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Neural responses are often highly heterogeneous non-linear functions of multiple task variables,
a signature of a high-dimensional geometry of the neural representations. We studied the represen-
tational geometry in the somatosensory cortex of mice trained to report the curvature of objects
using their whiskers. High-speed videos of the whisker movements revealed that the task can be
solved by linearly integrating multiple whisker contacts over time. However, the neural activity
in somatosensory cortex reflects a process of non-linear integration of spatio-temporal features of
the sensory inputs. Although the responses at first appear disorganized, we could identify an in-
teresting structure in the representational geometry: different whisker contacts are disentangled
variables represented in approximately, but not fully, orthogonal subspaces of the neural activity
space. The observed geometry allows linear readouts to perform a broad class of tasks of different
complexities without compromising the ability to generalize to novel situations.

Introduction

Making sense of the real world often requires the integration of sensory evidence across multiple sources
of information. In some situations, this process involves only simple operations like linear summation.
For example if we need to determine whether an object is close to our hand or not, we can just move
our fingers until any of them touches the object [1, 2]. Summing the tactile feedback coming from all
fingers and comparing it to a threshold would be sufficient to report whether the object was present
or not. In other words, a linear decoder would be sufficient to perform this simple detection task.
However, recognizing the shape of an object by touch could be a more challenging task, which might
involve non-linear integration of the sensory inputs coming from multiple fingers.

Here we studied recent experimental data [3] to understand how mice perform a shape recognition
task using their whiskers. Using high-speed videos of the whisker movements, we discovered that
the task can be solved by simple linear integration of whisker features (linear decoder). A linear
decoder is also the best predictor of the decisions of the animals. However, the neural representations
in somatosensory cortex are better explained by a process of non-linear spatio-temporal integration.
This type of non-linearity typically corresponds to high-dimensional representations in the neural
activity space (G3; Fig. 1). This means that while the animal is performing the task, the points that
correspond to the observed patterns of activity define a high-dimensional object. These representations
confer flexibility because a downstream neuron can perform a multitude of different tasks by being able
to separate the points of the object in many different groups. Despite the non-linearity of the neural
responses, we also identified a low-dimensional structure in the geometry of the neural representations,
reflecting some of the properties of abstract representations [4]. An abstract representation of two
variables (e.g. contacts of whisker one, C1, and contacts of whisker three, C3) is shown in Fig. 1
(G1), where they form a low-dimensional geometry in the neural activity space. The points that
correspond to the states of activation of a population of neurons now define a 2D square. These
representations are called abstract because the variables are represented in approximately orthogonal
subspaces (one axis for C1 and one axis for C3 in the figure), and thanks to this arrangement they
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have special generalization properties: the decoder trained to report the value of one variables is
always the same no matter what the value of the other variables is. The observed representations are
neither these abstract low-dimensional representations (G1), nor the less structured high-dimensional
representations (G3), but they are closer to what is represented in G2. These representations constitute
a non-trivial compromise between the flexibility of high-dimensional representations, which can be
reused in a number of very diverse tasks, and the ability to generalize and robustness to noise of
low-dimensional representations.

High-dimensional neuronal representations have been shown to enable a linear readout to perform a
large number of different tasks [5, 6, 7]. This is a desirable feature in a brain area like prefrontal cortex,
which is involved in many complex cognitive tasks. A linear readout of these high-dimensional repre-
sentations (even by a single neuron) can be easily trained to generate a variety of response patterns,
each corresponding to a different task. This can be achieved without modifying the input repre-
sentations and confers flexibility to the neural system. The disadvantage of these high-dimensional
representations is that the type of non-linear integration that they entail typically enhances noise and
hence can impair the performance in simple tasks that depend on a linear combination of one or few
variables (see e.g. [6]).

It is currently unclear whether the neural representations in sensory areas are high- or low- di-
mensional. Many experimental works have described the neural responses in sensory areas using the
concept of a receptive field (see e.g. [8]). In particular, this was a successful approach in the pioneering
work of Hubel and Wiesel in the primary visual cortex (V1) [9]. Receptive fields have also been derived
for neurons in primary somatosensory cortex (S1), for example by reverse correlation of sparse noise
stimuli applied to the whiskers [10]. The receptive field description of neuronal responses is useful only
when the activity can be accurately predicted by a linear combination of input features, or in other
words when the representations are low-dimensional. These representations guarantee robustness to
noise, which is certainly a desirable property in a sensory area, but this typically happens at the cost
of flexibility of being able to perform a broad range of tasks.

However, it is clear that even in brain areas like V1, there are significant deviations from linear
models as soon as more complex, realistic stimuli are considered [11, 12, 13, 14]. In line with these
observations, our study shows that the neural activity in somatosensory cortex of mice is best described
by a non-linear model of the task variables. Although this is a sensory area, the neurons respond
to rather heterogeneous non-linear combinations of these task variables, similarly to what has been
observed in prefrontal cortex and in the hippocampus [15, 4]. This is compatible with the recent
observations of high-dimensional representations in the visual cortex of non-behaving mice [16].

Heterogeneous non-linearities might suggest that the neural activity is rather disorganized, but in
this case we could identify a low-dimensional scaffold in the geometry of the representations. This
scaffold could enable downstream neurons to generalize to novel situations better than completely
random and disorganized representations. In particular, the number of whisker contacts for different
whiskers are represented along approximately orthogonal directions in the neural activity space. In
other words, these variables are disentangled or factorized, and we know from the machine learning
literature [17, 18] and recent experimental work [4, 19] that they allow for better generalization. This
enhanced generalization induced us to consider these variables as abstract variables [4].

Our conclusion is that the geometry of the representations in somatosensory cortex is basically
both low-dimensional and high-dimensional. It is low-dimensional because we can identify a low-
dimensional structure that allows for enhanced generalization. At the same time, the non-linearities,
which distort the low-dimensional scaffold, make the representations sufficiently high-dimensional to
enable a downstream neuron to perform a broad class of complex discrimination tasks. The non-linear
distortions are not so large that they compromise the robustness to noise and capacity to generalize.
Geometry that balances complexity and generalization, as seen in prefrontal cortex and hippocampus
of monkeys [4], may therefore be a feature of cortex in general. Our results suggest that it is important
to use non-linear models to describe the neural activity in somatosensory cortex, but at the same time
it is essential to analyze the neural activity at the population level to identify the organization of the
neural activity space.
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Figure 1: Different geometries of the neuronal representations are characterized by dif-
ferent computational properties. Each panel shows the firing rate space of N neurons, which
is the space defined by the N orthogonal axes that represent the firing rate of the different neurons
of the population. Each point in this space corresponds to one pattern of activity of the population
of neurons. As the animal performs the task, the set of points visited is an object (gray) that has
a particular geometry. Low-dimensional representations (G1): the number of contacts C1 and C3,
two variables that we will show to be relevant for performing the task, are represented along two
orthogonal axes. As one varies these two variables, the points that correspond to the neural activity
define a 2D square. These representations generalize well to unseen experimental conditions (Gener-
alization) but perform poorly on tasks that require non-linear combinations of different task variables
(Discrimination). Indeed, a simple linear decoder trained to report the value of C1 (high vs low) would
work for all possible values of C3 because the coding directions for C1 are the same for all values of
C3 (parallel lines). So it could be trained only on one value of C3 and thanks to the low-dimensional
geometry the decoder would work right away for a different value of C3. Analogously for C3: a decoder
trained to report its value (high vs low) would work for any value of C1. This confers robustness to
the responses of the readout, and allows for generalization in novel situations, e.g. when a C1 decoder
is trained on one value of C3 and it is tested on a different value of C3, a condition never experienced
by the decoder. The limit of these representations is that there are points that cannot be separated
by a linear readout (a linear readout would be represented by a separating plane in these plots). For
example the two points at the opposite vertices of the square cannot be separated from the other two
opposite vertices (green vs orange). On the contrary, high-dimensional representations (G3) allow a
simple linear readout like a neuron to separate the points on the gray object in a multitude of different
ways. They are highly flexible but generalize poorly. Intermediate geometries (G2) could benefit from
the computational properties of both low- and high-dimensional representations.
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Results

The whisker-based object discrimination task

Mice were trained on a whisker-based shape discrimination task (Fig. 2a), in which they were asked
to identify whether a presented object was concave or convex (see [3] for a complete description of
this experiment and many other analyses of both the behavior and the neural activity). Each trial
began with an object (convex or concave) moving toward the whiskers (t = −2 sec). Objects could
stop at one of three different distances (far, medium or close), which happened at t = −0.9, t = −0.7
and t = −0.5 seconds, respectively. The uncertainty about distance made the task more difficult, and
it encouraged the animals to use all the whiskers at their disposal (C0, C1, C2, and C3). When the
response window opened (t = 0 seconds), mice had to make a choice by licking the left lickpipe for
concave objects and the right lickpipe for convex objects. The object position and the whiskers were
monitored using high-speed video and processed with a deep neural network [20, 21, 22] (Fig. 2b;
see Methods). Importantly, mice were free to whisk and lick throughout the course of the trial (2
seconds). On each trial, the choice of the animal was determined by the side of the first lick after the
response window opened at t = 0 seconds.

Mice performed the task with a mean accuracy of 77.7%±0.9% (s.e.m.) (Fig. 2c). The probability
of making a lick on the correct lickpipe increased throughout the course of the trial, indicating that
mice based their decision on the accumulated sensory evidence gathered by whisking. This implies
some form of temporal integration. Most contacts were made between t = −1.25 and t = −0.25,
suggesting this was the most informative time window (Fig. 2d).

The whiskers contacted the two shapes at different rates: the mean difference in total number of
contacts between convex and concave objects for whisker C1 was −1.17±0.17, for C2 −1.22±0.27 and
for C3 0.77± 0.28 (Fig. 2e). Therefore, by computing the weighted sum of total number of contacts
of the three whiskers, it should be possible to discriminate between convex and concave objects. The
contact rate of each whisker followed a similar time profile (Supplementary Fig. S1). Mice made
more contacts on correct trials (Supplementary Fig. S2), suggesting that errors resulted from poorer
sensory gathering or a lower level of task engagement.

Linear integration is sufficient for object discrimination

In order to understand whether linear integration is actually sufficient to determine the curvature
of an object, we first predicted stimulus shape on a trial-by-trial basis using a linear decoder that
reads out the spatio-temporal pattern of whisker contacts observed during the execution of the task
(Fig. 3a). As whisker contacts were not necessarily the only behaviorally-relevant variables, we also
included other variables like the angular position of the whiskers during contacts. Moreover, we were
interested in understanding whether these spatio-temporal patterns could explain the decision of the
animal, which not always matches the shape of the object (the animals make mistakes). So we also
trained a decoder to predict the side where the animal licked at the response time (choice). Both
predictions were tested on held-out trials (cross-validation; see Methods).

The most informative set of features comprised all the whisker contacts and angle of contact across
time (Fig. 3b, see also [3]). When whisker contacts were summed either over time, or across whiskers,
the performance was lower, indicating that the full spatio-temporal pattern of whisker contacts best
predicts the curvature of the stimulus and the choice of the animal. Unsurprisingly, the weights of
the classifier trained on contacts summed over time (Fig. 3b inset) reflected the difference in total
number of contacts for convex vs concave objects (Fig. 2e). We also observed that the accuracy of
the classifiers increased as mice accumulated more evidence (Fig. 3c; see Methods). This observation
nicely matches the progressively increasing probability of licking on the correct side of Fig. 2c.

Until now we only considered simple linear decoders, which compute a weighted sum of the inputs
(whisker contacts and angles of contact at different times) and compare it to a threshold. We next
asked whether the shape discrimination task could be better performed by non-linearly integrating
some of the features that characterize the sensory input. We also asked whether the observed behavior
was better explained by a linear or a non-linear sensory integration process. In other words, we assessed
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Figure 2: Mice gather whisker evidence throughout the trial to discriminate concave from
convex shapes. (a) Animals were presented with either a convex or a concave shape and after two
seconds they had to report their choice by licking the left (concave) or right (convex) lickpipe. (b)
Whiskers and shape position were monitored by combining a high-speed camera with an image parsing
algorithm [20, 21, 22]. (c) The probability of making a lick on the correct side (y-axis) increased as
a function of time (x-axis) throughout the trial. Animals had a mean performance of ∼ 78%, defined
as the probability of making a correct lick at the moment of choice. (d) The time profile of contact
rates increased significantly once the shape was within whisking distance and it was similar across all
whiskers (C0, C1, C2 and C3). (e) Difference in the total number of contacts between concave and
convex shapes (y-axis) for all whiskers. C1 and C2 made more contacts for convex shapes, while C3
made more contacts for concave shapes. Panels (c-e) were obtained using a sliding window of 250
milliseconds. Errorbars in (c-e) correspond to s.e.m. across animals.
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whether linear or non-linear decoders would better predict the stimulus identity and animal choice
on a trial-by-trial basis. We trained two different feed-forward neural networks with non-linear units
arranged in multiple layers to predict stimulus and choice, respectively. These decoders are more
complex and they contain more parameters than the linear ones, so they will certainly perform better
at classifying the patterns in the training set. However, it is not guaranteed that the cross-validated
performance, computed on held-out trials, will actually increase. The cross-validated performance of
the non-linear classifier can only surpass the linear classifier if non-linear combinations of the features
are important, indicating that the task could be solved more efficiently by combining the inputs
variables in a non-linear way.

Despite the task being significantly more complex than others considered in the past, we observed
that both linear and non-linear decoders performed similarly at classifying stimuli (linear: 90.3% ±
1.3%; best non-linear: 91.3%± 1.1%) (Fig. 3d; green). A similar result was observed on both correct
and error trials (Supplementary Fig. S3a), though for error trials the performance was significantly
lower for all decoders. This performance decrease is likely due to the lower number of contacts and
overall lower task engagement in error trials (Supplementary Fig. S2). When predicting choice on a
trial-by-trial basis, a similar trend was observed (linear: 72.2%±1.8%; best non-linear: 75.6%±1.2%)
(Fig. 3d; blue), suggesting that animals’ decisions were mostly driven by a linear combination of
the sensory cues across time and whiskers. On trials when the mouse made a mistake, our ability
to predict its choice was substantially lower, suggesting that these trials were qualitatively different
(Supplementary Fig. S3a). It is important to note that all models were trained on a balanced dataset
in which the number of correct and error trials was exactly the same. This procedure decorrelates
the variables stimulus and choice, which otherwise would be highly correlated. Finally, in order to
discard the possibility that the results in Fig. 3d were a consequence of a low number of trials, linear
and non-linear decoders were also trained on synthetic tasks of whisker contacts with different levels
of difficulty (see Methods). Unsurprisingly, linear and non-linear decoders performed equally well on
simple integration tasks, whereas non-linear decoders were necessary to perform complex tasks that
require non-linear integration of sensory evidence (Supplementary Fig. S3b).

Non-linear mixed selectivity in the mouse S1 cortex

To characterize how task variables are represented in the somatosensory cortex (S1) of behaving mice,
multiple neurons were simultaneously recorded in this brain region while mice performed the whisker-
based object discrimination task (Fig. 4a). S1 neurons were predictive of shape identity and animal
choice on a trial-by-trial basis as revealed by the performance of a linear classifier (Fig. 4b left panel,
see Methods). At response time, shape category could be decoded from small ensembles of neurons
(mean population size of 25.4 cells) with a performance of 56.8%± 1.7% (green) and the choice of the
animal with a performance of 65.4%± 2.0% (blue). Both shape and choice could be reliably decoded
from neuronal ensembles in which we grouped together the activity from different recording sessions
(pseudopopulations)[3]. As expected, populations of S1 neurons encoded information about whisker
contacts (Fig. 4b right panel), where the task was to predict whether a particular activity pattern
corresponded to a trial with high or low number of contacts for each whisker (see Methods).

To determine whether the neurons responded also to other variables, we trained encoding models
that predicted the firing rate of the recorded population from the set of whisking and behavioral
variables for all time steps (100 ms) and trials (Fig. 4c). In particular, we used as regressors of the
encoding models instantaneous task variables like whisking contacts and angle, lick side and rate,
as well as trial task variables like current and previous reward, choice and stimulus (see Methods).
Fitting encoding models is useful when it is unclear which variables are modulating the activity of
a population of neurons. Moreover, a mapping between task variables and neural activity can be
understood as a multi-dimensional generalization of the tuning curve of a population of neurons and
it is also useful for constructing denoised (smoothed) neural representations.

We considered four different encoding models that were implemented using feed-forward neural
networks: one that simply implements linear regression (0 hidden layers), and three feed-forward
neural networks with 1, 2 and 3 hidden layers of rectified linear units (ReLU) and linear output.
Note that the linear regression network can only generate pure and linear mixed selectivity neurons.
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Figure 3: The whisker-based shape discrimination task can be solved by linearly inte-
grating whisker contacts across time. (a) The spatio-temporal recorded pattern of contacts
across time and whiskers was used to classify shape identity (green) and animal choice (blue) on a
trial-by-trial basis. (b) Stimulus and choice decoding performance when different input features were
used. Sum all: the decoder used only the sum of whisker contacts across all time bins and whiskers;
Sum whiskers: sum across whiskers, but the temporal structure of the sum is retained; Sum time:
the decoder considers the vector of the total number of contacts for each whisker; All contacts: the
decoder reads out the full spatio-temporal pattern of all contacts from all time bins and whiskers;
Contacts+Angle: all contacts and the angle of the whisker at time of contacts, which produces the
highest decoding accuracy. (Inset) The weights obtained by a classifier trained to decode shape iden-
tity match the difference in number of contacts between concave and convex shapes (see Fig. 2e).
(c) Decoding performance as a function of time when the decoder reads out the full spatio-temporal
pattern of contacts and angle from -2 seconds to the time indicated on the x-axis. The performance
increases as a function of time for both shape identity and animal choice. (d) A multi-layer neural
network model is trained to use the full spatio-temporal pattern of contacts and angle of contact to
predict the stimulus and the choice of the animal. Non-linear, multi-layer neural networks perform
similarly to the linear network with no intermediate layer. Thus, linear integration of the sensory cues
is sufficient to predict both stimulus and choice. Error bars in all panels correspond to s.e.m. across
mice.
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In contrast, the 1, 2, and 3-layer neural nets can generate neuronal responses that depend on non-
linear interactions between the different regressors (non-linear mixed selectivity). We found that the
activity of populations of S1 neurons was best explained by a non-linear mixed selectivity encoding
model (1-layer neural network; R2 = 0.111 ± 0.005 on held-out data; see Methods) (Fig. 4d). The
linear model with only pure and linear mixed selectivity was the worst at explaining the neural data
(R2 = 0.089±0.005). Including intermediate layers in the encoding model produced an increase of 24%
in explanatory power. As expected, when all models were tested on training data, more parameters
entailed better firing rate prediction (Supplementary Fig. S4a). Models evaluated on correct trials
showed better performance than those evaluated on incorrect trials, likely due to the reduced number of
trials and the smaller number of contacts made on mistakes (Supplementary Fig. S4b). The encoding
models showed a higher performance for inhibitory neurons and neurons located in deeper layers of the
somatosensory cortex (Supplementary Fig. S5), possibly due to their higher firing rates. All of these
results were qualitatively equivalent when a Poisson loss function was used instead (Supplementary
Fig. S6).

To assess the importance of each regressor, we calculated ∆R2 = R2
Full−R2

Reduced, which represents
the loss in prediction power on held-out data when a particular regressor or group of regressors is set
to zero (Fig. 5a, see Methods). Whisker contacts and continuous whisker angular position were the
two most important variables for explaining the neuronal responses (Fig. 5b). Interestingly, superficial
layers (2/3) were more strongly driven by sensory (contacts) than motion variables (whisker position),
while deep layers (5 and 6) showed the opposite trend (Supplementary Fig. S7). As expected, the
time kernel for whisker features showed a recency effect for all whiskers. Population activity was
better predicted by C1 and C2 contacts than by C3 contacts, and it was less well predicted by the
angular position of C1 than by the other whiskers (Fig. 5c). In agreement with [3], we also found a
deviation from classic somatotopy: C1 contacts were more strongly represented than C2 contacts in
the C2 column, and than C3 contacts in the C3 column (Supplementary Fig. S8). Previous reward
R−1 had the strongest effect before whisker contacts were typically made (-2 sec to -1 sec), while the
current reward R0 peaked after the response window opened and the animal made its choice (Fig. 5d).
Although the current stimulus S0 (shape category) and choice C0 (lick side) followed a similar trend
throughout the course of the trial, C0 had a stronger effect on the neural activity at the beginning
of the response window. Similar task variable time profiles have been reported in previous studies in
other animals and brain regions [7].

What does somatosensory cortex mix?

The recorded neurons displayed a wide range of response properties: while some neurons showed
approximate linear mixed selectivity for C1, C2 and C3 contacts (Fig. 6a), others showed sub-linear
or XOR-like responses (Fig. 6b). To study non-linear mixed selectivity we could have fit a linear
model with interaction terms for each neuron. Instead, we decided to fit the neural network encoding
model to all the neurons simultaneously recorded, so that we could determine in an unbiased way
whether and which interaction terms were shared by multiple neurons. The state of activation of each
unit in the intermediate layer is a weighted sum of the inputs passed through a non-linearity. Thanks
to the non-linearity, the units’ responses contain interaction terms. During training, the weights of
the intermediate units are tuned to produce the interaction terms needed to explain the neuronal
responses. These terms are then available to all the neurons whose activity we intend to reproduce.

Once the network was trained, we determined the contribution of non-linear interactions of specific
pairs of variables by setting the two variables to zero and evaluating both ∆R2, which is the loss in
explanatory power for the full non-linear model (see Fig. 5b-d) and ∆R2

Linear, which is the analogous
loss for the linear model. We then computed the difference ∆R2 −∆R2

Linear (see Methods and Sup-
plementary Fig. S9). If this difference is close to zero, then the interaction term under consideration
is not important, because the loss is the same whether we use the full non-linear model, which can
compute the interaction term, or the linear model, which cannot. If the difference is large, then the
interaction term is important.

We found that the most important interaction was between whisker contacts and angular position
(∆R2 = 0.13, ∆R2

Linear = 0.10; ∆R2 −∆R2
Linear = 0.030; Wilcoxon signed-rank test, P < 0.001; Fig.
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Figure 4: Populations of neurons in the mouse somatosensory cortex (S1) exhibit non-
linear mixed selectivity for task variables. (a) Populations of S1 neurons were simultaneously
recorded while mice performed a whisker-based discrimination task. (b) Decoding performance of a
linear classifier (y-axis) that reads out from S1 to predict stimulus or choice (left panel), or contacts
made by each whisker (right panel) as a function of time (x-axis). For each timepoint, decoding
performance was evaluated using all neuronal activity time bins from -2 seconds to the time indicated
on the x-axis. As expected, decoding performance is at chance early in the trial when mice do not
make contacts and it reaches ∼65% at the end of the trial for choice (blue), and ∼57% for stimulus
(green). Whether whiskers made high or low number of contacts on a given trial could be decoded more
accurately than shape identity. (c) S1 activity was regressed against task variables. Linear and non-
linear neural network models with a different number of intermediate layers were used to reproduce the
observed neural activity. (d) Cross-validated R2 (y-axis; see Methods) on populations of S1 neurons
for the different encoding models (x-axis). A fully connected neural network with one hidden layer
(NonLin-1) outperforms the linear model and other neural networks with more intermediate layers
(left panel). Errorbars correspond to s.e.m. across neurons.
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Figure 5: Contacts and whisker angular position are the variables that contribute the
most to the prediction of S1 population activity. (a) We fit an encoder model to explain
the population’s firing rate (r1,r2, ..., rN ) as a non-linear function of task variables like whisker C1,
C2 and C3 contacts (i.e. C1, C2 and C3), and calculated R2

Full, the goodness-of-fit of the full model
(top). To assess the importance of each regressor, we set the input data for that regressor (or group
of regressors) to zero (gray) and assessed the goodness-of-fit of the reduced model, R2

Reduced (bottom).
In this way we quantified the importance of each regressor as the resulting decrease in goodness-of-fit
∆R2 = R2

Full −R2
Reduced. (b) Whisker contacts and angular position were the most important factors

on S1 activity as revealed by the decrease in model accuracy ∆R2. (c) Decrease in model accuracy
(y-axis; ∆R2) for whisker contacts (left panel), angle of contact (central panel) and angular position
(right panel) for different time lags with respect to current time step (x-axis). Neural activity was
better explained by variables in the current time step. (d) Previous reward R−1 was predictive of
neuronal activity (y-axis; ∆R2) early during the trial whereas the importance of current reward R0

peaked after mice made their choice. Additionally, although current stimulus S0 and choice C0 followed
a similar trend throughout the course of the trial, C0 had a stronger effect on the population’s firing
at response time (t = 0). Errorbars in all panels correspond to s.e.m. across neurons.
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Figure 6: Neurons show non-linear mixed selectivity, mostly originating from non-linear
interactions between contacts and whisker angular position. (a-b) Tuning curves of example
neurons that exhibit approximately linear mixed selectivity (a) and non-linear mixed selectivity (b)
for C1, C2 and C3 whisker contacts. All tuning curves were obtained from the best encoding model
(non-linear with one hidden layer, see Fig. 4d). (c) Non-linear mixed selectivity (∆R2 − ∆R2

Linear)
for the interaction between the different groups of task variable. The interaction between whisker
contacts and angular position was the most important non-linear contribution to the encoding model.
Diagonal elements account for the strength of the non-linearity between a particular task variable and
the activity of the neuronal population. (d) Non-linear mixed selectivity contribution for different time
steps and whisker contacts (left) and angular position (right). The strongest interaction for contacts
between whiskers occurs at time lags of 100ms (e.g. C−1

3 vs C−1
2 ), while for angular position it occurs

at time lags of 0ms (e.g. Θ0
C3 vs Θ0

C2) between neuronal activity and task variables.

6c), followed by interactions between whisker angular position and the rest of the variables. Similar
results were observed in both excitatory and inhibitory neurons, and across layers (Supplementary Fig.
S10). We next assessed the importance of the interactions between different whiskers and time steps
(time lags) for the task variables whisker contacts and angular position. For contacts, the interactions
were strongest not for the current time step, but when the preceding time bin of 100ms was considered.
This is an interesting and non-trivial result given that contacts at the current time steps are those
that most affect the neural activity (Fig. 6c) and could be reflecting the effect of response inhibition
between whisker contacts that occur within whisk cycles of 50-100 ms. For the angular position of the
whiskers, the strongest interactions were observed in the current time bin (Fig. 6d).

We also examined non-linear interactions between contacts and whisker position across all whiskers
and at multiple time steps. Interestingly, the strongest non-linear mixing between angular position
and contacts also occurred with a time lag of 100ms (Supplementary Fig. S11; see Discussion for the
implications of these observations). Finally, similar to how neurons in C2 and C3 columns showed an
unexpected response to C1 contacts (Supplementary Fig. S8), we observed that they also responded
to non-linear interactions with the C1 whisker, regardless of their anatomical location (Supplementary
Fig. S12).
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The geometry of the neural representations in S1

Representations generated by models that include non-linear interactions between task variables like
whisker contacts and angular position turned out to be the best description of the activity in S1.
However, this finding describes only one aspect of the geometry of the representations in S1. Indeed,
almost any geometry that is different from the low-dimensional geometry G1 (Fig. 7a) would be
compatible with the observed non-linear responses of individual neurons. To better characterize the
observed representational geometry in S1, we studied how it could be used by a downstream linear
readout, which could be interpreted as a downstream neuron. Specifically, we trained the linear
readout on the S1 activity to perform different synthetic tasks, each requiring different properties of
the geometry of the representation. For instance, when the representations are low-dimensional (G1;
Fig. 7a) a linear readout can perform well on easy tasks. In these situations the readout can also easily
generalize to novel situations. However, low-dimensional representations lead to poor performance
in complex tasks, which require the ability to discriminate between non-linear combinations of the
different task variables. On the other hand, high-dimensional geometries (G3) are well suited for
complex tasks but their ability to generalize is limited. Moreover, the fact that noise is typically
amplified in high-dimensional representations, can impact negatively the performance on simple tasks.
We propose that a geometry in between G1 and G3 could enable a linear readout to discriminate
without affecting much the ability to generalize (G2).

To study the geometry of the neuronal representations in S1, we started from the real spatio-
temporal patterns of whisker contacts and we defined a series of synthetic classification tasks. More
specifically, the desired output of the linear readout was decided on the basis of the vectors containing
the total number of whisker contacts in a trial, for three whiskers. We then considered the recorded
neural representations constructed by combining together all the neurons from different sessions (same
or different animals) and concatenating the activity vectors of all time bins within a trial (pseudopop-
ulations; see Methods), and we trained a linear classifier to perform the classification task by reading
out these neural populations. To better understand the contribution of linear and non-linear compo-
nents of the activity, we also performed the same analysis on the neural representations generated by
the different encoding models described in the previous section.

We considered complex and easy tasks, and for an easy task we estimated the ability to generalize
in novel situations. Both the complex and the easy tasks are binary classifications tasks of the number
of whisker contacts. To define the two classes we considered two whiskers at a time and we ignored
the number of contacts of the third whisker. For the easy task we computed the weighted sum of the
number of contacts for two whiskers (e.g. C1 and C3, as in Figure 7b). The weights were random,
and each choice of weights corresponded to a different implementation of an easy task. The class to
which a particular input (pair of C1 and C3 contacts) belongs depended on whether the weighted
sum was above or below a threshold. In Figure 7b we indicated one class with green and the other
with orange. The two classes are separated by a line (not shown) whose orientation depends on the
random weights. By construction, the easy task is linearly separable. For the complex task, the space
of whisker contacts was divided into 4 regions by two orthogonal separating lines, again in random
directions. Each class included the points of two diagonally opposed regions (Fig. 7c). This task is
similar to a XOR task, which is known to be non-linearly separable. Finally, to benchmark the ability
to generalize, we computed what is called cross-condition generalization performance (CCGP), which
is a signature of a process of abstraction [4]. CCGP was evaluated as a linear decoder’s ability to
report the number of contacts (high vs low) of one whisker from the neural activity, when trained on
a subset of cases (see Methods). For example the decoder is trained to report C3 contacts when the
number of C1 contacts is small, and then it is tested in the cases in which the number of C1 contacts
is large (Fig. 7d). If C1 and C3 contacts are represented in approximately orthogonal subspaces, then
the CCGP is high. This geometry allows generalization to novel situations (for example, the high
C1 contact case is novel for the decoder trained to report C3 contacts only when the number of C1
contacts is small).

For the pseudopopulation recordings, we observed that the linear decoder could perform the easy
task with high accuracy (brown bar; Fig. 7h). The performance for the complex task was reduced, but
still above chance (brown bar; Fig. 7i). Interestingly, CCGP was high for all the variables representing
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the number of contacts of different whiskers (brown bar; Fig. 7j). This implies that the number of
contacts for different whiskers are represented in approximately orthogonal subspaces of the neural
activity space. Moreover, it means that the coding direction for the number of contacts of each whisker
does not depend much on the number of contacts of the other whiskers. In other words, the coding
directions of each whisker number of contacts are parallel to each other when one considers different
values of the number of contacts of the other whiskers. Importantly, we found that all columns in S1
encoded information about all whiskers in approximately orthogonal subspaces (Supplementary Fig.
S13).

To better understand the role of non-linearities in the responses of individual neurons, we then
computed the performance of the linear decoder on easy and complex tasks and we estimated the
CCGP when the neural representations are not those recorded, but the representations generated
by linear and non-linear encoders (Fig. 7e-g). Given that all the encoding models were fit using
time windows of 500ms, the easy and the complex task in this case were defined with respect to
the integrated number of whisker contacts in time windows of 500ms. As expected, for the easy
task, the linear representations worked slightly better than non-linear representations (green bars;
Fig. 7h). Non-linearities can lead to noise amplification, which can impair performance on simpler
tasks. For the linear encoding representations, the linear decoder could not perform the complex
task. The representations generated with the non-linear encoding model with only one hidden layer
produced the best performance on the complex task (green bars; Fig. 7i). Finally, not surprisingly,
CCGP was higher for linear representations, which are lower-dimensional. However, once again, as
in the case of easy tasks, the advantage was modest (green bars; Fig. 7j). Performance on the easy
and complex tasks as well as CCGP depend on the number of neurons (Supplementary Fig. S14).
Larger populations of neurons produce a higher decoding performance, which is particularly relevant
for the complex task. Qualitatively equivalent results were also obtained when the synthetic tasks
were defined with respect to continuous whisker angles or the interaction between whisker contacts
and continuous angles (Supplementary Fig. S15).

Overall, these results indicate that the geometry of the representations in S1 is best described by G2
in Figure 7a, which is obtained by starting from a low-dimensional scaffold (e.g. the square of G1) and
perturbing it with non-linearities. The non-linearities enable a linear readout to perform complex tasks
and the low-dimensional scaffold allows for high generalization performance, as measured by CCGP.
The non-linearities reduce only slightly the robustness to noise in easy tasks, but they significantly
increase the ability to perform complex tasks.

Task difficulty modulates the geometry of the representations in RNNs

In the previous section we have seen that the neuronal representations in mouse S1 contain a low-
dimensional scaffold, which allows for generalization, but also significant non-linearities that enable
a linear readout to perform complex tasks (G2 in Fig. 7a). In Fig. 3 we also showed that the
whisker-based discrimination task can actually be solved by a linear combination of whisker contacts,
which implies that a low-dimensional geometry (G1) in S1 would be sufficient to perform this task.
If a low-dimensional geometry suffices, then why would neuronal representations in S1 include non-
linearities between task variables (G2)? The same neural representations are probably employed in a
number of different behaviors beyond the one studied in the experiment. Thus, we next asked how
the geometrical properties of the representations are modulated by the task needs.

We trained recurrent neural networks (RNNs) to perform tasks with different levels of difficulty
that are similar to the shape discrimination task (Fig. 8a). The reason we studied RNNs is that
they can integrate information over time, as required by these tasks and by the experimental task.
Importantly, the RNNs were only required to generate the correct response in the artificial tasks,
and not to reproduce the neural data [23, 24]. The different tasks had the following structure: each
trial lasted 30 time steps, and at each time step we fed into the RNN a vector containing three
binary variables (each representing contacts made by one of three whiskers). Each binary variable was
random (an independent Bernoulli process) with either a high or a low success rate λ, for a total of
8 different input patterns. The desired outputs defined three tasks with different levels of difficulty:
easy (Fig. 8b), medium (Fig. 8c) and complex (Fig. 8d). The easy task could be solved by linearly
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Figure 7: The representational geometry in S1. (a) A linear readout performs and generalizes
differently on neural representations with each of the three geometries introduced in Fig. 1. For
low-dimensional representations (G1) in the neural activity space, C1 and C3 are represented along
orthogonal axes. For these representations, the performance is high in easy tasks and the readout
can readily generalize to novel situations. However, the performance is poor in complex tasks that
require non-linear combinations of C1 and C3. High-dimensional representations (G3) allow for high
performance in complex tasks, but generalization is poor. Intermediate geometries (G2) could benefit
from the computational properties of both low- and high-dimensional representations.
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Figure 7: (cont.) (b) Easy task: the linear classifier has to output 1 (orange) if the weighted sum
of C1 and C3 is larger than a threshold, and 0 otherwise (green). The weights were random and the
two classes are linearly separable. The values of C1 and C3 (or other pairs of whisker contacts) are
taken from the experiment. (c) Complex tasks: the (C1,C3) space is divided into 4 regions by two
orthogonal random directions. The two classes, each comprising two diagonally opposite regions, are
colored in orange and green. The task is not linearly separable. (d) Generalization benchmark: the
cross-condition generalization performance is measured for both C1 and C3. In the figure we show the
CCGP for C3: a linear decoder is trained to discriminate between high and low C3 on the data points
on the left (Train; low C1), and it is tested on the data points on the right (Test; high C1). (e-g) The
geometry G2 for the different tasks. For each combination of C1 and C3 we used the real neural data
(pseudosimultaneous recordings) or the data generated by linear and non-linear encoding models. (h)
Easy task performance: high with real data (brown bar). The performance is highest for the linear
encoder, though the non-linear encoders perform almost as well. (i) Complex task performance: above
chance, except for the linear encoder representations. (j) Generalization: CCGP is high for all whisker
contact variables (dots; different axes in g) and for all the surrogate data generated by the different
encoders. Errorbars in all panels correspond to s.e.m. across populations of simultaneously recorded
neurons (recording sessions).

mixing information across input channels whereas the medium and complex tasks required non-linear
mixing of sensory cues by the artificial units. We trained a different network to perform each of the
three tasks, and for each network we trained input, recurrent, and readout weights.

To study the geometry of the neural representations of the different RNNs, we adopted an approach
similar to the one we used for real data: we trained a linear readout to perform different tasks. We
asked how well the representations learned during training on one task could be used to perform
other tasks. Specifically, we trained each network on a single task (easy, medium, or complex), froze
the recurrent and input weights, and then optimized linear readouts to use those representations
to perform each of the other tasks. Moreover, for the easy and medium tasks, we considered all
possible equivalent tasks that correspond to the separation of different groups of points (easy other
and medium other; Fig. 8 and Supplementary Fig. S16). For example, there are three different easy
tasks, each separating the 8 points into the two groups that correspond to opposite faces of the cube
(see also Methods). To study the generalization properties of the neural representations we estimated
the CCGP for different dichotomies (ways of dividing the points into two groups) that correspond to
different easy tasks (Fig. 8 and Supplementary Fig. S17).

Networks trained on an easy task produced high discrimination and generalization performances
(high CCGP) for the easy task only (dark brown; Fig. 8b), suggesting that the network had learned
a low-dimensional representational geometry that was specialized for this simple task. Training a
network on the complex task produced representations that allowed a linear readout to perform all
the different tasks (Fig. 8d) and interestingly the easy tasks could be performed better than the task
the network was trained on. Importantly, CCGP was well above chance for all the variables defined
by the three possible easy tasks. When the RNN was trained to perform the medium task (Fig. 8c),
the representational geometry was well suited to discriminate and generalize for the easy task. Of
course it also performed well the task it was trained on.

Taken together, we can conclude that the geometry of the neuronal representations in RNNs is
modulated by the difficulty of the task. Tasks that can be solved by linearly integrating sensory
evidence will produce low-dimensional representations (G1; Fig. 7a), whereas more complex tasks
that require non-linear integration of evidence will create higher-dimensional representations (G2 and
G3). RNNs trained on simple tasks become overly specialized at performing that specific task. As the
difficulty of the training task increases, the network could potentially perform a larger number of tasks
by simply retraining the output weights. This flexibility comes at the cost of a reduced generalization
ability. However, CCGP remains above chance, even for the easy tasks the network has not been
trained on. To show that the flexibility is provided by the non-linear components of the responses, we
performed an analysis similar to the one of Fig. 7: we fit encoding models with different number of
hidden layers to the activity of RNN units (see Methods). Consistently with Fig. 8, we found that the
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advantage of non-linear encoding models at explaining RNN activity was modulated by the difficulty
of the trained task (Supplementary Fig. S18).

These non-linearities greatly enhance flexibility without compromising much the ability to gener-
alize. This is probably why S1 is operating in the regime defined by the geometry G2 of Fig. 7a: it
could be a result of training on multiple tasks, or a result of evolution, which selected animals to solve
a multitude of complex tasks, generalize to unseen conditions and be robust to noise.

Discussion

Neural responses in sensory areas are often described in terms of receptive fields. This description is
useful and predictive of the responses to novel sensory stimuli only if the responses are linear functions
of a relatively small number of stimulus features. This is not the case in somatosensory cortex, in the
experiment that we analyzed, in which we observed that non-linear models are the best description
of the neural responses. Neurons non-linearly mix multiple variables at different times, leading to an
interesting form of spatio-temporal mixed selectivity. The variables are non-linearly mixed even when
the task can be solved by simply computing a weighted sum of them (linear readout). Non-linear
mixing can easily lead to very diverse neuronal responses as each neuron can respond to a different
non-linear function of the stimulus features. Indeed, we observe that the neurons exhibit very diverse
responses. However, this does not necessarily mean that the responses are completely disorganized.
When one considers the responses of multiple neurons, it is possible to identify an interesting structure
in the neural activity space: whisker contacts, which are important features for performing the shape
discrimination task, are represented in subspaces that are approximately orthogonal. This kind of
factorized or disentangled representations have been observed in the prefrontal cortex [4, 25], in the
hippocampus [4], in infero-temporal cortex and in perirhinal cortex [26, 27, 19] and in the motor cortex
of monkeys [28], and they are known to have important computational properties for generalization
[17, 18].

Why are the neuronal responses non-linear when the task is linear?

As the non-linearity has a cost in terms of robustness to noise, why are the representations non-
linear even if the non-linearity is not needed in the shape discrimination task? We showed that the
observed geometry actually represents a good compromise between the ability to perform complex
discrimination tasks, which is typical of high-dimensional representations, and the robustness to noise
and the ability to generalize to novel situations, which is typical of low-dimensional representations.
This interesting compromise can be reproduced in a simulation of a RNN trained to perform a variety
of different tasks that are similar to the shape discrimination task. In these simulations we also
observed that the non-linear component of the representations is progressively more important in
more complex tasks, and that its cost in terms of noise robustness is relatively small compared to the
increase in flexibility. This suggests that somatosensory cortex is operating in an interesting regime
that is probably the result of training on a variety of tasks and allows for flexibility and generalization.

Using encoding models to characterize the collective response properties of popu-
lations of neurons

Previous studies showed that the dimensionality of neural representations can be maximal (monkey
PFC [5]), very high (rodent visual cortex [16]), or as high as it can be given the structure of the task
[29]. More recently, in [4] the authors showed that representations can have the maximal dimensional-
ity required to separate all possible groups of stimuli with a linear decoder (shattering dimensionality)
and, at the same time, exhibit a low-dimensional scaffold which allows for cross-condition gener-
alization. All these studies focused on computationally relevant properties of the geometry of the
representations of neural populations, ignoring the detailed information about the response of indi-
vidual neurons. Other studies looked more closely at the components of neuronal responses that are
important for characterizing this geometry. Some of these studies focus on the two important ingre-
dients for getting high dimensionality: mixing and diversity [30, 31]. Some others revealed that the
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Figure 8: The geometry of the representations in RNNs is modulated by the difficulty of
the task. (a) A set of noisy and fully connected ReLU units receive input from three independent
channels (C1, C2 and C3). On each trial, each channel corresponded to a Bernoulli process drawn
from either a low or a high success rate parameter λ. The state of the network at a given time step
(ht) is determined by its state at the previous time step (ht−1), the input at the current time step
(xt) and independent Gaussian noise (ξt) (see Methods). (b) Top panel: the easy task consists of a
linear integration task across input channels. Middle panel: probability correct (y-axis) as a function
of time within a trial (x-axis). Due to the inherent stochasticity of the input trains, performance
increased as a function of elapsed time in all networks and tasks. When the network is trained on
the easy task (dark brown), a readout unit fails at performing an orthogonal easy (easy other; pale
brown), a medium (black) and the complex task (maroon) (see Methods). Generalization, defined
as the cross-condition generalization performance (CCGP), is high for the easy task and low for the
orthogonal other easy task. Bottom: profile of performances of the ”Easy Task” RNN at choice time
(T = 0) for the different discrimination and generalization tasks. (c) Top panel: the medium task
consists of a non-linear integration task with respect to two input channels (2D-XOR). Middle panel:
when the network is trained on the medium task, the representation allows a readout unit to also
perform the easy task but fails at the orthogonal other easy and complex tasks. Generalization for the
easy task is higher than for the easy orthogonal task. Bottom: same as (b) for the ”Medium Task”.
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Figure 8: (cont.) (d) Top panel: the complex task consists of a non-linear integration task across
all input channels (3D-parity). Middle panel: training a network on the complex task produced a
high-dimensional representation that allowed a readout unit to perform all the easy and the medium
tasks. The representation of the variables that defined the easy tasks allowed for generalization well
above chance (CCGP). Bottom: same as (b-c) for the ”Complex Task”. Different levels of input noise
produced qualitatively equivalent results for all networks, tasks and generalization (Supplementary
Figs. S16 and S17). For all panels, the performance curves correspond to the mean across 50 random
realizations of input patterns and tasks (see Methods).

responses of individual neurons can be well described by linear mixed selectivity [32, 26, 19], indicating
that the representations are low-dimensional, or disentangled, to use the machine learning language
[18].

Here we adopted a new approach to characterize both collective properties of the representations
and the dynamic response of individual neurons. Indeed, using the neural network encoding models
we could characterize the response of an entire population of neurons. This is more than reproducing
the responses of all the individual neurons of the population, because the encoding models can capture
also the correlations between the activities of different neurons, which can be important to determine
the geometry of the representations and their effects on information and behavior (see e.g. [33, 34, 35,
36, 37]). This approach was motivated by the fact that the task involves some form of active sensing,
which is closer to natural behavior but far more difficult to analyze. In contrast to the monkey
experiments mentioned above [30], the trial temporal structure is highly variable as it depends on
the way the animal decides to move the whiskers. Because the sensory input in this kind of behavior
involves a larger set of variables which are also continuous, we used a more unbiased approach to
identify those variables that could be important to predict the behavior and the neural activity of
the animal. We started from this larger set of variables that characterize complex spatio-temporal
patterns and let the encoding model find those that are most important.

Mixed selectivity is defined with respect to a set of variables

One important issue to be discussed is that mixed selectivity is always defined with respect to a
set of variables [38]. These variables typically characterize the sensory input and the motor output.
Also in our case non-linearities are defined with respect to a set of variables, and this is one of the
limitations of all the analyses that focuses on the responses of invidual neurons. For example, neurons
could respond to a non-linear combination of two variables x and y, say xy. If one considers z = xy
as an additional variable, then the non-linearity disappears, as the neuron can all be described as
a linear combination of x, y, z. However, it is important to stress that in our analysis we used the
same variables to characterize the task and the neural activity. The non-trivial result is that a linear
combination of these variables is the best predictor of the stimulus identity and the choice of the
animal, but not of the neural activity. Even when we considered additional variables (e.g. whisker
angles were used to predict the activity but not the stimulus or the behavior), we still needed non-
linear interactions. This is significant because these additional variables could be related to non-linear
interactions between other variables. Nevertheless, a linear encoding model that has access to all these
variables still performs worse than a non-linear one.

Non-linear spatio-temporal mixed selectivity and the architecture of the neural
circuit

Our analysis showed that non-linear interactions are an important component of the neuronal re-
sponses. The strongest interactions are between the variables representing whisker contacts and those
representing the angle of the whiskers. Interestingly, these interactions are between the angle at the
current time and the whisker contacts that occurred in the preceding 100 ms time step. Also the
interactions between contacts of different whiskers affect the current neural activity if the contacts
happened in the preceding time bin. Although the interactions are delayed, the information about the
whisker contacts is not, and the strongest contribution to the neural activity comes from the contacts
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that happen in the current time step (Figure 5). This means that the first information to arrive in
the somatosensory cortex is more linear, and the interaction terms affect the neural activity with
a delay of the order of 100 ms. Although it is difficult to draw conclusions, we can speculate that
the whisker contact information arrives first from segregated inputs that contain information about
separate whiskers. The interaction terms, which appear later, could originate from some non-linear
recurrent neural circuit that might be local, within somatosensory cortex, or long-range, involving
other areas such as secondary somatosensory, motor, frontal cortex or secondary thalamic nuclei (e.g.,
[39, 40, 41]). For the information about whisker position (expressed as angles in our analysis) the
dominant interaction terms are instead between angles at the current time. It is possible that this
information is already non-linearly mixed in other brain areas (downstream, like motor cortex, or
upstream like primary thalamus and brainstem).

We also found that all columns in S1 represent information about all whiskers in approximately
orthogonal spaces. This result is an important follow-up to [3], in which we did not observe any
somatotopic organization. We also do not see significant differences between column selectivity, but our
new analysis reveals that there is another interesting organization, as whisker contacts are represented
in approximately orthogonal subspaces. This organization is preserved across columns, as much as
the non-linear mixing we observed for the responses of individual neurons.

Non-linearities in artificial neural networks used to model the biological brain

Recently, it has been shown that neural network models (Deep Convolutional Networks, DCN) provide
us thus far with the best description of the neuronal responses in the primate’s visual system [23, 24,
42]. All these models, which are constructed by training the networks to perform a classification
task, include non-linearities, which certainly play a fundamental role [43, 44]. These results showed
also that the classical concept of a receptive field, which is predictive of the responses only when the
responses are linear, must be revisited [45, 46]. Interestingly, this approach has even been validated by
generating synthetic visual stimuli that are able to maximally activate real neurons [47, 48]. Similarly,
accurate models of the somatosensory system could be used to synthesize artificial somatosensory
stimuli to drive neuronal activity or even behavior.

A new method for analyzing experiments that involve real world tasks

Our general framework for analyzing behavioral and electrophysiological data is particularly valuable
in experiments in which the animals perform natural tasks, which are becoming increasingly popular
in the field [49, 50, 51, 52]. On the one hand, fitting neural networks to predict stimulus identity and
animal choice from features extracted from high-speed videos can be extremely useful to identify the
most important variables of the task and behavior, respectively. Naturalistic behavior comes with
a reduction in the ability to control the strategies followed by the animals, and our approach can
potentially provide information about the task and the behavioral strategies for a variety of tasks and
animal models. On the other hand, using neural networks to fit neuronal activity from the recorded
task variables can be understood as an unbiased multi-dimensional generalization of a population
tuning curve. Even though the tuning information is implicitly contained in the architecture and
weights of the encoding model, it can still provide crucial insights about the coding properties and
geometrical structure of the recorded neuronal population. In our case the animals actively sample the
objects by moving the whiskers, and this can greatly complicate the study of the geometry of the neural
representations. For example, some of the quantities used in the past to characterize the geometry
of neural representations like the shattering dimensionality can require lengthy calculations, involving
a number of operations that scales exponentially with the number of experimental conditions. This
becomes prohibitive in an experiment like the one we analyzed where we need to consider complex
spatio-temporal patterns to characterize the sensory input. Our method can still inform us about the
geometry of the representations (it considers the activity of a population of neurons), but without
incurring such unfavorable scaling. For all these reasons we believe that the method we propose here
can be applied to a number of more natural tasks which are becoming progressively more feasible in
the neuroscience community.
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Methods

Behavioral task and recordings

This experiment has been described in detail in [3]. Here we provide a brief summary of the behavioral
setup and data acquisition.

Ten head-fixed mice were trained to perform a shape discrimination task in the dark by making
contacts with whiskers C0, C1, C2 and C3 (Fig. 2a). On each trial, either a concave or convex shape
(custom designed and 3D-printed) was moved within reach of the mouse’s whiskers with a linear
actuator. All trials started at t = −2 seconds when the shapes started moving. Shapes were moved
with the same speed in all trials and they could stop at three different locations: far, medium and
close, which occurred at t = −0.9,−0.7 and −0.5 seconds, respectively. Including three different final
positions was important to prevent animals from using simpler strategies based on distance to the
shape and to force them to integrate contacts across whiskers and time to perform the discrimination
task. All trials had a fixed duration of 2 seconds. At t = 0 the response window opened and mice
had to report their choice by licking either on the left or right lickpipe for concave and convex shapes,
respectively. Licks were monitored by infrared beams or capacitive touch sensors. Even though mice
were free to lick throughout the trial, the choice on each trial was determined by the side of the first
lick after the response window opened (t = 0).

Whisker and shape position were recorded with a high-speed camera (200 frames/second). Whisker
tracking was based on a modified version of ’pose-tensorflow’ package [21, 20], which is the ’feature
detector’ network used in the first version of DeepLabCut [22]. The network was trained to track eight
equally spaced joints per whisker. Whisker contacts were identified when the distance between the tip
of a particular whisker and the edge of the shape was smaller than 10 pixels. Angular position was
defined as the angle of the line between the tip and the base of each whisker.

Populations of individual neurons (single units) were simultaneously recorded in mouse somatosen-
sory cortex (S1) during the whisker-based shape discrimination task (Fig. 4a). Mice were implanted
with a custom-designed stainless steel headplate between postnatal day 90 and 180. We removed the
scalp and fascia covering the dorsal surface of the skull and positioned the headplate over the skull and
affixed it. To permit electrophysiological recording we used a dental drill to thin the cement and skull
over S1, rendering it optically transparent, and coated it with cyanoacrylate glue. We used intrinsic
optical signal imaging to locate the cortical columns of the barrel field corresponding to the whiskers
on the face. We then used a scalpel to cut a small craniotomy directly over the columns of interest.
Between recording sessions, the craniotomy was sealed with silicone gel. To record neural activity,
we head-fixed the mouse in the behavioral arena. We lowered an electrode array using a motorized
micromanipulator. We used an OpenEphys acquisition system with two digital headstages to record
64 channels of neural data at 30 kHz at the widest possible bandwidth (1 Hz to 7.5 kHz). We used
KiloSort [53] to detect spikes and to assign them to putative single units. We identified inhibitory
neurons from their waveform half-width, i.e. the time between maximum negativity and return to
baseline on the channel where this waveform had highest power. Neurons with a half-width below 0.3
ms were deemed narrow-spiking and putatively inhibitory. We measured the laminar location of each
neuron based on the manipulator depth and the channel on which the waveform had greatest RMS
power.

A total of 584 neurons were recorded from 23 sessions that included 7 different mice. The mean
number of simultaneously recorded neurons was 25.4. From these 584 neurons, 68 were recorded in
layer 2/3, 157 in layer 4, 249 in layer 5 and 96 in layer 6. Also, from the total number of neurons
16% were categorized as inhibitory and 84% as excitatory neurons. All experiments were conducted
under the supervision and approval of the Columbia University Institutional Animal Care and Use
Committee.

Decoding of Behavior

On each trial, we built a matrix that contained behaviorally relevant variables through time. In
the following, we will refer to this matrix as the spatio-temporal whisking pattern gathered by the
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behaving mice. We used 20 time bins per feature after dividing 2 seconds into time bins of 100 ms.
For whiskers C0, C1, C2 and C3 we included number of contacts and angle of contact (Fig. 3a), since
these were shown to be the most informative whisker features for both decoding shape and lick side
[3]. In main text and figures, we will use C0, C1, C2 and C3 when referring to whisker identity, and
C0, C1, C2 and C3 when referring to the contacts made by each of these whiskers. The total amount
of features on each trial was 160, 8 whisker features (contacts and angle of contacts for each whisker)
times 20 time bins. All features for each individual session were normalized to null mean and unit
standard deviation. For each mouse, we concatenated all recording sessions into a single super-session,
which significantly increased the number of trials used to fit each model. Trials that did not register
any lick within the first 500 ms after response time (t = 0) were discarded from the analysis. In total
we used 10 mice, with a mean of 1266 trials per mouse (super-sessions). All analysis were performed
with custom written python and pytorch scripts.

We decoded the identity of the presented shape (stimulus; green) or lick side (choice; blue) on a
trial-by-trial basis. In Fig. 3b,c the model was trained after balancing correct and incorrect trials and
the quantity to be decoded (stimulus or choice). For instance, when the decoder was trained to predict
stimulus identity, we randomly sampled (without replacement) trials from the train set such that
correct, incorrect, concave shape and convex shape trials were equally populated. By balancing correct
and incorrect trials we ensured that stimulus and choice were uncorrelated. Otherwise, information
about choice would have been artificially boosted by stimulus information. We refer to this balancing
as decorrelation, and it was repeated 10 times. In Fig. 3b,c the data was split into train, test and
validation (2 nested KFold, k = 4) in order to optimize the l2 regularization strength over the range
[10−7, 103] (20 steps log-evenly spaced). The reported decoding performances corresponds to the
mean across cross-validations and decorrelations on the validation set after optimizing regularization
strength on the test set. In Fig. 3b,c we used logistic regression (sklearn).

For Fig. 3b we gradually increased the complexity of the behavioral features to decode stimulus
and choice by considering: sum of all contacts across time and whiskers (Sum all), sum of all contacts
across whiskers (Sum whisker), sum all contacts across time (Sum time), all contacts across whiskers
and time (All contacts) and all contacts and angles of contact across whiskers and time (Contacts +
Angle). The inset in 3b corresponds to the weights of the classifier trained after summing contacts
across time. Information about stimulus and choice across time was calculated by linearly decoding
the cumulative number of features (contacts and angle of contacts) up to that particular time (Fig.
3c).

We analyzed the complexity of the whisker-based shape discrimination task by decoding the spatio-
temporal whisking pattern with different decoding models (multilayer feedforward networks with 0,
1, 2 or 3 hidden layers of 100 ReLU units). In the following, because a feedforward network with 0
hidden layers is equivalent to a linear classifier, we will use these two terms synonymously. The models
in Fig. 3d were trained and tested following the same steps than for Figs. 3b,c. However, instead
of using logistic regression (sklearn) we fit the feedforward networks with stochastic gradient descent
(batch size 64, 100 epochs) on pytorch, where the optimal learning rate η was obtained following the
same procedure than for the regularization strength ([10−7, 1], 20 steps log-evenly spaced). We used
cross-entropy loss and ADAM optimizer. The reported decoding performances on correct and error
trials (Supplementary Fig. S3a) correspond to the mean performance on the validation set (see above)
after splitting trials into correct and error.

For Supplementary Fig. S3b we created two ad-hoc tasks from the spatio-temporal whisking
patterns gathered by the animals, the easy and the complex tasks. Mice were never trained on these
tasks, they correspond to tasks that have been defined on the whisker contact space for whiskers
C1, C2 and C3 a posteriori. For each mouse we first summed contacts through time on each trial
(total contact space). The easy task was defined by splitting the trials in the super-session into two
linearly separable classes on the total contact space. For the complex task, trials were split into two
non-linearly separable classes (3D-parity) also on the total contact space. In both tasks the contact
space was first transformed by a unitary random rotation. Importantly, for both the easy and the
complex task, the two classes were equally populated. This was achieved by adding Gaussian noise
(standard deviation of 0.1) on each whisker total counts on each trial so that a median split was
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uniquely defined. Therefore, each trial on a super-session was assigned either to class 1 or class 2
for the easy task, and either to class 1 or class 2 for the complex task. For each mouse, the easy or
complex task were performed by reading out the feature matrix that contained whiskers C0, C1, C2
and C3 contacts across time (20 time bins of 0.1 seconds, 80 features in total). The procedure for
fitting the different models was the same as in Fig. 3d, with the only difference that we did not need
to balance correct and error trials. The l2 regularization strength and the learning rate η exploration
intervals were [10−6, 1] and [10−4, 1] respectively, log-evenly spaced in 10 steps. Errorbars in Fig.
3b-d and Supplementary Fig. S3 correspond to the standard error of the mean (s.e.m.) across mice
(super-sessions).

Encoding Models

On each trial we built a matrix that contained all the experimental variables that we considered
could affect the firing rate of S1 populations. We analyzed the time interval t = [−2.1, 1.0] seconds
in time bins of 100 ms, which spanned from the beginning of the trial to one second after response
window opened (31 time steps per trial). The experimental variables used in the encoding models
were: contacts, angle of contact and angular position of whiskers C0, C1, C2 and C3; lick side and lick
rate; current and previous reward, stimulus, shape position and choice. We will refer to whisker and
lick variables as continuous-variables and previous and current reward, stimulus, position and choice
as trial-variables. For each recording session we concatenated all the time steps across trials (Fig. 4b).
On each time step S1 population activity was regressed against the current continuous-variables and
up to five time steps backwards in time (500 ms = 5 steps ×100 ms). Trial-variables were arranged
as indicator variables throughout the length of the trial. Population activity was regressed using a
total of 70 continuous-variables (70 = 14 variables × 5 time steps) plus 248 trial-variables (248 = 8
variables × 31 time steps). Both neuronal activity and regressors were normalized to null mean and
unit variance. Trials that did not register any lick within the first 500 ms after response time (t = 0)
were discarded from the analysis. In total we used 23 recording sessions from 7 different mice, with
25.4 mean number of simultaneously recorded neurons and 4883 mean number of effective trials used
to fit the models (trials × time steps).

We analyzed the encoding properties of populations of neurons in mouse S1 by regressing the
neuronal activity against the experimental variables described above. Similarly to behavior, we used
different encoding models with different levels of flexibility (multilayer feedforward networks with
0, 1, 2 or 3 hidden layers of 100 ReLU units). Similar to classification, an encoding model with
0 hidden layers is equivalent to a linear regression. We fit the encoding models by minimizing the
mean-squared-error (MSE-loss) between the predicted and the real firing rate (stochastic gradient
descent, batch size 64, 100 epochs; Fig. 4). To validate our results with a different loss function,
Poisson-loss was also used to fit the models (Supplementary Fig. S6). The linear model can only
implement pure and linear mixed selectivity, while encoding models that include at least one hidden
layer can implement non-linear mixed selectivity [5, 6]. On each recording session, models were fit
by splitting the data into train, test and validation (2 nested KFold, k = 4). The partition was
performed based on the real trials of the experiment so that time steps from the same trial were
always grouped in the same partition. Otherwise, due to the correlation between the neuronal activity
on consecutive time steps, performances on the validation set could have been artificially boosted. The
optimal regularization strength l2 and learning rate η were obtained by identifying the values that
produced the highest performance on the test set over the ranges [10−7, 2] and [10−7,−1] respectively
(20 steps log-evenly spaced). As goodness-of-fit for the different encoding models, we used the metric
R2 = 1 − Loss/V ariance. The reported R2 corresponded to the mean across cross-validations on
the validation set after optimizing regularization strength and learning rate on the test set. All
the encoding models were implemented in pytorch and optimized with the ADAM algorithm. The
reported decoding performances on correct and error trials correspond to the mean performance on
the validation set (see above) after splitting trials into correct and error (Supplementary Fig. S4b).
Errorbars in Fig. 4 correspond to s.e.m. across recorded neurons.

In order to evaluate the individual contributions of regressor (or group of regressors) xi to the
predictability of the population’s firing rate, we evaluated the quantity ∆R2 = R2

Full −R2
Reduced (Fig.
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5a), where R2
Full corresponds to the performance of the full model and R2

Reduced corresponds to the
performance of the model when regressor xi is set to zero. This method is preferred over re-training
the whole model without regressor xi because of the correlations between regressors xi and xj , so
that we make sure that the reported contribution takes into account the correlation with the rest of
regressors.

For each pair of regressors (or pairs of groups of regressors) xi and xj , we evaluated the pure non-
linear interaction (contribution) to the encoding model by evaluating ∆R2 −∆R2

Linear (Fig. 6). Here
∆R2 corresponds to the loss in predictive power for the non-linear model when both xi and xj are
set to zero and ∆R2

Linear is the equivalent for the linear encoding model. Because non-linear models
also include the linear terms, subtracting the contribution from the pure linear model was necessary
in order to isolate pure non-linear interactions.

Similar to the synthetic tasks presented in Supplementary Fig. S3b, we also created two synthetic
tasks based on whisker contacts: the easy and the complex tasks. Additionally, to benchmark the
ability to generalize, we evaluated the cross-condition generalization performance (CCGP). The easy
and the complex tasks corresponded to a linear and an XOR task with respect to the contacts of pairs
of whiskers, respectively, whereas the CCGP tested how well a linear classifier trained to perform a
simple discrimination task on a set of trials would generalize to an unseen set of trials. Given that the
encoding models were fit using 5 time steps (100 ms × 5 times steps = 500 ms) for all the continuous-
variables, for each time step we first summed the number of contacts across the current and previous
four time steps for each whisker independently. Gaussian white noise was also introduced in all whisker
contacts to obtain a well defined median to create the different tasks (standard deviation of 10−3).
All tasks were defined as 2D tasks on the summed number of contacts across 5 time steps, so they
were constructed from the three different pairs that could be built from the set {C1,C2,C3}: (C1,C2),
(C1,C3) and (C2,C3). Importantly, all the time steps in which no whisker contacts were registered for
the sum across these 5 time steps were discarded from this analysis. On the easy task, the coloring
of the different regions in the whisker contact space (e.g. C1 vs C3; Fig. 7b) was defined by a linear
boundary, whereas for the complex task it corresponded to an XOR task (Fig. 7c). In both cases the
task boundaries were obtained by performing a random unitary rotation on the whisker contact space
and splitting each dimension with respect to the median. For the generalization benchmark (CCGP),
the process was slightly different. By splitting all the trials into low and high number of contacts
for each whisker, we created four different conditions. Cross-condition generalization performance
(CCGP; see [4]) was evaluated as the performance of a linear classifier to discriminate between low
and high number of contacts for whisker i when trained only on low contacts for whisker j and tested
on high contacts on whisker j. For instance, for the (C1,C3) pair, a linear classifier was trained to
discriminate between low and high number of C1 contacts using only trials of low C3 contacts and
tested on high number of C3 contacts (and viceversa). CCGP for whisker C1 corresponded to the
mean across training on C2 low and testing on C2 high, training on C2 high and testing on C2 low,
and the same process conditioning on whisker C3. CCGPs for whiskers C2 and C3 were evaluated
equivalently but conditioning on (C1,C3) and (C1,C2), respectively.

Once the three tasks were defined for each time step, we generated surrogate representations for
each encoding model by introducing the pair of whisker contact variables into the different encoding
models (Fig. 7e-g). This procedure was only performed on the validation partition. For instance, for
(C1,C3) we generated surrogate activity on each time step by introducing in the different encoding
models only the experimental variables contacts C1 and C3 for the current and previous four time
steps. Given that the final mapping from the last hidden layer of the different encoding models to
the surrogate neurons mainly preserves the geometry of the representation (linear transformation), we
were able to create new surrogate neurons by generating additional weights from the last hidden layer.
In particular, for each set of real weights from the last hidden layer to a particular surrogate neuron,
we created extra surrogate neurons by sampling additional weights from a multivariate Gaussian. The
mean of this Gaussian was the original set of weights from last layer to that surrogate neuron and
the standard deviation was the standard deviation of the real set of weights from the last layer to
the original set of surrogate neurons. In other words, from each original surrogate neuron, we created
additional neurons with coding properties that were slightly perturbed with respect to the original
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neuron. From these surrogate representations, linear classifiers (cross-validated logistic-regression)
were fit to perform all three tasks. The reported performance in Fig. 7h-j corresponds to the mean
performance across cross-validations of the encoding models and pairs of regressors with surrogate
populations of 100 neurons. Qualitatively equivalent results were found for surrogate population sizes
of {2,10,100,1000,10000} neurons (Supplementary Fig. S14a). The 3D equivalents of the easy and
complex tasks and CCGP were also defined from the triplet (C1,C2,C3), and we found qualitatively
equivalent results (Supplementary Fig. S14b), even though information for the 3D-complex task (3D-
parity) was lower when compared to the 2D-complex task (XOR).

We also evaluated contact information for the different whiskers and columns by decoding whether
a set of trials corresponded to a high or low number of contacts for each whisker using neurons
recorded from only a particular column of S1 (Supplementary Fig. S13a). CCGPs for the different
columns and whiskers was evaluated following the same process described above (Supplementary Fig.
S13b). Given that different population sizes were recorded for the different columns of the S1, all
the performances in Supplementary Figs. S13 were obtained using 10 neurons, the minimal amount
of simultaneously recorded neurons across all columns. We also created the easy and the complex
tasks, and the generalization benchmark from other task variables and followed the same procedure
described above. In particular, we used the variable continuous angle position of whisker C1, C2
and C3 {θC1,θC2,θC3} (Supplementary Fig. S15a) and the interactions between whisker contacts and
continuous angular position (Supplementary Fig. S15b). For Supplementary Fig. S15a the set of pairs
(θC1,θC2), (θC1,θC3) and (θC2,θC3) was used, whereas for Supplementary Fig. S15b the interaction
terms (θC1,C1), (θC1,C2), (θC1,C3), (θC2,C1), (θC2,C2), (θC2,C3), (θC3,C1), (θC3,C2) and (θC3,C3)
were used. Errorbars in Fig. 7, Supplementary Figs. S13, S14 and S15 correspond to s.e.m. across
recording sessions.

Population Decoding

Populations of mouse S1 neurons were recorded during the whisker-based shape discrimination task.
Linear classifiers were fit to predict different experimental variables on a trial-by-trial basis. Infor-
mation about a particular variable for a given time step was calculated using the entire population
activity from the beginning of the trial to that particular moment (Figs. 4b). Time bins of 200 ms
were used and population activity was normalized to null mean and unit variance. Trials that did
not register any lick within the first 500 ms after response time (t = 0) were discarded from the
analysis. The mean number of simultaneously recorded neurons and trials per session was 25.4 and
157.5, respectively. In total 23 recording sessions from 7 different mice were analyzed. In all panels
the data was split into train, test and validation (2 nested KFold, k = 4) in order to optimize the l2
regularization strength over the range [10−4, 104] (10 steps log-evenly spaced). In all cases, logistic
regression was used as our linear classification model (sklearn).

Shape identity (stimulus; green) and lick side (choice; blue) were predicted on each trial by reading
out the population activity (left panel in Fig. 4b). Similar to decoding from the spatio-temporal
pattern of whisker features, the classifiers were trained after balancing correct and incorrect trials and
the quantity to be decoded (stimulus or choice). We refer to this balancing as decorrelation, and it
was repeated 10 times. The reported decoding performances correspond to the mean across cross-
validations and decorrelations on the validation set after optimizing regularization strength on the test
set. From population activity we also decoded whether a particular trial corresponded to a high or low
number of contacts for the different whiskers (right panel in Fig. 4b). For each whisker we summed
the total number of contacts made up to a particular point in time and labeled each trial according
to whether it was below or above the median number of contacts. Gaussian noise was added in all
trials (standard deviation of 0.1) to obtain a unique median. The reported decoding performances
correspond to the mean across cross-validations on the validation set after optimizing regularization
strength on the test set.

Populations of recorded neurons were also used to perform the easy and the complex tasks and
the generalization benchmark (brown bars; Fig. 7h-j) (see previous section). From all the neuronal
recordings, pseudopopulations of neurons were constructed and linear classifiers (logistic regression)
were fit to perform these three tasks. To define the easy and complex tasks and the generalization
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benchmark (CCGP) on each recording session, we first summed the number of contacts throughout
the entire trial (2 sec). Similar to the equivalent analysis on surrogate representations (see previous
section), all three analysis were defined with respect to pairs of whisker contacts variables: (C1,C2),
(C1,C3) and (C2,C3). For the easy and complex tasks, a random unitary rotation was performed on
the whisker contact space for a given pair and all those trials that did not include whisker contacts
were discarded from the analysis. Four experimental conditions corresponding to low and high number
of contacts for two whisker variables were defined. From each experimental condition, 400 and 100
trials were sub-sampled with replacement for the train and test set, respectively. The simultaneously
recorded activity of S1 neurons across a particular trial was flattened with respect to the time axis
(200ms time bins; 10 time bins per trial). For a given recording session we constructed a train matrix
with dimensions 1600 (400 trials per condition × 4 experimental conditions) and number of neurons
× 10 time bins, and a test matrix with dimensions 400 (100 trials per condition × 4 experimental
conditions) and number of neurons × 10 time bins. It is important to note that by this procedure the
train and test matrix did not share any trials, which would artificially boost the estimated performance
for the different tasks. For each recording session we repeated this procedure and stacked the different
train and test matrices along the dimension of neurons. A total of 584 neurons were recorded across
all sessions, which produced a train and a test matrix with 5840 columns (584 × 10 time bins). Two
different linear classifiers were fit on the train matrix and tested on the test matrix to perform the
easy and the complex task, respectively. The reported performances on the easy and complex tasks
in Fig. 7h,i (brown bars) corresponds to the mean across 100 iterations of this process.

In order to evaluate the generalization properties of the recorded neurons (CCGP), we proceeded
in a similar way but we worked on the original whisker contact space instead (no unitary rotation).
Also, given that the cross-validation is performed across conditions when evaluating the CCGP, only
one matrix of pseudopopulation activity was constructed by sub-sampling with replacement from each
experimental condition (500 trials per condition). Similarly, the reported CCGP in Fig 7j (brown
bars) corresponds to the mean across 100 iterations of this process. To evaluate whether the reported
CCGPs for the real recordings were significantly above chance, for each panel we constructed a null-
hypothesis distribution and evaluated the probability of obtaining the real CCGP when sampling
from it. We followed the same procedure described in [4]. In short, each experimental condition was
randomly rotated in the activity space by shuffling each trial with respect to the identity of the neurons.
The same random shuffle was used for all trials in a given condition. This procedure destroys the
geometrical structure of the representation but maintains the distance between the different conditions
approximately constant. We performed 1000 iterations and computed the probability of obtaining the
real CCGPs. In all cases, P < 10−3 corresponded to CCGPs > 0.58 (distribution not shown), which
indicates that the reported CCGPs for the real recordings are all well above chance.

Recurrent Neural Networks

Recurrent neural networks (RNNs) were trained to perform a task similar to the whisker-based shape
discrimination task. The recurrent network consisted of 60 ReLU units whose activity at time t (ht)
was determined by the following equation:

ht = φ (Jrecht−1 + Jinxt + σξt) , (1)

where φ() is the ReLU non-linearity, ξt is independent and unitary Gaussian noise on each time step
and σ is the strength of this noise (σ = 1 in all our units).

The stimulus xt consisted of three channels that on each time step could be either 0 or 1, an
artificial analogy of whiskers C1, C2 and C3 making contacts or not. On each trial, each input
channel corresponded to a random realization of a Bernoulli process (T time steps) with two possible
underlying mean values λlow or λhigh. This made a total of 8 different experimental conditions (2
conditions per channel and 3 channels) (Fig. 8). From these 8 experimental conditions we defined
three different tasks, the easy, the medium and the complex task. For all tasks, the input information
was transformed by an unitary random rotation (same rotation in all time steps and trials). We fit a
different RNN for each task, and in each RNN input, recurrent and output weights were trained. The
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easy task was defined as a task that linearly separated the 8 experimental conditions into 2 groups
of 4 (top panel in Fig. 8b); the medium task corresponded to a 2D-XOR with respect to C1 and C2
(top panel in Fig. 8c); and the complex task was defined as a 3D-parity with respect to all channels
C1, C2 and C3 simultaneously (top panel in Fig. 8d). Given 8 experimental conditions, there were 3
different easy tasks: separation with respect to the C1 axis only (easy task 1); C2 axis only (easy task
2); and C3 axis only (easy task 3). There were also 3 different medium tasks: separation with respect
to a 2D-XOR on (C1,C2) (medium task 1); on (C1,C3) (medium task 2); and on (C2,C3) (medium
task 3). There was only one complex task, a 3D-Parity task with respect to all channels. In Fig. 8,
easy task, easy other, medium task and complex task corresponded to easy task 1, the mean across
easy tasks 2 and 3, medium task 1 and complex tasks, respectively. In Supplementary Fig. S16 all
tasks were used.

To recreate the experimental conditions, inputs lasted for 20 time steps but a random delay of
∆t = [0, 9] time steps was introduced at the beginning of each trial. All networks were trained to
make a decision at T = 20. The three networks were trained on datasets of 400 trials per experimental
condition and for all channels λlow = 0 and λhigh = 1. We used cross-entropy as loss function,
the l2 regularization strength was set to 10−10 and the learning rate η = 0.005. We used the ADAM
optimizer, batches of 20 trials and as many epochs as necessary to reach 10−3 error on the loss function
(∼ 10 epochs for the easy task, ∼ 20 for the medium, and ∼ 50 epochs for the complex task). Once
trained, networks were tested on 40 trials per experimental condition and for all channels λlow = 0.35
and λhigh = 0.65 for the easy task, λlow = 0.3 and λhigh = 0.7 for the medium task and λlow = 0.23
and λhigh = 0.77 for the complex task.

For each network, input, recurrent and output weights were learned. Additionally, for each network,
recurrent and input weights were frozen and readout weights for the other tasks were also trained on
the activity of the artificial units (logistic regression). For instance, for the network trained on the
easy task (easy task 1) in Fig. 8b (central panel), all learnable weights were optimized for the easy
task using backpropagation through time (dark brown). However, additional readout weights on the
artificial units’ activity were also trained for the orthogonal other easy task (easy tasks 2 and 3; light
brown), the medium task (medium task 1; black curve) and the complex task (maroon curve). These
additional readout weights were trained on the train set at decision time (T = 20) and tested on the
test set on all time steps. In Supplementary Fig. S16 we show the performance curves for additional
readout weights when trained on all tasks (easy and medium tasks 1,2,3 and complex task). For Figs.
8c,d (central panel) all weights were trained to perform medium task 1 and complex task, respectively.
Similarly, the rest of tasks in Figs. 8c,d were also performed by training a linear classifier (logistic
regression) on the artificial units’ activity.

We also evaluated the ability of each network to generalize to unseen experimental conditions by
means of the cross-condition generalization performance (CCGP). A very similar procedure to Fig. 7
was used to evaluate CCGP for the three different RNNs. For instance, in Fig. 8b, a linear classifier
was trained to perform the easy task (easy task 1; dashed dark brown) by reading out the activity
of the artificial units. The classifier was trained on the set of trials defined by easy task 2 = +1 and
tested on the set of trials that defined easy task 2 = 0 (and vice-versa). The same procedure was
followed for the set of trials defined by easy task 3 = +1 and tested on trials defined by easy task 3
= 0 (and vice-versa). The reported CCGP was the mean across these four procedures. For the rest
of CCGPs, the same train-test procedure was followed as defined by the rest of orthogonal easy tasks
(see Supplementary Fig. S17).

For each panel in Fig. 8, and Supplementary Figs. S16 and S17 we trained and tested 50 different
networks and reported the mean performance across test sets. Each network was trained on a different
random realization of the input and rotation. In Supplementary Figs. S16 and S17 the low, medium
and high noise levels corresponded to (λlow = 0.23,λhigh = 0.77), (λlow = 0.3, λhigh = 0.7) and
(λlow = 0.35,λhigh = 0.65), respectively.

We analyzed the complexity of the different tasks in the same way we analyzed the complexity of
the whisker-based shape discrimination task (see Fig. 3). For all trained networks, we used different
classifiers with different levels of flexibility (multi-layer feedforward networks with 0, 1, 2 or 3 hidden
layers of 100 ReLU units). These classifiers were trained to predict the output of the easy, the medium
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and the complex task on a trial-by-trial basis by reading out the spatio-temporal pattern that was
used as input to the networks (Fig. S18a). The l2 regularization strength and the learning parameter
η were optimized over the ranges [10−8, 2] and [10−6, 0] respectively (10 steps log-evenly spaced). The
errorbars for each panel in Fig. S18a correspond to the s.e.m. across 4 different network instances.

The encoding properties of the artificial units on each network were also analyzed in the same way
we analyzed the population activity of mouse S1 neurons (Fig. S18b), by fitting encoding models of
feedforward networks of 0, 1, 2 and 3 hidden layers. In this case, the l2 regularization strength and the
learning parameter η were optimized over the ranges [10−8, 102] and [10−6, 0] respectively (10 steps
log-evenly spaced). The errorbars for each panel in Fig. S18b correspond to the s.e.m. across 240
neurons (4 networks × 60 units).
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Figure S1: Contact rate (y-axis) as a function of time throughout the trial (x-axis), separately for
convex and concave shapes. Contacts were higher for convex than concave shapes for whisker C1 and
C2, whereas whisker C3 showed the opposite trend. (a-j) Results for all the mice. (k) Mean results
across mice.
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Figure S2: Contact rate (y-axis) as a function of time throughout the trial (x-axis), separately for
correct and error trials. Contacts were higher for correct than error trials for all whiskers and animals,
(a-j) Results for all the mice. (k) mean results across mice.
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Figure S3: (a) A multi-layer feedforward network model is trained to use the full spatio-temporal
pattern of contacts and angle of contacts to predict the stimulus and the choice of the animal on a
trial-by-trial basis (see Fig. 3). Models were trained using all trials and tested on correct (black) and
incorrect (red) trials. Only linear and non-linear models with one hidden layer are shown. Stimulus
decoding (left) produced higher decoding performance for correct trials than errors, probably due
to the higher number of contacts made by mice on correct trials. On the contrary, correct trials
conveyed much more information about animals’ choice than incorrect trials (right). One possible
explanation of these effects is that in approximately 60% of the trials animals make very accurate
choices that are based on properly sampled sensory cues. In the other 40% of the trials, animals still
sample information properly but their choice is inaccurate and based on a hidden variable we do not
have access to [54, 55]. (b) Decoding performance (y-axis) for the different decoders (x-axis) for the
easy (linearly separable; left panel) and complex (non-linearly separable, 3D-parity; right panel) tasks
(see Methods). Non-linear cue integration is only advantageous when the task itself requires complex
sensory integration across time and whiskers. Error bars in all panels correspond to s.e.m. across
mice.
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Figure S4: (a) Goodness-of-fit (y-axis; R2) for the different encoding models (x-axis) on held-out data
(Test; left) and on the data used for training (Train; right). For held-out data, the best model is
a feedforward fully connected network with only one hidden layer (NonLin-1). For the train data,
the more complex the model (more parameters), the better the prediction. (b) Cross-validated R2

(y-axis) on populations of S1 neurons for the different encoding models (x-axis) when evaluated in
correct (left) and incorrect trials (right). Encoding models explained S1 activity better on correct
than error trials (right panel). Errorbars correspond to s.e.m. across neurons.
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Figure S5: The encoding models explain better the responses in inhibitory neurons and deeper layers.
(a) Performance (CV R2) of the different encoding models (x-axis) on held-out data for all neurons
(top), only excitatory (middle) and only inhibitory neurons (bottom). (b) Performance of the different
encoding models on held-out data for neurons across layers for all (top), excitatory (middle) and
inhibitory neurons (bottom).
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1 - PLoss/Variance, where PLoss is the negative Log-likelihood of the Poisson model. (a-b) See
Supplementary Figure S5.
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Figure S7: Difference between R2 of the full model (R2
Full) and the R2 for the different ablations

(R2
Reduced) (y-axis; ∆R2 = R2

Full −R2
Reduced). The R2 for the different ablations (x-axis) is calculated

by testing the model on trials where those features have been set to zero. (a) ∆R2 for all neurons.
Whisker contacts (Contacts) and continuous angle (Angle) are the most important features in pre-
dicting S1 activity. (b) ∆R2 excitatory and inhibitory neurons. Inhibitory populations show a higher
∆R2 because their R2 is overall higher (see Supplementary Fig. S5). (c) ∆R2 across layers of the so-
matosensory cortex. Whisker contacts have a stronger effect on superficial layers (2/3), while whisker
angle has a stronger effect on deeper layers.
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Figure S8: The metric ∆R2 reveals that neurons in S1 do not strictly obey somatotopy during the
whisker-based discrimination task (see also [3]). (a) The contribution to the encoding model’s perfor-
mance (y-axis; ∆R2) for whiskers’ contacts (C0, C1, C2 and C3) and angular position (θC0,θC1,θC2,
and θC3) for all neurons. (b-c) whisker and angular position encoding strength for C1 column (b), C2
column (c) and C3 column (d). While C1 contacts is the strongest driver in C1 column, C2 and C3
columns are not dominated by C2 and C3 contacts, respectively. Errorbars in all panels correspond
to s.e.m. across neurons.
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Figure S9: Different coding scenarios would produce different values for ∆R2 − ∆R2
Linear. Here we

show different tuning schemes with respect to C1 and C3 for a fictional neuron (r1). (a) The metric
∆R2 − ∆R2

Linear was used to evaluate to what extend the pure non-linear terms were important
to predict the population’s firing rate. If the relationship between neuronal activity and encoding
variables is linear, ∆R2 = ∆R2

Linear and therefore ∆R2 − ∆R2
Linear = 0 (b) If the relationship

between neuronal activity and encoding variables is purely non-linear, ∆R2
Linear = 0, ∆R2

Linear 6= 0
and ∆R2 − ∆R2

Linear > 0. (c) If the encoding model is composed of both linear and non-linear
components, ∆R2

Linear 6= 0, ∆R2 6= 0 and ∆R2 −∆R2
Linear > 0.
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Figure S10: Pure non-linear mixed selectivity contribution (∆R2 − ∆R2
Linear) for the interaction

between the different blocks of variables across neuronal types and S1 layers. Results were qualitatively
equivalent for the excitatory (a) and the inhibitory (b) populations.
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Figure S11: (a) Pure non-linear mixed selectivity contribution for the interaction between contacts
for the different time steps (time lags) and whiskers (∆R2 − ∆R2

Linear). The strongest non-linear
contribution in whisker contacts occurs on time lags between neuronal activity and contacts of 100 ms
(1 time step) for all whiskers. (b) Pure non-linear mixed selectivity contribution (∆R2 −∆R2

Linear)
for the interaction between contacts and angular position for the different time steps (time lags) and
whiskers. The strongest non-linear contribution in whisker angular position occurs on the current
time step for all whiskers. The strongest non-linear contribution for the interaction between contacts
and angular position occurs also on time lags between angular position (and neuronal activity) and
contacts of 100 ms (1 time step).
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Figure S12: (a) Pure non-linear mixed selectivity (∆R2 −∆R2
Linear) contribution for the interaction

between contacts for the different time steps (time lags) and whiskers separately by columnar location
of each neuron. The strongest interactions occur at the time lags of 100 ms (1 time step). Even
though C1 column shows that C1 terms have the strongest interaction, C2 and C3 columns present
a more heterogeneous interaction pattern. (b) Pure non-linear mixed selectivity (∆R2 − ∆R2

Linear)
contribution for the interaction between angular position for the different time steps (time lags) and
whiskers. The strongest interactions occurs at time lags of 0ms. All columns present strong interactions
terms with the rest of whiskers.
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Figure S13: (a) Decoding performance on whether the sum of whisker contacts across the current and
previous four time steps corresponded to a high or a low number of contacts with respect to the median
for each different whisker (C1 blue; C2 green; C3 red) and columns (see Methods). Information about
whisker contacts for all whiskers was present in all columns. Decoding Performance was evaluated
on surrogate activity generated by the best encoding model (NonLin-1). In each recording session,
activity from only one column was recorded. In order to compare information across columns, surrogate
activity was generated for 10 neurons, which corresponded to the smallest number of simultaneously
recorded neurons across recording sessions (columns). (b) Qualitatively equivalent results were found
when the CCGP was evaluated (see Methods). All columns encode information about all whiskers
in approximately orthogonal spaces. Errorbars in all panels correspond to s.e.m. across recording
sessions.
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Figure S14: Performance on the easy (Linear) and complex (XOR) tasks as well as on the generalization
benchmark (CCGP) grow as a function of the size of the surrogate population of neurons. (a) (left)
Decoding Performance of a linear classifier trained to perform the easy task (Linear 2D) by reading out
surrogate activity generated with the different encoding models (green). Surrogate activity generated
with the linear encoding model produces the highest performance. Larger surrogate populations
produce higher performances. Performance for the mean number of simultaneously recorded neurons
across sessions (25.4 neurons) for the different encoding models is shown as black dots (horizontal jitter
added on each value for visualization purposes). (middle) Same as (left) when the linear classifier was
trained to perform the complex task (XOR). Surrogate activity generated with the linear encoding
model was at chance level for all population sizes. Surrogate activity generated with an encoding
model with only 1 hidden layer (NonLin-1), produced the highest decoding performance. (right) Same
as (left, middle) for the generalization benchmark (CCGP, see Methods). Similar to the Linear 2D,
surrogate activity generated with the linear encoding model produced the highest performance. In
Fig. 7, the results for N = 100 are shown. For each session, task and number of neurons, the reported
performance corresponds to the mean across the three possible pairs of whisker contacts (C1,C2),
(C1,C3), and (C2,C3). (b) Same as (a) for the easy and complex tasks and generalization benchmark
defined from contacts of the three whiskers simultaneously (C1,C2,C3) (see Methods). Results are
qualitatively equivalent to (a). Errorbars in all panels correspond to s.e.m. across recording sessions.
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Figure S15: Qualitatively equivalent results to Fig. 7 were found when the easy and complex tasks
and the generalization benchmark (CCGP) were defined with respect to the task variable continuous
whisker angular position (a) and the interaction between the task variables whisker contacts and
whisker continuous angular position (b) (see Methods). Results are shown for populations of 100
surrogate neurons. As in Fig. 7, errorbars in all panels correspond to s.e.m. across recording sessions.
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Figure S16: RNNs trained on a complex task produce the best trade-off between generalization and
discrimination across all tasks and noise levels. (a) Probability of correct response (y-axis) as a
function of time (x-axis) when the RNN was trained on the easy task 1 (left panel), the middle task 1
(central panel) and the complex task (right panel). RNNs were trained on low input noise (λlow = 0.23
and λhigh = 0.77). For each network, additional readout weights on the activity of the artificial units
were trained to perform the rest of the tasks (see Methods). While an RNN trained on easy task 1
produced the best performance for easy task 1, the neuronal representations were not well suited for
the rest of tasks (left). When an RNN was trained on the middle 1 (central) and complex (right) tasks,
it produced representations that allowed the performance of many different tasks. This came at the
expense of losing performance for the easy task 1. (b-c) The same qualitative results were obtained
when medium (b; λlow = 0.3 and λhigh = 0.7) and high (c; λlow = 0.35 and λhigh = 0.65) noise levels
were used instead. For each panel the performance curves correspond to the mean across 50 random
realizations of input patterns and tasks (see Methods).
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Figure S17: Generalization performances (CCGP) are above chance for even the RNNs trained on the
complex task. (a) Generalization performance defined as cross-condition generalization performance
(CCGP; y-axis) as a function of time (x-axis) when the RNN was trained on the easy task 1 (left
panel), the middle task 1 (central panel) and the complex task (right panel). RNNs trained on low
input noise (λlow = 0.23 and λhigh = 0.77). While abstraction (CCGP) is high for easy task 1 when
the RNN was trained on the easy task 1, it is low for easy tasks 2 and 3. Since medium task 1 is
defined as the 2D-XOR between C1 and C2, CCGP was higher for easy task 1 and 2 (C1 and C2)
than for easy task 3 (C3). For the RNN trained on the complex task, CCGP was significantly above
chance for all easy-task variables. (b-c) The same qualitative results were obtained when medium
(b; λlow = 0.3 and λhigh = 0.7) and high (c; λlow = 0.35 and λhigh = 0.65) noise levels were used
instead. Results in all panels are qualitatively similar to Supplementary Fig. S16. For each panel the
performance curves correspond to the mean across 50 random realizations of input patterns and tasks
(see Methods).
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Figure S18: The advantage of the non-linear encoding models grows with the difficulty of the integra-
tion task. (a) Similar to Fig. 3d, linear and non-linear classification models that read out from the
input space (x-axis), were trained to perform the easy (left panel), medium (central panel) and com-
plex tasks (right panel). On the easy task, both linear and non-linear models performed equally well,
as shown by decoding performances (y-axis) of the different models. On the contrary, only non-linear
classifiers that allow for complex cue combination, performed above chance on the medium (central)
and complex (right) tasks. The behavioral results obtained on the whisker-based discrimination task
(see Fig. 3) are aligned with the easy task (left panel). In all panels errorbars correspond to the
s.e.m. across four different network realizations. (b) Similar to Fig. 4d, cross-validated (CV) R2 on
explaining artificial units activity (y-axis), is plotted against the different encoding models (x-axis).
RNNs trained to perform tasks that require non-linear integration of sensory cues are better explained
by an encoding model with non-linear mixed selectivity (central and right panels), while a non-linear
encoding scheme provide marginal additional explanatory power for the easy task RNN (left panel).
The higher the complexity of the trained task, the higher the advantage of non-linear encoding models
on explaining the activity of the artificial units. In contrast to (a), the encoding properties of S1 are
aligned with those of RNNs trained to perform tasks that require non-linear combination of sensory
evidence (see Fig. 4). In all panels errorbars correspond to the s.e.m. across 240 artificial units (4
networks × 60 units).
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