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Abstract 
Compressed sensing (CS) has been used to enhance the feasibility of diffusion spectrum imaging 
(DSI) by reducing the required acquisition time. CS applied to DSI (CS-DSI) attempts to 
reconstruct diffusion probability density functions (PDFs) from significantly undersampled q-
space data. Dictionary-based CS-DSI using L2-regularized algorithms is an intriguing approach 
that has demonstrated high fidelity reconstructions, fast computation times and inter-subject 
generalizability when tested on in vivo data. CS-DSI reconstruction fidelity is typically evaluated 
using the fully sampled data as ground truth. However, it is difficult to gauge how great an error 
with respect to the fully sampled PDF we can tolerate, without knowing whether that error also 
translates to substantial loss of accuracy with respect to the true fiber orientations. Here, we 
obtain direct measurements of axonal orientations in ex vivo human brain tissue at microscopic 
resolution with polarization-sensitive optical coherence tomography (PSOCT). We employ 
dictionary-based CS reconstruction methods to DSI data from the same samples, acquired at high 
max b-value (40000 s/mm2) and with high spatial resolution. We compare the diffusion 
orientation estimates from both CS and fully sampled DSI to the ground-truth orientations from 
PSOCT. This allows us to investigate the conditions under which CS reconstruction preserves 
the accuracy of diffusion orientation estimates with respect to PSOCT. We find that, for a CS 
acceleration factor of R=3, CS-DSI preserves the accuracy of the fully sampled DSI data. That 
acceleration is sufficient to make the acquisition time of DSI comparable to that of state-of-the-
art single- or multi-shell acquisitions. We also show that, as the acceleration factor increases 
further, different CS reconstruction methods degrade in different ways. Finally, we find that the 
signal-to-noise (SNR) of the training data used to construct the dictionary can have an impact on 
the accuracy of the CS-DSI, but that there is substantial robustness to loss of SNR in the test 
data. 
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1. Introduction 
Diffusion magnetic resonance imaging (dMRI) has played an integral role in the study of 

human brain circuitry in vivo by enabling non-invasive investigation of tissue architecture (Le 
Bihan et al., 1986). The molecular displacements resulting from water diffusion can be estimated 
from dMRI measurements acquired with a pulsed gradient spin-echo (PGSE) sequence (Stejskal 
& Tanner, 1965). Diffusion tensor imaging (DTI), the seminal approach for quantitative 
reconstruction of 3D water molecule displacement (Basser et al., 1994a, 1994b), assumes a 3D 
Gaussian distribution of water molecule displacements and thus can only model a single fiber 
population in each voxel. Diffusion spectrum imaging (DSI), combined with an acquisition that 
samples the entire q-space on a Cartesian grid (Wedeen et al., 2005), is capable of delineating 
multiple intravoxel fiber populations. The diffusion ensemble average propagator (EAP), or the 
3D probability density function (PDF) of spin displacements in a voxel, can be recovered 
directly from a Fourier transform on the normalized Cartesian q-samples, and yields a plethora of 
information describing the angular and radial features of diffusion (Hagmann et al., 2008; 
Wedeen et al., 2008). DSI has been shown to provide more accurate fiber orientation estimates 
than other reconstruction methods in simulations (Daducci et al., 2013) and comparisons to 
optical imaging measurements (Jones et al., 2020), as well as more accurate tractography in 
comparisons to anatomical tracing (Maffei et al., 2020). Furthermore, dense q-space sampling 
provides the flexibility of resampling the data onto q-shells at various b-values, as needed for 
analyses that require shell acquisition schemes (Jones et al., 2020). However, the applicability of 
DSI is drastically limited by the lengthy acquisition times required to encode the full q-space and 
the long echo times (TEs) required to achieve high b-values, which lead to time-consuming and 
inefficient k-space acquisitions (Reese et al., 2009).  

Much recent work has been devoted to accelerating MR acquisitions. Some approaches 
modify imaging sequences to allow multiple image slices to be acquired simultaneously. 
Multislice parallel imaging techniques, such as simultaneous multi-slice (SMS) (Setsompop, 
Cohen-Adad, et al., 2012; Setsompop et al., 2018; Setsompop, Gagoski, et al., 2012), 
simultaneous image refocusing (SIR) (Reese et al., 2009), and multiplexed (SMS+SIR) echo 
planar imaging (EPI), have played a crucial role in reducing dMRI scan times down to 
reasonable lengths. However, they do not address the large number of q-space samples required 
by DSI. To tackle this problem, compressed sensing (CS) reconstruction has been applied to DSI 
(CS-DSI). CS theory exploits transform sparsity to recover signals from sub-Nyquist acquisitions 
(Donoho, 2006; Lustig et al., 2007; Lustig et al., 2008). CS-DSI undersamples in q-space and 
reconstructs the missing samples with CS, allowing for a reduction in acquisition time directly 
proportional to the CS acceleration factor. Combining CS-DSI with SMS or multiplexed EPI can 
provide even higher accelerations (Setsompop et al., 2013), and render CS-DSI a practical 
diffusion protocol for long-term population studies (Tobisch et al., 2018).  

A number of previous works have investigated CS-DSI reconstruction. Menzel et al. 
(2011) used wavelet and total variation (TV) penalties on PDFs combined with random Gaussian 
undersampling patterns, and concluded that angular and radial diffusion properties were 
preserved at R=4 acceleration. Paquette et al. (2015) performed a joint comparison of different 
wavelet-based sparsifying transforms and q-space sampling strategies, and found the best results 
when using a “uniform-angular, random-radial” undersampling mask combined with discrete 
wavelet transform (DWT). Both Menzel et al. and Paquette et al. used fixed transforms to 
generate sparse signal representations. Conversely, Bilgic et al. (2012) proposed CS-DSI using 
adaptive PDF dictionaries, combining the K-SVD algorithm (Aharon et al., 2006) for dictionary 
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training with the FOcal Underdetermined System Solver (FOCUSS) algorithm (Gorodnitsky & 
Rao, 1997) to solve the CS problem. While this approach yielded reduced reconstruction errors 
compared to fixed transforms, the iterative FOCUSS reconstruction resulted in full brain 
computation times on the order of days. This bottleneck was addressed in subsequent work 
(Bilgic et al., 2013), where two dictionary-based, L2-regularized methods were introduced that 
reduce computation times down to seconds per slice. They provide fast, simple formulations 
while preserving reconstruction quality compared to Dictionary-FOCUSS. One of the key 
findings from (Bilgic et al., 2013) was that forcing the PDFs to remain in the range of a 
dictionary was more important than the sparsity constraints imposed on the transform 
coefficients. In other words, the key to good reconstructions lies in the prior information encoded 
in a dictionary, and not the regularization norm that is applied on the dictionary transform 
coefficients.  
  Dictionary-based CS-DSI is a promising approach, but nonetheless has aspects that 
require further investigation. One of these areas is the effect of dMRI signal-to-noise ratio (SNR) 
on the CS algorithms and dictionary learning, which is yet to be well characterized (Bilgic et al., 
2012). Determining how the SNR of the training data influences reconstructions and the 
minimum SNR level required for high-quality CS reconstruction would provide critical insights 
for the development of CS-DSI protocols. Traditionally, CS-DSI reconstruction fidelity is 
assessed by using the fully sampled DSI data as the gold standard to calculate error metrics 
(Bilgic et al., 2013; Bilgic et al., 2012; Menzel et al., 2011). A drawback of this approach is that 
the fully sampled DSI data are inherently corrupted with noise, particularly at high b-values. 
Bilgic et al. (2013) ameliorated this issue by sampling a few q-space locations 10 times, and 
using these low-noise references to evaluate reconstructions. Interestingly, they found that CS 
reconstructions exhibited lower errors than the fully sampled (1-average) data when compared to 
the 10-average data. These results exemplify potential denoising benefits of CS-DSI with respect 
to fully sampled data collected at the same SNR, but also highlight inadequacies of taking the 
fully sampled data as ground truth. Even if one could acquire noiseless fully sampled DSI data, it 
would be difficult to gauge how great an error with respect to those data we can tolerate in our 
CS reconstructions, without knowing how this translates to errors with respect to the true fiber 
orientations. Thus, it is critical to obtain independent measurements of fiber orientations from a 
modality that does not rely on water diffusion.  

Here, we address this with a validation study of CS-DSI reconstructions in ex vivo human 
brain. Microscopic-resolution fiber orientations measured with polarization sensitive optical 
coherence tomography (PSOCT) serve as a reference for the mesoscopic-resolution diffusion 
orientations obtained from dMRI of the same tissue. PSOCT uses polarized light to probe tissue 
birefringence and obtain undistorted, direct measurements of in-plane fiber orientations at 
microscopic resolutions (Wang et al., 2014), and has been established in previous studies as a 
viable reference modality for the cross-validation of dMRI-derived orientation estimates (Jones 
et al., 2020; Wang et al., 2014). We use the dictionary-based techniques from Bilgic et al. (2013) 
to perform CS reconstructions, with dictionaries trained on DSI data from three different ex vivo 
human brain blocks to determine generalizability. We investigate if fiber orientations estimated 
from CS reconstructed data can achieve the same accuracy as those estimated from the fully 
sampled data. We investigate the influence of the SNR of the training or test data on the accuracy 
of the diffusion orientation estimates, and particularly how errors in the PDFs of CS-DSI with 
respect to the PDFs of fully sampled DSI translate to errors with respect to the ground-truth 
axonal orientations from PSOCT. Our findings elucidate the effect of the CS acceleration factor, 
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CS reconstruction method, and data SNR on the accuracy of dictionary-based CS-DSI 
reconstructions. We show that, for an acceleration factor of R=3, the accuracy of CS-DSI is very 
similar to that of fully sampled DSI, while its acquisition time becomes comparable to that of 
currently deployed multi-shell acquisitions. This could have implications for the adoption of CS-
DSI in future dMRI studies. 
 
2. Methods 
2.1. Sample identification 

The samples used in this study were extracted from two human brain hemispheres that 
were obtained from the Massachusetts General Hospital Autopsy Suite and fixed in 10% 
formalin for at least two months. Demographic information about the hemispheres is given in 
Table 1. Three samples were extracted from different anatomical locations of the hemispheres. 
Sample 1A (Figure 1A) was cut from brain 1 and was approximately 3x2x2 cm. It contained an 
area of deep white matter (WM) that included the corpus callosum (CC), the internal and 
external capsules (IC and EC, respectively), the caudate nucleus and the putamen. Sample 1B 
(Figure 1B) was taken from a different region of brain 1. The block was approximately 3x2x2 
cm and contained an area of deep WM including the posterior internal capsule, putamen and 
thalamus. Sample 2 (Figure 1C) was cut from brain 2 and was sized approximately 2x2x3 cm. 
The superior part of the block contained the anterior superior frontal gyrus, the medial side 
included the cingulate sulcus, and the lateral side contained parts of the corticospinal tract and 
dorsal superior longitudinal fasciculus (SLF-I).  
 

Brain Age Gender Laterality Cause of 
death Diagnosis PMI 

1 (samples 
A and B) 43 F Right Cardiac arrest Cognitive control <24 h 

2 70 M Left 

Coronary 
artery disease 
and multiorgan 
failure 

Severe coronary 
artery disease, 
myocardial 
infarction, 
hypertension, 
hyperlipidemia, 
mild 
hypoxic/ischemic 
changes  

24 h 

Table 1. Demographic information on post mortem human hemispheres. 
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Figure 1. Overview of sample identification and data acquisition. Ex vivo human brain samples were extracted from coronal 
slabs (dashed rectangles) and dMRI data were acquired at 9.4T. Single slices from b=0 scans are shown for each sample. Samples 
1A and 1B were cut from different anatomical locations of the same brain, and sample 2 was extracted from a different brain. 
Following dMRI, a piece of sample 1A was cut and imaged with PSOCT (A, right). Sample 1A, which contained the corpus 
callosum (CC), internal capsule (IC), external capsule (EC), caudate and putamen, was used as the test dataset. Each of samples 
1A, 1B, and 2 were used as training datasets. 
 
2.2. Data acquisition and processing 
2.2.1. Diffusion MRI 

All three ex vivo samples were scanned in a small-bore 9.4T Bruker Biospec system with 
gradients capable of |Gmax|=480 mT/m. Prior to scanning, each block was placed in a plastic 
syringe filled with Fomblin and all air was removed. The dMRI data were acquired using a spin 
echo 3D single-shot EPI sequence with a maximum gradient amplitude of 393 mT/m, TR=750 
ms, TE=43 ms, GRAPPA factor 2, matrix size 136x136x176, and 250 μm isotropic resolution. 
We used a DSI sampling scheme consisting of one b=0 image and 514 gradient directions 
arranged on a Cartesian lattice in q-space and zero padded to an 11x11x11 grid (Wedeen et al., 
2005). Diffusion encoding was applied with bmax=40000 s/mm2, ẟ=15 ms, and Δ=21 ms, 
corresponding to qmax=250 mm—1. The total acquisition time was approximately 48 hours. We 
will refer to the datasets containing all 515 diffusion volumes as the “fully sampled” or “FS” 
data.  
 A 4-channel phased array surface receive (Rx) coil was used in dMRI acquisitions 
(diagramed in Figure 2A, bottom), leading to a decrease in coil sensitivity and SNR as the 
distance between the sample and Rx coil increased. The coronal planes of the dMRI data were 
approximately parallel to the surface coil, so coronal slices closer to the coil had higher signal 
than the slices farther away. Figure 2A (top) shows three example coronal slices from the b=0 
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volume of sample 1A, each with varying distances from the surface Rx coil. To quantify the 
dMRI SNR, we used the b=0 signal intensities from a region of interest (ROI) in the deep WM. 
The SNR of each coronal slice was calculated as the mean signal (Figure 2B, solid black line) 
divided by the standard deviation of the signal intensities from the ROI (Figure 2B, solid gray 
line). In order to relate the SNR across slices to the sensitivity profile of the coil, we fit a linear 
model to the calculated SNR values to obtain an expression for SNR as a function of slice 
(Figure 2B, dotted green line). For the dMRI slice numbering of each sample, we will refer to 
slice 1 as the slice closest to the surface coil, with increasing slice numbers indicating increased 
distance from the coil. 
 

 
Figure 2. dMRI acquisition and SNR. (A) Bottom: A surface receive coil was used in dMRI acquisitions. Top: 
This led to a decrease in sensitivity with increasing distance from the coil, as shown in coronal slices from the 
sample 1A b=0 volume. The same intensity scaling was used for all three slices. (B) The b=0 SNR in each coronal 
slice of sample 1A (solid green line) was calculated from the mean (black line) and standard deviation (gray line) of 
signal intensities from a deep WM ROI. A linear regression was performed to find the slope of SNR as a function of 
slice (dotted green line). The left y-axis shows the signal and noise intensities, and the right y-axis shows SNR 
values. The x-axis in indexed by slice number. 
 
2.2.2. PSOCT 

Following dMRI acquisition of sample 1A, a piece of the tissue block was extracted for 
imaging with PSOCT (Figure 1A, right). Details on the setup, acquisition, processing and 
analysis of the PSOCT dataset used in this paper were previously described in (Jones et al., 
2020). Briefly, the sample was imaged with a polarization maintaining fiber (PMF) based, 
spectral domain PSOCT system developed in-house (Wang et al., 2016). The light source 
consisted of two broadband super-luminescent diodes (Thorlabs Inc., LSC2000C), with a center 
wavelength of 1300 nm and a bandwidth of 170 nm. The axial resolution was 2.9 μm in tissue 
and the lateral resolution was estimated at 3.5 μm. PSOCT produces measurements of optic axis 
orientation, which represent the in-plane (2D) orientation of the fiber axis. We downsampled the 
PSOCT data to an in-plane resolution of 10 μm to facilitate processing and analysis. To cover the 
entire tissue surface, 1120 tiles (FOV = 1 mm2) were acquired using a 50% overlap and a snaked 
configuration scheme. The tiles were stitched using the Fiji software (Preibisch et al., 2009; 
Schindelin et al., 2012). A vibratome cut off a 75 μm slice after the superficial region of the 
tissue block was imaged, which consequently allowed deeper regions to be exposed by PSOCT. 
There were 63 total slices acquired for the sample block. One critical advantage of the technique 
is that PSOCT images the blockface of the tissue before slicing (Wang et al., 2018). This avoids 
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the nonlinear inter-slice distortions that are present in traditional histological techniques, where 
slices are imaged after they are cut. As a result, we can simply stack the slices into a volume.  

Affine registration was used to align the dMRI fractional anisotropy (FA) and PSOCT 
retardance volumes. Retardance represents the phase delay between orthogonal polarization 
channels that is induced by birefringence, a property of anisotropic structures. The myelinated 
axons that compose WM bundles possess birefringent properties and are highlighted in the 
retardance, providing a similar contrast to FA. We used a robust, inverse consistent registration 
method that detects and down-weighs outlier regions in the images (Reuter et al., 2010). The 
dMRI volumes were transformed to PSOCT space using nearest-neighbor interpolation, and the 
dMRI orientation vectors (see section 2.3.2 below) were also rotated accordingly using the 
rotational component of the affine transformation. The transformed dMRI vectors were projected 
onto the PSOCT imaging plane for the purposes of comparison to optic axis measurements, 
which represent the in-plane fiber orientations. 
 
2.3. dMRI reconstructions 
2.3.1. Compressed sensing  

CS reconstructions were performed using two dictionary-based CS-DSI methods 
previously introduced by Bilgic et al. (2013). One is PCA-based reconstruction (PCA) and the 
other is Tikhonov-regularized pseudoinverse reconstruction using the training set of PDFs as the 
dictionary (PINV). CS undersampling masks were generated for acceleration factors R=3, 5 and 
9 using a variable-density power-law function (Bilgic et al., 2013; Lustig et al., 2007). Nine CS 
masks with different sampling patterns were created for each acceleration factor. Retrospective 
undersampling was applied to fully sampled q-space data, followed by CS reconstruction using 
either PCA or PINV. Each reconstruction method had one free parameter: the number of 
principal components T and the Tikhonov regularization parameter λ, for PCA and PINV 
respectively. The optimal parameter for each dictionary was determined using the parameter 
sweeping approach from Bilgic et al. (2013), in which the training data were undersampled and 
reconstructed using a range of parameters, and the one yielding the lowest root-mean-square 
error (RMSE) in PDFs when compared to the fully sampled data was selected. This procedure 
was performed separately for each combination of dictionary and acceleration factor.  

Reconstructions and analyses were performed in MATLAB (R2019a, 9.6) based on 
publicly available code (https://www.martinos.org/~berkin/software.html). Both PCA and PINV 
methods used a single matrix multiplication to reconstruct an entire slice, with computation times 
of ~10-15 seconds per slice (~6000 voxels per slice) on a workstation with a 3.4GHz Intel i7 
processor, 8 cores, 32GB RAM. For full volume reconstructions (~50 slices), we compiled the 
Matlab function into a standalone application and processed individual slices in parallel on a 
high-performance compute cluster. Simultaneously running each slice as a separate process with 
8GB of memory resulted in full volume reconstruction times between 2-10 minutes (depending 
on the number of available CPUs).  
 
2.3.2. Fiber orientations 
 At each dMRI voxel, we computed the orientation distribution function (ODF), i.e., the 
marginal PDF of the diffusion orientation angle. Diffusion tractography algorithms use the 
ODFs, rather than the full PDFs, to reconstruct WM bundles. In DSI, ODFs are typically 
obtained by interpolating the PDFs onto uniform radial vertices and summing them along each 
radial projection. The truncation of q-space causes ringing in the PDFs, which introduces 
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artifacts into the ODFs. One approach to mitigating these artifacts is to apply a windowing 
function on the q-space data, like a Hanning filter (Wedeen et al., 2005). This smooths the signal 
decay at the edges of q-space but diminishes the contributions of high-frequency diffusion terms, 
potentially oversmoothing the PDFs and ODFs and reducing angular resolution. An alternative 
approach is to use unfiltered q-space data and carefully define the starting and ending 
displacement distances for integration of the PDF (Lacerda et al., 2016; Paquette et al., 2016; 
Tian et al., 2016). This way, one can restrict the integration range so that PDF ringing is omitted 
from ODF computations without having to taper the high frequency q-space data. We used the 
latter approach for ODF reconstructions. 
 DSI ODF reconstructions were performed in Python with the Dipy (version 1.3.0.) library 
(Garyfallidis et al., 2014). For each voxel, the q-space data were zero padded to a 75x75x75 grid 
and the 3D FFT was applied to obtain the PDF, with negative PDF values clipped to zero. For 
ODF reconstruction, we used a PDF integration lower bound of 𝑟!"#$" = 10 and upper bound of 
𝑟%&' = 16 (which were roughly 0.27x and 0.43xFOV), a radial step size of 𝑟!"%( = 0.05, and a 
radial weighting factor of 2. ODF peaks were extracted using a maximum of 3 peaks per voxel, 
minimum peak separation angle of 25° and minimum peak magnitude of 0.05. The same 
parameters were used for all DSI ODF reconstructions.  
 We also fit the DTI model to the fully sampled data using the FSL command dtifit and 
extracted the orientations of the primary eigenvectors of the tensors. These served as a baseline 
for “worst-case” dMRI orientation accuracy, i.e., where only a single fiber population can be 
resolved in each voxel. We will refer to the fully sampled DTI and DSI orientations as FS-DTI 
and FS-DSI, respectively. 
 
2.4. Error metrics 

We performed a voxel-wise comparison of dMRI and PSOCT orientations using absolute 
angular error as the accuracy metric, as in (Jones et al., 2020). In each voxel, we selected the 
peak of the diffusion ODF with the in-plane orientation that matched the corresponding PSOCT 
orientation most closely and computed the angular error between that peak and the PSOCT 
measurement. Thus, for a voxel with N dMRI ODF peaks, the absolute in-plane angular error 𝐴𝐸 
was calculated as:	 
 
 𝐴𝐸 = min

&
{arccos	(|𝒆&)𝒗|)} , (1) 

 
where 𝒆& is the unit vector along the 𝑛"* dMRI peak orientation, and 𝒗 is the unit vector along 
the measured PSOCT orientation.  

PSOCT optic axis measurements rely on birefringence of anisotropic processes, such as 
axon bundles in WM, but are not necessarily accurate in gray matter regions where there is a lack 
of birefringence and low retardance. Thus, a WM mask was created to exclude all voxels where 
the retardance intensity was below 50% of the maximum retardance. Only voxels in this WM 
mask were considered when computing angular error metrics. The PSOCT imaging plane was 
nearly parallel to the dMRI coronal plane, which itself was nearly parallel to the surface Rx coil. 
We exploited this arrangement, and the decreasing SNR of dMRI slices at increasing distance 
from the coil, to assess the accuracy of CS-DSI as a function of SNR. 
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As a more conventional CS-DSI error metric, we also computed the normalized RMSE of 
the PDFs obtained from CS reconstruction with respect to those obtained from the fully sampled 
DSI data: 

 
 𝑅𝑀𝑆𝐸 = ‖𝒙-𝒙.‖!

‖𝒙‖!
	, (2) 

 
where 𝒙 is the PDF from the fully sampled data, 𝒙A is the PDF from the CS reconstructed data, 
and ‖∙‖/ is the L2-norm.   
 
2.5. CS-DSI validation experiments 

We constructed a total of six PDF dictionaries, each trained on a single slice of fully 
sampled DSI data from sample 1A, sample 1B, or sample 2. For each sample we created two 
dictionaries, one from a high-SNR slice (slice 3) and one from a low-SNR slice (slice 13). We 
applied CS reconstruction to DSI data from sample 1A, undersampled by a factor of R=3, 5, or 9, 
using one of these dictionaries. We then computed DSI ODFs and extracted the orientations of 
the ODF peaks. We transformed the orientations to PSOCT space and projected them onto the 
PSOCT plane. We calculated the absolute angular error with respect to PSOCT at each WM 
voxel.  

Angular non-uniformities in the CS undersampling patterns may introduce directional 
biases into the ODFs, and thus affect our angular error computations. We accounted for this 
potential source of variability in our error metrics by repeating the CS reconstructions with 9 
different CS undersampling masks, for each combination of dictionary and acceleration factor.   
 
2.5.1. Effect of CS acceleration factor and training sample on angular error 

We assessed the efficacy of the CS algorithms at different acceleration factors, by 
comparing CS reconstructions of data from sample 1A that had been undersampled by a factor of 
R=3, 5, and 9. In this comparison, we used the PCA and PINV methods with dictionaries trained 
on a high-SNR slice from each sample. The accuracy of dMRI orientations was quantified by the 
mean angular error across each PSOCT slice, as well as across all WM voxels in the PSOCT 
volume. This error was averaged over the reconstructions that were obtained with the 9 different 
CS undersampling masks. The mean angular error of FS-DSI was used as a reference for 
evaluating the quality of CS reconstructions.  
 
2.5.2. Effect of SNR on reconstruction error metrics 

One goal of this study was to determine the influence of SNR on metrics of CS 
reconstruction quality. To this end, we calculated the b=0 SNR (as described in section 2.2.1.) 
for each dMRI slice and computed the average RMSE in PDFs (with respect to the fully sampled 
data) and the average angular error (with respect to PSOCT) across all WM voxels in each slice. 
Then, for each CS reconstruction, we performed a linear regression of RMSE or angular error 
against SNR. This was done for FS-DTI, FS-DSI, and CS-DSI. For CS-DSI, error metrics from 
each combination of acceleration, training sample, and method were calculated, each time 
averaging the mean errors over CS reconstructions from the 9 different undersampling masks. 
 
2.5.3. Effect of SNR on dictionary training  

To evaluate the effect that the SNR of the training data has on CS reconstructions, voxels 
in sample 1A were reconstructed at acceleration R=3 with dictionaries trained on low-SNR data 
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(slice 13) from each sample using PCA and PINV methods. These results were then compared to 
the corresponding results from the experiment described in section 2.5.1. that used high-SNR 
training data. The accuracy of dMRI orientations was quantified by the mean angular error 
across all WM voxels in the PSOCT volume. The CS reconstructions included here were 
performed with one randomly selected CS undersampling mask.  

 
 
3. Results 
3.1. Visual inspection 

Figure 3 provides visualizations of dMRI and PSOCT orientations from a representative 
slice of sample 1A. Figure 3A shows fiber orientation maps as color-coded RGB images. The 
color wheel shows the correspondence between pixel color and in-plane orientation. For fully 
sampled DSI and for CS-DSI at acceleration factors R=3, 5, 9, the color maps show the 
orientations of the ODF peaks that most closely matched the PSOCT orientations in the same 
voxel. All CS-DSI results are shown for the same CS undersampling mask. For fully sampled 
DTI, the color maps show the orientations of the primary eigenvector of the diffusion tensor. 
Figure 3B shows heat maps of the absolute angular error between dMRI and PSOCT orientations 
in each voxel. 

Despite the large disparity in voxel size, there was good overall agreement between 
dMRI and PSOCT fiber orientation maps (Figure 3A). The dMRI maps showed the closest 
resemblance to PSOCT in the medial half of the slice, with greater differences in the lateral half 
of the slice. Examination of the angular error maps (Figure 3B) confirms that the greatest angular 
errors occurred in the middle and lateral regions of the slice. This distribution of errors was most 
obvious in the FS-DTI error map (Figure 3B, top right). The fully sampled (Figure 3V, top 
middle) and CS-DSI maps (Figure 3B, bottom) show similarly good agreement with PSOCT.  
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Figure 3.  Fiber orientations estimated from dMRI vs. PSOCT.  (A) Color-coded maps of PSOCT (top left) and 
dMRI orientations from fully sampled data (top right) and CS-DSI data (bottom). (B) Absolute angular error of 
dMRI orientations with respect to PSOCT. A WM mask was created by thresholding the PSOCT retardance (top 
left). The heat maps were masked to include only voxels classified as WM. CS-DSI reconstructions are shown for 
high-SNR training data and one of the CS undersampling masks.   
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3.2. Effect of CS acceleration factor and training sample on angular error  
Figure 4 shows bar plots of the mean angular errors of dMRI with respect to PSOCT, 

averaged over all WM voxels analyzed, from CS reconstructions of sample 1A with high-SNR 
training data at different acceleration factors. Error bars show the standard error over different 
CS undersampling masks. The corresponding statistics are given in Table 2. The mean angular 
error of FS-DSI (green bar and dotted line) is shown as the benchmark for assessing CS-DSI 
results. The mean angular error of FS-DTI (red bar and dotted line) is shown as a worst-case 
scenario. 

At an acceleration factor of R=3, CS-DSI achieved very similar angular error to FS-DSI 
(within +/-1.27 o), for both PCA and PINV reconstruction methods, and regardless of whether the 
training data came from the same or a different sample than the test data. For PCA 
reconstruction, the angular error increased with the acceleration factor. This increase was most 
dramatic in the (more realistic) scenario where the training data came from a different brain than 
the test data. Conversely, higher acceleration factors imparted only minor changes on the 
accuracy of PINV reconstructions. 
 

 
Figure 4. Mean angular error of dMRI with respect to PSOCT. The plots show average error over all WM 
voxels in sample 1A. For CS-DSI, the error was also averaged over 9 CS undersampling masks, with error bars 
representing standard error of the mean across these 9 masks. Results are grouped by training sample (sample 1A, 
blue; sample 1B, purple; sample 2, yellow) and CS method. Bar shades correspond to acceleration factor (3, 5, 9). 
All CS-DSI reconstructions used high-SNR training data from each sample. Mean angular errors from FS-DTI (red) 
and FS-DSI (green) are shown on the far left for comparison. 
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 Angular error (degrees) 
FS-DTI 26.10  
FS-DSI 18.25  
 PCA PINV 
Training sample 1A   
R=3 18.64 ± 0.11 17.71 ± 0.30 
R=5 19.25 ± 0.16 17.95 ± 0.14 
R=9 20.16 ± 0.40 18.36 ± 0.26 
Training sample 1B   
R=3 18.43 ± 0.25 17.37 ± 0.32 
R=5 19.69 ± 0.30 17.31 ± 0.16 
R=9 21.10 ± 0.33 17.30 ± 0.17 
Training sample 2   
R=3 18.81 ± 0.29 16.97 ± 0.33 
R=5 22.37 ± 0.92 16.25 ± 0.18 
R=9 26.48 ± 1.73 16.89 ± 0.52 

Table 2. Angular error of dMRI orientations. Mean angular errors of dMRI with respect to PSOCT across all 
analyzed WM voxels. CS-DSI reconstructions used high-SNR training data from each sample. For CS-DSI, standard 
errors of the mean are also shown, computed over the 9 CS undersampling masks. 
 
 We delved deeper into this difference between the performance of PCA and PINV by 
comparing how many peaks were detected in the ODFs from the data reconstructed by each 
method. The bar plot in Figure 5A (left) shows the average number of reconstructed ODF peaks 
per WM voxel from each reconstruction (for a maximum of 3 peaks per voxel), with standard 
error bars. CS-DSI results were averaged over the 9 undersampling masks used for CS 
reconstructions. The number of ODF peaks reconstructed from FS-DSI (green bar) is shown for 
reference.  

FS-DSI produced an average of approximately 2 peaks per voxel. For an acceleration 
factor of R=3, PCA reconstructions produced a similar number (less than 3.2% difference vs. FS-
DSI). As the acceleration factor increased, PCA tended to return slightly fewer peaks. On the 
other hand, PINV reconstructions returned a greater number of peaks than FS-DSI (greater than 
7.6% difference vs. FS-DSI). This number increased as the acceleration factor increased, and 
when the training data came from a different sample than the test data. 
 Figure 5B plots the number of ODF peaks against the mean angular error. The PCA and 
PINV reconstructions are denoted by triangle and circle markers, respectively, and colored as in 
Figure 5A. Error bars indicate the standard error for each metric. FS-DSI (green diamond) served 
as the benchmark in terms of angular error. As indicated by the red dashed line in Figure 5B, 
there was a clear separation between PINV (above the line) and PCA (below the line). FS-DSI 
was situated at the knee of the curve, and PCA reconstruction with an acceleration factor of R=3 
was closest to FS-DSI, regardless of the sample that was used as the training data set. Thus, we 
conclude that CS-DSI with a combination of R=3 acceleration and PCA reconstruction preserved 
the accuracy of FS-DSI with respect to the ground truth orientations, but without having to 
introduce additional peaks. 
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Figure 5. Number of reconstructed ODF peaks. (A) Average number of ODF peaks per WM voxel from fully 
sampled (green bar) and CS reconstructed (blue, purple, and brown bars) DSI data. CS results show the average 
from the 9 q-space volumes reconstructed with different CS undersampling masks. Error bars display the standard 
error. (B) Plot of the number of ODF peaks as a function of the mean angular error from fully sampled (green 
diamond) and CS reconstructed q-space data. Circle markers correspond to PINV, and triangle markers correspond 
to PCA. Marker colors are the same as the bar plots in (A). Error bars indicate the standard error. PINV 
reconstructions (above red dashed line) produced more peaks and lower angular errors than PCA (below red dashed 
line). The CS-DSI reconstruction that was closest to FS-DSI on both axes was PCA with acceleration R=3.  
 
3.3. Effect of SNR on reconstruction error metrics 

Figure 6A shows the slice-wise mean angular errors with respect to PSOCT, plotted 
against the SNR of the corresponding slice. Error bars indicate the standard error. The CS 
reconstructions included here used acceleration R=3 and dictionaries trained on high-SNR data 
from each sample. The curves for CS-DSI reconstructions closely resembled that of FS-DSI 
(green line) throughout the entire volume, with less than 2.52o variation in mean angular errors 
between all DSI reconstructions in each slice. FS-DTI (red line) had significantly greater errors 
than both FS-DSI and CS-DSI and showed a sharp increase in error as SNR decreased. The DSI 
angular errors were relatively robust to decreased SNR.  

Table 3 shows statistics from the linear regressions of the mean angular error against 
SNR. The slopes were noticeably flatter for FS-DSI (-0.24o per unit SNR, p=0.051) and CS-DSI 
reconstructions (-0.28o to -0.46o per unit SNR, p<0.003) than FS-DTI (-1.20o per unit SNR, 
p=0.00011). 

For comparison, Figure 6B shows the slice-wise mean RMSE in PDFs between each CS-
DSI reconstruction and the fully sampled DSI data, as a function of SNR. The mean RMSE was 
calculated from the real part of the diffusion PDFs and averaged across all WM voxels in each 
slice. Error bars depict the standard error. Statistics from the linear regressions of the RMSE 
versus SNR are also given in Table 3. All reconstructions exhibited a strong negative correlation 
between RMSE and SNR (r=0.99, p<0.001) and showed a nearly linear increase in RMSE as 
SNR decreased (Figure 6B), with consistent linear regression slopes (-0.66 to -0.96 % RMSE per 
unit SNR). It should be noted that the linear fit of SNR likely smoothed the observed 
relationship, but that notwithstanding, the correlation between SNR and CS RMSE remained 
markedly apparent across all reconstructions.  
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These results suggest that, although the error in the PDFs obtained from CS-DSI 
increases noticeably as the SNR decreases, this translates to only a minor increase of the error in 
the peak orientations, which is what would have an impact on tractography. Note that these 
trends were observed both for reconstructions that tended to add more diffusion peaks (PINV) 
and for those that did not (PCA), hence this relationship between each error metric and SNR did 
not appear to be explained by the number of peaks. 
 

 
Figure 6. Reconstruction error as a function of SNR. (A) Average angular error of FS-DSI, FS-DTI, and CS-DSI 
with respect to ground-truth axonal orientations from PSOCT. (B) Average RMSE in PDFs between CS-DSI and 
FS-DSI. Each error metric is averaged across all WM voxels in each slice and plotted against the SNR of the 
corresponding b=0 dMRI slice. Line colors and styles correspond to different dMRI reconstructions. For CS 
reconstructions, each error metric was averaged across 9 CS undersampling masks, with error bars showing the 
standard error of the mean across the 9 masks. For CS-DSI, line colors denote different training samples and line 
styles denote different CS reconstruction methods. All CS reconstructions used an acceleration factor of R=3 and 
high-SNR training data.  
 

  Angular error  RMSE in PDFs  
  r Slope (o 

per unit 
SNR 

p-value r Slope (% 
per unit 
SNR) 

p-value 

FS-DSI  -0.45 -0.25 0.051 - - - 
FS-DTI  -0.77 -1.21 0.00011 - - - 
        
CS training CS method       
Sample 1A PCA -0.67 -0.36 0.0017 -0.99 -0.96 4.35x10-17 
 PINV -0.84 -0.43 7.0x10-6 -0.99 -0.79 9.65x10-17 
Sample 1B PCA -0.65 -0.30 0.0028 -0.99 -0.81 3.20x10-16 
 PINV -0.73 -0.28 0.00038 -0.99 -0.70 1.82x10-16 
Sample 2 PCA -0.81 -0.46 2.6x10-5 -0.99 -0.80 1.11x10-17 
 PINV -0.81 -0.35 2.4x10-5 -0.99 -0.66 6.86x10-17 

 
Table 3. Linear regressions of reconstruction error metrics vs. SNR. Linear correlation coefficient (r), slope, and 
p-value from the linear regressions of the angular error with respect to PSOCT and the RMSE in PDFs with respect 
to fully sampled data as a function of SNR. CS reconstructions used an acceleration factor of R=3 and high-SNR 
training data. 
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3.4. Effect of SNR on dictionary training 
 After observing that CS reconstructions at acceleration R=3 using high-SNR training data 
performed nearly as well as FS-DSI in terms of angular error, we tested whether this was also 
true with low-SNR training data. The bar plot in Figure 7 compares the effect of training data 
SNR on the mean angular error of CS reconstructions at acceleration R=3 across all WM voxels 
analyzed. The CS reconstructions included here used one of the R=3 undersampling masks (out 
of the 9 undersampling masks used for Figures 4-6). All CS reconstructions exhibited greater 
mean angular error when using low-SNR than high-SNR training data, although the extent of 
differences varied depending on the training sample and reconstruction method. Specifically, 
PCA was more sensitive to the SNR level of the training data than PINV.  
 

 
Figure 7. Effect of the SNR of the training data on angular error. Mean angular error across all analyzed WM 
voxels for CS reconstructions at acceleration R=3. Dictionaries were trained using either high-SNR (“H”, light 
shade) or low-SNR (“L”, dark shade) slices from sample 1A (blue), sample 1B (purple), or sample 2 (yellow). 
Results from FS-DTI (red) and FS-DSI (green) are shown on the far left.  Error bars show standard error across 
voxels.    
 
 
4. Discussion 

In this study we evaluated the accuracy of diffusion orientation estimates obtained from 
CS-DSI by comparing them to ground-truth measurements of fiber orientations from optical 
imaging. This complements previous work that used simulated or fully sampled DSI data as the 
ground truth (Bilgic et al., 2013; Menzel et al., 2011; Paquette et al., 2015). While the error 
between PDFs obtained with fully sampled and CS-DSI is informative, it is not clear what error 
can be tolerated without incurring a noticeable loss of accuracy with respect to the underlying 
fiber orientations. The benefit of using PSOCT as the reference modality is that it provides direct 
measurements of axonal orientations that are independent of water diffusion.  
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We employed two dictionary-based algorithms for CS reconstruction and investigated the 
effects of training data and undersampling rate on the accuracy of estimated fiber orientations. 
We found that a PCA reconstruction at an acceleration factor of R=3 retained the fiber 
orientation accuracy of the fully sampled DSI data (Figure 4), without introducing additional 
peaks (Figure 5). Its performance was as good when the training data for the dictionary came 
from a different sample than the test data as it was when the training and test data came from the 
same sample. However, we also found that it was important to use high-SNR training data to 
achieve this performance (Figure 7).  

We conclude that PCA reconstruction of CS-DSI data can be a reliable approach for 
achieving 3-fold acceleration of DSI without degrading its accuracy. This acceleration factor 
allows the equivalent of 514-direction DSI to be reconstructed from a 171-direction acquisition, 
thus bringing DSI acquisition times in line with those of state-of-the-art high angular resolution 
(e.g., multi-shell) acquisitions. As has been shown in previous validation studies, the DSI 
acquisition scheme achieves high accuracy (Daducci et al., 2013, Jones et al., 2020, Maffei et al., 
2020), and DSI data can be readily resampled onto q-shells to facilitate any analysis that requires 
a shell-based acquisition (Jones et al., 2020). 

We exploited the sensitivity profile of the surface Rx coil used in our ex vivo dMRI 
acquisitions to quantify the accuracy of CS-DSI as a function of SNR in the test data. We found 
that, as SNR decreased, the RMSE between the PDFs obtained from CS-DSI and those obtained 
from fully sampled DSI data increased faster than the angular error of the peak orientations with 
respect to PSOCT (Figure 6). This suggests that there is a range of errors in the PDF that we can 
tolerate without impacting the accuracy of the peak orientations. Specifically, as seen in Figure 
7, a roughly 40% increase in the PDF-based RMSE due to loss of SNR leads to at most a 1o 
increase in the angular error with respect to the ground-truth axonal orientation measurements. 
This increase is very small compared to the overall errors of dMRI orientations with respect to 
the ground-truth measurements.  

In regard to the dictionary-based CS algorithms that we investigated, our findings 
indicate that dictionary generalizability differs between the PINV and PCA methods, and that the 
extent of these differences depends on both the CS acceleration factor (Figure 4) and the training 
data SNR (Figure 7). One potential factor contributing to these differences may be the ways in 
which PDFs are represented within the algorithms. PCA performs reconstructions in a reduced-
dimensionality space consisting of only the T principle components that describe the greatest 
variance in the training PDFs, and the optimal number of components T decreases at higher 
acceleration factors in order to improve the conditioning of the pseudoinverse in the least-
squares reconstruction (Bilgic et al., 2013). In our experiments, T was around 20 at acceleration 
R=3 and less than that at higher accelerations, which are moderately lower than the optimal in 
vivo parameters. Intuitively, reducing the number of principal components subsequently limits 
the ability to describe finer scale details in PDFs, and, together with the extremely undersampled 
q-space data used at high accelerations, likely hinders the level of detail in such reconstructions. 
In contrast, PINV operates directly on the training PDFs themselves, exploiting the prior 
information encoded in the dictionary atoms to bypass sparsity constraints. Together, these 
differences may contribute to the different behavior of PINV and PCA as the acceleration factor 
increases.  

The PINV method investigated here uses a dictionary containing PDFs from a slice of 
fully sampled training data, without any further training. An alternative approach is to use a 
dictionary trained with the K-SVD algorithm (Aharon et al., 2006), which enhances the sparsity 
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level of PDF representations and is a fraction of the size of the PINV dictionary, allowing up to a 
50% reduction in computation time. Regardless of the dictionary, reconstructions are performed 
using the Tikhonov-regularized pseudoinverse. Previous comparisons between PINV using a 
3191-column dictionary and PINV(K-SVD) using a 258-column dictionary reported nearly 
identical reconstruction quality in terms of RMSE, as well as equivalent representational power 
between the two dictionaries (Bilgic et al., 2013). Although we did not include results from 
PINV(K-SVD) here, we did perform CS reconstructions and PSOCT angular error analysis using 
PINV(K-SVD) and observed very similar results to PINV, both in terms of RMSE with respect 
to fully sampled data and in terms of angular error with respect to PSOCT. Future work will 
investigate potential benefits of deep and nonlinear representations of PDFs that can exploit 
similarities present in image- and q-space domains.  
 
Relation to previous studies 

We have previously used the present PSOCT analysis framework (and sample 1A from 
this work) in an extensive validation study (Jones et al., 2020).  In that work, we assessed the 
accuracy of fiber orientations estimated from various dMRI orientation reconstruction methods 
and sampling schemes, including DSI, single- and multi-shell. The DSI results are somewhat 
different between the two studies because the DSI ODF reconstruction is different. In (Jones et 
al., 2020), DSI reconstructions were performed with the DSI Studio toolbox (http://dsi-
studio.labsolver.org),  and used filtered q-space signals (Hanning window, width=16) with 
default parameters (e.g., zero-padded 16x16x16 q-space grid, ODF integration lower/upper 
bounds of 0.25x and 0.75x FOV), and a ODF peak threshold of 0.01 (1%). Here, we used a 
different approach for ODF reconstruction, imposed a (slightly) more stringent peak threshold 
(5%) and included a peak separation threshold. These factors likely contributed to the ~1-2o 
increases in mean angular error reported here compared to previous results. Nonetheless, the 
angular errors in this work were similar to the best performing reconstructions in (Jones et al., 
2020), namely DSI and GQI with the fully sampled DSI data and Q-ball with single- and multi-
shell data, which were between ~17o and ~19o.  

This work analyzed the dictionary-based CS-DSI methods introduced by Bilgic et. al. 
(2013), however there were several technical differences between these works that should be 
noted. First, in terms of data acquisition, we used DSI data from ex vivo human brain samples 
acquired at 9.4T with a 4-channel surface Rx coil, whereas Bilgic et. al. used in vivo DSI from 
the 3T Connectom system with a custom 64-channel head coil (Keil et al., 2013). These 
differences did not have an apparent effect on the dictionary-based CS-DSI methods. First, the 
CS algorithms yielded similar results when using ex vivo training and test data as when using in 
vivo training and test data. Whether the same would also be true when using ex vivo training data 
and in vivo test data (or vice versa) has yet to be investigated. Such an approach may be of 
interest as long, ex vivo acquisitions can be a way to collect very high-SNR training data. 
Second, while both studies generated dictionaries with PDFs from a single slice of fully sampled 
data, a single slice of our ex vivo samples covers only a small anatomical region, whereas a slice 
of in vivo data covers an entire cross-section of the brain. Given that our training samples were 
cut from different anatomical locations, one might expect that local microstructural differences 
between training and test samples might pose challenges for dictionary generalizability. 
However, our findings showed that high-quality reconstructions could be obtained using training 
and test data from different samples, indicating that our ex vivo dictionaries possess the 
representational power to generalize across samples. Indeed, the “residual” (Bilgic et al., 2013) 
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between ex vivo PDF dictionaries, i.e., the energy of the part of one dictionary that cannot be 
represented by another, was negligibly small (~10-12), confirming that dictionaries from different 
samples possess equivalent representational power. 

 
Limitations 

We investigated two dictionary-based CS-DSI reconstruction methods that use discrete 
EAP representations and L2-regularized algorithms. However, there are various other CS-DSI 
methodologies that utilize other basis functions (e.g., discrete cosine transform, discrete wavelet 
transform) or approaches to solving the underdetermined CS problem (e.g., L1-regularized 
methods such as equality constrained or regularized Dictionary-FOCUSS). While the L2 
dictionary-based CS-DSI investigated here was shown to provide comparable reconstruction 
quality to both fixed transforms and iterative L1 approaches (Bilgic et al., 2013), those 
evaluations were mostly based on RMSE with respect to fully sampled DSI data. Analyzing the 
fidelity of other CS-DSI algorithms using PSOCT would be of interest, however the lengthy 
computation times required of methods using iterative algorithms or fixed transforms would 
ultimately limit their utility.     

This work focused primarily on validating the accuracy of CS-DSI fiber orientations 
extracted from ODFs. While ODFs are commonly used structures essential for tractography, they 
represent only a portion of the abundant information contained in diffusion PDFs. Diffusion 
PDFs can provide detailed descriptions of tissue microstructure, and have been previously used 
to characterize age-related WM demyelination (Fatima et al., 2013), delineate pathological tissue 
lesions in patients with multiple sclerosis (Assaf et al., 2002), and map in vivo axon caliber in the 
human brain (Hori et al., 2016). Future work will aim to validate the microstructural parameters 
(e.g., return to origin probability, mean-squared displacement, kurtosis) derived from CS-DSI 
reconstructions. 

It is important to recognize that PSOCT is just one of a number of techniques used to 
obtain reference measurements of microscopic axonal orientations for subsequent comparison to 
dMRI. Other approaches include extracting orientations from myelin-stained sections (Choe et 
al., 2012; Leergaard et al., 2010; Schilling et al., 2017; Seehaus et al., 2015) or from confocal 
microscopy of slices stained with DiI, a fluorescent dye (Budde & Frank, 2012). Quantification 
of 3D orientations has been reported with Dil stained slices (Khan et al., 2015; Schilling et al., 
2016; Schilling et al., 2018). The major obstacle for these histological methods is that they rely 
on manual tracing or image processing to extract orientation estimates. Optical imaging 
techniques based on light polarization are able to provide direct measurements of fiber 
orientations by exploiting the intrinsic birefringence property of the tissue. Polarized light 
imaging (PLI) is another technique that uses birefringence to measure axonal orientations (Axer 
et al., 2011; Henssen et al., 2019; Mollink et al., 2017). However, unlike PSOCT, PLI requires 
tissue to be sectioned and mounted before imaging. This can lead to severe tissue distortions that 
demand a complex registration framework to correct (Ali et al., 2017; Ali et al., 2018; Majka & 
Wójcik, 2016). PSOCT images the tissue before slicing, greatly reducing tissue distortions and 
allowing accurate volumetric reconstructions.    

 As is the case with all validation techniques, there are also various limitations to PSOCT. 
A notable limitation is that the optic axis orientation measurements do not describe the 3D 
orientation, but rather its projection onto the imaging plane. It is possible to interrogate 3D 
orientations from volumetric intensity data using structure tensor analysis (Wang et al., 2011; 
Wang et al., 2015), similar to the aforementioned histological applications. Another approach is 
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to collect PSOCT optic axis measurements with multiple light incidence angles on the tissue 
surface and use these measurements to infer the through-plane orientation. This approach has 
been previously demonstrated in biological tissue (Liu et al., 2016; Ugryumova et al., 2006; 
Ugryumova et al., 2009).  
 
 
5. Conclusion 

We have demonstrated that, when utilized in an appropriate manner, dictionary-based 
CS-DSI reconstructions can reduce acquisition times by a factor of 3 while preserving the 
accuracy of fiber orientation estimates with respect to PSOCT. In particular, given an adequate 
SNR level of the training data, the PCA method produced high-fidelity reconstructions that 
reliably maintained the accuracy of fully sampled DSI data. We also demonstrated that we can 
tolerate a non-negligible increase in the RMSE between PDFs obtained from CS-DSI and fully 
sampled DSI data, without incurring a large decrease in the accuracy of the peak orientations 
with respect to the axonal orientations measured with optical imaging. This underscores the need 
for assessing reconstruction quality with respect to ground-truth measurements. Our findings 
confirm the viability of CS-DSI as a technique for accelerating DSI acquisitions and offer 
valuable insights into the appropriate implementation of CS-DSI algorithms.  
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