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Abstract 

 

The mitochondrial genome (mtDNA) is of interest for a range of fields including evolutionary, forensic, and 

medical genetics. Human mitogenomes can be classified into evolutionary related haplogroups that provide 

ancestral information and pedigree relationships. Because of this and the advent of high-throughput sequencing 

(HTS) technology, there is a diversity of bioinformatic tools for haplogroup classification. We present a 

benchmarking of the 11 most salient tools for human mtDNA classification using empirical whole-genome (WGS) 

and whole-exome (WES) short-read sequencing data from 36 unrelated donors. Besides, because of its 

relevance, we also assess the best performing tool in third-generation long noisy read WGS data obtained with 

nanopore technology for a subset of the donors. We found that, for short-read WGS, most of the tools exhibit 

high accuracy for haplogroup classification irrespective of the input file used for the analysis. However, for short-

read WES, Haplocheck and MixEmt were the most accurate tools. Based on the performance shown for WGS 

and WES, and the accompanying qualitative assessment, Haplocheck stands out as the most complete tool. For 

third-generation HTS data, we also showed that Haplocheck was able to accurately retrieve mtDNA haplogroups 

for all samples assessed, although only after following assembly-based approaches (either based on a 

referenced-based assembly or a hybrid de novo assembly). Taken together, our results provide guidance for 

researchers to select the most suitable tool to conduct the mtDNA analyses from HTS data. 
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1. Introduction 

 
The human mtDNA is a circular double-stranded genome of 16,569 base pairs (bp) in the hg38 reference 

sequence, encoding 37 genes for 13 proteins, 22 tRNAs, and 2 rRNAs. Besides its key role in diverse human 

diseases (DeBalsi et al., 2017; Pyle et al., 2016; West & Shadel, 2017), distinctive features such as the matrilineal 

inheritance, the lack of recombination, and a higher mutation rate than the nuclear genome, makes mtDNA 

analysis a powerful tool also for population genetics (Brotherton et al., 2013; Llamas et al., 2016; Posth et al., 

2016) and forensic studies (Børsting & Morling, 2015; Just et al., 2009).  

Worldwide human mtDNA diversity has been reconstructed through a genealogy of distinctive lineages, 

representing mtDNA sequences clustered into evolutionarily related haplotypes (a.k.a. haplogroups). They are 

linked to human evolutionary history and allow tracing origins and differentiation patterns across populations 

and over time periods (Balter, 2011; Fu et al., 2013; Gonder et al., 2007; Hajdinjak et al., 2018). As such, many 

haplogroups are associated with specific biogeographical ancestries (Chan et al., 2019; De Angelis et al., 2018; 

Maca-Meyer et al., 2001). MtDNA haplogroup classification has become an essential step to recovery ancestry 

and genealogical information from analyzed samples (Weissensteiner et al., 2016). One of the most popular and 

continuously updated repositories of mtDNA lineage relationships and nomenclature is Phylotree 

(http://www.phylotree.org) (van Oven & Kayser, 2009). The latest version of Phylotree (Build 17) contains more 

than 5,400 haplogroups and it constitutes the central reference for many bioinformatic tools to classify human 

mtDNA sequences. 

The advent of high-throughput sequencing (HTS) technology has allowed the development of a wide 

range of applications, including whole-genome sequencing (WGS) and whole-exome sequencing (WES). MtDNA 

studies have also leveraged the power offered by HTS (Churchill et al., 2018; Schönberg et al., 2011; Vasta et al., 

2009). In fact, mtDNA can be fully captured by commercial WES solutions, possibly due to the high copy number 

of mtDNA (Picardi & Pesole, 2012). Hence, mtDNA information can be recovered effectively from WES studies 

at no extra cost. Furthermore, the sequencing depth associated with WES usually allows reconstructing the 

entire mitogenome with high quality and detecting heteroplasmic sites (Sosa et al., 2012). Third-generation HTS, 

such as those based on nanopore technology (ONT, Oxford Nanopore Technologies, Oxford, UK), allows 

sequencing with long reads, providing an opportunity to generate full-length mtDNA sequences in single reads. 

Because of the importance of recovering ancestral information and pedigree relationships of study 

samples, the number of bioinformatics tools developed for mtDNA haplogroup classification has increased 

notably in the last decade to adapt to the HTS technologies (Calabrese et al., 2014; Fan & Yao, 2011; Ishiya & 

Ueda, 2017; Kim et al., 2020; Navarro-Gomez et al., 2015; Röck et al., 2013; Smieszek et al., 2018; Vohr et al., 

2017; Weissensteiner et al., 2016, 2020). An unmet need is a benchmarking study of their capabilities, 

requirements, and usability to correctly classify the mtDNA haplogroups from different source files. Based on 

short-read WES and WGS data from the same donors, as well as on WGS obtained from long noisy reads from a 

subset of them, here we present an empirical evaluation of the 11 most salient bioinformatic tools available for 

human mtDNA classification from HTS data. 
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2. Materials and methods 

 

Samples, library preparation and sequencing 
 
The study was approved by the Research Ethics Committee of the Hospital Universitario Nuestra Señora de 

Candelaria and performed according to The Code of Ethics of the World Medical Association (Declaration of 

Helsinki). 

Thirty-six DNA samples from unrelated donors of European descent were used for the study after 

informed consent (see supplementary Table S1). DNA was extracted from peripheral blood using a commercial 

column-based solution (GE Healthcare, Chicago, IL). DNA quantifications were performed in a Qubit dsDNA HS 

Assay (Thermo Fisher, Waltham, MA). All samples were sequenced in parallel using short-read WGS and WES. 

Library constructions were performed with Illumina preparation kits following the manufacturer’s 

recommendations (Illumina Inc., San Diego, CA). The Nextera DNA Prep kit was used for WGS, except for six 

samples that were processed by Illumina DNA Prep. The same samples were processed with Nextera DNA Exome 

with a 350 bp insert size as described elsewhere (Díaz-de Usera et al., 2020). The library quality control was 

carried out in a TapeStation 4200 (Agilent Technologies, Santa Clara, CA). Sequencing was conducted on a HiSeq 

4000 Sequencing System (Illumina Inc.) at the Instituto Tecnológico y de Energías Renovables (Santa Cruz de 

Tenerife, Spain). 

Eight of these samples had WGS based on noisy long-read data obtained at KeyGene (Wageningen, The 

Netherlands). Briefly, sequencing was performed on a PromethION system (ONT) for 64 h using one FLO_PR002 

(R9.4.1 pore) flow cell per sample following the manufacturer’s recommendations. Basecalling was performed 

on the PromethION computing module using MinKNOW v1.14.2 with Guppy v2.2.2 and data preprocessing was 

carried out with PycoQC (Leger & Leonardi, 2019). 

 

Sequence processing and variant calling 
 

Processing of short-read WGS and WES data was carried out using an in-house pipeline (see supplementary 

Figure S1) based on GATK v4.1 for WGS and GATK v3.8 for WES (McKenna et al., 2010). Reads were aligned to 

the GRCh37/hg19 reference genome and the mtDNA reads realigned to the revised Cambridge Reference 

Sequence (rCRS), GenBank NC_012920 (Anderson et al., 1981; Andrews et al., 1999), following GATK best 

practices for this circular genome (see supplementary Figure S1). This required two alignment steps: one against 

the canonical mitogenome reference and another against the same reference but shifted by 8,000 nucleotide 

positions. This generates a displacement of the mtDNA D-loop to the opposite side of the contig, allowing to 

better capture variants of this highly variable region. The alignments were then processed for duplicate marking 

and base quality score recalibration (DePristo et al., 2011). The variant calls were obtained with the 

“mitochondria mode” of Mutect2 GATK v4.1. This specific mode provides a better sensitivity for this genome as 

it shows a robust detection of very low fractions of variants once the nuclear mtDNA segments (NuMT) are 

filtered out. The mtDNA variants were then filtered by using FilterMutectCalls and VariantFiltration tools to keep 

the variants classified as PASS. 
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For ONT data, we first extracted all reads aligning to the mtDNA genome and then used four alternative 

strategies to obtain sequence variation for mtDNA classification: a) one based on the alignment of reads to the 

rCRS sequence with Minimap2 (Li, 2018) followed by a variant-calling step with Medaka 

(https://github.com/nanoporetech/medaka); b) another relying on the reference-based assembly performed by 

Rebaler (https://github.com/rrwick/Rebaler); c) a third strategy based on de novo assembly with Miniasm (Li, 

2016) followed by nine rounds of polishing with Racon (Vaser et al., 2017) and a final step with RagTag (Alonge 

et al., 2019) for scaffolding; and d) the last strategy combining ONT and Illumina reads in a hybrid de novo 

assembly built with Unicycler (Wick et al., 2017) and a final step with RagTag for scaffolding (see supplementary 

Figure S2). Quality of assemblies were assessed with QUAST (Gurevich et al., 2013). For all the alternatives, a 

VCF file per sample was generated for the haplogroup classification step. 

For each sample, three different files were generated for short-read data: BAM and VCF files created 

through the pipeline previously described, and FASTA files obtained by the VCF-consensus script included in 

vcftools (Danecek et al., 2011) generated from the VCF files. Of note, an additional filter was applied to the VCF 

files discarding variants that showed an allele fraction below 0.9, a threshold applied by default in Haplogrep 

during the haplogroup classification. This enabled the harmonization of the genetic variation considered in 

FASTA and VCF files. 

 
mtDNA haplogroup classification 
 

Among the tools available from the literature, we selected 11 that were published in the last three years or that 

were cited at least 30 times since its description (Table 1). Haplogrep, Haplocheck and Phy-Mer have the option 

of using alternative input files, fostering an evaluation with the alternative supported format files. Some of the 

tools provide quality scores supporting the mtDNA haplogroup classification. In these cases, only the 

classification with the best scoring was considered for the analyses. For the haplogroup classification process, 

the tools that were designed to be run locally, either through an application or via command line, were executed 

on a 4-core Intel Core i7 CPU at 2.6 GHz and 16 GB of RAM. 

 

Table 1. List of software assessed for human mtDNA haplogroup classification. All the tools assessed classify mtDNA 
sequences according to the PhyloTree nomenclature by using the latest version Build 17. Two of them, MitoTool and Phy-
Mer, remain outdated in regards of the PhyloTree built when this study was conducted. 
 

Tool User 
interface 

Release 
year 

Version Latest 
release 

Database 
version 

Input 
options 

Execution time 

James Lick'sa Web 2010 0.19a 2013.04.08 Phylotree 17 FASTA < 1 min 
Haplogrepb Web / CLI* 2011 2.2.4 2016.07.08 Phylotree 17 VCF/FASTA < 1 min 

MitoToolc App 2011 1.1.2 2013.11.02 Phylotree 16 FASTA < 1 min 

Haplofindd Web 2013 - 2013.01.12 Phylotree 17 FASTA < 1 min 

EMMAe Web 2013 13 2019.11.28 Phylotree 17 FASTA < 1 min 

Phy-Merf Web / CLI 2015 1.0.0 2016.01.14 Phylotree 16 BAM/FASTA 1 – 5 min / < 1 min   

MitoSuiteg App 2017 1.0.9 2017.06.06 Phylotree 17 BAM 1 – 5 min 

MixEmth CLI 2017 0.1 2017.05.09 Phylotree 17 BAM WGS > 1 hour | WES < 1 hour 

Haplochecki Web / CLI 2019 1.1.0 2019.11.17 Phylotree 17 BAM/VCF < 1 min 

Haplotrackerj Web 2020 - 2020.04.23 Phylotree 17 FASTA < 1 min 

HaploGrouperk CLI 2020 - 2020.08.17 Phylotree 17 VCF < 1 min 
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*CLI: Command-line interface.  
a: https://dna.jameslick.com/mthap/; b: (Weissensteiner et al., 2016); c: (Fan & Yao, 2011, 2013); d: (Vianello et al., 2013); e: (Röck et al., 2013); f: (Navarro-
Gomez et al., 2015) ; g: (Ishiya & Ueda, 2017); h: (Vohr et al., 2017); i: (Weissensteiner et al., 2020); j: (Kim et al., 2020); k: (Jagadeesan et al., 2020). 

 
Statistical analyses 

 

All statistical analyses were performed in R v.3.3.3 (R Core Team 2017). Model fitting was evaluated visually 

using the ‘DHARMa’ package (Hartig, 2017) (v.0.1.5). Prior to analysis, all predictors were standardized by 

subtracting the mean and dividing by the standard deviation with the ‘scale’ base function in R.  

In order to evaluate the performance of the 11 tools in the classification, we ran generalized linear 

mixed models (GLMM) with the tools as fixed factor and the classification results (concordance/discordance) as 

the response variable. This was done separately for WGS and WES data. In the models, we included the sample 

as a random factor to account for differences introduced by the sequencing runs and the diverse enrichment 

kits involved. Classification results were transformed to a binary response so that, for each sample, discordance 

between the consensus haplogroup and the classification result was coded as one, and the concordance as zero. 

In such binary outcome data, the models may suffer from complete separation when one of the levels of an 

explanatory variable explains completely the binomial response variable, precluding an optimal fitting of the 

algorithm (Heinze & Schemper, 2002). This prevents the algorithm from properly fitting the coefficient for this 

level. To overcome this issue, we fitted the models using the bglmer function of the “blme” v.1.0.4 R package 

(Chung et al., 2013), which incorporates a similar algorithm to “lmer4” v.1.1.15 R package (Bates et al., 2015) to 

facilitate the estimation with the incorporation of a prior. Before the analysis, a Pearson’s correlation test was 

conducted to examine the cross-correlation among the different sequencing parameters measured (i.e., mapped 

reads, duplicate reads, depth, mean mapping quality, and base quality). Pearson's correlation test revealed that 

the proportion of duplicate reads and the depth of coverage were highly correlated (r < 0.8). Therefore, only the 

mapped reads, mapping quality, and base quality were incorporated as covariates in the model (see 

supplementary Table S2). Finally, to evidence the pairwise differences between the tools, we run a post-hoc 

analysis with the Tukey contrast by using the “multcomp” v.1.4.8 package (Hothorn et al., 2008). Model outputs 

were visualized using ‘effects’ v.0.9.4 (Fox, 2003) and ‘ggplot2’ v.2.2.1 (Wickham, 2016).  

 

3. Results 

 

Short-read sequencing summary of mitogenomes 
 

The mean (± SD) number of mtDNA reads recovered per sample (n=36) for short-read WGS and WES data were 

197,717 ± 98,719 and 9,905 ± 6,808, respectively. For WGS, 100% of the mitogenome was covered at least at 

1X. For WES, this percentage decreased to a mean (± SD) of 86.79% ± 27.01 of the recovered mitogenome. The 

mean (± SD) mapping quality for mapped reads had a value of 59.9 ± 0.01 and the Phred base-quality scores 

estimated were high for both applications (28.38 ± 0.91 for WGS, and 29.74 ± 0.02 for WES). The average (± SD) 

depth recovered for WGS was 1,119X ± 433 (range: 554-2,577X), decreasing to 37X ± 20 for WES (range: 11-92X). 

Besides, while WGS provided a homogeneous depth of coverage profile across the mitogenomes, those 
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recovered by WES showed a highly heterogeneous profile across samples. Interestingly, the region between 

nucleotide positions 2,000-3,000 was highly enriched in reads from Illumina WES data (Figure 1). As for the 

number of detected variants after filtering, the mean (± SD) depth of coverage per variant call had a value of 958 

± 362 in WGS, decreasing to 40 ± 21 in WES. Out of the 36 samples sequenced, ten showed the equivalent 

number of variants by WGS and WES. In the remaining samples, the number of variants detected by WES was 

lower than by WGS: 17 samples missed between 1 and 3 variants, and nine missed more than 30% of the variants 

(Table S1). 

 

Figure 1. Circos plot of the depth of coverage for short-read and long-read sequencing in the mtDNA of an exemplar sample. 
Short-read WGS and WES data are colored in green and red, respectively. Long-read WGS data is shown in blue. 
 
Haplogroup classification based on short-read data 
 

Twenty-eight samples showed >90% concordance in the haplogroup classification among the 11 tools. The 

remaining showed a mean concordance rate of 69.23% (see supplementary Table S3). In addition, a higher 

classification accuracy was provided for WGS, reaching an average of 90.08%, while for WES it decreased to an 

average of 76.98% (see supplementary Table S4). On average (± SD), there were more discordances on the WES 

classifications (2.97 ± 3.92) than for WGS (1.39 ± 1.48). Based on this evidence, we set the WGS-derived 

haplogroup as the ground truth.  

By the classification accuracy, Haplogrep, Haplocheck, EMMA, and James Lick’s mtHap classified all 

samples correctly based on WGS. For the WES data, only Haplocheck classified all haplogroups correctly, and 

only when the BAM file was used as input. Concerning the less accurate classifiers, MixEmt showed the lowest 

accuracy for WGS, only classifying precisely 30.55% of the analyzed samples. MitoTool was the least accurate 

tool for WES data, yielding an incorrect haplogroup classification in 41.67% of the samples. The execution time 

required for haplogroup classification was also very different between the tools (Table 1). As expected, 
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classifications that relied on BAM inputs had a processing time higher than those running with FASTA and VCF 

files. Among the tools that support BAM file inputs, MixEmt was the most time-consuming, in which the 

heterogeneity of processing time among samples was likely due to the different number of mtDNA reads 

between datasets. In case of Haplocheck, which was designed along with MixEmt to estimate the potential cross-

contamination of samples, it required less time per sample for the haplogroup classification. 

 

Modelling of the haplogroup classification accuracy  
 

Based on these results, we modelled the performance of the 11 tools for short-read mtDNA data classification. 

The total variance explained by a fixed effects model was 57.69% and 46.19% for WGS and WES data, 

respectively. The predicted probabilities were then estimated in order to assess the haplogroup classification 

accuracy of each tool both on WES and WGS data (Figure 2). Among all tools, MixEmt (estimate ± SE; 3.55 ± 0.66; 

p < 0.001) was the one with the lowest accuracy in correctly classifying the haplogroup from WGS (80.91% 

predicted probability of incorrect classification). The rest of the tools showed a negligible probability of 

misclassifying the haplogroup from WGS (Figure 2 and Table S5). Post-hoc tests did not show statistically 

significant differences among them. For WES, Haplocheck (-4.38, ± 1.99, p = 0.03) and MixEmt (-1.13, ± 0.50, p 

= 0.02), both using BAM as the input file, were the tools showing the highest accuracy for haplogroup 

classification (Figure 2 and Table S5). Haplocheck correctly classified the haplogroup for all samples, while 

MixEmt incorrectly classified four of the 36 samples analyzed. Despite that, post-hoc tests did not show 

significant differences in the classification performance between Haplocheck and MixEmt. On the contrary, 

MitoTool (0.97, ± 0.49, p = 0.05) showed the lowest accuracy in the haplogroup classification based on WES, for 

which the predicted probability of incorrectly classifying an haplogroup was ≥25%. Regarding the effect of the 

covariates, their effect was negligible for WGS data. However, for the WES data, a relatively high effect size was 

found for the mapped reads (-5.96 ± 3.55; p = 0.09) and the mapping quality (1.16 ± 0.39; p < 0.001) (Table S5). 

Taken together, these results suggest that the number of reads available and their mapping quality have stronger 

effects on the probability of inaccurate haplogroup classification based on WES data than based on WGS data. 

a)                                                                                               b) 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 2. Predicted probability values (and 95% confidence intervals) of the GLMM model estimated for each tool for a) WGS 
and b) WES datasets. In light grey, the raw data from the haplogroup classification results. 
 
JML: James Lick’s, HPG: Haplogrep, MTO: MitoTool, HPF: Haplofind, EMA: EMMA, PHY: Phy-Mer, MTS: MitoSuite, MIX: MixEmt, HPC: 
Haplocheck, HPT: Haplotracker, HPR: HaploGrouper.  
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Qualitative assessment of haplogroup classification tools 
 

Due to the large number of haplogroup classification tools, a secondary aim of this study was to provide a 

guidance for researchers to select the most suitable tool for their analyses, not only based on the mtDNA 

haplogroup classification accuracy but also based on different software features and the usability of the 

evaluated tools. In order to facilitate the comparison among different tools, a qualitative assessment table is 

provided with the advantages and limitations of each tool. For this, the following characteristics were 

considered: haplogroup classification accuracy, computation time for classification, whether or not the latest 

Phylotree database is used, ability to process cohorts, versatility in the input files supported, user-friendly 

interface, frequency of tool maintenance, and the presence of others major functions (Table 2). Overall, 

Haplocheck proved to be the most complete tool, achieving the best performance in over 90% of the evaluated 

features. At the opposite end, Phy-Mer, with more than 50% of the features resulting poorly classified was the 

tool with the worst performance among all the assessed tools in this study. 

 

Table 2. Qualitative assessment of mtDNA haplogroup classification tools. Performance of each tool is evaluated across 
different features and represented on a color scale based on the level of performance: green for good, orange for fair, and 
red for low performance.  
 
Haplogroup classification accuracy of each tool was categorized into three ranges based on the predicted probabilities by each application: tools with a predicted 
probability of incorrectly classifying a haplogroup below 1% were represented as good performance, for a fair performance was established a range between 
1.01% and 10%, and as low performance tools with a predicted probability higher than 10.01%. For computation time, three intervals were established: tools 
that classified samples in less than a minute were defined as good performance, from 1 to 5 minutes were categorized as fair performance, and those tools that 
required more than an hour were represented as low performance. Regarding the PhyloTree database used, it was represented as low performance those tools 
which are not updated to the latest version of Phylotree, Build 17, and those that allow the latest version as high performance. Multi-sample function was 
evaluated based on the possibility of cohort analysis. Tools that allow to process these functions were defined as good performance, tools that allow processing 
several samples by using a loop through a command-line were categorized as fair performance, and tools without this ability were represented as low 
performance. Based on the file format supported two categories were established: tools that support various input format files categorized as high performance 
and those that only support one format file that are represented as low performance. The user interface was divided into two categories, tools based on web 
or desktop applications defined as good performance, and tools developed exclusively for CLI as low performance. The tool maintenance was classified into two 
classes, tools updated continually or have been recently released, both identified as good performance, and tools that have not been updated during the last 
years. The last feature is the presence or not of additional functions; tools that have other functions implemented are categorized as good performance. Those 
tools without more functions were determined as low performance. 
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Assessment of ONT data for mtDNA haplogroup classification 
 

The mean (± SD) number of mtDNA reads per sample (n=8) recovered by ONT was 2,812 ± 1,003. The average 

mtDNA coverage depth was 576X (range: 358-910X). The ONT-recovered mitogenome profile was uniform. 

However, a decrease in the coverage depth was observed for the D-loop region (positions between 16,024-576) 

(Figure 1). Regarding the quality of the recovered assemblies, the hybrid de novo and reference-based assembly 

strategies reached a similar value of N50, with 16,571 bp and 16,569 bp, respectively. However, for the long-

read only de novo assembly, this length decreased to 16,407 bp. The consensus overall identity with the rCRS 

sequence reached a value of 100% for hybrid de novo assembly, 99.97% for reference-based strategy, and 

88.99% for the long-read only de novo assembly strategy. Taking the called variants by short-read WGS as the 

ground truth, the variant calling strategy for ONT data shared a consensus average (± SD) of 76.41% (± 5.43), the 

reference-based assembly shared an average of 93.95% (± 5.76), de novo assembly shared an average of 89.13% 

(± 5.56), and the hybrid de novo assembly shared an average of 97.35% (± 3.34). In addition, the strategies that 

only use ONT reads for mtDNA assembly called a larger number of variants that were undetected by short-read 

WGS. The reference-based assembly strategy called a total of 61 (± 31) variants and de novo assembly 158 (± 

173). For the variant calling and hybrid de novo assembly strategies, the number of novel variants called was 

lower, decreasing to an average of 3 (± 2) and 1 (± 2), respectively. 

Given that Haplocheck was the best performing classifier based on short-read data, we then used it for 

ONT mtDNA haplogroup classification. The reference-based assembly and the hybrid de novo assembly 

strategies classified all samples correctly. However, both the variant calling and the de novo assembly 

approaches incorrectly classified one out of the eight samples analyzed. Despite that, all samples were classified 

correctly at the macro-haplogroup level with all strategies (Table 3). 

 
Table 3. Long-read (ONT) sequencing summary and haplogroup classification results for the samples. The results of the short-
read whole-genome sequencing (WGS) mtDNA classification are also shown. 
 

Samples 

ONT  
sequencing 

Variant- 
calling 

Reference-based 
assembly 

De novo  
assembly 

Hybrid de novo 
assembly 

Short-read  
WGS 

Mapped 
reads 

Depth of 
coverage Variants Haplogroup Variants Haplogroup Variants Haplogroup Variants Haplogroup Variants Haplogroup 

CAN03 3,065 581 14 H1ao1 69 H1ao1 119 H1ao1 16 H1ao1 14 H1ao1 

CAN06 2,981 566 36 J2a2d 141 J2a2d 154 J2a2d 46 J2a2d 44 J2a2d 

CAN07 2,343 444 15 H6a1b2 132 H6a1b2 175 H6a1b 17 H6a1b2 14 H6a1b2 

CAN09 2,126 358 33 U4c1 66 U4c1 602 U4c1 37 U4c1 37 U4c1 

CAN17 4,209 821 10 H2a2 59 H+16189 41 H+16189 15 H+16189 12 H+16189 

CAN23 1,737 532 29 K1a1b1 69 K1a1b1 78 K1a1b1 37 K1a1b1 35 K1a1b1 

CAN31 1,776 398 20 U6b1a1 67 U6b1a1 119 U6b1a1 28 U6b1a1 26 U6b1a1 

CAN34 4,256 910 34 L3f1b1a 90 L3f1b1a 174 L3f1b1a 42 L3f1b1a 43 L3f1b1a 
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4. Discussion 

 

Over the last decade, the number of mtDNA haplogroup classification tools has increased considerably. 

However, to our best understanding, there was no benchmarking study that assessed the accuracy of the 

haplogroup classification provided by them until now. This study presents a comparative of the 11 tools that are 

most widely used. The evaluation was done using empirical HTS data from two of the most widely used 

applications in human genetics, WES and WGS, in diverse empirical data. Besides, we also evaluated the best 

performing tool in long noisy ONT reads in a subset of the samples. Our results support that WES offers a suitable 

solution to allow accurate reconstruction of the mtDNA sequence, although at a lower depth of coverage than 

WGS. Our results also demonstrated that the most accurate tools for human mtDNA haplogroup classification 

from short-read WGS data are Haplogrep, Haplocheck, James Lick's, EMMA, HaploGrouper, and Haplotracker. 

On the contrary, for short-read WES, Haplocheck and MixEmt were the most accurate. Considering both the 

accuracy of classification for both approaches and the qualitative assessment made, Haplocheck demonstrated 

the best performance overall. In fact, using Haplocheck on long noisy ONT reads, we were able to accurately 

retrieve the mtDNA haplogroup from all assessed samples. 

Previous studies have used WES data for human mitogenome reconstruction (Griffin et al., 2014; 

Patowary et al., 2017; Picardi & Pesole, 2012; Wortmann et al., 2015). Based on our comparisons between WGS 

and WES datasets, the most striking difference between their classification results was mainly related to the 

breadth and depth of coverage, both being better for WGS than for WES under our standards. Differences in 

mtDNA breadth of coverage were less pronounced. However, the mean depth of mtDNA for WGS was around 

30 times higher than that obtained by WES. For WGS, the depth reported in diverse studies ranged between 

1,200-4,000X (Puttick et al., 2019; Raymond et al., 2018; Watson et al., 2020), fitting with the expected 

proportion of mtDNA copy number compared to the nuclear DNA, which theoretically differs by 10 to 100 times 

(Al-Nakeeb et al., 2017; Robin & Wong, 1988). With respect to WES, the observed depth fits in the range 

described in the literature (Abicht et al., 2018; Diroma et al., 2020; Griffin et al., 2014; Patowary et al., 2017). 

Attending to the number of variants compared to those detected by WGS, a loss of variants was observed for 

WES in several samples. This may be explained by the low number of mapped reads of the mtDNA recovered in 

these samples, causing a shallower mtDNA depth. Despite that, based on the BAM-deduced haplogroup results, 

we and others (Diroma et al., 2020) have confirmed that WES can be an efficient approach to recover complete 

human mitogenomes, which allows retrieving the haplogroup with comparable accuracy to that based on WGS. 

In general, a loss of accuracy in mtDNA classification was found for WES data in most of the evaluated 

tools. This could be explained by the lower depth of mitogenomes in WES compared to WGS, as has been 

described elsewhere (Ishiya & Ueda, 2019; Yin et al., 2019), given that a low depth of coverage will have negative 

consequences on the performance of the variant calling algorithms (Jennings et al., 2017; Petrackova et al., 

2019). mtDNA haplogroup classification relies on a hierarchical algorithm based on the presence or absence of 

specific diagnostic variants defining the genealogy (Lee et al., 2008). Therefore, missing key variants due to the 

low depth may have a strong impact on the correct assignment in those tools that only support VCF and/or 

FASTA files as input. In contrast, the tools that can rely on BAM as an input file, given that this format contains 

all mapped reads -- including information about the alignment conditions and the complete sequence together 
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with the quality for each base -- may facilitate the proper haplogroup classification in sample datasets where 

certain variant positions are supported by a low number of reads. Hence, the BAM format might be optimal in 

samples where a low number of mtDNA reads is expected. The use of the BAM file as a possible input file for 

haplogroup classification has become popular in the last few years (Ishiya & Ueda, 2017; Navarro-Gomez et al., 

2015; Vohr et al., 2017; Weissensteiner et al., 2020). With respect to the WES haplogroup results, the tools that 

support BAM as input files obtained the highest classification accuracy, except Phy-Mer, which was one of the 

tools performing worst in the classification. Haplocheck and MixEmt reached the highest accuracy among all the 

tools evaluated. Haplocheck excels in the correct classification of all samples, even with low depth of mtDNA, 

unlike MixEmt, which resulted in several misclassifications. On the other hand, our results from WES data also 

showed that the total number of mapped reads, which closely relates to the depth of coverage, has a strong 

effect on the haplogroup classification, affecting the classification of the samples with a low number of mtDNA 

reads. However, the effect of this variable was negligible in WGS datasets. Consequently, the total number of 

mtDNA mapped reads can be considered another key factor to take into account in the mtDNA classification 

from WES datasets.  

Haplogrep, Haplocheck, James Lick's, EMMA, HaploGrouper, and Haplotracker tools yielded the highest 

accuracy scores based on WGS data, and their accuracy was independent of the input file format. This finding 

may be related to the high and uniform depth of WGS throughout the mitogenome, translating in strong support 

of variants by a high number of reads and, therefore, making more equivalent the information contained in the 

BAM, VCF, and FASTA files. Haplogrep and Haplocheck, both sharing the underlying algorithm developed first 

for Haplogrep and now integrated as a module directly in Haplocheck (Weissensteiner et al., 2020), were the 

ones providing the best ratings for all evaluated features. Despite that, taking into account all the evaluated 

features, Haplocheck stands out as the most complete haplogroup classification tool for WGS data as it also 

allows detecting potential sample contaminations based on BAM files. For those users who prefer working with 

mtDNA alignments in FASTA format and with the sole objective of classifying a limited number of samples by 

web-based user-friendly tools, EMMA, James Lick’s, HaploGrouper, and Haplotracker are good choices as they 

all showed similar accuracies as Haplogrep and Haplocheck. EMMA is integrated into the EMPOP platform and 

stands out as one of the most complete and up-to-date databases of human mtDNA information, containing 

high quality representations of haplogroups from all over the world based on logical and phylogenetic measures 

suitable for forensic purposes (Amorim et al., 2019; W. Parson et al., 2014). James Lick’s is one of the first tools 

released for mitochondrial haplogroup classification that is continually updated to new versions of the PhyloTree 

database. This tool is widely used among genetic genealogists because it is user friendly and based on a web 

application. HaploGrouper, the most recently released tool, allows classifying the haplogroups both for mtDNA 

and the non-recombining portion of the Y-chromosome, being unique in this dual function. However, this tool 

requires basic bioinformatic skills since it runs from a command-line interface. Finally, Haplotracker has been 

designed for fragmented DNA samples, such as degraded ones, allowing datasets to be classified using both 

short reads and complete mtDNA sequences. It runs as a web application with a user-friendly interface that 

makes it appealing for users without bioinformatics skills. 
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Long-read sequencing technology allows new genome discoveries leveraging the improvements in 

genome assemblies and detecting structural variants, among others. Long noisy ONT reads have been applied 

for studies of the nuclear genome (Beyter et al., 2019; Olson et al., 2020). However, there are few examples of 

the use of this sequencing technology for mtDNA genome analysis (Franco-Sierra & Díaz-Nieto, 2020; Lindberg 

et al., 2016). The Achilles' heel of this emerging sequencing technology, the high error rates, is continuously 

improving mostly based on pore modifications and the development of basecalling methods. Here we showed 

that reference-based assembly and hybrid de novo assembly strategies provide precise results for haplogroup 

classification. However, despite the high number of artefactual variants detected using only the long reads for 

assemblies (reference-based and de novo), these results could be improved using new methods for basecalling 

and/or genome assembly. Irrespective of that, our results demonstrate that the ONT reads are appropriate for 

recovering accurate mtDNA haplogroups from WGS data.  

 

5. Conclusions 

 

With the advent of the HTS technologies, the number of human mtDNA haplogroup classification tools has 

increased notably in the last decade. Each new tool released incorporates novel features and different analysis 

functions, but this has not been always linked to an improvement in the haplogroup classification accuracy. In 

this study, an evidence-based benchmarking effort was proposed to compare the classification accuracy 

provided by the most salient tools. We conclude that Haplocheck is the most suitable mtDNA haplogroup 

estimator for WGS and WES datasets, not only because of its classification accuracy but also because of all the 

included features and its user-friendly web interface. Regarding third-generation HTS, despite the lower per base 

accuracy currently offered by ONT, we found that it does not hinder a precise human mtDNA classification. 
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