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Abstract

The morphology of breast cancer cells is often used as an indicator of tumour severity and prognosis.
Additionally, morphology can be used to identify more fine-grained, molecular developments within a
cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface be-
tween morphology and signaling is important to understand the mechanical cues that a cell processes
in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the
exact regulatory systems that define these changes remain poorly characterised. In this study, we em-
ploy a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow
allows the discovery of unbiased and context-specific gene expression signatures and cell signaling sub-
networks relevant to the regulation of cell shape, rather than focusing on the identification of previously
known, but not always representative, pathways. By constructing a cell-shape signaling network from
shape-correlated gene expression modules and their upstream regulators, we found central roles for
developmental pathways such as WNT and Notch as well as evidence for the fine control of NFkB sig-
naling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a
gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of
mechanical stimuli and regulation of NFkB activity, with specific relevance to cell shape in breast cancer.

Introduction

The study of cancer has long been associated with changes in cell shape asmorphology can be a reliable
way to sub-type cancer and predict patient prognosis [1]. Recent research has implicated cellular mor-
phology in more than just a prognostic role in cancer, with shape affecting tumour progression through
the modulation of migration, invasion and overall tissue structure [2][3]. The unique mechanical prop-
erties of the tumour tissue (primarily driven by changes in cell shape and the extracellular matrix) are
hypothesised to contribute to the ‘stem cell niche’ of cancer cells that enables them to self-renew as they
do in embryonic development [4]. Cell morphology and tumour organisation have been found to be a fac-
tor in modulating the intra-cellular signaling state through pathways able to integrate mechanical stimuli
from the extracellular environment [5][6][7][8]. The discovery of mechanosensitive pathways in various
tissues has revealed a complex interplay between cell morphology and signaling [9]. Further studies
have revealed that cell morphology can also be a predictor of tumorigenic and metastatic potential as
certain nuclear and cytoplasmic features enhance cell motility and spread to secondary sites [1], aided
by the Epithelial to Mesenchymal Transition (EMT). This process is the conversion of epithelial cells to a
mesenchymal phenotype, which contributes tometastasis in cancer andworse prognosis in patients [10].

Breast cancer is the most common cancer among women, and in most cases treatable with a survival
rate of 99% among patients with a locally contained tumour. However, among those patients presenting
with a metastatic tumour this rate drops to 27% [11]. During the development of breast cancer tumours,
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cells undergo progressive transcriptional and morphological changes that can ultimately lead towards
EMT and subsequent metastasis [12][13][1]. Breast cancer sub-types of distinct shapes show differing
capacities to undergo this transition. For example, long and protrusive basal breast cancer cell lines are
more susceptible to EMT [14] with fewer cell-to-cell contacts [15]. Luminal tumour subtypes on the other
hand, are associated with good to intermediate outcomes for patients [15] and have a clear epithelial (or
‘cobblestone’) morphology with increased cell-cell contacts [16]. It is evident that cell morphology plays
significant roles in breast cancer and a deeper understanding of the underlying mechanisms may offer
possibilities for employing thesemorphology determinant pathways as potential therapeutic targets and
predictors of prognosis.

Signaling and transcriptomic programs are known to be modulated by external physical cues in the
contexts of embryonic development [17], stem-cell maintenance [18][19] and angiogenesis [20]. Numer-
ous studies have flagged NFkB as a focal point for mechano-transductive pathways in various contents
[21][22][23][24], but gaps in our knowledge remain as to how these pathways may interact and affect
breast cancer development. Sero and colleagues studied the link between cell shape in breast cancer and
NFkB activation by combining high-throughput image analysis of breast cancer cell lines with network
modelling [25]. They found a relationship between cell shape, mechanical stimuli and cellular responses
to NFkB and hypothesised that this generated a negative feedback loop, where a mesenchymal-related
morphology enables a cell to become more susceptible to EMT, thus reinforcing their metastatic fate.
This analysis was extended by [26], who combined cell shape features collected from image analysis
with microarray expression data for breast cancer cell lines to create a shape-gene interaction network
that better delineated the nature of NFkB regulation by cell shape in breast cancer. This approach was
limited as it only correlates single genes with cell shapes, thus relying on the assumption that a gene’s
expression is always a useful indicator of its activity [27]. Furthermore, the authors rely on a list of pre-
selected transcription factors of interest and as such the approach is not completely data-driven and
hypothesis free. Given our knowledge of the multitude of complex interacting signaling pathways in de-
velopment and other contexts, it is safe to assume that there are many more players in the regulation of
cancer cell morphology that have yet to be delineated [28][29][30][31]. Furthermore, how exactly extra-
cellular mechanical cues are ‘sensed’ by the cell and passed on to NFkB in breast cancer is not clearly
understood. From this it is clear that an unbiased approach is needed to identify novel roles for proteins
in the interaction between cell shape and signaling.

Here we identify a data-derived cellular signaling network, specific to the regulation of cell shape be-
yond NFkB, by considering functional co-expression modules and cell signaling processes rather than
individual genes. To this end, we have developed a powerful network-based approach to bridge the gap
between widely available and cheap expression data, signaling events and large-scale biological pheno-
types such as cell shape (Figure 1A). By organizing expression data into context-specific modules we
leverage the transcriptome’s propensity to be regulated in regulons, thereby aiding the inference of sig-
naling activity. This, combined with the use of feature-correlated modules, allows for the analysis of
complex phenotypes, defined by multiple features. The resulting signaling network was validated using
data from cell treatments with kinase inhibitors [32] and revealed further regulation of NFkB’s utility in
modulating mechanotransduction in response to morphological changes in breast cancer.

Results

Identification of gene co-expression modules correlated with cell shape features

We first sought to identify gene expression modules (GEMs) that are relevant to the regulation of cell
shape. To this end, we usedWeighted Gene Correlation Network Analysis (WGCNA) [33] on bulk RNA-seq
expression data from13breast cancer andone non-tumorigenic epithelial breast cell lines to identify gene
co-expression modules correlated with 10 specific cell shape variables [26] (Methods). These described
the size, perimeter and texture of the cell and the nucleus (n = 75,653). Of 102 GEMs (Figure S1A), 34 were
significantly correlated (P<0.05; Student’s T-test, Pearson Correlation; Supplementary Table 1) with one
of 8 cell shape features (Figure 1B). A full list of the genes within the identified modules are summarized
in Supplementary Table 2.
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Figure 1: A. Schematic illustrating the steps involved in phenotype-specific network construction. Gene expression
modules are identified by integrating cell shape variables (derived from imaging data) with RNAseq data from breast
cancer cell lines. These gene expression modules are correlated with specific cell shape features to find morpho-
logically relevant modules. Next, transcription factors (TFs) are identified whose targets significantly overlap with
the contents of the expression modules. These TFs are used to identify pathways regulating the gene expression
modules, which are then integrated to form a contiguous network using PCSF. B.Heatmap of significantly correlated
gene expression module eigengenes with cell shape features. Non-significant interactions were set to 0 for clarity.
C. Dot plot illustrating the enrichment of pathways among TFs found to regulate gene expression modules. The x
axis shows the module names (as defined by Supplementary Table 3) and the y axis shows the signaling pathways
found to be significantly (P<0.01) enriched in the TFs that regulate the given module (as defined by Supplementary
Table 5). The y axis is arranged such that the terms with the highest combined odds ratio are at the bottom. Size of
the dot represents the -log10(P) and the colour indicates a log 10 transformation of the odds ratio.
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We used EnrichR and their suite of gene set libraries [34] to functionally annotate and label some of the
modules using enrichment of genes contained within them. We found that the ‘RAP1 signaling’ module
is also enriched for terms such as VEGF signaling and hemostasis, while the ‘Insulin Signaling’ module
is also enriched for cell-cell communication and the ‘ECM organisation’ module is also enriched in terms
such as axon guidance and EPH-Ephrin signaling (Supplementary Table 3). Modules that are most corre-
latedwith all features are the ‘ARNTKO’module, ‘ARRDC3AS1’module and the ‘ECMorganisation’module
(see Figure S1B). Modules that could not be annotated with informative terms were designated ‘module
non-annotated (NA) 1, 2, 3 etc.

Transcription factor analysis of cell shape gene co-expression modules reveals the
signaling pathways that regulate them

To link these expression modules to the intra-cellular signaling network, we considered both the regu-
lation of modules as transcriptional units as well as the signaling pathways that significantly regulate
the identified regulons. Specifically, we first found 17 transcription factor (TF) regulons, as defined in the
database TRRUST v2 [35], to be significantly enriched (P<0.1; Fisher’s exact test) in our modules (Supple-
mentary Table 4). We therefore consider these TFs as potentially relevant for the regulation of cell shape
features and their activity levels as a read-out of cell signaling activity in these cells. These TFs include
the EMT antagonist FOXA1 [36], and HOXB7 [37] and ZFP36 [38].

To extend this further, we sought to investigate the pathways responsible for regulating the identified
TFs, and by extension the gene expression modules. For this analysis, we also include ENCODE and
ChEA Consensus TFs fromChIP-X [39],DNA binding preferences from JASPAR[40][41], TF protein-protein
interactions and TFs from ENCODE ChiP-Seq [42] to get a more comprehensive picture of the pathways
involved in regulation of cell morphology. Using the identified TFs (Supplementary Table 5) we then
used EnrichR [34] to perform a Reactome signaling pathway [43] enrichment analysis. Results from this
analysis showed that many identified gene expression modules were regulated by common signaling
pathways, with 6 modules sharing pathways associated with downstream signaling and regulation of
NOTCH (Figure 1C). In order to ensure that our approach is not biased to any particular pathway, we re-
peated our approach on 1,000 resampled GEMs, and created pathway-specific null distributions for each
identified pathway. All pathways we identified from morphology-correlated modules had significantly
lower p-values than randomised modules (FDR adjusted P<0.05). The only exceptions were one associ-
ation with “Signaling by NOTCH” andmodules associated with “Signal Transduction”, a spurious pathway
containing the complete intra-cellular signaling system (Supplementary Table 6).

Clustering based on morphology reveals distinctive cell-line shapes

To understand key differences in expression patterns and gene regulation between morphologically dis-
tinct breast cancer cell lines, we clustered them based on 10morphological features including area, ruffli-
ness, protrusion area and neighbour frequency and performed differential expression analysis between
the identified clusters (Figure 2A). Cluster A ismore heterogeneous in itsmorphology, containing the non-
tumorigenicmammary epithelial cell lineMCF-10A aswell as cell lines fromboth luminal and basal breast
cancer subtypes. Clusters B and C are more distinctly shaped, roughly composed of luminal and basal
cell lines respectively with the exception of HCC1954, which was clustered morphologically with lumi-
nal subtypes while being characterised as basal. The basal-like cluster is most morphologically distinct
from cluster A, but also differs from the luminal-like cluster in that it has a lower nuclear/cytoplasmic area
(0.133 ± 0.05 [mean ± SD]), higher ruffliness (0.235 ± 0.12) and lower neighbour fraction (0.258 ± 0.22).
The luminal-like cluster had a higher nuclear/cytoplasmic area (0.186 ± 0.1; P<0.001), lower ruffliness
(0.213 ± 0.14; P<0.001), and a higher neighbour fraction (0.338 ± 0.26; P<0.001, One-way ANOVA; Tukey
HS, n = 75,653). The neighbour fraction feature corresponds to the fraction of the cell membrane that
is in contact with neighbouring cells. The lower number of cell-cell contacts in basal-like breast cancer
cell lines are indicative of more mesenchymal features associated with worse prognosis due to metas-
tasis. Increased cell-cell contacts in both the luminal-like cluster and the more heterogeneous cluster A
correspond to ‘cobblestone’ epithelial morphology. Interestingly, these groups are closely aligned with
the expression of the cell adhesion protein, N-cadherin (Figure 2A), the expression for which is closely
associated with a migratory and metastatic phenotype [44]. Representative images of the morphologi-
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cally clustered cell lines are shown along with the clustering heatmap in Figure 2A (complete dataset of
images provided online; https://datadryad.org/stash/dataset/doi:10.5061/dryad.tc5g4).
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Figure 2: A. Heatmap of Euclidean distance between cell lines for shape features to illustrate clusters arising from
k-means method. The coloured lines on the bottom show the assigned cluster and the cadherin expression and
assigned canonical cancer subtype. B. Dotplot showing the enrichment of gene expression modules in the different
cell line clusters. Along the y axis are the names of the clusters, faceted by whether they are included in the PCSF
derived regulatory network on the bottom and whether they are correlated with cell shape variables, but not included
in the network on the top. The x axis shows the cell shape clusters, with letters corresponding to the groups in Figure
2A (A - a heterogeneous mix of breast cancer subtypes, B - luminal-like cell lines and C - basal-like cell lines.). Dots
are coloured based on the normalised enrichment value, with down-regulated modules in blue, and the up-regulated
modules in yellow. Size corresponds to significance (-log10(P)) with the shape illustrating which changes are signif-
icant (adjusted P<0.01, Benjamini-Hochberg). C. Images (see Methods) showing morphology of representative cell
lines from each respective cluster.Colours indicate labeling with DAPI (blue), Alexa 488 (green) and DHE (red).

Using the identified groups of cell lines in the previous step, differential expression analysis and tran-
scription factor activity analysis was used to study gene regulation signatures specific to cell line mor-
phological clusters. The results are shown in Supplementary Table 7, with gene set enrichment analysis
showing upregulation of genes involved in the extracellular matrix, collagens, integrins and angiogenesis
in the basal-like cluster. Significantly enriched terms (P<0.05) in downregulated genes include ‘fatty acid
and beta-oxidation’ and ‘ERBB network pathway’. In the genes upregulated in the luminal-like cluster, we
observed enrichment of terms such as ‘hallmark-oxidative phosphorylation’. Downregulated genes were
enriched in ‘integrin-1 pathway’, ‘core matrisome’ and genes linked to ‘hallmark epithelial-mesenchymal
transition and migration’. For the remaining B/L group, the term with the highest normalized enrichment
score was ‘targets of the transcription factor Myc’ followed by terms associated with ribosomal RNA
processing. Down-regulated terms include ‘cadherin signaling pathway’ (Supplementary Table 7).

We also calculated the differential expression for the WGCNA gene expression modules and found dis-
tinct patterns of expression between luminal-like and basal-like clusters of cell lines (Figure 2B). Among
these, the RAP1 Signaling module is upregulated in basal-like clusters and downregulated in luminal-like
clusters. This is consistent with the fact that this gene expression module is negatively correlated with
neighbour fraction, a feature that is observed to decrease in mesenchymal-like cell shapes [15]. Other
modules whose expression distinguishes basal-like from luminal-like include the MAL2-AS1 module (en-
riched in desmosome assembly), ARNT/KOmodule (enriched in TNF-signaling by NFkB) and ECM organ-
isation module (enriched in focal adhesion proteins - see Supplementary Table 3).
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To link the observed gene expression differences to cell signaling we used the tool DOROTHEA [45] to
calculate transcription factor activities, as theirmodulation is one of themain results of cell signaling pro-
cesses. We corroborated that the heterogenous B/L group had significantly activated Myc levels. In the
luminal-like cluster, ESRRA (estrogen-related receptor α) is the most significantly overrepresented reg-
ulome, followed by EHF, KLF5 and ZEB2. Under-represented regulomes include KLF4, SMAD4, SMAD2,
SOX2 and RUNX2. For the basal-like cluster, the regulome with the highest normalised enrichment score
is SOX2, as well as Musculin and HOXA9. Downregulated regulomes include ZEB2, Myc, ESRRA and
KLF5 (Figure S2D).

Assembly of a data-driven cell shape regulatory network

In order to integrate our data-driven GEMs with signaling pathways, we used the Prize Collecting Steiner
Forest (PCSF) algorithm [46]. This is an approach that aims to maximise the collection of ’prizes’ as-
sociated with inclusion of relevant nodes, while minimizing the costs associated with edge-weights in
a network. This allowed for the integration of the WGCNA modules, the Reactome pathways that regu-
late them, the TRRUST transcription factors and the differentially expressed DOROTHEA regulons into a
contiguous regulatory network describing the interplay between cell shape and breast cancer signaling.
The network used for this process was extracted from the database OmniPath [47] to provide a map
of the intracellular signaling network described as a signed and directed graph. We incorporated iden-
tified GEMs into the network by interlinking them as nodes with the relevant TFs and signalling pathways.

The resulting network of 691 nodes included 97.11% of the genes identified by our analysis (Figure 3A).
The new proteins that were included by the PCSF algorithm to maximise prize collection showed gene
set enrichment of common terms (Pathways from Panther [48]) relative to the original prizes (including
WNT, EGF, Angiogenesis, Ras, Cadherin and TGF-β pathways), but also included are some new terms
(VEGF, Integrin and Endothelin pathways) (P<0.001; Figure 3B).
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Figure 3: A.Network derived from integrating enriched pathways and transcription factor regulons within cell shape
correlated gene expression modules. Below is a word cloud illustrating the top 50 nodes with highest betweenness
centrality in the network, with those nodes belonging to the original seeds coloured black, and those genes included
by the PCSF step coloured light blue. The size of the word in the word cloud corresponds to the nodes with the
highest betweenness centrality. B. Gene set enrichment (Panther DB 2016) of original seed nodes and the nodes
included by PCSF with the dot size indicating the level of significance (-Log10P) of the term enrichment. Blue nodes
represent enrichments from proteins that where used as inputs for the PCSF algorithm and red nodes are those that
were included because of it. Inset is a Venn diagram showing the overlap in enriched terms between the seed nodes
and the terms included by PCSF.

Studying the network properties of our PCSF-derived regulatory network we find that the degree distri-
bution is typical for a biological network (Figures S3A-C). The proteins in the network can be ranked by
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betweenness centrality to disseminate them based on network importance. Nodes with high centrality
lie between many paths and can control information flow. Proteins with the highest centrality are primar-
ily prizes (GSK3b, ESR1, p53, SMAD3 - Figure S3D) indicating that the PCSF solution was not achieved
by the inclusion of new hub proteins that are not of interest to our analysis. That being said, a small
minority of high centrality nodes were not in the original prizes, implicating them as mediating the cross
talk between pathways identified in figure 1C. These include the proteins PAX7, PTEN and PPARGC1a.

Small-molecule inhibitors targeting kinases in our network significantly perturb cell
morphology

To validate our network, we used an independent dataset to evaluate whether perturbing the function of
kinases within our predicted network would produce a significant effect on morphological features. For
this, we used the Broad Institute’s Library of Integrated Network-based Cellular Signatures (LINCS) small
molecule kinase inhibitor dataset [32]. Here, they measured morphological changes in the breast cancer
cell line HS578T in response to various small molecule kinase inhibitors using high through-put imag-
ing techniques [49]. The morphological variables measured in this data-set are mostly analogous to the
ones used to construct the network, however there are some discrepancies which we used as negative
controls to ensure our network was phenotype-specific.

We combined this with data from a target affinity assay [50] describing the binding affinities of small
molecules to kinases. This enabled us to sort the kinase inhibitors into those that target proteins we
predict regulate cell shape (through their inclusion in the PCSF derived network) and those that do not.
Figure 4A illustrates that there is a statistically significant (n = 37, Wald test P<0.05) deviation from the
control between drug treatments targeting kinaseswithin the predicted network and those targeting other
proteins for cytoplasmic area, cytoplasmic perimeter, nucleus area, nucleus length, nucleus width and
nucleus perimeter. This difference is insignificant for features that were not correlated with gene ex-
pression modules in our initial analysis (such as number of small spots in the cytoplasm and nucleus,
and nuclear compactness), indicating that our network is phenotype-specific to the features used in net-
work generation. We also repeated this analysis in other cell lines (SKBR3, MCF7 and non-tumorigenic
mammary cell line MCF10A) with results with limited statistical significance (Supplementary table 8).
We additionally used a positive control where the control cells had been treated with TRAIL (TNF-related
apoptosis-inducing ligand) in order to ensure that the observed morphological effects were not caused
by apoptotic factors (S4B, Supplementary Table 8).

Interestingly, there is greater variance in the effect size for kinase inhibitors targeting proteins contained
within the predicted regulatory network than those outside. The individual effect on cell morphology for
each drug is shown in S4A-B. We hypothesised that it was the network properties of kinases within our
network that dictated their effect on morphological features, with some targets being on the periphery
of our predicted network and therefore having limited influence over the regulation of cell shape. To test
this, we studied the extent to which the effect of a kinase inhibitor was correlated with the combined
centrality of its targets as defined by our network. For this we used the centrality algorithm PageRank
(Brin and Page, 1998) and accounted for off-target effects of the kinase inhibitors using the Szymkiewicz-
Simpson index (describing the overlap of a kinase inhibitor’s targets and the proteins that constitute the
network - Methods).

Figure 4B shows moderate correlations between target centrality and the effect size for each feature, il-
lustrating that kinase inhibitors targeting proteins with high centrality in our network modulate cell shape
more than inhibitors with peripheral targets. As with studying the effect of targeting kinases contained
within our network versus those outside of it, this correlation is higher among morphological variables
that are the same or similar to those cell shape features correlated with gene expression modules used
to construct the network. The correlation between combined centrality and drug absolute effect on cell
area (n=37) wasmoderate but significant for cytoplasm area, cytoplasm perimeter, nucleus area, nucleus
length, nucleus half-width and nucleus perimeter (with Spearman correlation coefficient between 0.34 -
0.37 for all of them, with P<0.05). This correlation in change in morphological features with the centrality
of the targeted kinases illustrates the relevance of our constructed network in regulating cell shape. For
variables that were not correlated to any gene expression module, we see visibly lower correlation coef-
ficients and insignificant associations (Spearman correlation coefficients of 0.05 - 0.29, P>0.05). These
results illustrate that the topology of our network explains some of the variation in the effect of kinase

7

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 18, 2021. ; https://doi.org/10.1101/2021.02.11.430597doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430597
http://creativecommons.org/licenses/by/4.0/


inhibitors tested, in a manner that is feature specific to the ones that were used to construct the network
model.
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Figure 4: A. Box plots showing the absolute log(10) fold changes after treatment with a drug relative to a control
for each cell shape variable. The drugs are grouped depending on whether they target kinases within the predicted
regulatory network (blue) and those targeting other kinases not predicted to be associated with cell shape (red). P
values (Welch Two Sample t-test) are showing with stars indicating significance. B. Bar plot showing the absolute
difference in log fold changes of cell shape variables after treatment with a drug relative to a control. Here, each
drug is shown separately (with the LINCs ID shown on the x axis) and coloured based on the drug influence score
(DIS) and each data-point represents a single cell. Inset are plots showing the correlation between this influence
score and the difference between mean treated cells and mean control cells in each of the 10 measured cell shape
features for each drug. Spearman correlation coefficients are shown above the inset plots.

Network propagation of activated TFs reveals differentially activated processes in the
cell shape regulatory network

As transcription factor activity remains themost reliable indicator of signaling that can be extracted from
transcriptomics data [51]we applied network propagation to identify sub-networks and nodes of which
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differentially regulated transcription factors have an effect. The algorithm Random Walk with Restart
(RWR [52]) was used to diffuse from activated and inactivated transcription factors in our network re-
flected by the normalized enrichment scores of transcription factors identified by DOROTHEA [45] (Figure
5A & B; Supplementary Table 9; Methods).
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Figure 5: Bar plot showing network propagation in predicted cell shape network from activated and inactivated
transcription factors in basal-like cell lines (A) and luminal (B). The y axis is a steady state probability (or the ‘heat’
of the nodes in the network after the diffusion) over the graph imposed by the starting seeds, ordered by size. Red
bars represent propagation from transcription factor seeds that are predicted to be in-activated, and blue bars show
propagation from transcription factor seeds that are predicted to be activated. Red stars along the x axis indicate su-
pernodes that represent gene expressionmodules. Only those nodes with combined probability > 0.0001 are shown,
with the full results available in Supplementary Table 9. (C.) Sub-networks illustrating the paths between activated
transcription factors (in basal-like and luminal-like) and the ‘RAP1 signaling’ gene expression module. Transcription
factors are shown as diamond-shaped nodes, with their colour representing their activity. The ‘RAP1 signaling’ gene
expression module is shown as a grey rectangle. Signaling proteins are shown as black nodes.

The most relevant super-node in both luminal and basal diffusions was the gene expression module,
RAP1 Signaling, a module which is correlated with several cell shape variables (neighbour frequency, ruf-
fliness, nuclear by cytosolic area and cell width to length) and is enriched inmembers of themechanosen-
sitive RAP1 signaling pathway. By performing RWR diffusions on each of the seed nodes separately (Fig-
ure S5A-B)we can see that the source of thismodule’s probability is from the transcription factors JARID2
and RUNX2 in luminal-like cell lines, and JARID2 for basal-like. However, the transcription factors KLF5
and ESRRA in both morphological subtypes also contribute to the ranking of RAP1 signaling, via GSK3B
and DVL1 (Figure 5C).
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Specific proteins that were top ranked after performing the network propagation in basal-like cell lines
include the orphan nuclear receptor NR0B2. Individual RWR found 3 seed transcription factors respon-
sible for this node’s high probability: AR, ESRRA and NR1H3. Other proteins flagged by the propagation
were SMAD4, which is regulated by TGF-β, IKBKB, which is an activator of NFkB and YAP1. For luminal-
like cell lines, NR0B2 is also significantly ranked from the network propagation (as a result of ESRRA
activity) as well as transcriptional co-activator PPARGC1A and CREBBP.

RAP1 gene expression module correlates with known morphologically-relevant TFs
in both cell culture and clinical samples

To explore the significance of the RAP1 gene expression module in breast cancer we measured its activ-
ity (Methods) in 78 BRCA cell lines. This enabled the correlation of its combined activity with the activity
of known transcription factors predicted by DOROTHEA [53] (Figure S6). We find that RAP1 GEM activity
was significantly correlated (Kendall; P<0.01, FDR adjusted) with the activity of 19 TFs. Among these are
RUNX2 (consistent with the results from our network propagation), TEAD1 (TF mediating the function of
YAP1/TAZ) and NFkB. We also correlated transcription factor activity using the same method on tumour
samples extracted from TCGA (https://www.cancer.gov/tcga). Using this publicly available dataset, we
studied 1,090 BRCA tumours and performed differential expression on each sample. We found 40 TFs
significantly correlated (Kendall; P<0.01, FDR adjusted) with RAP1 GEM (Figure 6A-B). The intersection
of this analysis between in cell lines and the clinical data were the TFs: SP3, NFKB1, ZNF589, ZC3H8,
HIF1A, STAT1, ZNF584, ZNF175 and KLF5.

We studied the expression of the module in tumour samples and compared different groups of clini-
cally annotated morphological subtypes. The morphological subtype with the highest overall RAP1-GEM
activity was metaplastic carcinoma, a subtype characterised by poorly cohesive sheets [54] and a high
propensity to metastasize [55] (Figure 6C). This morphological subtype has a distribution significantly
greater (P < 0.005; Two sample Kolmogorov-Smirnov test) than the most frequently assigned morpho-
logical subtype (Infiltrating duct carcinoma, NOS). This subtype is a common and homogenous breast
cancer grouping characterised by its failure to exhibit morphological features that might allow it to be
classified as anything more specific [56].

Content of RAP1 GEM and its network-neighbourhood allow us to explore potential
signaling events relevant in the regulation of cell shape

To understand latent processes driven by components within our gene expression module, we also stud-
ied interactions between the gene ontology terms enriched within RAP1 GEM (Figure 6D). This revealed
that, as well as RAP1 signaling, the GEM is enriched in AGE-RAGE signaling pathway and HIF1 signaling
pathway (consistent with HIF1A’s activity correlating highly with RAP1 GEM in both cell line patient data).
HIF1 is known to be regulated by RAP1 [57], although not explicitly in breast cancer.

NFkB has been previously linked to the regulation of cell shape in breast cancer. To explore the inter-
face of RAP1 GEM with NFkB in terms of intra-cellular signaling, we identified a subnetwork of our net-
work responsible for mediating ‘information-flow’ between those two nodes, using the algorithm max-
imum flow (Figure 6E). By studying the flow of information from RAP1 signaling, we can see that a
LATS2/WWTR1/DVL1 (all of WNT signaling) lies between the target and source nodes with much of the
flow being carried via these edges. This implicates YAP1/TAZ as being a key effector of the identified
gene expression module. This finding is supported by TEAD1 (mediating gene expression of YAP1 and
WWTR1/TAZ) being among the most highly correlated of TFs with RAP1 GEM (Figure 6B and S6A).

Discussion

We present a method that uses transcriptomics and phenotypic data to derive a concise sub-network de-
scribing the signaling involved in the regulation of cell shape. This analysis recovered known processes
like ‘adherens junction proteins’, ‘cadherin’ [58]and ‘integrin’ [59] [60] as well as pathways responsible for
the regulation of cell shape in development, such as WNT [61][62], TGF-β [63] and NOTCH [64]. All of
these pathways have previously been linked to the development of metastatic phenotypes in breast can-
cer cells [65] [64] [66]. Importantly, this analysis also sheds light on processes with less characterised
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associations with cell shape in cancer. We found that a gene expressionmodule enriched in RAP1 signal-
ing, is significantly correlated with cell shape, and is the most differentially expressed module between
Luminal-like and Basal-like cell line clusters. We found that it was upregulated in basal-like cell lines while
downregulated in luminal, consistent with its negative correlation with neighbour fraction; a cell shape
feature most contributing to the ‘cobblestone’ like features of an epithelial and non-metastatic cell type.
This gene expression module was also an important node in our identified signaling network, being at
the network confluence of multiple activated transcription factors. We also showed this gene expression
module to be expressed in patient data, with its activity being correlated with known developmental and
morphologically related transcription factors, as well as those used to identify it in the network propaga-
tion analysis. In this way,our methodology uses cell line data for network construction and validation, but
through our network approach we focus in onmore general effects which can be tested and successfully
validated in a wider breast cancer clinical context. Hence, we believe these results to be relevant in more
general breast cancer applications, but are also sensitive to the inherent context-specificity that exists in
biology.

The name-sake of our identified module; RAP1 is a small GTPase in the Ras-related protein family that
has been shown to be involved in the regulation of cell adhesion andmigration [67][68]. Specifically, RAP1
has been shown to modulate and activate NFkB activity in response to TNF-α stimulation in mesenchy-
mal stem cells [69] and modulate migration and adhesion [70]. RAP1 is able to regulate IKKs (IB kinases)
in a spatio-temporal manner [71], and is crucial for IkBK to be able to phosphorylate NFkB subunit p65
to make it competent [72] Here, we used our network-centric methodology to highlight a transcriptomic
module, characterised in part by RAP1 signaling and that this is a key node in our phenotype-specific
signaling network. It is possible that our observations of the significance of RAP1 are as a result of more
‘direct’ interaction between RAP1 and the cytoskeleton. However, the transcriptomic module which we
observe accounts for a much larger system-wide rewiring than simply the modulation of cytoskeletal
proteins. This implies more complex transcriptional changes that are characteristic of a more robust
breast cancer niche.

The RAP1 signaling GEM identified in the network analysis represents a subset of the transcriptome
observable among our analysed cell lines. While it is enriched in RAP1 signaling, it is important to note
that it represents a collection of latent biological processes rather than a single pathway assigned to it
by gene set enrichment. From our network analysis we hypothesise that it is able to interact with intracel-
lular signaling pathways in order to modulate transcription factor activity and consequently cell shape.
Other pathways enriched in the expression module include HIF-1 signaling pathway, which is known to
be activated by RAP1 in melanoma [57], but this has not been shown in breast cancer. Also, AGE-RAGE
signaling was also enriched in our module of interest. AGE-RAGE signaling pathway has recently been
shown to overlap with RAP1 signaling pathway in cardiac fibroblasts to alter the expression of NFkB
[73], although this crosstalk has also not been illustrated in breast cancer. Here, we observe genes of
all these pathways functioning as a cohesive unit in breast cancer in a previously unobserved fashion.
Additionally, their combined expression correlates with morphological traits associated with a negative
prognosis.

We also observe that our gene expression module of interest is significantly correlated with NFkB in
both clinical samples and cell culture. Other authors have flagged the direct effect of RAP1 on the cy-
toskeleton and NFkB [74][69], but here we go further, using our unbiased systems approach to link RAP1
signaling with multiple transcription factors and pathways. Based on known functions of RAP1, along
with the functions of pathways that we find interact with it, we hypothesize that the identified transcrip-
tomic unit is key in relaying information from a cell’s physical environment to modulate and maintain the
cancer stem cell niche [75].

Previous studies have established a connection between the NFkB signaling pathway and regulation
of cell shape in breast cancer [26][25]. Our findings also illustrate the significance of this pathway in
the regulation of cell morphology, with multiple NFkB regulators and transcriptional co-activators being
flagged in our results. Somemorphology-correlated gene expressionmoduleswere significantly differen-
tially expressed between cell shape subtypeswith the ARNTKOmodule being significantly upregulated in
basal-like cell shapes relative to luminal. We also found this gene expression module to have the highest
total correlation with all of themorphological features, indicating a strong association with cell shape. By
studying terms enriched in this module from the EnrichR library, we find both ‘TNF-α signaling via NFkB’
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to be enriched as well as genes downregulated during AHR nuclear translocator (ARNT) shRNA KO. Sig-
naling by TNF is able to activate NFkB, a transcription factor known to control the expression of many
EMT related genes [76] which has shown to be more sensitive to TNF-a stimulation in mesenchymal-like
cellular morphologies than epithelial. This was hypothesised to generate a negative feedback which re-
inforces a metastatic phenotype of breast cancer cells [25]. Here we observe also that an ARNT KO/TNF
module is upregulated in basal-like cell lines, consistently with these findings. ARNT is a protein shown
to be involved in regulating tumour growth and angiogenesis along with its binding partner aryl hydrocar-
bon receptor (AHR) [77]. Previous studies have also shown its ability to modulate NFkB signaling with
the activated form possibly interfering with the action of activated p65 [78]. Our findings that the upreg-
ulation of a gene expression module that is associated with ARNT knockdown further gives credence
to NFkB being positively regulated in mesenchymal-like cell morphologies. Furthermore, the results of
our network propagation yielded activators and transcriptional coactivators of NFkB (IKBKB [72], NR0B2
[79] and CREBBP [80]. These findings indicate that NFkB is modulated by both phosphorylation (through
stimulation by TNFa), spatial-temporal location (through RAP1) and transcriptional co-activation (through
NR0B2 and CREBBP) in breast cancer in a shape-dependent manner.

Aside from the biological findings of this study, we illustrate an approach for network analysis of a spe-
cific course-grained phenotype through expression; a notoriously poor (if cheap and widely available)
proxy for gauging intracellular signaling [81]. In contrast to existing methods that use gene expression
as a direct proxy for signaling [82][83][84][85], our approach infers transcription factor activities from the
expression data and uses these as an anchor to infer upstream signaling networks relevant to the regula-
tion of our phenotypes. Transcription factor activities can represent the outcome of a signal transduction
process compared to the expression profiles and are thus a better proxy for cell signaling activities of
the cell [86]. Such an approach has been previously used, for example by the tool CARNIVAL [87]. How-
ever, this and other available tools neglect the propensity for the transcriptome to be regulated in a highly
context specific and modular structure [88][89]. Moreover, their reliance on annotated pathways to de-
scribe cell signalling undermines their ability to spot novel functional units, specific to a given phenotype.
Here, using context-specific gene expression modules, we produced a network connecting the genes of
interest from diverse analyses and used a network propagation algorithm to further focus on signaling
proteins of novel interest. While there inevitably remains a level of bias stemming from the transcription
factor regulon and pathway annotations, our bottom-up approach seeks to identify latent modular struc-
ture within transcriptomic data first. This puts the emphasis on data-driven gene expression modules,
rather than literature-derived regulons and pathways. This approach takes an important step towards
reducing the bias associated with previously annotated pathways and allows the identification of impor-
tant regulatory units and their function with respect to cell shape from a systems biology point of view.
Our network approach allows us to map the interface between two graphically presented systems in the
cell; the transcriptome and intracellular signaling. Both can be easily combined with complex, multivari-
ate phenotypic data which here has revealed a clearer picture of how signaling regulates cell morphology
in breast cancer.

The interoperability of this approach is obvious, with any number of continuous variables measured with
gene expression able to be correlated with module eigengenes using WGCNA. Here, we used OmniPath
as a base network, but other network-based representations of the cellular environment can be used
based on the appropriate context. Thus, our method represents a data-driven, network-based approach
compatible with many different multi-scale phenotypes that are driven by intracellular signaling.

Overall, our unbiased network-based method highlights potential ‘missing links’ between sensing ex-
tracellular cues and transcriptional programmes that help maintain the cancer stem cell niche, and ul-
timately push breast cancer cells into EMT and metastasis. These represent starting points for further
experimental studies to understand and therapeutically target the links between cell shape, cell signaling
and gene regulation in the context of breast cancer.

Materials and methods

WGCNA analysis

Using Weighted correlation network analysis, we performed co-expression module identification using
the R package WGCNA [33]. We used bulk RNA-seq data from Expression Atlas (in FPKM - E-MTAB-2770
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and E-MTAB-2706) acquired from commonly used cancer cell lines of various cancer types [90]. We
collated 13 breast cancer and 1 non-tumorigenic cell line for which imaging data was available (BT474,
CAMA1, T47D, ZR75.1, SKBR3, MCF7, HCC1143, HCC1954, HCC70, hs578T, JIMT1, MCF10A, MDAMB157
and MDAMB231 [25]. We acquired representative images of each cell line from Sero et al., 2015
(https://datadryad.org/stash/dataset/doi:10.5061/dryad.tc5g4). Cell imaging segmentationwasperformed
using Acapella software (PerkinElmer) with an automated spinning disk confocal microscope. The pre-
sented images (Figure 2) are taken from the above link, stained with DAPI (blue), Alexa 488 (green) and
DHE (red). Using Ensembl-Biomart, we filtered genes to only include protein-coding genes [91] and genes
whose FPKM was greater than 1, leaving a total of 15,304 genes.

We created a signed, weighted adjacency matrix using log2 transformed gene expression values and
a soft threshold power (α) of 9. We translated this adjacency matrix (defined by Eq.1) into a topological
overlap matrix (TOM; a measure of similarity) and the corresponding dissimilarity matrix (TOM - 1) was
used to identify modules of correlated gene expression (minimum module size of 30).

Eq .1a ij =(1 + cor(xi, xj))/2
β

We took morphological variables referring to breast cancer cell lines from Sero et al., 2015, which
include 10 significant features shown to be predictive of TF activation [25]. We correlated these features
with module eigengenes using Pearson correlation and we tested these values for significance by cal-
culating Student asymptotic p-values for given correlations. Multiple hypothesis testing was performed
using a permutation based procedure whereby we recalculated the correlation matrix 1,000 times with
resampled data. We then generated null distributions for each ranked correlation statistic in our matrix,
and compared them to our real data of the same rank. We include in the Supplementary Table 1 confi-
dence intervals of our permutation-basedmultiple-correction procedure. For themodules that correlated
with morphological features (Pearson Correlation Coefficient 0.5 and Student P<0.05), we identified en-
riched signaling pathways using the R package EnrichR [34], and the signaling database Reactome [43].
Using the database TRRUST v2 (Accessed : 01/07/18) [35], we identified TF regulons that significantly
overlap (Exact Fisher’s test, P<0.1) with the gene expression module contents. This was done separately
for inhibitory and activatory expression regulons for each transcription factor, with regulatory relation-
ships of unknown sign being used in the significance calculations for both.

We named gene expression clusters using significantly enriched terms identified by the EnrichR anal-
ysis (Supplementary Table 3). As some clusters were very obscure, we utilized the entire EnrichR list
of libraries (https://maayanlab.cloud/Enrichr/#stats for full list) with precedence going to the signaling
databases of KEGG, Reactome, Panther and Wikipathways (Accessed : 01/04/20) [92][93][48]. Some
modules could not be assigned informative terms and so were named ‘not annotated’ (NA).

Clustering and differential expression

Using the k-means algorithm, we classified the 14 breast cancer cell lines by the median values of each
of their shape features (k=3, see Figure S2A). We performed differential expression analysis using the
R package DESeq2 [94]. We filtered genes so that only protein coding genes and those with more than
0.5 counts per million in at least 8 cell lines were included. We calculated Log2 fold changes with the
cluster of interest as the numerator and the remaining cell lines acting as a control. Using the R package
FGSEA [95], we performed gene set enrichment analysis of the differentially regulated proteins using the
complete pathways gene set (Release 01 April 2020) fromMSigDB [96] and theWGCNA gene expression
modules identified in previous analysis. We calculated transcription factor regulon enrichment using the
software DOROTHEA (Accessed : 01/04/20) [53].

Network Generation

Using a Prize Collecting Steiner Forest (PCSF) algorithm, we generated a cell-shape regulatory network
implemented through the R package PCSF [46]. For the prize-carrying nodes to be collected by the PCSF
algorithm, we used the transcription factors significantly regulating the WGCNA modules using TRRUST
(p<0.1), the differentially activated transcription factors identified by DOROTHEA (p<0.1), and the signal-
ing proteins included in the REACTOME pathways that were enriched in transcription factors identified
(p<0.05). We identified these pathways by using the TRRUST TFs identified in the previous steps, as well
as ENCODE and ChEA Consensus TFs from ChIP-X [39], DNA binding preferences from JASPAR [40][41],
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TF protein-protein interactions and TFs from ENCODE ChiP-Seq [42]. Using EnrichR, we identified path-
ways that were enriched in the identified TFs, and the proteins that were included in these pathways
were extracted from Pathway Commons using the R package paxtoolsr [97]. This was tested for bias
to specific pathways by generating pathway-specific null distributions from 1,000 resampled GEMs. Dis-
tributions of p values for each Reactome pathway were generated, where failed tests (because of no
TF enrichment) were given a p-value of 1. Results of this were corrected for multiple-hypothesis testing
using FDR correction.

The ‘costs’ associatedwith each edge in the regulatory networkwere the inverse of the number of sources
linked to each regulatory connection scaled between 1 and 0, such that the more the number of citations
for an edge, the lower the cost. For the base network used by the algorithm, we used the comprehen-
sive biological prior knowledge database, Omnipath (Accessed : 06/05/20) [98], extracted using the R
package OmnipathR [47]. We set each prize for significant TFs or signaling pathways to 100 and used a
random variant of the PCSF algorithm with the result being the union of subnetworks obtained on each
run (30 iterations) after adding random noise to the edge costs each time (5%). The algorithm also in-
cludes a hub-penalisation parameter which we set to 0.005. Other parameters include the tuning of node
prices (set to 1) and the tuning of trees in the PCSF output (40).

We included the WGCNAmodules themselves as super-nodes in the network, by adding incoming edges
from the transcription factors contained within the regulatory network whose regulomes (as described in
TRRUST v2 [35]) significantly overlap (Fisher’s exact test; P<0.1) with the gene content of the module in
question. We represented the respective cell-shape phenotypes as nodes in a similar fashion, by includ-
ing undirected edges from expression modules and phenotypes where there was significant correlation
(|PCC| > 0.5 & P<0.05) between them. To account for expression modules’ effect on upstream signaling,
we added edges from theWGCNAmodules back up to proteins that were themselves included within the
modules. We set the edge weight of these to 1, such that any predicted activity of the gene expression
module would be translated directly into its constituent signaling proteins and thus account for feedback
between cell shape signaling networks, and the context-specific expressionmodules identified in the first
step. We identified enriched terms in the network using the 2016 release of the database Panther [48]
and GSE package EnrichR [34].

Network propagation of functional TFs

We examined the potential effect of significantly activated (FDR < 0.05), and deactivated TFs in different
cell line clusters using network propagation in our generated network. We replaced edge weight with
Resnik Best Match Average (BMA) semantic similarity [99] between the biological process GO terms of
the two interacting pairs, with the sign of the interaction being inherited from Omnipath [47]. We then
scaled the semantic similarity edge weights between 1 and -1.

We used the differentially activated transcription factors identified using DOROTHEA (P<0.05) as seeds
for a Random Walk with Restart (RWR) algorithm using the R package diffuseR (available at:
https://github.com/dirmeier/diffusr). We judged a node to be significantly ranked if its affinity score rela-
tive to the inputted seeds was greater than the same node’s affinity score with a randomwalk simulation
performed with randomised seeds. We performed this randomised simulation 10,000 times, from which
a p-value was determined to judge significance (P<0.1). We performed this propagation by RWR for both
luminal-like and basal-likemorphological clusters on significantly activated and deactivated transcription
factors separately, in addition to simulations where each seedwas considered in isolation. We generated
a graphical representation of the network edges and TFs responsible for the ranking of RAP1 signaling
by plotting all the shortest paths between RAP1 and the TFs that caused it to have a non-zero affinity
score when each TF was considered in isolation.

Breast cancer cell morphology following kinase inhibitor treatment

We used small molecule kinase inhibition data from Harvard Medical School (HMS) Library of Integrated
Network-based Cellular Signatures (LINCS) Center [100], which is funded by NIH grants U54 HG006097
and U54 HL127365 (available from: https://lincs.hms.harvard.edu/mills-unpubl-2015/, Accessed
: 01/08/20). This dataset is derived from the treatment of 6 cell lineswith a panel of 105 smallmolecule ki-
nase inhibitors. Theymeasured textural andmorphological variables following treatment by high through-
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put image analysis [49][101]. We combined this assay with another dataset from HMS-LINCS; a Tar-
get Affinity Spectrum (TAS) for compounds in the HMS-LINCS small molecule library measuring the
binding assertions based on dose-response affinity constants for particular kinase inhibitors (https://
lincs.hms.harvard.edu/db/datasets/20000/, Accessed : 01/08/20). Using this dataset, we filtered
for only molecule-binding target pairs with a binding class of 1 (representing a Kd <100nM affinity). Fur-
ther to this, we removed molecules which had more than 5 targets with a Kd of 100nM. Consequently,
the remaining kinase inhibitors were relatively narrow spectrum, thus simplifying analysis of their phe-
notypic effect. We expressed these results as batch-specific log fold changes of 10um drug treatment
relative to the mean of the control set (untreated and DMSO treated cells). Spearman rank correlation
was calculated between the drug target’s network centrality and the absolute log fold change of the mor-
phological variable. We also used the Kolmogorov-Smirnov statistic to assess significance between cell
morphology after treatment with drugs targeting kinases inside versus outside our predicted network.
This was also repeated on other breast cancer cell lines and using a TRAIL (apoptosis inducing) control
(Supplementary table 8).

Themorphological data in the kinase inhibition screenwasmeasured using two dyes (DRAQ5 andTMRE),
the intensity of which we used to normalise textural features and the measurement of cytoplasmic and
nuclear small spots. We reported counts for small nuclear or cytoplasmic spots as amean of the individ-
ually normalised readings from both dyes. We considered a treatment perturbing our network if at least
one of the kinase inhibitors targeted a protein that was represented by a node within the network.

Quantifying kinase inhibitor influence

We incorporate information from the Target Affinity Spectrum assay, as well as graph-based properties
of kinase inhibitor targets, using the product of the Szymkiewicz-Simpson similarity (measured between
the cell shape network nodes and the drug targets) and the centrality of the targeted nodes in the pre-
dicted network with semantic similarity edge weights. The product of these generates, for a given kinase
inhibitor the statistic:

Eq .2
∑

x∈K∩N
PR(x)× K ∩N

min(|K |, |N |)

Where K is the set of kinases an inhibitor is predicted to target, N is the nodes of the network and the
function PR() is the centrality of a particular node in the network as defined by the PageRank algorithm
[102]. This centrality measure has been shown to be effective in prioritizing proteins by relative impor-
tance in signaling or protein-protein interaction networks [103]. We used this statistic as a measure of a
kinase inhibitor’s influence on cell shape.

Analysis of BRCA cell line and TCGA sample RNAseq data

For the cell lines, we used RNA-seq data from Expression Atlas (in FPKM - E-MTAB-2770 and E-MTAB-
2706) [90]. This was analysed using DESeq2 [94] as per the methodology in the subsection entitled
“Clustering and differential expression”. Both TF and module activity was calculated using the algorithm
VIPER [104]. For patient data, the results shown here are based upon data generated by the The Cancer
Genome Atlas (TCGA) Research Network:https://www.cancer.gov/tcga, Accessed : 01/04/21. For com-
putational efficiency, we use Gamma-Poisson models to predict differentially expressed genes from our
samples using the package glmGamPoi [105]. We use the sample of interest as the numerator with the
remaining tumour samples acting as a control. For quantifying correlation between RAP1 - GEM and dif-
ferent transcription factors we remove samples with insignificant activation of either the TF in question
or RAP1-GEM (FDR adjusted P value < 0.05). Correlation was quantified using Kendall rank correlation co-
efficient. Differences in distributions of morphological subtypes was quantified by Kolmogorov-Smirnov
test.

Maximum-flow network analysis

For maximum-flow calculations, we used the Resnik BMA semantic similarity [99] as the maximum ‘car-
rying capacity’ of an edge in the network. To visualise the optimised solution (as implemented by the
R package igraph [106] we selected only those edges in the 99th percentile of the flow-carrying edges
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in the network. Visualisation was performed using the software, Cytoscape [107]. Maximum flow was
performed with the R package igraph [106].

Quantification and Statistical Analysis

Statistical tests were performed in base R unless otherwise mentioned in the methods and p-value cut-
offs are shown in parentheses after reporting an effect as significant. Weighted Pearson correlation with
t-test for significance was used to correlate eigengenes and cell shape features using the RNA package
WGCNA. We used a one-way ANOVA test for comparing the means of the shape variables among the
identified 3 cell line clusters (n = 75,653) and a Tukey honest significant differences test to perform
multiple-pairwise comparison among the means of the groups. The same tests were performed on the
differences in 10 cell shape variables when HS578T was treated with 37 kinase inhibitors (n = 23,128).
Fisher exact test was used to test significance of overlap between TRRUST regulons and identified gene
expression modules (Supplementary Table 4 shows the size of the overlap).

Enrichment of gene sets was performed by EnrichR, an enrichment library that utilises a hyper-geometric
test to identify significantly enriched terms in a gene list. This tool (described in [108] calculates a score
combining the Fisher exact test p-value of the enrichment with the z-score deviation from the expected
rank. The pre-ranked gene-set enrichment algorithm FGSEA was used for the identification of enriched
terms in the differentially expressed genes allowing for accurate estimation of arbitrarily low P-values
that occur in expression datasets.

Spearman rank correlation was used to measure the strength of the association between target net-
work centrality and the measured effect of its perturbation by inhibition. Spearman was chosen because
the centrality (combined with Szymkiewicz-Simpson) according to equation 2 does not follow an exact
normal distribution. Kendall rank correlation coefficient was used when calculating the correlation be-
tween TF activity and RAP1-GEM activity because confidence intervals for Spearman’s rS are less reliable
and less interpretable than confidence intervals for Kendall’s -parameters. When trying to distinguish be-
tween many correlations of similar quality, this becomes more important. FDR adjustment for multiple
testing correction was always used when multiple tests were performed in the same analysis.

Kolmogorov-Smirnov test was used to measure differences in distributions of clinically assigned tumour
morphologies. This was because clinical groupings are mixed (i.e. Infiltrating duct and lobular carci-
noma) and others are characterized by an absence of features over their presence. This means that the
assumption of normality required for a t-test is not fulfilled.

For differential expression analysis the DESeq2 R package [94] was used. DESeq2 fits negative binomial
generalized linear models for each gene and uses the Wald test for significance testing. The package
then automatically detects count outliers using Cooks’s distance and removes these genes from analy-
sis.

Significance was determined for RWR network propagation by randomising seed nodes (preserving their
values) 10,000 times and selecting only the non-seed nodes that were significantly ranked relative to the
randomised simulations (P<0.1).

Data and Software Availability

The complete R scripts used for this methodology are available on Gitlab; https://gitlab.ebi.ac.uk/
petsalakilab/phenotype_networks.
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