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Abstract 
 
 
Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective 

osteosarcoma therapies is the lack of disease-specific biomarkers to predict risk, 

prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles 

emerging as powerful diagnostic tools. However, their clinical application is precluded 

by challenges in identifying disease-associated cargo from the vastly larger background 

of normal exosome cargo. We developed a method using canine osteosarcoma in 

mouse xenografts to distinguish tumor-derived from host-response exosomal mRNAs. 

The model allows for the identification of canine osteosarcoma-specific gene signatures 

by RNA sequencing and a species-differentiating bioinformatics pipeline. An 

osteosarcoma-associated signature consisting of five gene transcripts (SKA2, NEU1, 

PAF1, PSMG2, and NOB1) was validated in dogs with spontaneous osteosarcoma by 

qRT-PCR, while a machine learning model assigned dogs into healthy or disease 

groups. Serum/plasma exosomes were isolated from 53 dogs in distinct clinical groups 

(“healthy”, “osteosarcoma”, “other bone tumor”, or “non-neoplastic disease”). Pre-

treatment samples from osteosarcoma cases were used as the training set and a 

validation set from post-treatment samples was used for testing, classifying as 

“osteosarcoma–detected” or “osteosarcoma–NOT detected”. Dogs in a validation set 

whose post-treatment samples were classified as “osteosarcoma–NOT detected” had 

longer remissions, up to 15 months after treatment. In conclusion, we identified a gene 

signature predictive of molecular remissions with potential applications in the early 

detection and minimal residual disease settings. These results provide proof-of-concept 
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for our discovery platform and its utilization in future studies to inform cancer risk, 

diagnosis, prognosis, and therapeutic response. 

 

Introduction 

 

Osteosarcoma is a rare disease that disproportionately affects children, adolescents, 

and young adults (1). More than half of osteosarcoma patients relapse and die from 

metastatic disease within 10 years of their initial diagnosis (1, 2), highlighting the need 

for predictive biomarkers to personalize therapies. Previously, we have identified 

evolutionarily conserved transcriptional programs with high prognostic value; however, 

practical obstacles have prevented their wide adoption into clinical practice (3-5). Thus, 

it is apparent that non-invasive tests that inform prognosis and longitudinal remission 

status represent a continued unmet need for osteosarcoma patients.  

 

Serum exosomes can be used to address these unmet needs in osteosarcoma (6, 7). 

Exosomes are secreted, membrane-bound vesicles measuring 30 to 200 nM in 

diameter that originate from the fusion of multivesicular endosomes to the plasma 

membrane (8). Like other microvesicles, exosomal cargo includes RNA, DNA, proteins, 

lipids, and cellular metabolites. Exosomes can be powerful diagnostic tools. Specifically, 

they are stable in biological fluids, can be efficiently and non-invasively isolated, and 

contain cargo that can be significantly associated with disease states (9-11).  
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Furthermore, the utility of serum exosomes as a diagnostic/prognostic platform is 

independent of the source and function of such cargo. There have been recent gains in 

enrichment of exosomes and/or comparably sized microvesicles from blood, plasma, 

and serum using instrumentation and methodology that is routinely available in 

diagnostic laboratories (9-11), allowing us to envision applications of exosome 

diagnostics as a realistic goal. However, the identification and differentiation of cargo 

originating from diseased cells (signal) from the background of normal exosomes 

(noise) is still a major obstacle that precludes wide use of exosomes in clinical 

laboratory medicine.  

 

Previously, we developed a method to identify species-specific messenger RNA 

(mRNA) sequences in tumor xenografts (tumor, or donor species, and stroma, or host 

species) (12, 13). In the present study, we further extended that method to serum 

exosomes, allowing for identification of a tumor-specific five-gene signature that 

accurately discriminates osteosarcoma tumor-bearing dogs from dogs in other disease 

categories and dogs free of apparent disease. Individually, none of the genes could 

reliably predict the presence of osteosarcoma or minimal residual disease, but when 

combined with machine learning the combined five-gene signature could accurately 

classify osteosarcoma and non-osteosarcoma in dogs undergoing treatment for this 

disease. Overall, we demonstrate the discovery of exosome-based biomarkers that 

have the potential to predict tumor biological behavior, and thus inform prognosis and 

guide treatment of osteosarcoma in dogs, providing proof of concept to develop and 

apply comparable approaches for human osteosarcoma patients. 
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Materials and Methods 

  

Cell culture. Two canine osteosarcoma cell lines, representing previously described 

“highly aggressive” and “less aggressive” molecular phenotypes (OS-1 and OS-2), were 

used in this study (14). OS-1 and OS-2 are derivatives of the OSCA-40 (Kerafast, Inc., 

catalog #EMN003) and OSCA-32 cell lines (Kerafast, Inc., Boston, MA, catalog 

#EMN002), respectively. OS-1 and OS-2 cells were modified to stably express green 

fluorescent protein (GFP; ThermoFisher Scientific, Waltham, MA) and firefly luciferase 

(ThermoFisher Scientific, Waltham, MA) and used for orthotopic injections in mice. Prior 

to mouse injections, cells were grown in exosome-depleted DMEM media (DMEM with 

5% glucose and L-glutamine (GIBCO, ThermoFisher Scientific, Waltham, MA, catalog 

#11965) supplemented with 10% exosome-depleted FBS Media Supplement - USA 

Certified (SBI, Palo Alto, CA, catalog # EXO-FBS-250A-1), 10mM 4-(2-hydroxyethyl)-1-

piperazine ethanesulphonic acid buffer (HEPES; ThermoFisher Scientific, Waltham, 

MA, catalog #15630) and 0.1% Primocin (Invivogen, San Diego, CA, catalog #ant-pm-

1)), and cultured at 37°C in a humidified atmosphere of 5% CO2. Each cell line was 

passaged more than 15 times before the experiments; however, cell lines were 

repeatedly authenticated at regular intervals (IDEXX BioResearch, Columbia, MO) 

during experimentation based on short tandem repeats.  
 

Primary cultures of human pulmonary microvascular endothelial cells (Lonza, 

Walkersville, MD, catalog #CC-2527) were grown in EGM-2 Endothelial Cell Growth 

Medium-2 Bullet kit (Lonza). Primary cultures of human pulmonary fibroblasts (Lonza, 

catalog #CC-2512) were cultured in FGM-2 Fibroblast Cell Growth Medium-2 Bullet kit 

(Lonza). For exosome depleted conditions, the FBS aliquot in each Bullet kit was 

excluded from the growth media. Cell lines were authenticated at regular intervals 

(IDEXX BioResearch, Columbia, MO), based on short tandem repeats. 

 

Exosome purification. Cells were cultured in exosome depleted media and exosomes 

were isolated using the ExoQuick TC kit (SBI, Palo Alto, CA, catalog #EXOTC10A-1) 

according to the manufacturer’s instructions.  
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Immunohistochemistry and immunofluorescence. Human osteosarcoma tissue 

microarrays were obtained from US Biomax (Rockville, MD, catalog #OS804), and 

antigens were detected using immunohistochemistry and quantified by previously 

described methodology (15). For immunofluorescence, cells were treated as indicated 

and fixed in ice-cold paraformaldehyde solution. Immunofluorescent detection of CD9, 

CD63, and CD81 was performed using the EXOAB-KIT-1 (SBI, Palo Alto, CA, catalog 

#EXOAB-KIT-1) and anti-phalloidin-conjugated secondary antibodies. DAPI counter 

staining was used as a nuclear stain. The anti-human tetraspanin antibodies used for 

immunohistochemistry and immunofluorescence cross-react against the canine 

proteins, as determined by immunoblotting where each antibody recognizes unique 

proteins with the correct electrophoretic mobility (Supplemental Figure S3, and data not 

shown).  

 

Electron microscopy. Exosomes were isolated from OSCA-40 cells using the ExoQuick 

TC protocol, fixed in 2.5% paraformaldehyde, and washed in PBS. The exosomes were 

suspended in Milli-Q water, immediately applied to a glass slide, and allowed to air dry 

for 1 hour. The slides were dehydrated with ethanol, sputtered coated with a gold layer, 

and imaged using a Zeiss EVO scanning electron microscope. 

 

Immunoblotting. 200µl of Pierce RIPA buffer (ThermoFisher Scientific, Waltham, MA, 

catalog #89900) combined with 1µl of HALT protease inhibitor and 1µl of HALT 

phosphatase inhibitor cocktail (ThermoFisher Scientific, Waltham, MA, catalog #78420) 

were added to cell or exosome pellets and vortexed for ~15 seconds. The samples were 

placed at room temperature for 5 minutes to allow complete lysis before pre-clearing 

nuclei and insoluble material by centrifugation. The protein content was determined 

using the BCA assay kit as recommended by the manufacturer (ThermoFisher 

Scientific, Waltham, MA, catalog #23225). For immunoblotting, 50µg of protein for each 

sample were diluted into, Laemmli buffer, heated at 95⁰C, and then immediately chilled 

on ice before loading onto the gels. SDS-PAGE electrophoresis and transfer to PVDF 

membranes was done using routine protocols (16). Membranes were blocked with 5% 
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dry milk in Tris Buffered Saline containing 0.05% Tween (TBS-T), followed by overnight 

incubation at 4°C with antibodies directed against CD9, CD63, and CD81 (SBI, Palo 

Alto, CA, catalog #EXOAB-KIT-1) at 1:1000 dilution in TBS-T buffer containing 5% dry 

milk. Anti-β actin was used as described (17) to serve as a control for depletion of 

cytosolic proteins in exosomes. Blots were washed and incubated for one hour at room 

temperature with a secondary goat anti-rabbit-HRP antibody at 1:20,000 dilution. The 

blots were finally incubated with chemiluminescence substrate and visualized on a LI-

COR Odyssey Imager (LI-COR, Lincoln, NE).   

 

Nanoparticle tracking. Exosomes were enriched from samples as detailed above, and 

resuspended in PBS to a total volume of 1ml. The size distribution of extracellular 

vesicles was measured using a NanoSight Nanoparticle Tracking Analyzer (Salisbury, 

United Kingdom), using the settings recommended by the manufacturer. Size, 

frequency, and distribution measurements were recorded in triplicate for each sample 

and were analyzed by the built-in NanoSight Software.     

 

Plasmids and transfection. Transduction of osteosarcoma cells was performed using the 

pCT-CMV-GFP-MCS-EF1α-Puro lentiviral system (SBI, Palo Alto, CA, catalog 

#CYTO800-PA-1) as described (18). Puromycin was used to select stably expressing 

cells, and cells were grown in exosome depleted media prior to exosome collection. 

 

Tumor xenografts. Six week-old, female, athymic nude mice (strain NCr nu/nu) were 

obtained from Charles River Laboratories (Wilmington, MA). Animals were assigned to 

separate cages in random order for each experiment. All mouse experiments were 

approved by The University of Minnesota Institutional Animal Care and Use Committee 

(Protocols 1307-30806A, 1606-33857A, and 1803-35710A). For intratibial injections, 

mice were anesthetized with xylazine (10 mg/kg, intraperitoneally (I.P.)) and ketamine 

(100mg/kg, I.P.) in preparation for intratibial (I.T.) injections. Canine osteosarcoma cells 

were suspended in sterile PBS (ThermoFisher Scientific, Waltham, MA, catalog 

#10010049) and 10µl containing 1 x 105 cells was injected I.T. as previously reported 

(12, 17). Control mice had 10µl sterile PBS injected I.T. All injections were administered 
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into the left tibia using a tuberculin syringe with 29-gauge needle. For each 

osteosarcoma cell line, OS-1 and OS-2, five mice received cell-I.T. injections; 3 mice 

received sham (PBS)-I.T. injections. Buprenorphine (0.075mg/kg, I.P. every 8 hours 

(Reckitt Benckiser Healthcare, Richmond, VA)) was administered for analgesia for 24 

hours following the injections, and prophylactic ibuprofen was administrated in the water 

for the next 3 days. Mice were monitored by weekly bioluminescence imaging and 

tumor size measurements. At 8 weeks after the injections, the mice were humanely 

euthanized using a barbiturate overdose. Blood was collected via intracardiac 

phlebotomy. The tibiae and the lungs were collected from mice injected with 

osteosarcoma cells (n =10) and placed in 10% neutral buffered formalin for 

histopathology or stored at -80°C. The presence of tumors was confirmed histologically.  

 

Osteosarcoma xenograft serum exosome precipitation and RNA extraction. Exosomes 

were precipitated from serum samples from control mice and from tumor bearing mice 

at week-8 using ExoQuick reagent (SBI, Palo Alto, CA, catalog #EXOQ5A-1) according 

to the manufacturer’s instructions. Briefly, serum was mixed with ExoQuick reagent at a 

volume of 252µl ExoQuick per 1ml of serum. The mixture was incubated for 30 minutes 

at 4°C, followed by centrifugation at 1,500 x g for 30 minutes to precipitate exosomes. 

The resulting supernatant was removed and discarded, and the tubes were centrifuged 

for an additional 5 minutes at 1,500 x g to remove any remaining supernatant. 

Exosomal RNA was extracted using SeraMir ExoRNA Amp Kit (SBI, Palo Alto, CA, 

catalog #RA800A-1), according to the manufacturer’s instructions. 

 

Library preparation and next-generation sequencing. Pooled serum from each group 

was sequenced and analyzed. Sequencing libraries were prepared using the Clontech 

SMARTer® Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian kit (Takara Bio, 

Kasatsu, Japan). RNA sequencing (50-bp paired-end, with HiSeq 2500 Illumina) was 

performed at the University of Minnesota Genomics Center (UMGC). A minimum of 16 

million read-pairs was generated for each sample and the average quality scores were 

above Q30 for all pass-filter reads.  
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Bioinformatics analysis. Initial quality control analysis of RNA sequencing FASTQ data 

was performed using FastQC software (v0.11.5). FASTQ data were trimmed with 

Trimmomatic (v0.33.0). Kallisto (v0.43.0) was used for pseudoalignment and quantifying 

transcript abundance. For accurate alignment of sequencing reads to canine and 

murine genes within xenograft tumors, a kallisto index was built from a multi-sequence 

FASTA file containing both the canine (CanFam3.1) and murine (GRCm38.p5) 

genomes. For each species, transcripts <200bp were removed from the FASTA files. 

The masked FASTA files were then merged for a total of 121,749 murine and canine 

transcripts. Insertion size metrics were calculated for each sample using Picard 

software (v1.126). Data will be deposited in GenBank/GEO. The ‘DESeq2’ package in 

RStudio was used for differential analysis of transcript counts obtained from kallisto 

data. Transcript counts were first summarized to gene counts and then DESeq2 was 

used to convert count values to integer mode, correct for library size, and estimate 

dispersions and log2 fold changes between comparison groups. Genes with a 

Benjamini-Hochberg adjusted p-value < 0.05 and log2 fold change >+/-4 between 

control and xenograft samples were considered significantly differentially expressed 

transcripts. Statistically differentially expressed canine genes were removed if they had 

a DESeq2 normalized value of greater than zero in the control (mouse sequences) as 

these would be genes that are highly homologous between the mouse and dog. Counts 

per million (CPM) values of genes were log2 transformed and mean centered prior to 

clustering. The ComplexHeatmap package was used for clustering and creating 

heatmap figures. Enriched pathway and functional classification analyses of 

differentially expressed transcripts were performed using QIAGEN’s Ingenuity® 

Pathway Analysis (IPA®; QIAGEN, Redwood City, CA). The reference set for all IPA 

analyses was the Ingenuity Knowledge Base (genes only) and canine associated gene 

names were used as the output format for input datasets with canine genes and murine 

associated gene names were used as the output format for input datasets with murine 

genes.  

 

qRT-PCR validation of sequencing data. Serum or plasma samples were obtained from 

client-owned dogs with naturally-occurring osteosarcoma before and after treatment as 
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part of routine biobanking efforts. The samples included in the analysis were identified 

retrospectively. Serum samples were also obtained and biobanked from client-owned 

dogs that were hospitalized with various non-malignant conditions. Serum samples 

were obtained from staff- and student-owned dogs with no apparent disease. The 

samples were divided into a training set and a test set. The training set included dogs in 

one of four categories (“osteosarcoma”, “other neoplasia”, “non-neoplasia”, and 

“healthy” (dogs with no apparent disease)). Osteosarcoma dogs had a primary tumor of 

bone and were treatment naïve (Table S1). The test set included samples from dogs 

with osteosarcoma, after treatment (n=24; Table S2). Blood was collected into 

vacutainer tubes that were centrifuged at 3,000 x g for 15 minutes. Aliquots of serum or 

plasma were transferred to 1.5 ml microcentrifuge tubes and stored at -80°C until 

analysis. All treatment decisions were at the discretion of the attending clinician. All 

procedures were approved by the Institutional Animal Care and Use Committees of The 

University of Minnesota under protocols 0802A27363, 1101A94713, 1312-31131A, 

1504-32486A, 1702-34548A, 1803-35759A, and 2003-37952A and The Ohio State 

University 2010A0015-R2 and 2018A00000100. Exosomes were precipitated from 

canine serum or plasma samples using ExoQuick serum reagent (SBI, Palo Alto, CA, 

catalog #EXOQ5A-1) according to the manufacturer’s instructions. Additional steps 

were included for plasma samples: 10µl of thrombin (SBI, Palo Alto, CA, catalog 

#TMEXO-1) was added for each 1ml of plasma. The sample was then mixed at room 

temperature for 5 minutes, followed by centrifugation at 10,000 rpm for 5 minutes. The 

supernatant was transferred to a new microcentrifuge tube, and the volume recovered 

was noted. Plasma and serum samples were subsequently treated the same. Briefly, 

the sample was mixed with ExoQuick reagent at a volume of 252µl ExoQuick per 1ml of 

serum. The mixture was incubated for 30 minutes at 4°C, followed by centrifugation at 

1,500 x g for 30 minutes to precipitate exosomes. The resulting supernatant was 

removed and discarded, and the tubes were centrifuged for an additional 5 minutes at 

1,500 x g to remove any remaining supernatant. Exosomal RNA was extracted using 

the mirVana miRNA Isolation Kit (Ambion, Thermo Fisher Scientific, Waltham, MA), 

according to the manufacturer’s instructions. Elimination of genomic DNA and reverse 

transcription were both carried out using QuantiTect Reverse Transcription Kit (Qiagen, 
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Valencia, CA). Real-time quantitative reverse transcriptase PCR (qRT-PCR) was 

performed on a LIGHTCYCLER 96 (Roche, Indianapolis, IN) with FastStart SYBR 

Universal Green Master Mix (Roche, Indianapolis, IN) Protocol. GAPDH was used as 

the reference standard for normalization (14) and relative levels of steady state mRNA 

were established using the comparative [delta]Ct method. The relationship between 

RNA-sequencing data and qRT-PCR values for the transcripts of interest were analyzed 

using Pearson’s correlation. 

 

Machine learning. Gene expression data from samples of dogs with “no apparent 

disease” (Healthy, n=13), non-neoplastic/benign conditions treated with surgery 

(diseases other than cancer; n=10), osteosarcoma (n=27), and other neoplasia (non-

osteosarcoma cancers; n=2)) pre-treatment samples (52 total) normalized to GAPDH 

(as internal control) were used to train and build different machine learning models. The 

normalized data were further transformed using three-component linear discriminant 

analysis (LDA). Different machine learning algorithms were then tested and compared 

to identify the top-performing predictive models that fit well with our data, including 

Logistic Regression (LR), Linear Discriminant Analysis (LDA), k-Nearest Neighbors 

(KNN), Decision Tree (CART), Gaussian Naïve Bayes (NB), Support Vector Machine 

(SVM), Bagging (BAG), Random Forest (RF), Extra Trees (EXT), Adaptive Boosting 

(ADA), Stochastic Gradient Boosting (SGB), Neural Network (NN), Ridge regression 

(RGD), and Stochastic Gradient Descent (SGD) classifiers Scikit-learn Python package 

(http://scikit-learn.sourceforge.net) (14). For training and optimization, the training 

dataset was randomly split into training and validation sets using k-fold cross-validations 

with sample stratification (when possible). k-fold cross-validation randomly splits data 

into k groups, where k - 1 groups were used for training and one remaining group was 

used for validation; repeated for k times with each of k validation sets being used only 

once. The k-fold cross-validation was then repeated and averaged across 100 iterations 

with random shuffling in between to ensure performance stability across multiple tests. 

For this study, a 10-fold cross-validation was used. Top models with the best averaged 

sensitivity and specificity were chosen for further optimization and testing. The 

sensitivity was calculated based on the ratio of True Positives / (True Positives + False 
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Negatives) and the specificity was the ratio of True Negatives / (True Negatives + False 

Positives) (19). True positives were defined as the classification accuracy for 

osteosarcoma and true negatives were defined as the classified accuracy of non-

osteosarcoma. Predictive power was also estimated for the final top-performing models 

based on their positive (PPV) and negative (NPV) predictive values. The PPV was the 

ratio of True Positives / (True Positives + False Positives) and NPV was the ratio of 

True Negatives / (True Negatives + False Negatives) (19). Data from the unknown 

samples (post-treatment osteosarcoma subjects) were transformed based on the fitted 

training set and classified using the top trained learning models. Results from the 

prediction calls were further tested against survival data of the post-treatment 

osteosarcoma subjects over time as a means for detecting residual disease.  

 

Post-treatment osteosarcoma samples that were classified as “osteosarcoma” by all of 

the selected top machine learning models (either most accurate or most sensitive) were 

considered to be “osteosarcoma-detectable”. Post-treatment osteosarcoma samples 

that received another classification by one or more of the top models were considered 

to be “osteosarcoma-NOT detectable”. Kaplan-Meier survival analysis was performed 

using R packages survival (v3.27) and survminer (v0.48). A log-rank (Mantel-Cox) test 

was used to compare event-free survival times between dogs whose post-treatment 

samples were considered “osteosarcoma-detectable” and dogs whose post-treatment 

samples were considered “osteosarcoma-NOT detectable”.  

 

Results 

 

Exosome production by osteosarcoma cells is positively correlated with tumor 

aggressiveness. Previous studies have documented a quantitative relationship 

between tumor aggressiveness and the amount of exosomes produced (11). To 

investigate this in the context of osteosarcoma, the presence of tetraspanins CD9 and 

CD63, both of which are enriched in microvesicles, was quantified in 80 human 
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osteosarcoma samples using immunohistochemistry (IHC) (Figs. S1A-B). The data 

show that stage-III tumors stained more robustly for both CD9 and CD63 than stage-I or 

stage-II tumors (Figs. S1A-B), suggesting that a positive relationship between total 

detectable exosomes or exosomal protein and tumor stage also exists in osteosarcoma. 

To further delineate the functional involvement of exosomes in the progression of 

osteosarcoma, we sought to use a more tractable in vivo model system for exosome 

biomarker discovery. Given the molecular and biological similarities between human 

and canine osteosarcomas (20, 21), a spontaneous canine model was used for our 

studies. Our immediate next experiments, shown in the supplementary information, 

were thus devoted to characterizing canine osteosarcoma-derived exosomes and to 

confirm their conserved roles in the biology of the disease (6, 7). We first validated 

exosome production by canine osteosarcoma cell lines using immunofluorescence (IF). 

Previous experiments show that the biologic behavior of the primary tumors was 

conserved in the cell lines, with OSCA-40 being more aggressive (12, 17). Fig. S2 

shows positive staining for CD81, CD63 and CD9 in secreted microvesicles from 

OSCA-40 and OSCA-32 canine osteosarcoma cell lines (Fig. S3B, and data not 

shown), indicating conservation of tetraspanins in extracellular vesicles, most likely 

representing exosomes, from humans and dogs.  

 

To confirm the physical properties of canine osteosarcoma-derived extracellular 

vesicles as exosomes, and to validate their enrichment from cell lines and from serum, 

we utilized scanning electron microscopy (SEM), NanoSight particle tracking analysis, 

and immunoblotting (Figs. S3A-C and Fig. S4). SEM showed spherical microvesicles 
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between 100 and 200 nm in diameter; this size and shape was consistent with that 

predicted for exosomes (Fig. S3A). Additionally, immunoblotting showed enrichment of 

CD63 and depletion of β-actin in the osteosarcoma cell line-derived exosomes relative 

to the whole cell lysates (Fig. S3B). Finally, nanoparticle tracking analysis showed that 

the mean vesicle size ranged from 149 nm – 180 nm with a mode of 117 nm – 132 nm, 

(Fig. S3C). This range is similar to the microvesicle size determined by SEM and is also 

consistent with the expected size of exosomes (22-29). We also confirmed that 

exosomes enriched from serum samples of a dog with osteosarcoma and a dog with no 

evidence of disease were comparable in size to cell line-derived exosomes, as 

determined by SEM (Fig. S4). In all, these findings support the methodology used for 

exosome enrichment from cell lines and from serum samples. 

 

Osteosarcoma-derived exosomes can be internalized by stromal cells to 

modulate gene expression and induce invasive cell behavior. The high propensity 

for distant metastatic growth in both human osteosarcoma patients and dogs with 

osteosarcoma has been well documented and is a key factor in survival rates (1, 2, 30). 

The importance of exosomes in promoting a pre-metastatic niche has been 

characterized in pancreatic cancer (31, 32) as well as melanoma (33). However, the 

ability of osteosarcoma exosomes to influence the complex cascade of events that 

occurs during metastasis, particularly their impact on stromal cells within the 

microenvironment, has not been fully addressed. The importance of cancer-associated 

fibroblasts and endothelial cells in tumor progression have been well described (34), 

making them a useful model system to investigate exosome internalization and 
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influence on cell behavior. Ascertainment that secreted tumor-derived exosomes can be 

taken up by stromal cells in the organ that is the major target of metastasis requires a 

method to track tumor specific exosomes. This was accomplished by transfecting 

canine osteosarcoma cells with CD81 linked to a green fluorescent protein (GFP) tag.  

 

Expression of the fusion protein in transfected OSCA-40 cells, and its incorporation into 

secreted microvesicles, were visualized using IF microscopy (Fig. S5A). Lung stromal 

fibroblasts and lung endothelial cells were selected as the most relevant target cells for 

analysis. Figs. S5B-E show that GFP-positive osteosarcoma-derived exosomes were 

internalized by human pulmonary fibroblasts or human pulmonary endothelial cells 

within 6 to 8 hr, with nearly 100% of the target cells showing GFP expression by 24 hr.  

The effect of internalized exosomes on the behavior of stromal fibroblasts and 

endothelial cells was addressed using cell migration and proliferation assays. A scratch-

filling assay was performed to determine the migration activity of human pulmonary 

fibroblasts and endothelial cells following addition of osteosarcoma exosomes. An 

increase in cell number as well as target cell migration following addition of exosomes 

was apparent, with a more pronounced effect on proliferation (Figs. S6 A-B). To 

address the underlying mechanisms for these changes, we used a bead array to 

interrogate how osteosarcoma-derived exosomes altered gene expression in human 

pulmonary fibroblasts. The use of canine exosomes, human target cells, and a human-

specific bead array diminished the potential that we would detect canine mRNAs carried 

in the exosomes. The data show altered expression of genes mediating cell adhesion 

and motility, and inflammation (Figure S6C).  
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Serum-derived exosomal canine gene signatures identified in mouse xenografts 

are associated with osteosarcoma. The in vitro data suggested that exosomes 

influence the tumor microenvironment; however, it remained unclear if these studies are 

directly translatable to in vivo studies where tumor cells maintain a series of complex 

relationships within their local environment. To address the concerns of in vitro 

translatability, a previously described orthotopic xenograft mouse model was utilized 

(12, 17). Briefly, we established xenografts in nude mice using two canine 

osteosarcoma cell lines with different metastatic propensities, collected serum 

exosomes from these mice and from sham-treated controls (injected intratibially with 

PBS) and performed next-generation sequencing to characterize the full complement of 

exosomal mRNAs derived from the tumors, as well as from the host response (12). 

Predictably, no xenograft (canine) mRNAs were detectable in sera from the mice prior 

to tumor implantation, but canine mRNAs were readily apparent in sera from mice with 

established tumors (Fig. 1A). Interestingly, the exosomal transcripts identified in 

cultured canine osteosarcoma cells showed only minimal overlap (1.4%) with the 

exosomal transcripts derived from the same canine cell lines when they formed tumors 

in vivo (data not shown), suggesting that the microenvironment is a major factor 

influencing exosome loading. Further analysis identified groups of canine exosomal 

mRNAs with correlation scores >0.8 that were part of canonical signaling pathways 

including cell death, cell signaling, metabolism, and immune response. Changes in the 

mRNA content of host exosomes were also detectable. Thirty-eight differentially 

expressed mouse mRNAs were identified in exosomes from animals bearing xenografts 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.429432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.429432
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

when compared to the sham-treated controls (Fig. 1B). These mRNAs were primarily 

associated with immune signaling and cellular metabolism (Fig. 1C), but a network of 

host mRNAs converging on TP53 was also enriched in exosomes from the tumor-

bearing mice (Fig. S7), suggesting that the implanted osteosarcomas created a strong 

stress response in the host.  

 

A five-gene “osteosarcoma-detectable” signature predicts the presence of 

minimal residual disease in dogs with osteosarcoma after treatment. The absence 

of biomarkers to guide treatment is a major obstacle that has hindered progress in 

osteosarcoma therapy for dogs and humans alike. We believe that clusters of co-

expressed exosomal mRNAs could provide such as biomarkers, independent of their 

biological function. Twenty-five canine mRNAs were reproducibly identifiable and highly 

expressed in tumor-derived serum exosomes (i.e., were always present in sera from 

mice with canine osteosarcoma tumors, but not in sera from sham-treated mice, Fig. 

1A). To build a diagnostic biomarker set, we narrowed the list to the 10 mRNAs with the 

highest expression, with low inter-sample variation. Five of the 10 mRNAs, representing 

transcripts from the SKA2, NEU1, PAF1, PSMG2, and NOB1 genes were determined to 

be suitable candidates for the biomarker set by virtue of being detectable in serum 

exosomes derived from dogs with osteosarcoma.  

 

“In-species validation” was done by evaluating abundance of these five exosomal 

mRNAs in 80 archival serum and/or plasma samples from 53 dogs divided into four 

groups. The clinical characteristics of enrolled dogs are shown in Supplemental Table 
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S1. Serum or plasma samples were included as available in sample archives, and 

plasma samples were treated with the addition of thrombin to precipitate clotting factors; 

thereafter the samples were treated similarly, as detailed in the methods. Serum and 

plasma samples were available for simultaneous testing in a limited number of cases, 

and the results were concordant. The first group consisted of 28 samples from dogs 

with osteosarcoma. Of these, 26 included serum or plasma collected prior to and at 

various time points after treatment (amputation +/- chemotherapy) ranging from 2 to 984 

days (median = 37), one only included serum collected before treatment, and one only 

included serum collected after treatment. The second group consisted of 10 samples 

from dogs that had been diagnosed with non-neoplastic diseases. The third group 

consisted of two samples from dogs with intramedullary soft tissue sarcomas 

(metastatic carcinoma and hemangiosarcoma, the latter of which had pre- and post-

treatment samples). And the fourth group consisted of 13 samples from dogs with no 

apparent disease, included as unaffected controls (henceforth referred to as “healthy”) 

(Table S1).  

 

Figs. S8A-E show the relative abundance of each of the five mRNAs in the biomarker 

set, measured by qRT-PCR, in serum exosomes from each subgroup of dogs; Fig. S8F 

shows the relative contribution of each of these mRNAs based on the F-values from the 

analysis of variance (ANOVA) as applied to the machine learning training algorithms 

described below.  
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We used 53 samples that included those from “healthy” dogs, dogs with non-neoplastic 

diseases (“non-neoplasia”), dogs with intramedullary soft tissue sarcomas (“other 

neoplasia”) and dogs with osteosarcoma prior to treatment (“pre-treatment 

osteosarcoma”) as a training set to build machine learning models to identify dogs 

where osteosarcoma was present, and to distinguish osteosarcoma from the other 

conditions under test. Stratified 10-fold cross-validation analysis of the training set was 

performed across 14 different machine learning algorithms based on the five-gene 

features combined with 3-component LDA-transformation, and repeated for 100 

iterations with shuffling in between (Fig. 2). The top-performing models based on 

sensitivity and specificity were k-nearest neighbors (KNN), bagging (BAG), random 

forest (RF), and extra trees (EXT) classifiers (Fig. 2, red dashed boxes). The three most 

sensitive models were logistic regression (LR), linear discriminant analysis (LDA), and 

ridge (RDG) classifiers (Fig. 2, blue dashed boxes). The mean sensitivity (the prediction 

accuracy for “osteosarcoma”) for the top-performing models ranged from 72 – 82%, 

while the mean specificity (“non-osteosarcoma”) was between 44% and 51%. The lower 

specificity was largely due to poor classification of “non-neoplasia” and “other neoplasia” 

groups as compared to “healthy” and “osteosarcoma” (Fig. S9). When the prediction for 

“healthy” (i.e., dogs with no apparent disease) was analyzed independently, the mean 

specificity was indeed higher at around 60% for the top four models (Fig. S9A), while 

the prediction accuracy for “non-neoplasia” and “other neoplasia” were only between 0 

and 2% (Fig. S9B). While the mean specificities for the most sensitive models (LR, 

LDA, and RDG) were below 25%, their mean sensitivities were ≥ 89%. To show that the 

results were dependent on the relevant groups in the training set, group assignments 
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were randomized. The machine learning performance was greatly affected following 

data randomization, showing a significant reduction in both sensitivity and specificity 

(Fig. S10). 

 

The top-performing algorithms were chosen based on their sensitivity and specificity 

values for further validation (Fig. 3). The chosen top four algorithms (KNN, RF, BAG, 

and EXT) were then retested individually, by the Majority Rule voting approach, and by 

all-or-none calling method using 10-fold cross-validation with 10 randomized iterations 

and summarized based on their predidictive power, shown was positive (PPV) and 

negative (NPV) predictive values for (Fig. 3A). LR, LDA, and RDG were chosen as the 

three most sentitive alogorithms and retested for their predictive power (Fig. 3B). We 

then utilized the post-treatment osteosarcoma samples (n=24; Table S2) to evaluate the 

ability of the “osteosarcoma-detectable” signature to predict the presence of minimal 

residual disease after treatment, and its relationship to event-free survival outcomes 

(i.e., duration of remission, Table S2). The data were analyzed to form Kaplan-Meier 

survival curves based on using the top-four performing algorithms and the three most 

sensitive algorithms (Figs. 4A-B). For this analysis, post-treatment osteosarcoma 

samples that were classified as “osteosarcoma” by all four models (either best 

performing based on sensitivity and specificity (Fig. 2, red dashed lines) or most 

sensitive (Fig. 2, blue dashed lines)) were considered to be “osteosarcoma – 

detectable”, and post-treatment osteosarcoma samples that received another 

classification by one or more of the four models were considered to be “osteosarcoma – 

NOT detectable”. Event-free survival (time to disease progression) was then compared 
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between dogs whose post-treatment samples were considered “osteosarcoma - 

detectable” and dogs whose post-treatment samples were considered “osteosarcoma – 

NOT detectable”. Fig. 4A shows that, using the top-four performing models, dogs with 

post-treatment samples predicted as “osteosarcoma - NOT detectable” had extended 

event-free survivals (median disease free interval of 371.1 days) compared to dogs with 

post-treatment samples predicted as “osteosarcoma-detectable” (median disease free 

interval of 149.0 days). The hazard ratio of “NOT detectable” versus “detectable” at 15 

months was 2.252, p = 0.1675 (CI: 0.8557 – 5.927). Fig, 4B shows that, using the top-

three most sensitive models, dogs with post-treatment samples predicted as 

“osteosarcoma - NOT detectable” had extended event-free survivals (median disease 

free interval of 722 days) compared to dogs with post-treatment samples predicted as 

“osteosarcoma-detectable” (median disease free interval of 215 days). The hazard ratio 

at 15 months of “NOT detectable” versus “detectable” was 3.066, p = 0.0398 (CI: 1.054 

– 8.922). 

 

Discussion 

 

Non-invasive tests that inform prognosis and longitudinal remission status remain a 

persistent unmet need for patients with osteosarcoma. In this study, we identified a 

gene signature associated with prognosis in canine osteosarcoma using a novel 

xenograft model and bioinformatics pipeline (12). We identified a 5-gene exosomal 

biomarker signature that was associated with prognosis following treatment in dogs with 

osteosarcoma, likely due to the presence of microscopic metastatic disease. The data 
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demonstrate the robustness of our novel xenograft and bioinformatics platform to 

identify biomarkers for biologically or prognostically significant conditions.  

 

Osteosarcoma, the most common primary tumor of bone, exhibits heterogeneous 

biological behavior (3-5); some tumors are extremely aggressive and unlikely to 

respond to conventional approaches, whereas others have more variable outcomes and 

may not require as aggressive treatment protocols. However, stratifying tumors based 

on aggressiveness is challenging in the clinical setting without suitable biomarkers. 

Previously identified transcriptional programs that predict tumor behavior and inform 

prognosis for osteosarcoma patients include the gene cluster expression summary 

score, or GCESS (3, 35). The GCESS methodology overcomes the challenge of tumor 

heterogeneity by identifying coordinately regulated transcripts that provide a cleaner 

signal, resulting in a biomarker set with greater sensitivity and specificity than that 

afforded by single biomarkers. However, the GCESS technique requires invasive tissue 

biopsies (17), so it has not been widely adopted in practice; additionally, its utility to 

monitor minimal residual disease is unknown. Therefore, non-invasive tests that inform 

prognosis and longitudinal remission status remain a persistent unmet need for patients 

with osteosarcoma. Development of a prognostic test could allow for patient 

stratification and development of improved personalized approaches in future clinical 

research, so that treatment plans minimize risk and maximize benefit, ultimately aiding 

in the development of new therapies optimized for relative risk. 
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Extracellular vesicles, specifically exosomes, have great potential to be powerful 

diagnostic tools. In particular, they are stable in biological fluids, can be efficiently 

isolated, and contain cargo that is significantly associated with different disease states 

(9-11). The discovery of exosomes and their role in transferring genetic information 

between cells has sparked interest in utilizing these extracellular vesicles in the 

discovery of key genes promoting tumor progression (32, 33, 36-38). However, the 

identification of cargo originating from diseased cells (the “signal”) from the background 

of normal exosomes (the “noise”) is still a major obstacle that precludes wide use of 

exosomes in clinical laboratory medicine. Even in the case of cancer where tumor cells 

release more exosomes than normal cells, the number of exosomes produced by the 

tumor is dwarfed by the exosomes produced by the patient’s normal cells, masking all 

but the strongest tumor-derived exosome signals. Therefore, additional steps, such as 

sorting by flow cytometry or immunomagnetic enrichment with antibodies or tumor 

markers, are often undertaken to enrich specifically for cancer-associated exosomes 

(39, 40).  

 

The discovery platform described herein, utilizing canine osteosarcoma as an example, 

allows virtually complete separation of tumor-derived exosomal mRNA cargo and 

normal cell-derived exosomal mRNA cargo using osteosarcoma xenograft models and 

an innovative bioinformatics pipeline. Essentially, the mouse model filters the “noise” 

from the system and helps define tumor and host responses individually. The data from 

the xenograft models suggest that osteosarcoma-derived exosomes modify the 

metastatic niche, and host-derived exosomes create a window to understand the host 
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response to the presence of tumors. Utilizing this platform, we developed a 5-gene 

signature associated with “presence of canine osteosarcoma,” which was further 

validated in the relevant target species (dogs). The role that these mRNAs play in 

exosome biosynthesis or in intercellular communication is unclear. It is possible that 

when exosomes are taken up by cells at distant sites, these mRNAs could be translated 

in the target cells and contribute to molding the metastatic niche, potentially by immune 

modulation (41, 42). On the other hand, they might represent mRNAs that are 

eliminated from the tumor cells via exosomes because they are toxic when present in 

high abundance. Nevertheless, we determined that these five mRNAs would provide the 

foundation for an “osteosarcoma-detectable” signature that would be diagnostically 

useful. We decided to test the hypothesis that the “osteosarcoma-detectable” signature 

could be used in a machine learning environment to establish the presence of 

microscopic, minimal residual disease in dogs with osteosarcoma after surgery +/- 

chemotherapy. Specifically, machine learning was applied to post-treatment serum 

samples obtained from dogs with osteosarcoma as a test-set for detection of minimal 

residual disease following treatment. The “osteosarcoma – not detectable” group had 

extended event-free survivals compared with the “osteosarcoma – detectable” group 

using either the top-performing or the most sensitive models, suggesting that the test 

was able to detect the presence of osteosarcoma cells (i.e., minimal residual disease) to 

prognosticate survival after initial treatment. Additional variables with the potential to 

introduce bias (including random assignment of samples to groups) were compared, 

and none generated a signature that resulted in robust cross validation after training.  
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We hypothesize that dogs where the “osteosarcoma-detectable” signature was present 

after treatment had a shorter event-free survival due to the presence of minimal residual 

disease. Additional work is needed to validate the gene signature in an independent set 

of canine osteosarcoma serum samples. However, the ability to detect minimal residual 

disease using this signature suggests that it will have utility in the clinical setting for 

determining prognosis after treatment. This biomarker could be applied after surgery 

and/or the first round of conventional chemotherapy to guide the subsequent treatment 

of dogs with osteosarcoma and to alter the course of therapy as needed.  

 

In conclusion, our data support the application of a novel platform consisting of an 

osteosarcoma xenograft model and bioinformatics pipeline, for discovery of 

prognostically significant, species-specific mRNAs. Moreover, our results document the 

utility of machine learning algorithms to enhance applicability of these mRNAs to 

address medical unmet needs, such as sensitive detection of minimal residual disease. 

Specifically, for this study we identified and validated a 5-gene signature associated 

with the presence of osteosarcoma in dogs. We further determined that this 5-gene 

signature obtained from serum exosomes, without the need for more invasive testing, 

was associated with prognosis, presumably due to the detection of minimal residual 

disease in dogs with osteosarcoma following treatment. This exosomal 5-gene 

signature could be applied to clinical veterinary practice and a comparable signature 

uncovered using our platform could be investigated in human osteosarcoma. Species-

appropriate signatures would allow for stratification of dogs and humans with 
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osteosarcoma to minimize risk and maximize benefit of treatment, ultimately aiding in 

the development of novel therapies.  

 

 

Acknowledgments 

 

The authors would like to thank Mitzi Lewellen for assistance with the mouse work, 

Aaron Sarver and Don Bellgrau for manuscript review and discussion, Brenda Weigel, 

Mike Farrar, Daniel Vallera, Shruthi Naik, and Steven J. Russell for assistance with 

funding, and M. Gerard O’Sullivan and Ingrid Cornax for their assistance with mouse 

pathology. Additionally, we would like to thank Jong-Hyuk Kim, Ashley Schulte, Taylor 

DePauw, and Erin Dickerson for laboratory support and discussion, Jonah Cullen for 

assistance with figures, and Dayane Alcantara for technical assistance. Finally, we 

thank Dr. Holly Borghese of the OSU CVM Veterinary Biospecimen Repository and Blue 

Buffalo Veterinary Clinical Trials Office (BBVCTO) and Kathleen M. Stuebner, Sara 

Pracht, Kelly Bergsrud, Andrea Chehadeh, Amber Winter, and Donna Groschen of the 

Clinical Investigation Center (CIC) of the University of Minnesota for their expertise in 

sample procurement. 

 

References 
1. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates 
from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results 
Program. Cancer. 2009;115(7):1531-43. 
2. Allison DC, Carney SC, Ahlmann ER, Hendifar A, Chawla S, Fedenko A, et al. A 
meta-analysis of osteosarcoma outcomes in the modern medical era. Sarcoma. 
2012;2012:704872. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.429432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.429432
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

3. Scott MC, Temiz NA, Sarver AE, LaRue RS, Rathe SK, Varshney J, et al. 
Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, 
Metastatic Progression, and Survival in Osteosarcoma. Cancer Res. 2018;78(2):326-37. 
4. Sarver AL, Thayanithy V, Scott MC, Cleton-Jansen AM, Hogendoorn PC, 
Modiano JF, et al. MicroRNAs at the human 14q32 locus have prognostic significance in 
osteosarcoma. Orphanet J Rare Dis. 2013;8:7. 
5. Scott MC, Sarver AL, Gavin KJ, Thayanithy V, Getzy DM, Newman RA, et al. 
Molecular subtypes of osteosarcoma identified by reducing tumor heterogeneity through 
an interspecies comparative approach. Bone. 2011;49(3):356-67. 
6. Chicon-Bosch M, Tirado OM. Exosomes in Bone Sarcomas: Key Players in 
Metastasis. Cells. 2020;9(1). 
7. Wolf-Dennen K, Kleinerman ES. Exosomes: Dynamic Mediators of Extracellular 
Communication in the Tumor Microenvironment. Adv Exp Med Biol. 2020;1258:189-97. 
8. Ruivo CF, Adem B, Silva M, Melo SA. The Biology of Cancer Exosomes: Insights 
and New Perspectives. Cancer Res. 2017;77(23):6480-8. 
9. Guo L, Guo N. Exosomes: Potent regulators of tumor malignancy and potential 
bio-tools in clinical application. Crit Rev Oncol Hematol. 2015;95(3):346-58. 
10. Jia S, Zocco D, Samuels ML, Chou MF, Chammas R, Skog J, et al. Emerging 
technologies in extracellular vesicle-based molecular diagnostics. Expert Rev Mol 
Diagn. 2014;14(3):307-21. 
11. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 
2016;126(4):1208-15. 
12. Scott MC, Tomiyasu H, Garbe JR, Cornax I, Amaya C, O'Sullivan MG, et al. 
Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity 
and biological behavior. Dis Model Mech. 2016;9(12):1435-44. 
13. Scott M, Garbe, JR & Modiano, JF. Identifying presence and composition of cell-
free nucleic acids. . Patent application. 2016;(Regents of the University of Minnesota 
(Minneapolis, MN, US) USA  
14. Yamini B, VanDenBrink PL, Refsal KR. Ovarian steroid cell tumor resembling 
luteoma associated with hyperadrenocorticism (Cushing's disease) in a dog. Vet Pathol. 
1997;34(1):57-60. 
15. Mather Q, Priego J, Ward K, Kundan V, Tran D, Dwivedi A, et al. A novel protein 
expression signature differentiates benign lipomas from well-differentiated 
liposarcomas. Mol Clin Oncol. 2017;7(3):315-21. 
16. Modiano JF, Mayor J, Ball C, Fuentes MK, Linthicum DS. CDK4 expression and 
activity are required for cytokine responsiveness in T cells. J Immunol. 
2000;165(12):6693-702. 
17. Scott MC, Sarver AL, Tomiyasu H, Cornax I, Van Etten J, Varshney J, et al. 
Aberrant Retinoblastoma (RB)-E2F Transcriptional Regulation Defines Molecular 
Phenotypes of Osteosarcoma. J Biol Chem. 2015;290(47):28070-83. 
18. GeneCopoeia Lentivirus Protocol 2018 [Available from: 
https://www.genecopoeia.com/wp-content/uploads/2018/03/Lentivirus-protocol-
GeneCopoeia.pdf. 
19. Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and 
using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(1):45-
50. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.429432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.429432
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

20. Makielski KM, Mills LJ, Sarver AL, Henson MS, Spector LG, Naik S, et al. Risk 
Factors for Development of Canine and Human Osteosarcoma: A Comparative Review. 
Vet Sci. 2019;6(2). 
21. Fenger JM, London CA, Kisseberth WC. Canine osteosarcoma: a naturally 
occurring disease to inform pediatric oncology. ILAR J. 2014;55(1):69-85. 
22. Ludwig N, Whiteside TL, Reichert TE. Challenges in Exosome Isolation and 
Analysis in Health and Disease. Int J Mol Sci. 2019;20(19). 
23. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M, et al. 
Characterisation of exosomes derived from human cells by nanoparticle tracking 
analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 
2011;87(1):146-50. 
24. Slomka A, Urban SK, Lukacs-Kornek V, Zekanowska E, Kornek M. Large 
Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol. 
2018;9:2723. 
25. Ricklefs FL, Maire CL, Reimer R, Duhrsen L, Kolbe K, Holz M, et al. Imaging flow 
cytometry facilitates multiparametric characterization of extracellular vesicles in 
malignant brain tumours. J Extracell Vesicles. 2019;8(1):1588555. 
26. Banfai K, Garai K, Ernszt D, Pongracz JE, Kvell K. Transgenic Exosomes for 
Thymus Regeneration. Front Immunol. 2019;10:862. 
27. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. 
Proteomic comparison defines novel markers to characterize heterogeneous 
populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 
2016;113(8):E968-77. 
28. Li N, Huang Z, Zhang X, Song X, Xiao Y. Reflecting Size Differences of 
Exosomes by Using the Combination of Membrane-Targeting Viscosity Probe and 
Fluorescence Lifetime Imaging Microscopy. Anal Chem. 2019;91(23):15308-16. 
29. Liu F, Vermesh O, Mani V, Ge TJ, Madsen SJ, Sabour A, et al. The Exosome 
Total Isolation Chip. ACS Nano. 2017;11(11):10712-23. 
30. Jeffree GM, Price CH, Sissons HA. The metastatic patterns of osteosarcoma. Br 
J Cancer. 1975;32(1):87-107. 
31. Jung T, Castellana D, Klingbeil P, Cuesta Hernandez I, Vitacolonna M, Orlicky 
DJ, et al. CD44v6 dependence of premetastatic niche preparation by exosomes. 
Neoplasia. 2009;11(10):1093-105. 
32. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. 
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell 
Biol. 2015;17(6):816-26. 
33. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, 
et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-
metastatic phenotype through MET. Nat Med. 2012;18(6):883-91. 
34. Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative 
Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front 
Oncol. 2019;9:1185. 
35. Lesluyes T, Delespaul L, Coindre JM, Chibon F. The CINSARC signature as a 
prognostic marker for clinical outcome in multiple neoplasms. Sci Rep. 2017;7(1):5480. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.429432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.429432
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

36. Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer 
exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. 
Cancer Cell. 2014;26(5):707-21. 
37. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence 
for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J 
Cell Biol. 1985;101(3):942-8. 
38. Garnica TK, Lesbon JCC, Avila A, Rochetti AL, Matiz ORS, Ribeiro RCS, et al. 
Liquid biopsy based on small extracellular vesicles predicts chemotherapy response of 
canine multicentric lymphomas. Sci Rep. 2020;10(1):20371. 
39. Theodoraki MN, Hoffmann TK, Whiteside TL. Separation of plasma-derived 
exosomes into CD3((+)) and CD3((-)) fractions allows for association of immune cell 
and tumour cell markers with disease activity in HNSCC patients. Clin Exp Immunol. 
2018;192(3):271-83. 
40. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. 
Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 
2015;523(7559):177-82. 
41. Troyer RM, Ruby CE, Goodall CP, Yang L, Maier CS, Albarqi HA, et al. 
Exosomes from Osteosarcoma and normal osteoblast differ in proteomic cargo and 
immunomodulatory effects on T cells. Exp Cell Res. 2017;358(2):369-76. 
42. Pu F, Chen F, Zhang Z, Liu J, Shao Z. Information Transfer and Biological 
Significance of Neoplastic Exosomes in the Tumor Microenvironment of Osteosarcoma. 
Onco Targets Ther. 2020;13:8931-40. 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.429432doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.429432
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure legends 
 
Figure 1. Detecting biomarkers of disease and host response. Heatmap of 25 
differentially expressed dog transcripts (A) and 38 differentially expressed mouse 
transcripts (B) identified by statistical testing with ‘DESeq2’. Colored toe bars represent 
the different experimental samples. Asterisks in (A) indicate the genes incorporated into 
the osteosarcoma gene signature. The color coded (red to blue) scale represents +/- 
change gene expression. (C) Pathways identified by Ingenuity® Pathway Analysis as 
being associated with differentially expressed host (mouse) genes.  
 
Figure 2. Machine learning model comparison based on repeated stratified 10-fold 
cross-validation analysis of the LDA-transformed training set. Boxplot of machine 
learning performance across different models tested shown as sensitivity and specificity 
based on 100 repeated 10-fold cross-validation. Red dashed boxes indicate the top four 
models with the highest performance, and blue dashed boxes indicate the top three 
most sensitive models. Sensitivity: proportion of selecting true osteosarcoma; 
specificity: proportion of selecting non-osteosarcoma (Healthy, Other neoplasia, and 
Non-neoplasia).  
 
Figure 3. Positive predictive value and negative predictive values. Positive predictive 
(PPV) and negative predictive (NPV) values (shown as %) based on 10 iterations of 
shuffled 10-fold cross-validation for (A) the top four learning models (KNN, BAG, RF, 
and EXT) and (B) the three most sensitive models (LR, LDA, and RDG). PPV and NPV 
are also shown for a combined prediction of the top four models shown in A based on 
the Majority Rule voting (VOTE) and by all-or-none prediction, where Osteosarcoma is 
called only if agreed by all models (ALL), otherwise the prediction is called as non-
Osteosarcoma. 
 
Figure 4. Machine learning models predict presence minimal residual disease in canine 
osteosarcoma. Post-treatment samples (test set) from dogs with osteosarcoma (n=24) 
were classified as “osteosarcoma – detectable” or “osteosarcoma – not detectable” 
based on predictions from (A) the four best performing machine learning models (KNN, 
BAG, RF, and EXT), or (B) the three most sensitive machine learning models (LR, LDA, 
RDG). Kaplan-Meier survival curves demonstrating time to relapse for subset of dogs 
with osteosarcoma with available survival data, comparing those whose post-treatment 
samples were classified as “osteosarcoma – detectable” with those whose post-
treatment samples were classified as “osteosarcoma – not detectable”, (A) p = 0.1001; 
(B) p = 0.0398.  
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Figure 1. Detecting biomarkers of disease 
and host response. Heatmap of 25 
differentially expressed dog transcripts (A) 
and 38 differentially expressed mouse 
transcripts (B) identified by statistical 
testing with ‘DESeq2’. Colored toe bars 
represent the different experimental 
samples. Asterisks indicate the genes 
incorporated into the osteosarcoma gene 
signature. The color coded (red to blue) 
scale represents +/- change gene 
expression. (C) Pathways identified by 
Ingenuity® Pathway Analysis as being 
associated with differentially expressed 
host (mouse) genes. 
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Figure 2 

Figure 2. Machine learning models comparison based on repeated stratified 10-fold cross-validation 
analysis of the LDA-transformed training set. Boxplot of machine learning performance across different 
models tested shown as sensitivity and specificity based on 100 repeated 10-fold cross-validation. Red 
dashed boxes indicate the top four models with the highest performance, and blue dashed boxes indicate 
the top three most sensitive models. Sensitivity: proportion of selecting true osteosarcoma; specificity: 
proportion of selecting non-osteosarcoma (Healthy, Other neoplasia, and Non-neoplasia). 
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Figure 3. Positive predictive value and negative predictive values. Positive predictive (PPV) and negative 
predictive (NPV) values (shown as %) based on 10 iterations of shuffled 10-fold cross-validation for (A) the top 
four learning models (KNN, BAG, RF, and EXT) and (B) the three most sensitive models (LR, LDA, and RDG). 
PPV and NPV are also shown for a combined prediction of the top four models shown in A based on the Majority 
Rule voting (VOTE) and by all-or-none prediction, where Osteosarcoma is called only if agreed by all models 
(ALL), otherwise the prediction is called as non-Osteosarcoma.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Machine learning models predict presence minimal residual disease in canine osteosarcoma. Post-
treatment samples (test set) from dogs with osteosarcoma (n=24) were classified as “osteosarcoma – detectable” or 
“osteosarcoma – not detectable” based on predictions from (A) the four best performing machine learning models 
(KNN, BAG, RF, and EXT), or (B) the three most sensitive machine learning models (LR, LDA, RDG). Kaplan-Meier 
survival curves demonstrating time to relapse for subset of dogs with osteosarcoma with available survival data, 
comparing those whose post-treatment samples were classified as “osteosarcoma – detectable” with those whose 
post-treatment samples were classified as “osteosarcoma – not detectable”, (A) p = 0.1001; (B) p = 0.0398. 
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