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Abstract 

Reinforcement learning, which implicates learning from the rewarding and punishing 

outcomes of our choices, is critical for adjusted behaviour. Acute stress seems to affect 

this ability but the neural mechanisms by which it disrupts this type of learning are still 

poorly understood. Here, we investigate whether and how acute stress blunts neural 

signalling of prediction errors during reinforcement learning using model-based 

functional magnetic resonance imaging. Male participants completed a well-established 

reinforcement learning task involving monetary gains and losses whilst under stress and 

control conditions. Acute stress impaired participants’ behavioural performance towards 

obtaining monetary gains, but not towards avoiding losses. Importantly, acute stress 

blunted signalling of prediction errors during gain and loss trials in the dorsal striatum 

— with subsidiary analyses suggesting that acute stress preferentially blunted signalling 

of positive prediction errors. Our results thus reveal a neurocomputational mechanism 

by which acute stress may impair reward learning.  
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Introduction 

The ability to gradually learn from the consequences of our actions, to make choices 

that lead to the best possible outcomes, is crucial for adaptive behaviour. This ability 

seems to be affected by situational factors, including those that are ubiquitous in 

modern everyday life. A growing body of evidence suggests that reward learning is 

impaired by acute stress1–9, although the evidence for an impairing effect of acute stress 

on punishment learning is less robust7,9,10. Yet, surprisingly little is known about the 

neural mechanisms that underlie the impairing effects of acute stress on reinforcement 

learning. Given the pervasiveness of stress, characterising the neural mechanisms by 

which acute stress affects our ability to learn from obtained rewards and from avoided 

punishments is relevant to understand the effects of stress in everyday life, and it might 

offer important insight into the development of treatments for individuals with stress-

related clinical disorders. Here, we use behavioural and model-based functional 

magnetic resonance imaging (fMRI)11 data to investigate the impact of acute stress on 

reinforcement learning and the underlying neurocomputational mechanisms.  

Reinforcement-learning theory provides a powerful neurocomputational 

framework to understand how individuals learn to maximise rewards and minimise 

punishments12,13. According to reinforcement-learning theory, individuals gradually 

learn to select more and more often the actions that optimise reinforcements in a given 

context by learning the values of the executed actions12,13. Prediction errors — the 

difference between an experienced and an expected outcome — are used to 

progressively update the values of the executed actions driving gradual learning12–14. 

Positive prediction errors indicate that outcomes are better than expected, and negative 

prediction errors indicate that outcomes are worse than expected14. Prediction errors can 

therefore be used to learn which actions are advantageous or disadvantageous. For 
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example, when an action results in an outcome that is better than expected, a positive 

prediction error occurs, and the value of the action is increased, leading to increased 

likelihood of selecting that action in the future. Prediction error signals are thought to be 

encoded in the phasic activity of dopamine neurons14. Extant evidence indicates that 

brain areas with dense dopaminergic projections, such as the dorsal striatum and the 

nucleus accumbens, show activity correlated with prediction errors15–17 and that 

prediction error signals in the dorsal striatum correlate with behavioural performance 

efficacy in a reward-based task18. Indeed, the striatal dopaminergic system seems to be 

critical for prediction-error-based reward learning13,15,19,20. 

 The striatal dopaminergic system also seems to be particularly sensitive to acute 

stress21–23. Acute stress elicits a myriad of physiological and functional changes in the 

brain in response to perceived adverse changes in the environment24–26, including 

increased dopamine release in the striatum21–23,25–28. Specifically, studies with non-

human male animals suggest that acute stress increases aberrant spontaneous phasic-

dopamine release29–31. Such exaggerated, aberrant spontaneous dopamine release is 

thought to blunt adaptive phasic dopamine responses that signal positive prediction 

errors32–34 and, more tentatively, negative prediction errors32. Thus, stress-induced 

dopamine aberrant release may lead to impairments in reward learning, and more 

speculatively in punishment learning. Indeed, extant behavioural data suggest that acute 

stress impairs reward learning1–9,35, whereas the impact of stress on punishment learning 

remains more equivocal7,9,10,35.  

Extant neural evidence on how acute stress directly affects prediction error signals 

in the human striatum during reward learning is still scarce8,36,37, but indirect neural 

evidence indicates that women who show the greatest increase in interleukin-6 (an 

inflammatory marker) in response to a stressor also show the greatest reduction in 
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signalling of prediction errors in the nucleus accumbens during reinforcement 

learning37. Moreover, we previously showed, using computational modelling, that acute 

stress decreases the learning rate for positive prediction errors (i.e., how quickly better-

than-expected outcomes are integrated over time)7, which seems to be consistent with 

the idea that acute stress might impair reward learning by blunting neural signalling of 

prediction errors.  

 In this study, we aimed to investigate the impact of acute stress on striatal 

prediction error signalling during reinforcement learning. As mentioned above, extant 

literature suggests that acute stress disrupts reward learning to a larger extent than 

punishment learning. Thus, given the putative impact of acute stress on aberrant phasic-

dopamine release, and the role of adaptive phasic-dopamine responses on prediction 

error signalling, we predicted that 1) acute stress would impair reward learning and, 

relatedly, that 2) acute stress would blunt prediction error signals in the striatum during 

reward learning. Additionally, given that striatal dopamine prediction error signals are 

also implicated in punishment learning38–40, we explored whether and how acute stress 

would impact punishment learning. Finally, we explored whether acute stress would 

preferentially blunt positive or negative prediction error signals during reward and 

punishment learning.  

Thirty-seven male participants completed an adapted version of a well-

established reinforcement-learning task involving monetary gains and losses15 inside the 

MRI scanner, whilst under acute stress and control conditions (Fig. 1). This 

reinforcement-learning task disentangles reward from punishment learning and has been 

used to assess fluctuations in dopamine-prediction errors signals; using this task, 

combined with pharmacological manipulations of the dopaminergic system, Pessiglione 

et al.15 showed that dopamine-related drugs modulate prediction errors expressed in the 
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striatum during reward (but not during punishment) learning. In each trial of the 

reinforcement-learning task, participants were asked to choose between two abstract 

visual stimuli to maximise payoffs. Each pair of stimuli was associated with a valence: 

one pair of stimuli was associated with gains (0.5€ or no change), a second pair was 

associated with losses (-0.5€ or no change), and a third pair was associated with neutral, 

or non-financial outcomes (look at a 0.5€ coin or no change). The outcome probabilities 

were reciprocally 0.75 and 0.25 for the two stimuli in each of the three pairs (Fig. 1). 

Participants completed the task in four blocks. In half of the blocks, participants were 

exposed to an uncontrollable stressor, a constant alarm (i.e., stress condition), which 

was previously shown to be effective in increasing self-reported stress levels and skin 

conductance responses rate7. These blocks were alternated with blocks without the 

stressor (i.e., control condition). To check the success of the acute-stress manipulation, 

we collected self-reported stress levels at the end of each block. Participants who 

reported to be non-responsive to the stress manipulation (i.e., who did not report higher 

stress levels in the stress condition than in the control condition) were excluded from 

the main analyses. This resulted in a final pool of 23 participants for behavioural and 

neuroimaging data analyses. For completeness, we also analysed the data from the total 

sample, which yielded findings for the impact of acute stress on reward learning 

consistent with those from the analyses of the aforementioned subsample of interest (see 

the Supplementary Information for analyses and results concerning the total sample).  

To assess whether acute stress impaired reward learning, we inspected the 

impact of acute stress on task performance. Next, to examine whether and how acute 

stress blunted signalling of prediction errors in the striatum, we used trial-wise 

prediction errors, estimated by a well-established reinforcement-learning model41, as 

parametric modulators of striatal — dorsal  striatum and nucleus accumbens — activity 
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at the time of the outcomes in gain (i.e., reward learning) and loss (i.e., punishment 

learning) trials15. 

 

Fig. 1. Reinforcement-learning task. Inside the scanner, participants chose between two 

abstract visual stimuli and observed the outcome of their choice, whilst under acute 

stress and under control conditions. (a) In the depicted stress-condition trial, the chosen 

stimulus was associated with a probability of 0.75 of winning 0.5€ and with a 

probability of 0.25 of winning nothing. The other (not chosen) stimulus was associated 

with a reciprocate probability of 0.75 of winning nothing and a 0.25 probability of 

winning 0.5€. (b) In the depicted control-condition example, the chosen stimulus was 

associated with a probability of 0.75 of losing 0.5€ and with a probability of 0.25 of 

losing nothing. The other (not chosen) stimulus was associated with a reciprocate 

probability of 0.75 of losing nothing and with a 0.25 probability of losing 0.5€. 

Participants completed a total of four blocks (two stress and two control blocks), 

consisting of an alternation between stress and control blocks. To assess stress 

responses, self-reported stress levels were collected at the end of each block. 
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Results 

Behavioural analyses  

Manipulation check 

First, we computed the difference in self-reported stress levels between the stress and 

control conditions in the total sample (n = 37). Twenty-three participants reported 

higher stress levels in the stress condition than in the control condition (Fig. 2a). Then, 

we conducted analyses of variance (ANOVAs) with condition (stress and control) and 

block (1 and 2) as within-subject factors in those 23 participants (see Supplementary 

Information for manipulation-check analyses of the total sample). Self-reported stress 

levels differed significantly between conditions (F1,22 = 69.28, p < 0.001, ƞ2 = 0.76) 

(Fig. 2b), but there was no main effect of block (F1,22 = 0.008, p = 0.93, ƞ2 = 0) and the 

condition × block interaction was also non-significant (F1,22 = 1.21, p = 0.28, ƞ2 = 

0.052). This suggests that self-reported stress levels increased with the acute stress 

manipulation and remained stable across blocks within each condition for these 

participants. Participants whose self-reported levels of stress did not increase with the 

acute-stress induction were excluded from the following analyses (but see 

Supplementary Information for total sample analyses).    

 

Task performance 

To assess whether acute stress would blunt reward learning, we examined the impact of 

acute stress on choice performance during the reinforcement-learning task (Fig. 2c). We 

used a generalized linear mixed-effects (glme) model, which accounted for the binomial 

distribution of the trial-by-trial data (correct or incorrect responses). The glme model 

included condition (stress or control), valence (gain or loss), block number (1 or 2), trial 

number (1 to 24), and the interaction of interest (condition × valence) as predictor 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430640


9 
 

 

 

variables. We found a significant condition × valence interaction (β = -0.39, p = 0.0038, 

95% CI = [-0.66, -0.13]) (Fig. 2d). Planned post-hoc analyses showed that under stress, 

comparatively to the control condition, participants performed significantly worse when 

learning to obtain gains (F1, 4400 = 20.23, p < 0.001), but not when learning to avoid 

losses (F1, 4400 = 0.32, p = 0.57). In sum, acute stress selectively impaired choice 

performance towards monetary gains during the reinforcement-learning task. 

 

Fig. 2. Manipulation check and task performance. (a) Difference in self-reported stress 

levels between the stress and control conditions (averaged across blocks). Each grey dot 

represents a participant (n = 37). Participants who reported higher stress levels in the 

stress than in the control condition correspond to the dots above the horizontal dashed 

line (n = 23). (b) Self-reported stress levels in stress (red) and control (blue) conditions 

(averaged across blocks) in the pool of participants that reported higher stress levels in 
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the stress than in the control condition (n = 23). (c) Learning curves represent the trial-

by-trial percentage of participants (n = 23) who chose the correct gain stimulus 

(associated with a probability of 0.75 of winning 0.5€; upper part of the graph) and the 

incorrect loss stimulus (associated with a probability of 0.75 of losing 0.5€; lower part 

of the graph), in the stress and control conditions. Each central line represents the mean 

and each filled area the ± standard error of the mean. (d) Percentage of correct choices 

per participant (n = 23) in gain and loss trials, across the stress and control conditions 

(averaged across blocks). In graphs b and d, connected dots represent data points from 

the same participant, and more transparent (opaque) dots represent less (more) 

overlapping data points; error bars displayed on the sides of those scatter plots indicate 

the mean ± standard error of the mean. 

 

fMRI analyses 

To examine the impact of acute stress on prediction error signalling in the striatum 

during reinforcement learning, we generated a primary fMRI general linear model that 

included prediction errors as parametric modulators of BOLD response in the striatum 

(dorsal striatum and nucleus accumbens) at the time of the outcomes in gain and loss 

trials, in the stress and control conditions (see Methods and Supplementary Fig. 5 for 

further details on the primary general linear model). Prediction errors were estimated in 

the stress and control conditions using a reinforcement-learning model that has been 

extensively used to investigate the behavioural and neural impact of pharmacological 

manipulations and genetic variations in the dopaminergic system in humans41–46 (see 

Supplementary Information for computational modelling methods and results). 

Parametric analyses incorporating prediction errors allow a more precise estimation of 
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how brain activity fluctuates during learning compared to examination of outcome-

associated activation alone11. 

As expected, we observed that BOLD response in the dorsal striatum and 

nucleus accumbens — regions consistently shown to respond to unexpected rewards 

and punishments15,47 — scaled parametrically with the magnitude of prediction errors at 

the time of the outcomes in gain and loss trials in the stress and/or control conditions. 

Specifically, we identified a positive parametric modulation of prediction errors in the 

dorsal striatum bilaterally (i.e., the magnitude of the prediction errors correlated 

positively with BOLD response in this region on a trial-by-trial basis), during gain and 

loss trials, both in the stress and control conditions [all Z > 4.12, p < 0.05, voxel-level 

small-volume family-wise error corrected (SVC-FWE)]. We also found a positive 

parametric modulation of prediction errors in the nucleus accumbens during gain trials, 

both in the stress and control conditions, and during loss trials in the control condition 

(all Z > 3.63, p < 0.05, SVC-FWE; see Supplementary Table 1 for whole-brain and all 

SVC-FWE results). 

After confirming that striatal activity scaled parametrically with the magnitude 

of prediction errors, we inspected whether acute stress affected prediction error signals 

in the striatum. To examine whether acute stress would blunt signalling of prediction 

errors in the striatum during reward learning, first we tested the main effect of stress 

using the control > stress contrast for the parametric modulators of prediction errors at 

the time of the outcomes delivered across gain and loss trials in each condition. A 

significant main effect would mean that acute stress decreased prediction error signals 

across gain and loss trials. Second, we tested the contrast for the condition (stress or 

control) × valence (gain or loss) interaction. A significant interaction would mean that 

acute stress affected prediction error signals differently in gain and loss trials. 
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The contrast control > stress showed a significant main effect of stress on the 

parametric modulation of prediction errors in the dorsal striatum ([x = 32, y = 0, z = 12], 

Z = 4.08, k =26, p = 0.040, SVC-FWE) (Fig.3a), meaning that prediction error signals 

were decreased in the stress condition compared with the control condition, both in gain 

and loss trials (Fig. 3b). Confirmatory one sample t-tests comparing the parameter 

estimates (i.e., the regression slopes from the primary general linear model) extracted 

from the identified dorsal striatum cluster against zero, indicated that the parametric 

modulation of prediction errors was significantly higher than zero in the control 

condition, both for gain and loss trials (both p < 0.023), but not in the stress condition 

(both p > 0.33) (Fig. 3b).  We did not observe any significant responses for the 

parametric modulation of prediction errors in the nucleus accumbens for the control > 

stress contrast (nor for the inverse contrast stress > control).  

For the contrast that tested the condition × valence interaction, we did not find 

any significant activations in the dorsal striatum nor in the nucleus accumbens, 

indicating that the effect of acute stress on prediction error signals was not dependent on 

the valence of the trial.  This non-significant interaction, together with the significant 

main effect described above, indicates that acute stress blunted prediction errors in the 

dorsal striatum both in gain and loss trials. 

To illustrate the effect of acute stress on the parametric modulation of prediction 

errors in the dorsal striatum, we conducted a subsidiary general linear model from 

which we extracted estimates of BOLD response in the dorsal striatum cluster identified 

in the primary general linear model (cluster represented in Fig. 3a) across trials of 

different categories of prediction error magnitudes. Specifically, in this subsidiary 

model, trials from each condition (i.e., stress and control) and valence (i.e., gain and 

loss) were further divided into four bins corresponding to quartiles of magnitude of  
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Fig. 3. Effects of acute stress on prediction error signalling in the dorsal striatum. (a) 

Cluster in the dorsal striatum where the modulation of prediction errors at the time of 

the outcome was significantly decreased in the stress condition compared with the 

control condition (SVC-FWE, p < 0.05). (b) Bars depict parameter estimates (i.e., 

regression slopes) for the BOLD response at the dorsal striatum cluster [from (a)] 

modulated by trial-by-trial prediction errors, in gain and loss trials, across the stress 
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(red) and control (blue) conditions (n = 23). (c, d) Graphs represent the modulation of 

BOLD response by prediction errors at the time of the outcome in gain (left) and loss 

(right) trials, in the dorsal striatum cluster identified in the primary general linear model 

[from (a)], in the stress (red) and control (blue) conditions (n = 23). BOLD response 

estimates from the dorsal striatum cluster were extracted for each participant. Error bars 

indicate the mean ± standard error of the mean. In (c), data for illustrative graphs were 

derived from a subsidiary model where trials were divided into quartiles of magnitude 

of prediction errors (with the lowest and highest magnitudes corresponding to bins 1 

and 4, respectively). In (d), the plotted data were obtained from a second subsidiary 

model where trials were divided into negative and positive prediction errors.  

 

prediction errors (see Supplementary Table 2 for median and boundaries of each bin). 

Parameter estimates of BOLD response at the outcome onset were extracted from the 

dorsal striatum cluster for each subject (see Methods for full description) and plotted to 

illustrate the variation in the BOLD response in the dorsal striatum cluster along the 

magnitude of prediction errors. The blunting main effect of stress (both in gain and loss 

trials) on prediction error signals in the dorsal striatum seemed to be mostly driven by 

decreased signalling of prediction errors of higher magnitude (Fig. 3c). It is important to 

note that the 1st bin and 4th bins roughly correspond to negative and positive prediction 

errors, respectively (Supplementary Table 2), which suggests that acute stress mostly 

decreased positive prediction error signals. 

To further explore whether acute stress had preferentially blunted signalling of 

positive prediction errors during reward and punishment learning, we conducted an 

additional parametric modulation model similar to the primary general linear model, but 

this time we modelled positive and negative prediction errors separately for either gain 
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or loss trials. We did not find any parametric modulation of the dorsal striatum or 

nucleus accumbens response by positive nor negative prediction errors, very possibly 

due to reduced variance within each parametric modulator. Therefore, and for 

completeness, we performed a second subsidiary general linear model (see Methods for 

full description). In this subsidiary model, trials from each condition (i.e., stress or 

control) and valence (i.e., gain or loss) were further divided according to the prediction 

error valence (i.e., positive or negative). We extracted estimates of BOLD response in 

the dorsal striatum cluster (cluster represented in Fig. 3a) at the outcome onset, when 

positive or negative prediction errors occurred, and performed an ANOVA on those 

estimates derived from the subsidiary model. We found a significant condition × 

prediction error valence interaction (F1,22 = 8.84, p = 0.007, η2 = 0.29) (Fig. 3d), 

indicating that acute stress differently affected positive and negative prediction errors, 

both in gain and loss trials (the condition × prediction error valence × trial valence 

interaction was non-significant, F1,22 = 0.047, p = 0.83, η2 = 0.0020). Post-hoc planned 

comparisons were non-significant, but inspection of effect sizes suggested that acute 

stress decreased positive prediction error signals (paired t-tests in gain trials: t22 = -1.36, 

p = 0.19, Cohen’s d = -0.28; in loss trials:  t22 = -1.12, p = 0.27, Cohen’s d = -0.23) to a 

larger extent than negative prediction errors (paired t-tests in gain trials: t22 = 0.48, p = 

0.64, Cohen’s d = 0.10; in loss trials: t22 = 0.86, p = 0.40, Cohen’s d = 0.18) (Fig. 3d), in 

line with the previous subsidiary analysis of prediction error bins depicted in Fig. 3c. 

In sum, we found that the BOLD response in the dorsal striatum scaled 

parametrically with the magnitude of prediction errors during reward and punishment 

learning, both under acute stress and control conditions. More importantly, we found 

that signalling of prediction errors in the dorsal striatum was blunted by acute stress, 
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with subsidiary data suggesting that acute stress mostly decreased positive prediction 

errors signals. 

 

Discussion 

Previous studies have found that acute stress impacts reinforcement learning. Yet, the 

mechanisms that underlie the impact of acute stress on reinforcement learning are still 

poorly understood. Acute stress is ubiquitous in modern day-to-day life. Understanding 

whether and how acute stress influences our ability to learn from the rewarding and 

punishing outcomes of our choices might be important for the development of 

interventions that target the debilitating effects of acute stress. In this study, we 

investigated whether and how acute stress impacts reinforcement learning using 

behavioural and model-based fMRI data. Acute stress alters striatal dopaminergic 

functioning21–23,28,30,31,  and striatal dopaminergic functioning plays a key role in 

signalling of prediction errors13,15,19,20 — the result of a positive or negative difference 

between obtained and expected outcomes — which drive reward and punishment 

learning. Thus, we set out to test whether acute stress impaired reward learning by 

blunting prediction error signals in the striatum and further explored the putative impact 

of acute stress on punishment learning.  

In line with extant literature1–6,8,9, we replicated our previous finding that acute 

stress impairs performance towards rewards in a reinforcement-learning task7. 

Importantly, we also found that such behavioural impairment was accompanied by 

blunted signalling of prediction errors in the dorsal striatum. Additionally, even though 

we did not find evidence of the impact of acute stress on punishment learning at the 

behavioural level, neural data indicated that acute stress also blunted prediction error 

signals in the dorsal striatum during punishment learning. Subsidiary analyses indicated 
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that acute stress may blunt preferentially positive prediction error signals, which might 

explain the differential impact of acute stress in reward and punishment learning. 

Our finding that acute stress blunted signalling of prediction errors — and 

mostly positive prediction errors — in the dorsal striatum during reward learning is 

consistent with a neurobiological framework of stress-induced dopamine disruptions.   

Prediction errors are encoded in phasic activity of dopaminergic neurons14,19,20. Phasic 

bursts of dopaminergic neurons are thought to adaptively encode positive prediction 

errors, whereas dopamine dips have been associated with the adaptive encoding of 

negative prediction errors14,19. However, phasic-dopamine responses do not seem to be 

always adaptive, and there is evidence that dopamine can be phasically released in an 

aberrant spontaneous manner32,48–50. Relatedly, studies with non-human male animals 

suggest that acute stress induces aberrant spontaneous dopamine release29–31. It is 

therefore possible that, if acute stress increases aberrant spontaneous phasic-dopamine 

release, then phasic dopamine release that signals positive prediction errors following 

burst firing of dopaminergic neurons is less easily differentiated from background 

fluctuations in dopamine levels, resulting in a low signal to noise ratio48,50. In addition, 

if there is increased aberrant spontaneous release of dopamine, then less dopamine may 

be available to be released from dopaminergic neurons when positive prediction errors 

occur48. Thus, stress-induced aberrant dopamine release may indirectly or directly blunt 

positive prediction errors that signal unexpected rewards32–34, resulting in impaired 

reward learning. Furthermore, we previously showed, using computational modelling, 

that acute stress decreases the learning rate for positive prediction errors7, which is in 

striking agreeement with our neuroimaging data. Our finding that acute stress blunts 

prediction errror signals — and preferentially positive prediction errors — in the dorsal 

striatum during reward learning is thus consistent with a neurobiological framework of 
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stress-induced striatal dopaminergic disturbances and might explain why individuals 

have difficulties in updating their behaviour in response to unexpected rewards when 

under acute stress. 

In this study, we also explored how acute stress affected punishment learning, 

although the behavioural evidence for an effect of acute stress on punishment learning 

seems less robust than for an effect of stress on reward learning35. In line with our 

previous work, using the same stress manipulation and an adapted version of the same 

reinforcement-learning task in an independent sample7, we found no evidence of a 

behavioural impairment of acute stress on punishment learning. This suggests that 

punishment learning may not be affected by acute stress to the same extent as reward 

learning is. However, our neuroimaging data showed a main effect of stress on the 

signalling of prediction errors in the dorsal striatum, indicating that acute stress also 

decreased prediction error signals during punishment learning. Further subsidiary 

analyses suggest that the main effect of stress on prediction errors seem to be mostly 

explained by decreased signalling of positive prediction errors. It is thus possible that 

acute stress compromises the ability to use dopamine phasic bursts that signal positive 

prediction errors but not to use dopamine dips that encode negative prediction errors. 

Indeed, empirical evidence suggests that aberrant spontaneous dopamine release 

decreases striatal adaptive phasic dopamine responses that signal positive prediction 

errors33,34, and, only more speculatively, negative prediction errors32. Although positive 

prediction errors can also occur during punishment learning, in simple reinforcement-

learning tasks, such as ours, punishment learning seems to be largely driven by negative 

prediction errors38. Consequently, stress-induced disruptions in positive prediction 

errors might not necessarily be reflected in impaired learning from punishments. 

Finally, non-dopaminergic mechanisms may also be involved in punishment 
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learning51,52, which might partially explain why previous studies using similar 

reinforcement-learning tasks also did not find significant effects of pharmacological 

manipulations of the dopaminergic system on punishment learning15,53.  

We found evidence for stress-induced blunted prediction errors in the dorsal 

striatum, but not in the nucleus accumbens. The dorsal striatum has been associated 

with reward-based action selection16 — and is thus thought to play a key role in 

instrumental learning tasks, such as ours, by maintaining information about action-

contingent response-reward associations to guide future choices based on the outcomes 

of past ones — whereas the ventral portion of the striatum, the nucleus accumbens, has 

been more implicated in classical conditioning16. By blunting prediction error signals in 

the dorsal striatum, acute stress may thus impair learning of stimulus-response-reward 

associations, which are crucial to perform our reinforcement-learning task; yet, it is 

possible that acute stress affects distinct regions of the striatum, and the functions they 

support, differently36,37. Further studies are required to better understand the impact of 

acute stress on the neurocomputational mechanisms of classical and instrumental reward 

and punishment learning and could focus not only on the striatum, but also on other 

brain areas, such as the anterior insula or habenula, which are known to play a key role 

in punishment avoidance15,47,54. 

In this study, we induced acute stress in participants, using a repetitive and 

uncontrollable sound, whilst they completed a reinforcement-learning task.  

Such stressor was previously validated outside the scanner using self-reported stress 

levels and concomitant skin conductance responses [for a thorough discussion about the 

choice and validation of the stressor see Carvalheiro et al., (2021)7]. In the current 

study, the stressor increased self-reported stress levels, although to a lesser extent than 

outside the scanner. One potential explanation for this discrepancy is that, inside the 
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scanner, the stressor was not as salient as it was outside the scanner. We used additional 

visual cues as warning signals and coloured backgrounds, in an attempt to amplify the 

effects of stress manipulation. Importantly, the manipulation seemed to be particularly 

effective in a proportion of participants, based on their self-reported stress levels. In this 

study we used a self-report measure to capture the ‘subjective state of sensing 

potentially adverse changes in the environment’26. Although we cannot assume that the 

same processes governing physiological stress explain subjective feelings of stress55,56,  

the subjective emotional experience of stress plays an important role in the stress 

response57. Due to technical limitations, we did not analyse physiological responses in 

this study [but see Carvalheiro et al., (2021)7 for a skin conductance measure obtained 

for the same stress manipulation]; still, inclusion of such variables in future research 

could be valuable.   

To avoid the potential confounding effects of menstrual-cycle-dependent 

variation on stress responsivity58 as well as on reward and punishment learning59,60, only 

men were included in this study. Our behavioural findings seem to be in line with 

previous reports showing that acute stress disrupts reward learning in women1–3,5,6, but 

further studies are needed to assess whether acute stress affects the same 

neurocomputational mechanisms of reinforcement learning in both men and women. 

Furthermore, given that our stress manipulation did not increase stress levels in all 

participants, future studies should explicitly account for individual differences, and for 

the modulatory role of those individual differences on the neural mechanisms that 

underlie reinforcement learning under acute stress.   

In sum, we present evidence that acute stress blunts prediction error signals in 

the dorsal striatum during reinforcement learning. This effect seems to be mostly driven 

by decreased positive prediction error signals, which might explain why individuals 
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learn worse from the rewarding outcomes of their choices when under acute stress. Our 

findings can thus contribute to a better understanding of the neural mechanisms that 

underlie the deleterious impact of acute stress on reward learning. Ultimately, this study 

may offer important mechanistic insights into the impact of acute stress in everyday life 

as well as on designing appropriate interventions61,62. 

 

Methods 

Participants 

We scanned a total of 42 right-handed male participants with no reported history of 

neurological or psychiatric disorders. One participant was excluded due to incidental 

findings and 4 participants were excluded due to technical problems during the scanning 

session. We assessed whether the stress manipulation increased stress levels by 

comparing the self-reported stress levels of the remaining 37 participants that completed 

the task in the stress and control conditions. Self-reported stress levels were higher in the 

stress condition than in the control condition in 23 participants. Thus, we report results 

from data analyses of these 23 participants (age range = 18 – 29 years; M = 23.0 years, 

SD = 3.3 years). For completeness, we also analysed the data from the total sample (n = 

37); those analyses can be found in the Supplementary Information.  

All participants provided their informed consent before the experimental 

session. All experimental procedures were approved by the Ethics Committee of 

Hospital of Braga. 

 

Reinforcement-learning task 

After a short practice (12 trials) outside the scanner to familiarise participants with the 

task timings and response keys, participants completed four blocks of an adapted 
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version of a well-established reinforcement-learning task15 whilst inside the scanner 

(Fig. 1). The task was divided in two runs, each run consisting of a stress block and a 

control block. Stress and control blocks were administered alternately and in a 

counterbalanced order across the two runs. Each block included three pairs of abstract 

stimuli, and each pair of stimuli was presented 24 times, totalling 72 trials per block. 

New abstract stimuli were used in each block. Each pair of stimuli was associated with 

a valence: one pair of stimuli was associated with gains (gain 0.5€ or no change), a 

second pair was associated with losses (loss 0.5€ or no change), and a third pair was 

associated with neutral, or non-financial outcomes (look at a 0.5€ coin or no change). 

The outcome probabilities were reciprocally 0.75 and 0.25 for the stimuli in each of the 

three pairs. On each trial, one pair was randomly presented on the MRI screen, with one 

stimulus from the pair on the left and the other on the right of a central fixation cross 

(the stimuli position was counterbalanced across trials). Participants were instructed to 

choose between the two visual stimuli displayed on the screen to maximize payoffs. 

Missing choices occurred when participants did not press the response keys within 2000 

ms (total of 0.20% missing choices: 8 in the stress condition and 5 in the control 

condition, in a total of 6624 trials) and were signaled with a “Missed” message (no 

other outcome was provided). Missing choices were not considered for behavioural data 

analyses. Before starting the task, participants were informed that they would be paid 

the amount of money obtained during their most profitable block, although they all left 

with the same fixed compensation (15€) for their participation. The experiment was 

programmed and presented with Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent.php) 

implemented in MATLAB R2015a (MathWorks). 
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Acute-stress manipulation 

During the scanning session, participants performed two blocks of the reinforcement-

learning task whilst exposed to a stressor (i.e., stress condition) and two blocks without 

the stressor (i.e., control condition) (Fig. 1). By exposing participants to the stressor 

during the task, we aimed to make sure that acute stress was contingent on the learning 

processes. To elicit stress responses, we exposed participants to a predictable, but 

uncontrollable auditory stimulus: a constant alarm (“Annoying modern office building 

alarm.wav”, retrieved from freesound.org, and programmed to loop uninterruptedly), 

played through the scanner with the volume set to the maximum. This uncontrollable 

sound was always constant and repetitive, to minimise the potential entanglement 

between stress and distraction, as evidence suggests that unpredictable changes in sound 

sequences seem to induce distraction more robustly63–65. Stress blocks were further 

signalled by a warning sign and a red background (Fig. 1a), and control blocks were 

signalled by a safe sign and blue background (Fig. 1b). 

Stress levels were assessed by asking participants at the end of each block to rate 

how stressed they felt during that block on a scale of 1 (nothing) to 9 (extremely). We 

showed in a previous behavioural study that this stress manipulation increased self-

reported stress levels and skin conductance responses rate in men7. 

 

Task performance analyses 

To examine the impact of acute stress on behavioural choice performance during the 

reinforcement-learning task, we applied a generalized linear mixed-effects (glme) model 

to participants’ trial-by-trial choice data (with correct and incorrect choices coded as 1 

and 0, respectively). We used a “logit” link function to account for the binomial 

distribution of the data. We included as predictor variables in the glme model: condition 
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(stress or control), valence (gain or loss), block number (1 or 2), trial number (1 to 24), 

and the interaction of interest (condition × valence). The glme included a fixed 

intercept, as well as random intercepts for each participant. We fitted the glme model to 

the behavioural data using MATLAB’s fitglme function and performed planned post-

hoc analyses via contrast matrices using MATLAB’s coefTest function.   

 

fMRI data acquisition and preprocessing 

A Siemens Verio 3T MRI scanner at the Clinical Academic Center – Braga with                                                                                                                                                                                                                                                                                                                                                                                                                                              

a 32-channel head coil was used to acquire a 5.5 min 3D T1-weighted anatomical scan 

and multislice T2*-weighted echo planar images (EPIs) with BOLD contrast. The T2* 

EPI sequence used the following acquisition parameters: field of view = 200 x 200 mm, 

matrix size = 66 x 66 mm, interleaved slice order acquisition, 42 slices with slice 

thickness of 3 mm with no gap between slices, flip angle of 60º, echo time of 22 ms, 

and repetition time of 2000 ms. Functional task-related data were acquired in two runs, 

separated by a short break during which participants remained inside the scanner in the 

same position. Fieldmaps were acquired for use in the unwarping stage of data 

preprocessing. Imaging data were analysed using SPM12 (www.fil.ion.ucl.ac.uk/spm). 

Data preprocessing followed a standard sequence: the first five volumes were discarded, 

and data were realigned to the sixth volume, unwarped using a fieldmap (normalized to 

the Montreal Neurological Institute, MNI, template), and coregistered to the 

participant’s own anatomical image. The anatomical images were normalized using a 

unified segmentation procedure66, combining segmentation, bias correction, and 

calculation of the wrapping or distortions needed to map the anatomical image into 

Montreal Neurological Institute space (i.e., deformation fields), and then applying these 
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warps to the EPI data. The voxel size was resampled to 1.5 × 1.5 × 1.5 mm. Last, a 

Gaussian kernel of 8 mm FWHM was applied to smooth the images spatially.  

 

fMRI data analyses 

Primary general linear model 

The primary fMRI analyses were based on a single general linear model, as in previous 

studies that used a similar reinforcement-learning task15,37,67. Each trial was modelled as 

having two time points: stimuli and outcome onsets. Note that, although our analyses 

focused on the prediction errors at the onset of outcomes, the onsets of stimuli were also 

modelled, to account for likely shared variance between BOLD signals at the time of the 

stimuli and outcomes. Separate regressors were created for the 6 types of stimuli [2 

conditions (stress/control) × 3 valences (gain/loss/neutral)] and the 6 types of outcomes 

[2 conditions (stress/control) × 3 valences (gain/loss/neutral)] in each run (see 

Supplementary Fig. 5 for an example of a first-level design matrix); the regressors were 

modelled as stick functions and convolved with SPM’s canonical hemodynamic 

response function15. Each time point was regressed with a parametric modulator, 

separately for gain and loss trials: stimuli onset was modulated by the value of the 

chosen option, 𝑄𝑐ℎ𝑜𝑠𝑒𝑛(𝑡); and, importantly, outcome onset was modulated by the 

prediction error, 𝛿(𝑡). Such values and predictions errors were estimated trial-wise 

using a well-established reinforcement-learning model41. Briefly, in this reinforcement-

learning model, the value of the chosen stimulus, Qchosen, is updated on each trial, t, 

according to the following learning rule: 𝑄𝑐ℎ𝑜𝑠𝑒𝑛(𝑡 + 1) =  𝑄𝑐ℎ𝑜𝑠𝑒𝑛(𝑡) +  𝛼 ∗ 𝛿(𝑡). The 

prediction error, 𝛿 (t), is the difference between the actual and the expected outcome: 

𝛿(𝑡) = 𝑟(𝑡) − 𝑄𝑐ℎ𝑜𝑠𝑒𝑛(𝑡), where the reinforcement r(t) is either 0.5, 0, or -0.5. The 

used reinforcement-learning model included separate learning rates for positive (α+) and 
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negative (α-) prediction errors to account for the differential signalling of positive and 

negative prediction errors13,14. The reinforcement-learning model also included the 

inverse temperature parameter, β, which accounts for randomness in choice selection 

(see Supplementary Information for a detailed description of the reinforcement-learning 

model). Values and prediction errors were estimated using the parameters α± and β 

estimated for each subject in each condition and used as separate parametric modulators 

of neural activity at the time of stimuli and outcomes, respectively, either in gain or loss 

trials, in each condition. We also included an additional regressor to model missed 

trials, when participants did not select one of the two symbols and there was no 

outcome. For participants with visible headmotion in a particular scan (scans with >1 

mm or 1° movement relative to the next) an extra regressor was included. Those images 

were removed and replaced with an image created by interpolating the two adjacent 

images to prevent distortion of the between-subjects mask (seven participants with 

visible headmotion; less than 1% of the total time series for each of them). Six 

headmotion parameters modelled the residual effects of headmotion. Data were high-

pass filtered at 128s to remove low-frequency drifts, and the statistical model included 

an AR(1) autoregressive function to account for autocorrelations intrinsic to the fMRI 

time series.  

 Our primary analyses focused on prediction errors at outcome. First-level 

contrast images were calculated by applying appropriate linear contrasts to the 

parametric modulators of interest — prediction errors — and were entered into second-

level analyses. Second-level one-sample t-tests were conducted for each contrast using 

the summary-statistics approach to random-effects analysis. Regions of interest (ROI) 

analyses in the dorsal striatum and nucleus accumbens were conducted using an initial 

threshold of p < 0.001 (uncorrected) and responses were considered significant if they 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430640doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430640


27 
 

 

 

survived voxel-level small-volume family-wise error correction (SVC-FWE) at p < 

0.05. The a priori ROIs — dorsal striatum and nucleus accumbens — were 

anatomically defined using masks. Specifically, a bilateral mask for the dorsal striatum 

was defined using a conjunction of the left and right putamen and caudate from the 

automated anatomical labelling (AAL) atlas. A bilateral mask for the nucleus 

accumbens was defined using a conjunction of the left and right nucleus accumbens 

from the Individual Brain Atlases using Statistical Parametric Mapping (IBASPM). As 

the bilateral nucleus accumbens mask had a slight overlap with the dorsal striatum 

mask, we subtracted the mask of the nucleus accumbens from the dorsal striatum mask. 

The atlases and the conjunctions were implemented using the WFU PickAtlas Toolbox 

in SPM12. Individual BOLD estimates (i.e., regression slopes) of prediction error 

parametric modulators were extracted from significantly activated clusters using the 

MarsBaR toolbox68. 

   

Subsidiary general linear models  

To better understand the impact of acute stress on prediction error signals, we generated 

two subsidiary general linear models. Note that these two subsidiary models did not 

include any parametric modulators, as our purpose was to visualise how the BOLD 

response varied along different magnitudes of prediction errors.  

For the first subsidiary model, we split prediction errors into four equally sized 

bins. The boundaries of the bins did not differ significantly between the stress and 

control conditions, in gain (all p > 0.071, paired t-tests) nor in loss (all p > 0.13, paired 

t-tests) trials (Supplementary Table 2). Specifically, this first subsidiary general linear 

model included separate regressors for trials corresponding to each bin, in each valence 

(gain and loss) and condition (stress and control), modelled at the stimuli and outcome 
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onset (as in the primary general linear model) resulting in thirty-two regressors, plus 

regressors for neutral trials in each condition, missing trials (if applicable) and 

headmotion (and visible headmotion, if applicable), for each run.  

For the second subsidiary model, we split prediction errors into negative and 

positive. This model included separate regressors for trials corresponding to negative 

and positive prediction errors, in each valence (gain and loss) and condition (stress and 

control), modelled at the stimuli and outcome onset (as in the primary general linear 

model) resulting in sixteen regressors, plus regressors for neutral trials in each 

condition, missing trials (if applicable) and headmotion (and visible headmotion, if 

applicable), for each run.  

In both subsidiary models, the average BOLD estimates at the outcome onset 

(when prediction errors occur) were extracted from the significant dorsal striatum 

cluster identified in the primary general linear model, using the MarsBaR toolbox68. 
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