineages:  1)  mesenchymal  cells  originated  from  the  mesoderm  which  arises  from  interactions              
327 between  the  ectoderm  and  endoderm 17  and  2)  neural  tube/crest  cells  derived  from  neurulation  when  the                
328 ectoderm   folds   inwards 1 .   
329  
330 The  sparsity  of  early  cells  (only  ~8%  are  E9.5)  and  the  absence  of  earlier  ancestral  cells  make  it                   
331 particularly  challenging  to  capture  the  simultaneous  development  of  trajectories.  However,  VIA  is  able  to               
332 capture  the  overall  pseudotime  structure  depicting  early  organogenesis  ( Fig.  6b ).  For  instance,  at  the               
333 junction  of  the  epithelial-to-mesenchymal  branch,  we  find  early  mesenchymal  cells  from  E9.5-E10.5.             
334 Cells  from  later  mesenchymal  developmental  stages  (e.g.  myocytes  from  E12.5-  E13.5)  reside  at  the               
335 leaves  of  the  branch.  Similarly,  at  the  junction  of  epithelial-to-neural  tube,  we  find  dorsal  tube  neural  cells                  
336 and  notochord  plate  cells  which  are  predominantly  from  E9.5-E10.5  and  more  developed  neural  cells  at                
337 branch  tips  (e.g.  excitatory  and  inhibitory  neurons  appearing  at  E12.5-E13.5).  In  contrast,  the  pseudotime               
338 gradient  of  PAGA’s  nodes  offer  little  salient  information  at  this  scale,  with  90%  of  cells  predicted  to  be  in                    
339 the   first   10%   of   the   pseudotime   color   scale    (see   Supplementary   Fig.   S14c) .   
340  
341 VIA  also  consistently  places  the  other  smaller  dispersed  groups  of  trajectories  (e.g.  endothelial,              
342 hematopoietic)  in  biologically  relevant  neighborhoods  (see Supplementary  Notes  3 for  a  detailed             
343 explanation  of  VIA’s  structural  connections  supported  by  known  transitions  in  organogenesis  literature).             
344 While  VIA’s  connected  topology  offers  a  coarse-grained  holistic  view,  it  does  not  compromise  the  ability                
345 to  delineate  individual  lineage  pathways,  such  as  the  erythroid  and  white  blood  cell  lineages  within  the                 
346 hematopoietic   super   group   (consistent   with   annotations   made   by   Cao   et   al., 8 )   as   shown   in    Fig.   6c .   
347  
348 As  such,  TI  using  VIA  uniquely  preserves  both  the  global  and  local  structures  of  the  data.  Whilst                  
349 manifold-learning  methods  are  often  used  to  extensively  reduce  dimensionality  to  mitigate  the             
350 computational  burden  of  large  single-cell  datasets,  they  tend  to  incur  loss  of  global  information  and  be                 
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351 sensitive  to  input  parameters.  VIA  is  sufficiently  scalable  to  bypass  such  a  step,  and  therefore  retains  a                  
352 higher  degree  of  neighborhood  information  when  mapping  large  datasets.  This  is  in  contrast  to               
353 Monocle3’s 8  UMAP-reduced  inputs  that  reveal  different  disconnected  super-groups  and  fluctuating           
354 connectivity  depending  on  input  parameters.  As  shown  in Fig.  6d,e  (and Fig.  S14 for  varying  KNN ),                 
355 methods  such  as  Monocle3  and  Slingshot  which  require  on  a  low  dimensional  representation  (e.g.               
356 UMAP)  for  TI  are  susceptible  to  unpredictable  changes  in  the  composition  of  super  cell  groups,  their                 
357 relative  positions  and  inter-connectivity.  For  instance,  in  UMAP,  the  neural  tube  group  is  sometimes               
358 shown  as  a  single  super  group,  and  other  times  fragmented  across  the  embedding  without  context  of                 
359 neighboring  groups.  Similarly  the  hematopoietic  supergroup  is  shown  as  a  single,  two  or  even  three                
360 separate  groups  dispersed  across  the  embedding  landscape  ( Fig.  6e ).  In  contrast,  VIA  uncovers              
361 biologically  consistent  structures  across  the  same  range  of  parameters.  In  VIA,  the  cells  belonging  to                
362 these  fine-grained  supergroups  remain  connected  and  neighborhood  relationships  are  preserved,  for            
363 instance  the  neural  crest  cells  (containing  Peripheral  Nervous  System  neurons  and  glial  cells)  remain               
364 adjacent   to   the   neural   tube   ( Fig.   6f ).   
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365

366 Figure  6  VIA  accurately  infers  global  connectivity  and  sub-trajectories  in  the  1.3-million  scRNA-seq  mouse               
367 organogenesis  cell  atlas.  (a) MOCA  graph  trajectory  (nodes  colored  by  pseudotime)  and  shaded-colored  regions               
368 corresponding  to  major  cell  groups.  Stem  branch  consists  of  epithelial  cells  derived  from  ectoderm  and  endoderm,                 
369 leading  to  two  main  branches:  1)  the  mesenchymal  and  2)  the  neural  tube  and  neural  crest.  Other  major  groups  are                     
370 placed  in  the  biologically  relevant  neighborhoods,  such  as  the  adjacencies  between  hepatocyte  and  epithelial               
371 trajectories;  the  neural  crest  and  the  neural  tube;  as  well  as  the  links  between  early  mesenchyme  with  both  the                    
372 hematopoietic  cells  and  the  endothelial  cells  (see  Supplementary  Note  3) (b)  Colored  by  VIA  pseudotime. (c)  Lineage                  
373 pathways  and  probabilities  of  neuronal,  myocyte  and  WBC  lineages  (see  Fig.S6  for  other  lineages). (d)  VIA  graph                  
374 preserves  key  relationships  across  choice  of  number  of  principal  components  whereas  (e)  UMAP  embedding  is  first                 
375 step   in   the   TI   method   Monocle3   and   highly   susceptible   to   choice   of   number   of   PCs   (or   K   in   KNN   see   Fig.S12-15)  
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376 VIA’s  lazy-teleporting  MCMCs  delineate  mesoderm  differentiation  in  mass         
377 cytometry   data   
378 Broad  applicability  of  TI  beyond  transcriptomic  analysis  is  increasingly  critical,  but  existing  methods              
379 have  limitations  contending  with  the  disparity  in  the  data  structure  (e.g.  sparsity  and  dimensionality)               
380 across  a  variety  of  single-cell  data  types  and  oftentimes  are  designed  with  a  view  to  only  handling                  
381 transcriptomic  data.  To  this  end,  we  investigated  whether  VIA  can  cope  with  the  significant  drop  in  data                  
382 dimensionality  (10-100),  as  often  presented  in  flow/mass  cytometry  data,  and  still  delineate  continuous              
383 biological   processes.   
384  
385 We  applied  VIA  on  a  time-series  mass  cytometry  data  (28  antibodies,  90K  cells)  capturing  murine                
386 embryonic  stem  cells  (ESCs)  differentiation  toward  mesoderm  cells 32 .  The  mESCs  are  captured  at  12               
387 intervals  within  the  first  11  days  and  hence  provide  sufficiently  granular  temporal  annotation  to  allow  a                 
388 correlation  assessment  of  the  inferred  pseudotimes.  We  quantified  that  the  pseudotimes  computed  by  VIA               
389 shows  a  Pearson  correlation  of  ~88%  with  the  actual  annotated  days.  We  further  verified  that  VIA’s                 
390 performance  is  critically  improved  by  the  lazy-teleporting  MCMCs  ( Fig.  7d ),  without  which  the              
391 correlation  drops  closer  to  PAGA’s.  Palantir  suffers  from  low  connectivity  of  cells  between  the  Day  0-1                 
392 and  the  subsequent  early  stages,  and  thus  results  in  loss  of  pseudotime  gradient  and  low  correlation  to  the                   
393 true   annotations.   
394  
395 More  importantly,  unlike  previous  analysis 32  of  the  same  data  which  required  chronological  labels  to               
396 visualize  the  chronological  developmental  hierarchy,  we  ran  VIA  without  such  supervised  adjustments             
397 and  accurately  captured  the  sequential  development.  Not  only  can  it  achieve  faster  runtime  (running  in  2                 
398 minutes  on  the  full  antibody-feature  set  versus  Slingshot  which  required  6  hours  even  on  a  subset  of  first                   
399 5  PCs see Table  S3 for  more  runtime  comparisons),  VIA  detects  3  terminal  states  corresponding  to  cells                  
400 in  the  final  developmental  stages  of  Day  10-11  which  are  indicated  by  upregulation  of Pdgfra , Cd44  and                  
401 Gata4  mesodermal  markers (Fig.  7f) .  In  contrast,  other  methods  struggle  to  identify  the  correct  terminal                
402 states   (e.g.   Palantir   and   Slingshot    Fig.   7e )   and   do   not   depict   salient   structures   (e.g.   PAGA)   ( Fig.   7e ).   
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403

 
404 Figure  7  VIA  analysis  of  mESC  differentiation  toward  mesoderm  cells  from  mass  cytometry . .  (a)  UMAP  plot                 
405 colored  by  annotated  days  0-11.  Three  regions  of  Day  10-11  marked  in  dotted  black  lines. (b)  VIA  cluster-graph                   
406 colored  by  pseudotime (c)  Terminal  states  and  VIA  output  projected  onto  UMAP.  Terminal  states  are  located  in  the                   
407 areas  containing  Day  10-11  cells. (d)  Comparison  of  correlation  of  pseudotime  and  annotated  Days  across  TI                 
408 methods  for  varying  number  of  K  number  of  nearest  neighbors.  PAGA  and  Palantir’s  pseudotime  computation  is                 
409 misguided  by  the  weak  link  connecting  Day  0  cells  to  other  early  cells.  The  effect  is  that  Day  0  cells  appear                      
410 exaggeratedly  far,  while  the  remaining  early  and  late  cells  temporally  squeezed.  VIA’s  2-step  pseudotime  computation                
411 produces  a  pseudotime  scale  closer  to  the  annotated  dates. (e)  Example  outputs  of  Palantir,  PAGA  and  Slingshot                  
412 with  the  terminal  states  (circles)  predicted  by  Slingshot  and  Palantir.  Red  ‘X’  denotes  incorrect  (false  positive)  or                  
413 missing   (false   negative)   terminal   state.    (f)    Gene   expression   of   key   mesodermal   markers   
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414 VIA   captures   morphological   trends   of   live   cells   in   cell   cycle   progression  
415  
416 Apart  from  the  omics  technologies,  optical  microscopy  is  a  powerful  parallel  advance  in  single-cell               
417 analysis  for  generating  the  “fingerprint”  profiles  of  cell  morphology.  Such  spatial  information  is  typically               
418 obscured  in  sequencing  data,  but  can  effectively  underpin  the  cell  states  and  functions  without  costly  and                 
419 time-consuming  sequencing  protocols.  However,  trajectory  predictions  based  on  morphological  profiles           
420 of  single  cells  have  only  been  scarcely  studied  until  recently,  but  advancements  in  high-throughput               
421 imaging  cytometry  are  now  making  large-scale  image  data  generation  and  related  studies  feasible.  We               
422 thus  sought  to  test  if  VIA  can  predict  biologically  relevant  progress  based  on  single-cell  morphological                
423 snapshots  captured  by  our  recently  developed  high-throughput  imaging  flow  cytometer,  called  FACED 33.  -              
424 a   technology   that   is   at   least   100   times   faster   than   state-of-the-art   imaging   flow   cytometry    (Fig.   8a) .  
425  
426 Our  FACED  imaging  platform  captured  multiple  image  contrasts  of  single  cells,  including  fluorescence              
427 (FL),  and  quantitative  phase  images  (QPI),  which  measure  high-resolution  biophysical  properties  of  cells,              
428 which  are  otherwise  inaccessible  in  other  methods 62 .  Using  the  QPIs  captured  by  FACED,  we  first                
429 generated  spatially-resolved  single-cell  biophysical  profiles  of  two  live  breast  cancer  cell  types             
430 (MDA-MB231  and  MCF7)  undergoing  cell  cycle  progressions  (38  features  including  cell  shape,  size,  dry               
431 mass  density,  optical  density  and  their  subcellular  textures  ( see  Supplementary  Table  S4  and  Table  S5                
432 for  definitions  of  features)).  The  QPI  together  with  the  FL  images  of  individual  cells  were  also  used  to                   
433 train  a  convolutional  neural  network  (CNN)-based  regression  model  for  predicting  the  DNA  content.  We               
434 first  validated  that  there  is  a  high  correlation  (Pearson’s  correlation  coefficient  r  =  0.72)  between  the                 
435 actual  DNA  content  determined  by  the  FL  images  and  DNA  content  predicted  by  the  QPI                
436 ( Supplementary  Fig.  S16a ).  In  addition,  the  predicted  percentages  of  cells  in  each  cell  cycle  phases  (i.e.                 
437 G1,  S  and  G2/M)  by  the  biophysical  profile  are  highly  consistent  with  the  ground  truth  defined  by  the                   
438 DNA  dye  ( Supplementary  Fig.  S16b ).  Based  on  the  biophysical  profiles  as  validated  by  the  above  tests,                 
439 VIA  reliably  reconstructed  the  continuous  cell-cycle  progressions  from  G1-S-G2/M  phase  of  both  types              
440 of   live   breast   cancer   cells   ( Methods )( Fig.   8b-g) .   
441  
442 Intriguingly,  according  to  the  pseudotime  ordered  by  VIA,  not  only  does  it  reveal  the  known  cell  growth                  
443 in  size  and  mass 34 ,  and  general  conservation  of  cell  mass  density 35  (as  derived  from  the  FACED  images                  
444 ( Methods ))  throughout  the  G1/S/G2  phases,  but  also  a  slow-down  trend  during  the  G1/S  transition  in                
445 both  cell  types,  consistent  with  the  lower  protein-accumulation  rate  during  S  phase 36  ( Fig.  8f-g ).  The                
446 variation  in  biophysical  textures  (e.g.  peak  phase,  and  phase  fiber  radial  distribution)  along  the  VIA                
447 pseudotime  likely  relates  to  known  architectural  changes  of  chromosomes  and  cytoskeletons  during  the              
448 cell  cycles  ( Fig.  8f-g ).  We  find  that  Palantir  is  very  sensitive  to  the  choice  of  early  cells  even  when                    
449 choosing  from  the  pool  of  annotated  G1  cells,  showing  a  bifurcating  topology  unless  the  early  cell  is                  
450 carefully  designated  based  on  the  diffusion  map  location  of  G1  cells  ( see  Fig.  S15 for  Palantir  and  PAGA                   
451 outputs).  The  slowdown  during  the  S-phase  is  also  not  detected  by  Palantir’s  gene  trends.  These  results                 
452 further  substantiate  the  growing  body  of  work 37 ,38,39,40  on  imaging  biophysical  cytometry  for  gaining  a               
453 mechanistic   understanding   of   biological   systems,   especially   when   combined   with   omics   analysis 41 .   
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454

 
455 Figure  8  VIA  predicts  cell  cycle  progression  based  on  single-cell  biophysical  morphology  (a)  FACED               
456 high-throughput  imaging  flow  cytometry  of  MDA-MB231  and  MCF7  cells,  followed  by  image  reconstruction  and               
457 biophysical  feature  extraction.  See Methods detailed  experimental  workflow. (b)  Randomly  sampled  quantitative             
458 phase  images  (QPI)  and  fluorescence  images  (FL)  of  MCF7  cells  and (d)  MDA-MB231  cells. (c)  Single-cell  UMAP                  
459 embedding  colored  by  the  known  cell-cycle  phase  (left),  given  by  DNA-labelled  fluorescence  images.  VIA  inferred                
460 cluster-graph  topology,  nodes  colored  by  pseudotime  (mid).  UMAP  colored  by  VIA  pseudotime  for  MCF7 (e)  VIA                 
461 analysis  repeated  for  MDA-MB231  cells. (f)  Unsupervised  image-feature-trends  of  global  and  local  biophysical              
462 textures  against  VIA  pseudotime  for  MCF7  and (g) MDA-MB231  cells (see  Supplementary  Table  S4  for  feature                 
463 definitions). Cell  cycle  pseudotime  boundaries  are  defined  here  as  the  intersection  of  the  pseudotime  probability                
464 density   functions   of   each   cell   cycle   stage   (annotated   based   on   fluorescence   intensity).  
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465 Conclusion  
466 With  the  growing  scale  and  complexity  of  single-cell  datasets,  there  is  an  unmet  need  for  accurate  cell                  
467 fate  prediction  and  lineage  detection  in  the  complex  topologies  of  interest  in  biology  (not  limited  to  trees).                  
468 This  challenge,  broadly  faced  by  the  current  TI  methods,  is  further  compounded  by  susceptibility  to                
469 algorithmic  parameter  changes,  limited  scalability  to  large  data  size;  and  insufficient  generalizability  to              
470 multi-omic  data  beyond  transcriptomic  data.  We  introduced  VIA  that  alleviates  these  challenges  by  fast               
471 and  scalable  construction  of  cluster-graph  of  cells,  followed  by  pseudotime,  and  reconstructing  cell              
472 lineages  based  on  lazy-teleporting  random  walks  and  MCMC  simulations.  This  unique  strategy  critically              
473 relaxes  common  constraints  on  graph  traversal  and  causality  that  impede  accurate  prediction  of  elusive               
474 lineages  and  less  populous  cell  fates.  We  validated  the  efficacy  of  these  measures  in  terms  of  detecting                  
475 various  challenging  topologies  on  simulated  data,  as  well  as  accurate  and  robust  prediction  of  cell  fates  on                  
476 a  variety  biological  processes  (spanning  epigenomic,  transcriptomic,  integrated  omic,  as  well  as  imaging              
477 and  mass  cytometric  data)  to  show  that  VIA  detects  pertinent  biological  lineages  that  remain  undetected                
478 by   other   methods.   
479  
480 Notably,  VIA  distinguished  between  dendritic  subtypes  in  an  scRNA-seq  hematopoiesis  dataset;            
481 identified  the  rare  delta  cell  islet  in  pancreatic  development,  a  population  requiring  manual  assignment  in                
482 other  TI  methods;  and  revealed  the  bifurcation  towards  cardiomyocyte  and  endothelial  lineage             
483 commitment  in  a  multi-omic  scATAC-seq  and  scRNA-seq  dataset  which  proved  challenging  for  other              
484 methods.  In  order  to  demonstrate  that  these  biological  findings  are  robust  to  user  parameter  tuning,  we                 
485 conducted  a  series  of  ‘stress  tests’  on  both  simulated  and  biological  data  which  show  that  VIA  behaves                  
486 more  predictably  (allowing  controllable  degrees  of  analytical  granularity)  and  accurately  than  other             
487 methods.  In  other  methods,  user  parameter  choice  can  incur  fragmentation  or  spurious  linkages  in  the                
488 modeled  topology,  and  consequently  only  yield  biologically  sensible  lineages  for  a  narrow  sweet  spot  of                
489 parameters  (See  the  summary  in Supplementary  Fig.  S1 and  sample  outputs  by  other  methods  in                
490 Supplementary   Fig.   S6,   S9,   S10,   S12   and   S13 ).   
491  
492 We  also  demonstrated  on  the  1.3  million  MOCA  dataset  that  VIA  is  highly  scalable  with  a  runtime  of  ~40                    
493 minutes  (compared  to  3-4  hours  on  the  next  fastest  method).  Importantly,  VIA  not  only  recovers  the                 
494 fine-grained  sub-trajectories,  but  also  maintains  global  connectivity  between  related  cell  types  and  thus              
495 captures  key  relationships  among  lineages  in  early  embryogenesis.  It  also  computes  a  more  salient               
496 pseudotime  measure  supported  by  lazy-teleporting  MCMCs,  compared  to  other  methods  whose            
497 pseudotime  scale  was  distorted  at  such  high  cell  counts.  We  also  showed  that  methods  which  require                 
498 UMAP  (or  t-SNE)  before  parsing  MOCA  are  highly  susceptible  to  user  defined  input  parameters  that  can                 
499 significantly   and   unpredictably   fragment   the   global   topology.  
500  
501 We  also  assessed  whether  VIA  can  be  generalized  to  other  single-cell  datasets,  especially  those  with                
502 significant  dimensionality  disparity  compared  to  sequencing  data.  We  first  applied  VIA  to  the  mESC               
503 CyTOF  dataset  and  showed  that  the  lazy-teleporting  MCMCs  strategy  in  VIA  enables  it  to  outperform                
504 other  methods  in  correctly  correlating  the  pseudotime  of  the  mesoderm  development  to  the  annotated               
505 dates.  We  finally  explored  the  utility  of  VIA  in  analyzing  emerging  image-based  single-cell  biophysical               
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506 profile  data.  We  showed  that  VIA  not  only  successfully  identified  the  progression  of  G1/S/G2  stages,  but                 
507 also  revealed  the  subtle  changes  in  biophysical-related  cellular  properties,  which  are  otherwise  obscured              
508 in  other  methods.  VIA  could  thus  motivate  new  strategies  in  single-cell  analysis  that  link  cellular                
509 biophysical  phenotypes  and  biochemical/biomolecular  information  -  discovering  how  molecular          
510 signatures  translate  into  the  emergent  cellular  biophysical  properties,  which  has  already  shown  effective              
511 in  studies  of  cancer,  ageing,  and  drug  responses.  Overall,  VIA  offers  an  advancement  to  TI  methods  to                  
512 robustly  study  a  diverse  range  of  single-cell  data.  Together  with  its  scalable  computation  and  efficient                
513 runtime,  VIA  could  be  useful  for  multifaceted  exploratory  analysis  to  uncover  novel  biological  processes,               
514 potentially   those   deviated   from   the   healthy   trajectories   

515 Methods  

516 VIA   Algorithm  
517 VIA  applies  a  scalable  probabilistic  method  to  infer  cell  state  dynamics  and  differentiation  hierarchies  by                
518 organizing  cells  into  trajectories  along  a  pseudotime  axis  in  a  nearest-neighbor  graph  which  is  the  basism                 
519 for  subsequent  random  walks.  Single  cells  are  represented  by  graph  nodes  that  are  connected  based  on                 
520 their  feature  similarity,  e.g.  gene  expression,  transcription  factor  accessibility  motif,  protein  expression  or              
521 morphological   features   of   cell   images.   A   typical   routine   in   VIA   mainly   consists   of   four   steps:  
522  

523 1. Accelerated  and  scalable  cluster-graph  construction .  VIA  first  represents  the  single-cell  data  in  a              
524 k-nearest-neighbor  (KNN)  graph  where  each  node  is  a  cluster  of  single  cells.  The  clusters  are                
525 computed  by  our  recently  developed  clustering  algorithm,  PARC 11. .  In  brief,  PARC  is  built  on               
526 hierarchical  navigable  small  world  (HNSW 58 )  accelerated  KNN  graph  construction  and  a  fast             
527 community-detection  algorithm  (Leiden  method 42 ),  which  is  further  refined  by  data-driven  pruning.            
528 The  combination  of  these  steps  enables  PARC  to  outperform  other  clustering  algorithms  in              
529 computational  run-time,  scalability  in  data  size  and  dimension  (without  relying  on  subsampling  of              
530 large-scale,  high-dimensional  single-cell  data  (>1  million  cells)),  and  sensitivity  of  rare-cell  detection.             
531 We  employ  the  cluster-level  topology,  instead  of  a  single-cell-level  graph,  for  TI  as  it  provides  a                 
532 coarser  but  clearer  view  of  the  key  linkages  and  pathways  of  the  underlying  cell  dynamics  without                 
533 imposing  constraints  on  the  graph  edges.  Together  with  the  strength  of  PARC  in  clustering  scalability                
534 and  sensitivity,  this  step  critically  allows  VIA  to  faithfully  reveal  complex  topologies  namely  cyclic,               
535 disconnected   and   multifurcating   trajectories   ( Fig.   2 ).   
536  

537 2. Probabilistic  pseudotime  computation .  The  trajectories  are  then  modeled  in  VIA  as  (i)             
538 lazy-teleporting  random  walk  paths  along  which  the  pseudotime  is  computed  and  further  refined  by               
539 (ii)  MCMC  simulations.  The  root  is  a  single  cell  chosen  by  the  user.These  two  sub-steps  are  detailed                  
540 as   follows:  
541 (i) Lazy-teleporting  random  walk :  We  first  compute  the  pseudotime  as  the  expected  hitting  time               
542 of  a  lazy-teleporting random  walk  on  an  undirected  cluster-graph  generated  in  Step  1.  The               
543 lazy-teleporting  nature  of  this  random  walk  ensures  that  as  the  sample  size  grows,  the  expected                
544 hitting  time  of  each  node  does  not  converge  to  the  stationary  probability  given  by  local  node                 
545 properties,  but  instead  continues  to  incorporate  the  wider  global  neighborhood  information 12 .            
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546 Here  we  highlight  the  derivation  of  the  closed  form  expression  of  the  hitting  time  of  this  modified                  
547 random   walk   with   a   detailed   derivation   in    Supplementary   Note   2 .  
548  

549 The  cluster  graph  constructed  in  VIA  is  defined  as  a  weighted  connected  graph G ( V , E , W )  with                   
550 a  vertex  set V  of n  vertices  (or  nodes),  i.e. and  an  edge  set E ,  i.e.  a  set  of            V =  {v , ,  }1 ⋯ vn           
551 ordered  pairs  of  distinct  nodes. W  is  an  weight  matrix  that  describes  a  set  of  edge  weights        n ×n           
552 between  node i  and j ,  are  assigned  to  the  edges .  For  an  undirected  graph,      ≥0wij        v ,( i vj)     

553 ,    the     probability   transition   matrix,    P,    of   a   standard   random   walk   on   G   is   given   by wwij =  ji  ×nn   
554 D WP =  −1 (1)  
555 where D  is  the  degree  matrix,  which  is  a  diagonal  matrix  of  the  weighted  sum  of  the  degree      ×nn                
556 of   each   node,   i.e.   the   matrix   elements   are   expressed   as   

557
 

558 where k  are  the  neighbouring  nodes  connected  to  node i .  Hence,  (which  can  be  reduced  as )            dii       di  
559 is   the   degree   of   node    i .   We   next   consider   a    lazy    random   walk,   defined   as    Z ,   with   probability   
560 ( )   of   being   lazy   (where   0   ),   i.e.   staying   at   the   same   node,   then 1 − x < x < 1  
561  
562 xP 1 )IZ =  + ( − x (3)  
563  
564 where I  is  the  identity  matrix.  When  teleportation  occurs  with  a  probability  ( ),  the  modified             1 − α    
565 lazy-teleporting   random   walk     Z'    can   be   written   as   follows,   where   is   an     matrix   of   ones.  J  ×nn   
566  
567 αZ 1 ) JZ ′ =  + ( − α n

1 (4)  
568  
569 Here  we  adapt  the  concept  of  personalized  PageRank  vector,  originally  used  for  recording  (or               
570 ranking )  personal  preferences  of  a  web-surfer  toward  particular  website  pages 43 ,  to rank  the              
571 importance  of  other  nodes  (clusters  of  cells)  to  a  given  node,  depending  on  the  similarities  among                 
572 nodes  (related  to P in  the  graph),  and  the  lazy-teleporting  random  walk  characteristics  in  the                
573 graph  (set  by  probabilities  of  teleporting  and  being  lazy).  Based  on  this  concept,  one  could  model                 
574 the  likelihood  to  transit  from  one  node  (cluster  of  cells)  to  another,  and  thus  construct  the                 
575 pseudotime  based  on  the  hitting  time,  which  is  a  parameter  describing  the  expected  number  of                
576 steps  it  takes  for  a  random  walk  that  starts  at  node i  and  visit  node j  for  the  first  time.  Consider                      
577 the  teleporting  probability  of  ( )  and  a  seed  vector s  specifying  the  initial  probability     1 − α           

578 distribution  across  the n  nodes  (such  that ,  where s m  is  the  probability  of  starting  at        ∑
 

m
sm = 1          

579 node m )  the  personalized  PageRank  vector (which  is  defined  as  a  column  vector)  is  the       prα (s)           
580 unique   solution   to 56  

581 . αpr Z 1 )sprα (s)T =  α (s)T + ( − α T (5)  
582  
583 Substituting Z  (Eq.  (3))  into  Eq.  (5),  we  can  express  the  personalized  PageRank  vector  in               prα (s)   
584 terms  of  the  inverse  of  the 𝛃 -normalized  Laplacian, of  the  modified  random  walk         Rβ,NL      
585 ( Supplementary   Note   2),   i.e.  
586   , s D R  Dprα (s)T = β T −0.5

β,NL
0.5 (6)  
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587 where ,  and .  and  are  the m th eigenvector  and  β = (2−α)
2(1−α)   Rβ,NL = ∑

 

m=1

Φ Φm
T
m

β+2x(1−β)η[ m]  Φm   ηm       

588 eigenvalue  of  the  normalized  Laplacian.  In  the  expression  of R 𝛃,NL, the  𝛃  and x  regulate  the                  
589 weight  of  contribution  in  each  eigenvalue-eigenvector  pair  of  the  summation  such  that  the  first               
590 eigenvalue-eigenvector  pair  (corresponding  to  the  stationary  distribution  and  given  by  the            
591 local-node  degree-properties)  remains  included  in  the  overall  expression,  but  does  not  overwhelm             
592 the  global  information  provided  by  subsequent  ‘eigen-pairs’.  Moreover,  computation  of R 𝛃,NL  is              
593 not  limited  to  a  subset  of  the  first k eigenvectors  (bypassing  the  need  for  the  user  to  select  a                    
594 suitable  threshold  or  subset  of  eigenvectors)  since  the  dimensionality  is  not  on  the  order  of                
595 number  of  cells,  but  equal  to  the  number  of  clusters  and  hence  all  eigenvalue-eigenvector  pairs                
596 can   be   incorporated   without   causing   a   bottleneck   in   runtime.  

The   expected   hitting   time   from   node    q    to   node    r    is   given   by 44 ,  
 

hα (q, )r = dr

pr (e ) (r)[ α r
T ] − dq

pr (e ) (q)[ α r
T ]  (7)  

 
where is  an  indicator  vector  with  1  in  the i th  entry  and  0  elsewhere  (i.e.  if  and  ei               sm = 1   m = i   

if ).  We  can  substitute  Eq.  (6)  into  Eq.  (7),  making  use  of  the  fact  that  sm = 0  ≠im                
,  and  is  symmetric,  to  obtain  a  closed  form  expression  of  the  1

dr
= D e[ −1

r] (r)   R  DD−0.5
β,NL

−0.5            
hitting   time   in   terms   of   Rβ,NL  

(e ) D R  D ehα (q, )r = β r − eq
T −0.5

β,NL
−0.5

r (8)  
 

(ii) MCMC  simulation :  The  hitting  time  metric  computed  in  Step-1  is  used  to  infer               
graph-directionality.  Instead  of  pruning  edges  in  the  ‘reverse’  direction,  edge-weights  are  biased             
based   on   the   time   difference   between   nodes   using   the   logistic   function   with   growth   factor   b   =1.   

(t) f =  1
1+e −b (t − t )1 0  

  

We  then  recompute  the  pseudotimes  on  the  forward  biased  graph:  Since  there  is  no  closed  form                 
solution  of  hitting  times  on  a  directed  graph,  we  perform  MCMC  simulations  (parallely  processed               
to  enable  fast  simulations  of  1000s  of  teleporting,  lazy  random  walks  starting  at  the  root  node  of                  
the  cluster  graph)  and  use  the  first  quartile  of  the  simulated  pseudotime  values  for  a  respective                 
node  as  the  refined  pseudotime  for  that  node  relative  to  the  root.  This  refinement  step  ensures  that                  
the  pseudotime  is  robust  to  the  spurious  links  (or  conversely,  links  that  are  too  weakly  weighted)                 
that  can  distort  calculations  based  purely  on  the  closed  form  solution  of  hitting  times               
( Supplementary  Fig.  7d ).  By  using  this  2-step  pseudotime  computation, VIA  mitigates  the             
issues  of  convergence  issues  and  spurious  edge-weights,  both  of  which  are  common  in              
random-walk   pseudotime   computation   on   large   and   complex   datasets 12. .  
 

3. Automated  terminal-state  detection.  The  algorithm  uses  the  refined  directed  and  weighted  graph             
(edges  are  re-weighted  using  the  refined  pseudotimes)  to  predict  which  nodes  represent  the  terminal               
states  based  on  a  consensus  vote  of  pseudotime  and  multiple  vertex  connectivity  properties,  including               
out-degree   (i.e.   the   number   of   edges   directed   out   of   a   node),   closeness    C( q ) ,   and   betweenness    B( q ).    

C (q) = 1

(q,r)∑
 

q≠r
l

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2021. ; https://doi.org/10.1101/2021.02.10.430705doi: bioRxiv preprint 

https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=hy8nvy7h6bta
https://docs.google.com/document/d/17hKqD3B5gmaBgnhrDUYigPD_-Ue37OFupUwD5jHxSOU/edit#smartreference=onqq15xmlfrf
https://doi.org/10.1101/2021.02.10.430705
http://creativecommons.org/licenses/by-nc/4.0/


/

597 B (q) = ∑
 

r=q≠t/
σrt

σ (q)rt  

598  is  the  distance  between  node q  and  node r  (i.e.  the  sum  of  edges  in  a  shortest  path  connecting l (q, )r                     
599 them). is  the  total  number  of  shortest  paths  from  node r  to  node t .  is  the  number  of  these  σrt              σrt (q)       
600 paths  passing  through  node q .  The  consensus  vote  is  performed  on  nodes  that  score  above  (or  below                  
601 for  out-degree)  the  median  in  terms  of  connectivity  properties.  We  show  on  multiple  simulated  and                
602 real  biological  datasets  that  VIA  more  accurately  predicts  the  terminal  states,  across  a  range  of  input                 
603 data  dimensions  and  key  algorithm  parameters,  than  other  methods  attempting  the  same             
604 (Supplementary   Fig.   S1).  
605  
606 4. Automated  trajectory  reconstruction .  VIA  then  identifies  the  most  likely  path  of  each  lineage  by               
607 computing  the  likelihood  of  a  node  traversing  towards  a  particular  terminal  state  (e.g.  differentiation).               
608 These  lineage  likelihoods  are  computed  as  the  visitation  frequency  under  lazy-teleporting  MCMC             
609 simulations  from  the  root  to  a  particular  terminal  state,  i.e.  the  probability  of node  i reaching                 
610 terminal-state  j as  the  number  of  times cell  i  is  visited  along  a  successful  path  (i.e. terminal-state  j  is                    
611 reached)  divided  by  the  number  of  times cell  i  is  visited  along  all  of  the  simulations.  In  contrast  to                    
612 other  trajectory  reconstruction  methods  which  compute  the  shortest  paths  between  root  and  terminal              
613 node 1 ,2 ,  the  lazy-teleporting  MCMC  simulations  in  VIA  offer  a  probabilistic  view  of  pathways  under               
614 relaxed  conditions  that  are  not  only  restricted  to  the  random-walk  along  a  tree-like  graph,  but  can  also                  
615 be  generalizable  to  other  types  of  topologies,  such  as  cyclic  or  connected/disconnected  paths.  In  the                
616 same  vein,  we  avoid  confining  the  graph  to  an  absorbing  Markov  chain 13,3  (AMC)  as  this  places                 
617 prematurely  strict  /  potentially  inaccurate  constraints  on  node-to-node  mobility  and  can  impede             
618 sensitivity  to  cell  fates  (as  demonstrated  by  VIA’s  superior  cell  fate  detection  across  numerous               
619 datasets   ( Supplementary   Fig.   S1 ).   

620 Downstream   visualization   and   analysis  
621 VIA  generates  a  visualization  that  combines  the  network  topology  and  single-cell  level             
622 pseudotime/lineage  probability  properties  onto  an  embedding  based  on  UMAP  or  PHATE.  Generalized             
623 additive  models  (GAMs)  are  used  to  draw  edges  found  in  the  high-dimensional  graph  onto  the  lower                 
624 dimensional  visualization  ( Fig.  1 ).  An  unsupervised  downstream  analysis  of  cell  features  (e.g.  marker              
625 gene  expression,  protein  expression  or  image  phenotype)  along  pseudotime  for  each  lineage  is  performed               
626 ( Fig.  1 ).  Specifically,  VIA  plots  the  expression  of  features  across  pseudotime  for  each  lineage  by  using                 
627 the  lineage  likelihood  properties  to  weight  the  GAMs.  A  cluster-level  lineage  pathway  is  automatically               
628 produced  by  VIA  to  visualize  feature  heat  maps  at  the  cluster-level  along  a  lineage-path  to  see  the                  
629 regulation  of  genes.  VIA  provides  the  option  of  gene  imputation  before  plotting  the  lineage  specific  gene                 
630 trends.  The  imputation  is  fast  as  it  relies  on  the  single-cell  KNN  (scKNN)  graph  computed  in  Step  1.                   
631 Using  an  affinity-based  imputation  method 45 ,  this  step  computes  a  “diffused”  transition  matrix  on  the               
632 scKNN   graph   used   to   impute   and   denoise   the   original   gene   expressions.    
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633 Benchmarked   Methods   
634 The  methods  were  mainly  chosen  based  on  their  superior  performance  in  a  recent  large-scale               
635 benchmarking  study 4 ,  including  a  select  few  recent  methods  claiming  to  supersede  those  in  the  study.                
636 Specifically,  recent  and  popular  methods  exhibiting  reasonable  scalability,  and  automated  cell  fate             
637 prediction  in  multi-lineage  trajectories  were  favoured  as  candidates  for  benchmarking  (See            
638 Supplementary  Table  S1  for  the  key  characteristics  of  methods).  Performance  stress-tests  in  terms  of               
639 lineage  detection  of  each  biological  dataset,  and  pseudotime  correlation  for  time-series  data  were              
640 conducted  over  a  range  of  key  input  parameters  (e.g.  numbers  of  k-nearest  neighbors,  highly  variable                
641 genes  (HVGs),  principal  components  (PCs))  and  pre-processing  protocols  (see Supplementary  Fig.  1 ).             
642 All  comparisons  were  run  on  a  computer  with  an  Intel(R)  Xeon  (R)  W-2123  central  processing  unit                 
643 (3.60GHz,   8   cores)   and   126   GB   RAM.  
644  
645 Quantifying  terminal  state  prediction  accuracy  for  parameter  tests  was  done  using  the  F1-score,  defined               
646 as   the   harmonic   mean   of   recall   and   precision   and   calculated   as:  

647 F 1 =  tp
tp + 0.5(fp+fn)   

 

648 Where tp  is  a  true-positive:  the  identification  of  a  terminal  cluster  that  is  in  fact  a  final  differentiated  cell                    
649 fate; fp  is  a  false  positive  identification  of  a  cluster  as  terminal  when  in  fact  it  represents  an  intermediate                     
650 state;   and    fn    is   a   false   negative   where   a   known   cell   fate   fails   to   be   identified   
651  
652 PAGA 28 . It  uses  a  cluster-graph  representation  to  capture  the  underlying  topology.  PAGA  computes  a               
653 unified  pseudotime  by  averaging  the  single-cell  level  diffusion  pseudotime  computed  by  DPT,  but              
654 requires  manual  specification  of  terminal  cell  fates  and  clusters  that  contribute  to  lineages  of  interest  in                 
655 order   to   compare   gene   expression   trends   across   lineages.   
656  
657 Palantir 2 . It  uses  diffusion-map 46.  components  to  represent  the  underlying  trajectory.  Pseudotimes  are             
658 computed  as  the  shortest  path  along  a  KNN-graph  constructed  in  a  low-dimensional  diffusion  component               
659 space,  with  edges  weighted  such  that  the  distance  between  nodes  corresponds  to  the  diffusion               
660 pseudotime 47.  (DPT).  Terminal  states  are  identified  as  extrema  of  the  diffusion  maps  that  are  also  outliers                 
661 of  the  stationary  distribution.  The  lineage-likelihood  probabilities  are  computed  using  Absorbing  Markov             
662 Chains   (constructed   by   removing   outgoing   edges   of   terminal   states,   and   thresholding   reverse   edges).   
663  
664 Slingshot 1 . It  is  designed  to  process  low-dimensional  embeddings  of  the  single-cell  data.  By  default               
665 Slingshot  runs  clustering  based  on  Gaussian  mixture  modeling  and  recommends  using  the  first  few  PCs  as                 
666 input.  Slingshot  connects  the  clusters  using  a  minimum  spanning  tree  and  then  fits  principle  curves  for                 
667 each  detected  branch.  It  uses  the  orthogonal  projection  against  each  principal  curve  to  fit  a  separate                 
668 pseudotime  for  each  lineage,  and  hence  the  gene  expressions  cannot  be  compared  across  lineages.  Also,                
669 the   runtimes   are   prohibitively   long   for   large   datasets   or   high   input   dimensions.   
670  
671 CellRank 13 . This  method  combines  the  information  of  RNA  velocity  (computed  using  scVelo 48. )  and              
672 gene-expression  to  infer  trajectories.  Given  it  is  mainly  suited  for  the  scRNA-seq  data,  with  the                
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673 RNA-velocity  computation  limiting  the  overall  runtime  for  larger  dataset,  we  limit  our  comparison  to  the                
674 pancreatic   dataset   which   the   authors   of   CellRank   used   to   highlight   its   performance.   
675  
676 Monocle3 3 6 .  The  workflow  consists  of  three  steps:  the  first  is  to  project  the  data  to  two  or  three                   
677 dimensions  using  UMAP  (this  is  a  strict  requirement),  followed  by  Louvain  clustering  on  a  K-Nearest                
678 Neighbor  graph  constructed  in  the  low-dimensional  UMAP  space.  A  cluster-graph  is  then  created  and               
679 partitioned  to  deduce  disconnected  trajectories.  Subsequently,  it  learns  a  principal  graph  in  the              
680 low-dimensional   space   along   which   it   calculates   pseudotimes   as   the   geodesic   distance   from   root   to   cell.   

681 Simulated   Data  
682 We  employed  the  DynToy 4  ( https://github.com/dynverse/dyntoy )  package,  which  generates  synthetic          
683 single-cell  gene  expression  data  (~1000  cells  x  1000  ‘genes’),  to  simulate  different  complex  trajectory               
684 models.  Using  these  datasets,  we  tested  that  VIA  consistently  and  more  accurately  captures  both  tree  and                 
685 non-tree  like  structures  (multifurcating,  cyclic,  and  disconnected)  compared  to  other  methods (Fig.2) .  All              
686 methods  are  subject  to  the  same  data  pre-processing  steps,  PCA  dimension  reduction  and  root-cell  to                
687 initialize  the  path.  Graph  edge  accuracy  is  computed  based  on  an  F1-score  of  connectivity  in  the  TI                  
688 generated  versus  reference  graphs.  For  example,  an  edge  is  considered  a  true  positive  if  it  connects  two                  
689 states  that  are  made  of  the  same  cell  type  or  of  two  cell  types  that  are  connected  in  the  reference  truth.  A                       
690 false   negative   is   the   lack   of   an   edge   to   connect   to   cell   types   that   are   connected   in   the   reference.   
691  
692 Multifurcating  structure .  This  dataset  consists  of  1000  ‘cells’  multifurcating  into  4  terminal  states.  VIA               
693 robustly  captures  all  four  terminal  cell  fates  across  a  range  of  input  PCs  and  the  pseudotimes  are  well                   
694 inferred  relative  to  the  root  node (Fig.  2a) .  Note  that  two  terminal  states  (M2  and  M8),  which  are  very                    
695 close   to   each   other,   are   easily   merged   by   the   other   methods   (Slingshot,   Palantir.   Monocle3,   and   PAGA).  
696 Cyclic  structure. We  ran  VIA  and  other  methods  for  different  values  of  K  nearest  neighbors.  VIA                 
697 unambiguously  shows  a  cyclic  network  for  a  range  of  K  (in  KNN). Slingshot  does  not  use  a  KNN                   
698 parameter  and  shows  3  fragmented  different  lineages  (top  to  bottom).  PAGA  fails  to  capture  the                
699 connected  cyclic  structure  at  K  =  10  and  5,  while  Palantir  visually  shows  a  linear  (K  =  10,  30)  or                     
700 disconnected  structure  (K  =  5).  Monocle  recovers  a  linear  trajectory,  failing  to  detect  the  loop  closure.                 
701 Van  den  Berge  et  al 57  also  find  that  Monocle3  consistently  fragments  or  fits  branching  structures  onto                 
702 cyclic   simulated   datasets.   
703 Disconnected  structure. This  dataset  comprises  two  disconnected  trajectories  (T1  and  T2).  T1  is  cyclic               
704 with  an  extra  branch  (M5  to  M6),  T2  has  a  bifurcation  at  M3  ( Fig.  2c) .  VIA  captures  the  two                    
705 disconnected  structures  as  well  as  the  M6  branch  in  the  cyclic  structure,  and  the  bifurcation  in  the  smaller                   
706 structure.  PAGA  captures  the  underlying  structure  at  PC  =  20  but  becomes  fragmented  for  other  numbers                 
707 of  PCs.  Palantir  also  yields  multiple  fragments  and  is  not  able  to  capture  the  overall  structure,  while                  
708 Slingshot  (using  the  default  clustering  based  on  Gaussian  mixture  modeling)  connects  T1  and  T2,  and                
709 only   captures   one   of   the   bifurcations   in   T1.   
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710 Biological   Data  
711 The  pre-processing  steps  described  below  for  each  dataset  are  not  included  in  the  reported  runtimes  as                 
712 these  steps  are  typically  very  fast,  (typically  less  than  1-10%  of  the  total  runtime  depending  on  the                  
713 method.  E.g.  only  a  few  minutes  for  pre-processing  100,000s  of  cells)  and  only  need  to  be  performed                  
714 once  as  they  remain  the  same  for  all  subsequent  analyses.  It  should  also  be  noted  that  visualization  (e.g.                   
715 UMAP,  t-SNE)  are  not  included  in  the  runtimes.  VIA  provides  a  subsampling  option  at  the  visualization                 
716 stage  to  accelerate  this  process  for  large  datasets  without  impacting  the  previous  computational  steps.               
717 However,  to  ensure  fair  comparisons  between  TI  methods  (e.g.  other  methods  do  not  have  an  option  to                  
718 compute  the  embedding  on  a  subsampled  input  and  transfer  the  results  between  the  full  trajectory  and  the                  
719 sampled  visualization,  or  rely  on  a  slow  version  of  tSNE),  we  simply  provide  each  TI  method  with  a                   
720 pre-computed   visualization   embedding   on   which   the   computed   results   are   projected.   
721  
722 ScRNA-seq  of  mouse  pre-B  cells. This  dataset 26  models  the  pre-BI  cell  (Hardy  fraction  C’)  process                
723 during  which  cells  progress  to  the  pre-BII  stage  and  B  cell  progenitors  undergo  growth  arrest  and                 
724 differentiation.  Measurements  were  obtained  at  0,  2,  6,  12,  18  and  24  hours  (h)  for  a  total  of  313  cells  x                      
725 9,075  genes.  We  follow  a  standard  Scanpy  preprocessing  recipe 49  that  filters  cells  with  low  counts,  and                 
726 genes  that  occur  in  less  than  3  cells.  The  filtered  cells  are  normalized  by  library  size  and  log  transformed.                    
727 The  top  5000  highly  variable  genes  (HVG)  are  retained.  Cells  are  renormalized  by  library  count  and                 
728 scaled  to  unit  variance  and  zero  mean.  VIA  identifies  the  terminal  state  at  18-24  h  and  accurately                  
729 recapitulates  the  gene  expression  trends 26  along  inferred  pseudotime  of IgII1 , Slc7a5 , Fox01 , Myc , Ldha               
730 and Lig4 .  ( Supplementary  Fig.  S2a). We  show  the  results  generalize  across  a  range  of  PCs  for  two                  
731 values  of  K  of  the  graph  with  higher  accuracy  in  locating  the  later  cell  fates  than  Slingshot  and  Palantir.                    
732 ( Supplementary   Fig.   S2b).  
733  
734 ScRNA-seq  of  human  CD34+  bone  marrow  cells. This  is  a  scRNA-seq  dataset  of  5800  cells                
735 representing  human  hematopoiesis 2. .  We  used  the  filtered,  normalized  and  log-transformed  count  matrix             
736 provided  by  Setty  et  al 2. .,  with  PCA  performed  on  all  the  remaining  genes.  The  cells  were  annotated  using                   
737 SingleR 50.  which  automatically  labeled  cells  based  on  the  hematopoietic  reference  dataset  Novershtern             
738 Hematopoietic  Cell  Data  - GSE24759 51. .  The  annotations  are  in  agreement  with  the  labels  inferred  by                
739 Setty  et  al.  for  the  7  clusters,  including  the  root  HSCs  cluster  that  differentiates  into  6  different  lineages:                   
740 monocytes,  erythrocytes,  and  B  cells,  as  well  as  the  less  populous  megakaryocytes,  cDCs  and  pDCs.  VIA                 
741 consistently  identifies  these  lineages  across  a  wider  range  of  input  parameters  and  data  dimensions  (e.g.                
742 the  number  of  K  and  PCs  provided  as  input  to  the  algorithms  see Fig.  2p,  and  Supplementary  Fig.  S3c ).                    
743 Notably,  the  upregulated  gene  expression  trends  of  the  small  populations  can  be  recovered  in  VIA,  i.e.                 
744 pDC  and  cDC  show  elevated  CD123  and  CSF1R  levels  relative  to  other  lineages,  and  the  upregulated                 
745 CD41   expression   in   megakaryocytes   ( Supplementary   Fig.   S3-S4) .   
746  
747 ScRNA-seq  of  human  embryoid  body. This  is  a  midsized  scRNA-seq  dataset  of  16,825  human  cells  in                 
748 embryoid  bodies  (EBs) 15 .  We  followed  the  same  pre-processing  steps  as  Moon  et  al.  to  filter  out  dead                  
749 cells  and  those  with  too  high  or  low  library  count.  Cells  are  normalized  by  library  count  followed  by                   
750 square  root  transform.  Finally  the  transformed  counts  are  scaled  to  unit  variance  and  zero  mean.  The                 
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751 filtered  data  contained  16825  cells  ×  17580  genes.  PCA  is  performed  on  the  processed  data  before                 
752 running  each  TI  method.  VIA  identifies  6  cell  fates,  which,  based  on  the  upregulation  of  marker  genes  as                   
753 cells  proceed  towards  respective  lineages,  are  in  accord  with  the  annotations  given  by  Moon  et  al.,  (See                  
754 the  gene  heatmap  and  changes  in  gene  expression  along  respective  lineage  trajectories  in Supplementary               
755 Fig.  S5).  Note  that  Palantir  and  Slingshot  do  not  capture  the  cardiac  cell  fate,  and  Slingshot  also  misses                    
756 the   neural   crest    ( see   the   F1-scores   summary   for   terminal   state   detection    Supplementary   Fig.   S5).  
757  
758 ScRNA-seq  of  mouse  organogenesis  cell  atla s . This  is  a  large  and  complex  scRNA-seq  dataset  of  mouse                 
759 organogenesis  cell  atlas  (MOCA)  consisting  of  1.3  million  cells 6. .  The  dataset  contains  cells  from  61                
760 embryos  spanning  5  developmental  stages  from  early  organogenesis  (E9.5-E10.5)  to  organogenesis            
761 (E13.5).  Of  the  2  million  cells  profiled,  1.3  million  are  ‘high-quality’  cells  that  are  analysed  by  VIA.  The                   
762 runtime  is  approximately  40  minutes  which  is  in  stark  contrast  to  the  next  fastest  tool  Palantir  which  takes                   
763 4  hours  (excluding  visualization).  The  authors  of  MOCA  manually  annotated  38  cell-types  based  on  the                
764 differentially  expressed  genes  of  the  clusters.  In  general,  each  cell  type  exclusively  falls  under  one  of  10                  
765 major  and  disjoint  trajectories  inferred  by  applying  Monocle3  to  the  UMAP  of  MOCA.  The  authors                
766 attributed  the  disconnected  nature  of  the  10  trajectories  to  the  paucity  of  earlier  stage  common                
767 predecessor  cells.  We  followed  the  same  steps  as  Cao  et  al. 6  to  retain  high-quality  cells  (i.e.  remove  cells                   
768 with  less  than  400  mRNA,  and  remove  doublet  cells  and  cells  from  doubled  derived  sub-clusters).  PCA                 
769 was  applied  to  the  top  2000  HVGs  with  the  top  30  PCs  selected  for  analysis.  VIA  analyzed  the  data  in  the                      
770 high-dimensional  PC  space.  We  bypass  the  step  in  Monocle3 6  which  applies  UMAP  on  the  PCs  prior  to                  
771 TI  as  this  incurs  an  additional  bias  from  choice  of  manifold-learning  parameters  and  a  further  loss  in                  
772 neighborhood  information.  As  a  result,  VIA  produces  a  more  connected  structure  with  linkages  between               
773 some  of  the  major  cell  types  that  become  segregated  in  UMAP  (and  hence  Monocle3),  and  favors  a                  
774 biologically  relevant  interpretation  ( Fig.  2,  Supplementary  Fig.  S11 ).  A  detailed  explanation  of  these              
775 connections  (graph-edges)  extending  between  certain  major  groups  using  references  to  literature  on             
776 organogenesis   is   presented   in    Supplementary   Note   3.  
777  
778 ScRNA-seq  of  murine  endocrine  development 5 . This  is  an  scRNA-seq  dataset  of  E15.5  murine              
779 pancreatic  cells  spanning  all  developmental  stages  from  an  initial  endocrine  progenitor-precursor  (EP)             
780 state  (low  level  of Ngn3  ,  or Ngn3 low ),  to  the  intermediate  EP  (high  level  of Ngn3  ,  or Ngn3 high )  and  Fev +                    
781 states,  to  the  terminal  states  of  hormone-producing  alpha,  beta,  epsilon  and  delta  cells 5.  Following  steps                
782 by  Lange  et  al 13. ,  we  preprocessed  the  data  using  scVelo  to  filter  genes,  normalize  each  cell  by  total  counts                    
783 over  all  genes,  keep  the  top  most  variable  genes,  and  take  the  log-transform.  PCA  was  applied  to  the                   
784 processed  gene  matrix.  We  assessed  the  performance  of  VIA  and  other  TI  methods  (CellRank,  Palantir,                
785 Slingshot)   across   a   range   of   number   of   retained   HVGs   and   input   PCs   ( Fig.   2m ,    Supplementary   Fig.   S6) .   
786  
787 ScATAC-seq  of  human  bone  marrow  cells. This  scATAC-seq  data  profiles  3072  cells  isolated  from               
788 human  bone  marrow  using  fluorescence  activated  cell  sorting  (FACS),  yielding  9  populations 27 : HSC,              
789 MPP,  CMP,  CLP,  LMPP,  GMP,  MEP,  mono  and  plasmacytoid  DCs  ( Fig.  3a  and  Supplementary  Fig.                
790 S7 ).  We  examined  TI  results  for  two  different  preprocessing  pipelines  to  gauge  how  robust  VIA  is  on  the                   
791 scATAC-seq  analysis  which  is  known  to  be  challenging  for  its  extreme  intrinsic  sparsity.  We  used  the                 
792 pre-processed  data  consisting  of  PCA  applied  to  the  z-scores  of  the  transcription  factor  (TF)  motifs  used                 
793 by  Buenrostro  et  a 27. .  Their  approach  corrects  for  batch  effects  in  select  populations  and  weighting  of  PCs                  
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794 based  on  reference  populations  and  hence  involves  manual  curation.  We  also  employed  a  more  general                
795 approach  used  by Chen  et  al. 31.  which  employs  ChromVAR  to  compute  k-mer  accessibility  z-scores  across                
796 cells.  VIA  infers  the  correct  trajectories  and  the  terminal  cell  fates  for  both  of  these  inputs,  again  across  a                    
797 wide   range   of   input   parameters   ( Fig.   3d   and   Supplementary   Fig.   S7 ).   
798  
799 ScRNA-seq  and  scATAC-seq  of Isl1+  cardiac  progenitor  cells. This  time-series  dataset  captures             
800 murine Isl1+  cardiac  progenitor  cells  (CPCs)  from  E7.5  to  E9.5  characterized  by  scRNA-seq  (197  cells)                
801 and  scATAC-seq  (695  cells) 20. .  The Isl1+ CPCs  are  known  to  undergo  multipotent  differentiation  to               
802 cardiomyocytes  or  endothelial  cells.  For  the  scRNA-seq  data,  the  quality  filtered  genes  and  the  size-factor                
803 normalized  expression  values  are  provided  by  Jia  et  al. 20  as  a  “Single  Cell  Expression  Set”  object  in  R.                   
804 Similarly,  the  cells  in  the  scATAC-seq  experiment  were  provided  in  a  “SingleCellExperiment”  object  with               
805 low  quality  cells  excluded  from  further  analysis.  The  accessibility  of  peaks  was  transformed  to  a  binary                 
806 representation  as  input  for  TF-IDF  (term  frequency-inverse  document  frequency)  weighting  prior  to             
807 singular  value  decomposition  (SVD).  The  highlighted  TF  motifs  in  the  heatmap  ( Fig.  2j )  correspond  to                
808 those  highlighted  by  Jia  et  al.  We  tested  the  performance  when  varying  the  number  of  SVDs  used.  We                   
809 also  considered  the  outcome  when  merging  the  scATAC-seq  and  scRNA-seq  data  using  Seurat3 52. .              
810 Despite  the  relatively  low  cell  count  of  both  datasets,  and  the  relatively  under-represented  scRNA-seq  cell                
811 count,  the  two  datasets  overlapped  reasonably  well  and  allowed  us  to  infer  the  expected  lineages  in  an                  
812 unsupervised  manner  ( Fig.  2d  and  Supplementary  Fig.  S8 .  In  contrast,  Jia  et  al.,  performed  a  supervised                 
813 TI  by  manually  selecting  cells  relevant  to  the  different  lineages  (for  the  scATAC-seq  cells)  and  choosing                 
814 the   two   diffusion   components   that   best   characterize   the   developmental   trajectories   in   low   dimension 20 .  
815  
816 Mass  cytometry  data  of  mouse  embryonic  stem  cells  (mESC) . This  is  a  mass  cytometry  (or  CyTOF)                 
817 dataset,  consisting  of  90,000  cells  and  28  antibodies  (corresponding  to  ~7000  cells  each  from  Day  0-11                 
818 measurements),  that  represents  differentiation  of  mESC  to  mesoderm  cells 32. .  An  arcsinh  transform  with  a               
819 scaling  factor  of  5  was  applied  on  all  features  -  a  standard  procedure  for  CyTOF  datasets,  followed  by                   
820 normalization  to  unit  variance  and  zero  mean.  All  28  antibodies  are  used  by  the  TI  methods  (with  the                   
821 exception  of  Slingshot  which  requires  PCA  followed  by  subsetting  of  the  first  5  PCs  in  order  to                  
822 computationally  handle  the  high  cell  count) (Supplementary  Fig.  S9) .  To  improve  Palantir  performance               
823 we  used  5000  waypoints  (instead  of  default  1200)  but  this  takes  almost  20  minutes  to  complete                 
824 (excluding  time  taken  for  embedding  the  visualization).  VIA  runs  in  ~3  minutes  and  produces  results                
825 consistent   with   the   known   ordering   and   identifies   regions   of   Day   10-11   cells.  
826  
827 Single-cell  biophysical  phenotypes  derived  from  imaging  flow  cytometry.  This  is  the  in-house  dataset              
828 of  single-cell  biophysical  phenotypes  of  two  different  human  breast  cancer  types  (MDA-MB231  and              
829 MCF7).  Following  our  recent  image-based  biophysical  phenotyping  strategy 53 , 54 ,  we  defined  the            
830 spatially-resolved  biophysical  features  of  a  cell  in  a  hierarchical  manner  based  on  both  bright-field  and                
831 quantitative  phase  images  captured  by  the  FACED  imaging  flow  cytometer  (i.e.,  from  the  bulk  features  to                 
832 the  subcellular  textures).  At  the  bulk  level,  we  extracted  the  cell  size,  dry  mass  density,  and  cell  shape.  At                    
833 the  subcellular  texture  level,  we  parameterized  the  global  and  local  textural  characteristics  of  optical               
834 density  and  mass  density  at  both  the  coarse  and  fine  scales  (e.g.,  local  variation  of  mass  density,  its                   
835 higher-order  statistics,  phase  entropy  radial  distribution  etc.).  This  hierarchical  phenotyping  approach 53 , 54            
836 allowed  us  to  establish  a  single-cell  biophysical  profile  of  38  features,  which  were  normalized  based  on                 
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837 the  z-score  ( See  Supplementary  Table  S4  and  Table  S5 ).  All  these  features,  without  any  PCA,  are  used                  
838 as  input  to  VIA.  In  order  to  weigh  the  features,  we  use  a  mutual  information  classifier  to  rank  the  features,                     
839 based  on  the  integrated  fluorescence  intensity  of  the  fluorescence  FACED  images  of  the  cells  (which                
840 serve  as  the  ground  truth  of  the  cell-cycle  stages).  Following  normalization,  the  top  3  features  (which                 
841 relate   to   cell   size)   are   weighted   (using   a   factor   between   3-10).   

842 Imaging   flow   cytometry   experiment  

843 FACED   imaging   flow   cytometer   setup   

844 A  multimodal  FACED  imaging  flow  cytometry  (IFC)  platform  was  used  to  obtain  the  quantitative  phase                
845 and  fluorescence  images  of  single  cells  in  microfluidic  flow  at  an  imaging  throughput  of  ~70,000                
846 cells/sec.  The  light  source  consisted  of  an  Nd:YVO  picosecond  laser  (center  wavelength  =  1064  nm,                
847 Time-Bandwidth)  and  a  periodically-poled  lithium  niobate  (PPLN)  crystal  (Covesion)  for  second            
848 harmonic  generation  of  a  green  pulsed  beam  (center  wavelength  =  532  nm)  with  a  repetition  rate  of  20                   
849 MHz.  The  beam  was  then  directed  to  the  FACED  module,  which  mainly  consists  of  a  pair  of                  
850 almost-parallel  plane  mirrors.  This  module  generated  a  linear  array  of  50  beamlets  (foci)  which  were                
851 projected  by  an  objective  lens  (40X,  0.6NA,  MRH08430,  Nikon)  on  the  flowing  cells  in  the  microfluidic                 
852 channel  for  imaging.  Each  beamlet  was  designed  to  have  a  time  delay  of  1  ns  with  the  neighboring                   
853 beamlet  in  order  to  minimize  the  fluorescence  crosstalk  due  to  the  fluorescence  decay.  Detailed               
854 configuration  of  the  FACED  module  can  be  referred  to  Wu  et  al. 33. .  The  epi-fluorescence  image  signal                 
855 was  collected  by  the  same  objective  lens  and  directed  through  a  band-pass  dichroic  beamsplitter  (center:                
856 575nm,  bandwidth:  15nm).  The  filtered  orange  fluorescence  signal  was  collected  by  the  photomultiplier              
857 tube  (PMT)  (rise  time:  0.57  ns,  Hamamatsu).  On  the  other  hand,  the  transmitted  light  through  the  cell  was                   
858 collected  by  another  objective  lens  (40X,  0.8NA,  MRD07420,  Nikon).  The  light  was  then  split  equally  by                 
859 the  50:50  beamsplitter  into  two  paths,  each  of  which  encodes  different  phase-gradient  image  contrasts  of                
860 the  same  cell  (a  concept  similar  to  Scherlien  photography 55. ).  The  two  beams  are  combined,               
861 time-interleaved,  and  directed  to  the  photodetector  (PD)  (bandwidth:  >10  GHz,  Alphalas)  for  detection.              
862 The  signals  obtained  from  both  PMT  and  PD  were  then  passed  to  a  real-time  high-bandwidth  digitizer  (20                  
863 GHz,   80   GS/s,   Lecroy)   for   data   recording.  
864  
865 Cell   culture   and   preparation   
866 MDA-MB231  (ATCC)  and  MCF7  (ATCC),  which  are  two  different  breast  cancer  cell  lines,  were  used  for                 
867 the  cell  cycle  study.  The  culture  medium  for  MDA-MB231was  ATCC  modified  RPMI  1640  (Gibco)               
868 supplemented  with  10%  fetal  bovine  serum  (FBS)  (Gibco)  and  1%  antibiotic-antimycotic  (Anti-Anti)             
869 (Gibco),  while  that  for  MCF7  was  DMEM  supplemented  with  10%  FBS  (Gibco)  and  1%  Anti-Anti                
870 (Gibco).  The  cells  were  cultured  inside  an  incubator  under  5%  CO 2  and  37°C,  and  subcultured  twice  a                  
871 week.  1e6  cells  were  pipetted  out  from  each  cell  line  and  stained  with  Vybrant  DyeCycle  orange  stain                  
872 (Invitrogen).    
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873 Data   Availability  
874 Data   used   in   Figures   1-3   as   well   as   Supplementary   Figures   S1-S15)   is   available   on:  
875 1. Pancreatic   data:   Gene   Expression   Omnibus   (GEO)   under   accession   code   GSE132188.   
876 2. Cardiac  progenitor  data  is  available  from  the  ENA  repository  under  the  accession  code              
877 PRJEB23303   or   from   [ https://github.com/loosolab/cardiac-progenitors ].   
878 3. B-cell:   STATegraData   GitHub   repository.   [ https://github.com/STATegraData/STATegraData ]  
879 4. Mass   cytometry   mesoderm:   Cytobank  
880 [ https://community.cytobank.org/cytobank/experiments/71953 ].   
881 5. Raw   and   processed   data   for   scRNA-seq   Human   Hematopoeisis   are   available   through   the   Human  
882 Cell   Atlas   data   portal   at  
883 https://data.humancellatlas.org/explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45 .  
884 6. Embryoid   Body:   Mendeley   Data   repository   at   https://doi.org/10.17632/v6n743h5ng.1.  
885 7. Mouse   Organogenesis   :   NCBI   Gene   Expression   Omnibus   under   accession   number    GSE119945  
886 8. FACED  cell  cycle: https://github.com/ShobiStassen/VIA  and  on  FigShare        
887 https://doi.org/10.6084/m9.figshare.13601405.v1   
888 9. scATAC-seq   Hematopoiesis:   GEO:   GSE96772.   Processed   scATAC-seq   data,   which   include   PC  
889 values   and   TF   scores   per   cell   can   be   found   in   Data   S1.   of  
890 https://doi.org/10.1016/j.cell.2018.03.074   
891 10. Toy   Data:    https://github.com/ShobiStassen/VIA  
892  

893 Code   Availability  
894 VIA   is   available   as   a   pip   installable   python   library   “pyVIA”   with   tutorials   and   sample   data   available   on  
895 https://github.com/ShobiStassen/VIA    and    https://pypi.org/project/pyVIA/  
896  
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