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Abstract 

Background: Small nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for 

ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. 

However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene 

expression, suggesting more complex snoRNA expression patterns. Therefore, there is a great need for 

mapping the snoRNome in different human tissues as the blueprint for snoRNA functions.  

Results: We used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and 

compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, 

skeletal muscle, liver and brain). We identified 475 expressed snoRNAs categorized in two abundance 

classes that differ significantly in their function, conservation level and correlation with their host gene: 

390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most 

tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with 

them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and 

are mainly non- or anticorrelated with them. 59% of the non-correlated or anticorrelated protein-coding 

host gene/snoRNA pairs feature dual-initiation promoters, as opposed to only 16% of the correlated 

non-coding host gene/snoRNA pairs. 

Conclusions: Our results demonstrate that snoRNAs are not a single homogeneous group of 

housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates 

that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in 

order to meet the different snoRNA abundance levels and functional needs of human tissues. 

Keywords: SnoRNA, Human tissues, RNA-Seq, TGIRT-Seq, Transcriptome, SnoRNA/host gene 

relationship, Nonsense-mediated decay, Dual-initiation promoters 

Background 
Small nucleolar RNAs (snoRNAs) are a 

conserved family of mid-size non-coding RNA 

best characterized as regulators of ribosome 

biogenesis. Most studied snoRNAs guide 

sequence dependent chemical modifications of 

nascent ribosomal RNA (rRNA) leading to 

ribosome assembly [1–3]. Functional snoRNAs 

are a part of larger ribonucleoprotein complexes 
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(snoRNPs) composed of core proteins required 

for snoRNA stability that represent an enzymatic 

moiety needed for the RNA modification 

reaction [2,4–6]. SnoRNAs are divided in two 

types based on their structure and the 

modification they catalyze. Box C/D snoRNAs 

interact with the methyltransferase fibrillarin 

and guide the 2’-O-methylation of their target 

RNA while box H/ACA snoRNAs bind the 
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pseudouridine synthase dyskerin and catalyze 

pseudouridylation [4,7,8]. In addition to rRNA, 

snoRNAs also modify small nuclear RNAs 

(snRNAs) and a small subset including 

SNORD3 (U3) and SNORD118 (U8) are 

involved in rRNA processing [1,9]. Other 

snoRNAs have no known target in rRNA or 

snRNAs and are referred to as "orphan" 

snoRNAs [8].  

A growing number of orphan snoRNAs as 

well as snoRNAs with rRNA or snRNA targets 

are being assigned alternative functions in the 

regulation of gene expression including at the 

level of chromatin remodeling, pre-mRNA 

stability, alternative splicing and 

polyadenylation (reviewed in [3,8,10]). In most 

cases, snoRNAs regulate their targets through 

base-pairing with the target sequence. This 

pairing may occur either in trans as in the case 

of rRNA modification guides or through cis base 

pairing that modifies the local structure 

surrounding the snoRNA [11]. The importance 

of the regulatory roles of snoRNAs is becoming 

increasingly clear by their association with a 

multitude of human diseases including cancer 

(reviewed in [12,13]). Given the large number of 

orphan snoRNAs and the fact that some rRNA- 

and snRNA-guiding snoRNAs have also been 

shown to have gene regulatory functions [3,10], 

it is likely that the regulatory roles of snoRNAs 

will grow and that a substantial number of 

targets remain to be identified. This raises the 

question of how the expression of snoRNAs is 

controlled to support their non-canonical 

regulatory functions.  

In human, with the exception of the few 

snoRNAs required for rRNA processing, the 

majority of snoRNAs are expressed from the 

intron of either protein-coding or non-coding 

host genes (HGs) (Figure 1A and [14]). 

Accordingly, the expression of most snoRNAs 

depends, at least theoretically, on the 

transcription and splicing of their HG [5,14]. 

However, recent studies have started to provide 

examples of snoRNAs that might be uncoupled 

from the expression of their HG and even one 

orphan snoRNA that could regulate the splicing 

of its HG as a function of the amount of protein 

produced by the host [11]. The main mechanism 

uncovered so far uses nonsense-mediated decay 

(NMD) that permits degradation of the host 

transcript while preserving the expression of the 

snoRNA [6,15]. The idea of uncoupled 

snoRNA/HG expression was recently supported 

by the study of acute myeloid leukemia (AML) 

cells, human ovarian cell lines and mouse cell 

types that displayed limited correlation between 

a snoRNA and its HG expression [16–18]. More 

recently, it was hypothesized that promoters 

with dual-initiation of transcription may provide 

means to separate the expression of snoRNA 

from that of the HGs [19]. However, it is unclear 

if these heterogeneities in snoRNA and host 

expression are stochastic differences arising 

from variation in cell cultures or reflect a stable 

tissue-specific regulatory program. 

The most reported tissue-specific expression 

of snoRNA is found in the brain, where several 

snoRNAs were found to be predominantly 

expressed including the SNORD115 and 

SNORD116 families [20,21]. Despite these 

sporadic examples, the tissue distribution of the 

majority of the human snoRNome remains 

largely unexplored. Defining the human 

snoRNome is challenging due to the inherent 

difficulty in sequencing and quantifying the 

highly structured snoRNAs, especially when 

considered in relation to the expression of their 

HGs [17,22]. Indeed, the highly stable and 

chemically modified structure of snoRNAs 

impairs their reverse transcription, biasing most 

sequencing techniques towards the detection of 

less structured RNAs such as protein-coding 

transcripts [17,23]. The sequence bias is not 

limited to non-snoRNA transcripts but is also 

detected between snoRNA types. Most 

sequencing techniques strongly favor the 

detection of box C/D snoRNAs over box H/ACA 

snoRNAs, presumably due to differences in the 

structure and/or modification of these two 

snoRNA types (e.g. [16,21,24,25]). Aside from 
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the reverse transcription sequencing bias, 

quantification errors are often encountered in 

assigning the snoRNA reads since the majority 

of snoRNAs exist in multiple copies and/or are 

embedded in introns, causing their reads to be 

either discarded or erroneously assigned to the 

HG [26,27].  

Driven by the need to characterize the human 

snoRNome, we have used our newly developed 

snoRNA sensitive RNA-Seq pipeline [17] to 

follow the expression of both snoRNAs and HGs 

in seven healthy human tissues (breast, ovary, 

prostate, testis, skeletal muscle, liver and brain). 

By using a combination of thermostable group II 

intron reverse transcriptase sequencing (TGIRT-

Seq) [17] and a read assignment pipeline that 

increases the accuracy of quantifying repeated 

and intron-embedded RNAs [27], we 

simultaneously followed the snoRNA and HG 

accumulations in the different tissues and 

provide a detailed portrait of the human 

snoRNome. Altogether, the results indicate that 

the expression of snoRNAs is mostly defined by 

their genomic context and the architecture of 

their HG, which determines the level and type of 

tissue specificity and the degree of correlation 

between the snoRNA and HG abundance.  

Results 
Most expressed human snoRNAs are 

produced from intron-embedded genes  

To determine the tissue distribution of snoRNAs 

and their relative expression within the human 

transcriptome, we sequenced total ribodepleted 

fragmented RNA from seven healthy human 

tissues (breast, ovary, prostate, testis, skeletal 

muscle, liver and brain). The tissues were 

sourced from 3 different individuals and 

sequenced using TGIRT-Seq methodology, 

which was shown to reliably quantify the 

abundance of different types of RNA in a same 

sample [17,23]. Indeed, in general our ranking of 

the abundance of RNAs was in agreement with 

the Genotype-Tissue Expression (GTEx) 

estimates for protein-coding genes 

(Tables S1A-G) [28]. Using this method, we 

detected RNA (>1 transcript per million (TPM) 

in at least one tissue sample) generated from 475 

(50 %) snoRNA genes out of a total 947 

annotated human snoRNA genes (Table S2). 

This is consistent with the fact that most RNAs 

are poorly expressed and only a minority of the 

transcriptome is highly expressed (Figure S1), as 

we have previously reported [17]. The majority 

(433 out of 475 snoRNAs, i.e. 91 %) of the 

expressed snoRNA genes are located in introns, 

while only 9 % (42 out of 475 snoRNAs) are 

located in intergenic regions and thus likely 

expressed from an independent promoter (Figure 

1A). In contrast, 21 % of all annotated snoRNAs 

are located in intergenic regions, suggesting that 

most annotated intergenic snoRNA genes are not 

expressed. Indeed, intergenic snoRNAs 

contribute only to 2 % of the total snoRNA 

abundance, confirming the mostly intronic 

origin of human snoRNAs [29]. Nevertheless, it 

raises questions about whether the 

non-expressed snoRNA genes are just silent 

evolutionary relics, a dormant source of 

condition-specific function or a reserve for the 

evolution of new types of snoRNAs. 

Interestingly, most expressed box H/ACA 

snoRNAs (67 %) are found in protein-coding 

HGs while expressed box C/D snoRNAs do not 

show clear HG biotype preference. (Figure 1A). 

Variations in the number of snoRNA embedded 

in each HG is also observed between the two 

types of snoRNAs. The majority of box H/ACA 

snoRNAs (50 %) are the only snoRNA 

embedded within their HG (Figure 1A middle 

panel, mono-intronic HG), while the majority of 

box C/D snoRNAs (78 %) are encoded with 

multiple snoRNAs in separate introns of the 

same HG (Figure 1A right panel, multi-intronic 

HG). Together these results indicate that the two 

types of snoRNA, which are believed to 

originate from mobile elements [29], have 

distinct embedding preferences.   

SnoRNAs are amongst the most abundant 

RNAs in the cell 

To evaluate the relative contribution of 

snoRNAs to the transcriptome of the different 
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Figure 1. SnoRNAs are amongst the most abundant RNAs in the cell. (A) SnoRNAs are expressed from various genomic 

contexts. Shown is a schematic representation of the three most common classes of human snoRNA genomic contexts. 

Intergenic, mono-intronic HG and multi-intronic HG indicate respectively snoRNAs expressed as independent genes, host 

genes that encode a single snoRNA in one of their introns and host genes that encode multiple snoRNAs each in a separate 

intron. Protein-coding and non-coding host genes are indicated in purple and magenta respectively. The total number of 

expressed snoRNAs in each context is indicated under each title. The number and proportion of box C/D and H/ACA 

snoRNAs in each context are indicated under each schematic representation. (B) The highest relative abundance of snoRNAs 

is detected in prostate and female reproductive tissues. The RNA was sequenced using TGIRT-Seq from three replicates per 

tissue and the distribution of the average total abundance (in transcript per million (TPM)) per RNA biotype for each 

considered tissue is illustrated in the form of pie charts. Only RNAs with an abundance greater than 1 TPM in at least one 

tissue sample are considered. The color legend for the RNA biotype is shown on far right, with an arrow representing the 

average ranking of RNA biotype expression across tissues. (C) The expression of snoRNAs is at the interface between 

regulatory RNAs and housekeeping RNAs. The distribution of snoRNA coefficient of variation (CV) was compared to that 

of the main classes of regulatory RNAs (protein-coding RNA and lncRNA) and housekeeping RNAs (tRNA and snRNA). 

The CV of each RNA is indicated by a vertical black line above the x-axis. The number of expressed RNAs considered in the 

density plots is indicated between parentheses on top of the graphs. 
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human tissues, we compared their abundance to 

other RNA biotypes detected in each of the 

tissues examined. Overall, the highest 

percentage of expressed non-rRNA transcripts 

was detected within tRNAs where 84 % of the 

annotated genes are expressed at least in one 

tissue, followed by the protein-coding genes and 

snoRNA genes (Table S2). The least proportion 

of expressed genes was detected in the snRNA 

and lncRNA biotypes, which put the snoRNAs 

at the interface between translation associated 

RNAs and RNAs associated with RNA 

processing and regulation. Comparison of the 

number of transcripts (in TPM) generated from 

each biotype indicates that tRNA genes generate 

the highest number of transcripts regardless of 

the tissues examined (Figure 1B), which is in 

accordance with biochemical estimates [30]. On 

the other hand, the snoRNA and snRNA 

biotypes compete for the second place in the 

transcriptome in a tissue dependent manner. In 

the tissues derived from reproductive organs, 

except for testis, the snoRNAs are more 

expressed than snRNAs, while the snRNAs are 

more expressed in the other tissues, with the 

highest relative proportion of snRNA expression 

detected in testis (Figure 1B). However, it is 

important to note that unlike snoRNAs, the 

snRNA transcripts are generated by only 24 % 

of the annotated snRNA genes and are driven by 

only a few genes that each generate more than 

1000 TPMs like 7SK and spliceosomal snRNA 

genes (Table S2, Figures S2B and S3B). In 

contrast, half of the annotated snoRNAs 

generate around 15-20 % of non-rRNA 

transcripts which is half-way between the 

tRNAs at one extreme where 84 % of the 

annotated genes generated 45 % of transcripts 

and protein-coding RNAs where 73 % of the 

genes generate only 5 % of transcripts (Figure 

1B and Table S2). In general, box C/D snoRNAs 

are on average 3 times more abundant than box 

H/ACA snoRNAs across tissues (Figure S4A). 

This ratio represents a lower abundance 

difference than what was previously reported 

between the two snoRNA types [16,21,24,25], 

which is likely explainable by the low structure 

bias approach we used. Nonetheless, both box 

C/D and H/ACA snoRNAs are mostly expressed 

to at least 1 TPM in all the studied tissues (Figure 

S4B), underlining the widespread importance of 

both snoRNA types in all human tissues. 

Overall, most snoRNAs and tRNAs are 

expressed at more than 10 TPM in each tissue, 

whereas the other biotypes are mostly expressed 

between 0 and 10 TPM (Figure S2). We 

conclude that on average snoRNA genes 

generate the highest diversity and number of 

non-rRNA transcripts after tRNAs in the human 

genome.   

Tissue-dependent distribution of RNA 

accumulation identifies two snoRNA 

abundance classes  

In most cases, variations of RNA abundance are 

often taken as a basis for gene regulation and 

tissue specificity. Accordingly, we examined the 

pattern of snoRNA expression in the different 

tissues and compared it to that of other RNA 

biotypes. As with snRNAs and tRNAs, the 

cumulative abundance curves seen with 

snoRNAs are less variable between tissues than 

those observed with protein-coding RNAs and 

lncRNAs (Figure S3), highlighting the 

widespread distribution of housekeeping RNAs 

across tissues. Of note, the most extreme 

examples of tissue specialization were observed 

in the case of the genes coding for albumin 

(ALB) and haptoglobin (HP) genes, which 

produce as high as 20 % of all protein-coding 

transcripts in liver (Figure S3D). Similarly, most 

tissues express a very small number of lncRNAs 

except testis which is known for its permissive 

chromatin environment (Figure S3E) [31]. To 

enable direct comparison between the tissue 

distribution patterns of the different RNAs, we 

calculated the coefficient of variation (CV) for 

each RNA based on its abundance across the 

studied tissues (see Methods for more details). 

This metric allows us to numerically 

differentiate between the different degrees of 

tissue uniformity and enrichment of the different 

genes. Uniformly expressed RNAs are identified 

by low CV value, while tissue-enriched RNAs 

are identified by high CV value. Interestingly, 

comparison of the CV value of the different 
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biotypes indicates that snoRNAs occupy a 

middle ground between the highly uniform 

tRNAs and snRNAs (CV<125) and highly 

variable protein-coding RNAs and lncRNAs 

(CV>125) (Figure 1C). In general, the uniformly 

expressed biotypes like tRNA and snRNA 

display a single peak with a median CV of 

around 65. In contrast, the tissue-enriched 

biotypes like protein-coding RNA and lncRNA 

display a bimodal distribution of CV, which 

indicates the presence of two RNA 

subpopulations, the first peak around a CV of 65 

and the other around 260. Like the 

tissue-enriched protein-coding RNAs and 

lncRNAs, snoRNAs include two RNA 

subpopulations, the main one peaking at a CV of 

70. However, unlike these tissue-enriched 

RNAs, the right-most snoRNA peak is much 

smaller and centered around a CV of 180. This 

bimodal distribution of snoRNA CVs can be 

split into two snoRNA abundance classes 

separated by a CV threshold of 125 (Figures 1C 

and S5; see Methods for more information). 

Accordingly, we termed the snoRNAs with a 

CV<125 "Uniformly expressed" or "UE" and 

snoRNAs with a CV>125 "Tissue-enriched" or 

"TE". Taken together, these results indicate that 

snoRNA expression is at the interface between 

that of housekeeping RNAs and regulatory 

RNAs, and that snoRNAs can be categorized 

into two distinct abundance classes. 

The majority of tissue-enriched snoRNAs are 

enriched in brain and reproductive tissues 

To understand the origin and distribution of the 

two snoRNA abundance classes, we followed 

the accumulation of each RNA of these two 

classes in the different tissues. As indicated in 

Figure 2A, TE and UE snoRNAs generally 

clustered separately, validating the group 

identity of most RNA in each class. In addition, 

snoRNA expression results in an adequate 

clustering of the tissues, once again confirming 

the validity of our datasets (Figure 2A). Analysis 

of individual snoRNA distribution indicates that 

the majority of snoRNAs (n=390) are uniformly 

expressed across tissues, whereas 85 snoRNAs 

are enriched in specific tissues (Figures 2B). 

Overall, 47 TE snoRNAs are enriched in the 

brain and 38 are enriched in male or female 

reproductive tissues (Figures 2A and S6B). The 

brain-enriched snoRNAs include the previously 

established brain-specific snoRNA family 

SNORD115 (Figure S6A) [20], validating our 

CV-based classification of snoRNAs. 

Interestingly, four snoRNAs with known rRNA 

targets (SNORA81, SNORA19, SNORD36A 

and SNORD111B) are highly enriched in both 

studied female reproductive tissues (Figure S6). 

Together, these data suggest that some snoRNAs 

may play specialized roles in the biology of brain 

and reproductive tissues.  

Most UE snoRNAs are expressed at >1 TPM 

in all the examined tissues and the majority has 

an abundance greater than 100 TPM whereas, in 

contrast, many TE snoRNAs have an abundance 

below 1 TPM in most tissues and the majority 

has an abundance that is less than 100 TPM 

(Figures S7A, 2C and 2D, left panel). 

Interestingly, most of TE snoRNA total 

abundance is attributable to their expression in 

the brain, whereas UE snoRNA total abundance 

is mostly attributable to their expression in 

reproductive tissues (except for testis) (Figure 

2D, right panel). These findings indicate that the 

distinct nature and dynamics of brain and 

reproductive tissue snoRNomes may reflect at 

least in part the clear difference in the 

proliferative state of the cells forming these two 

tissue types. 

The snoRNA abundance classes exhibit 

distinct expression, target preference and 

conservation patterns 

The discovery of two snoRNA abundance 

classes raises the question of whether the 

tissue-dependent expression of snoRNAs 

reflects functional specialization, different 

evolutionary origin, snoRNA type or simple 

stochastic variation in expression. To 

differentiate between these possibilities, we first 

examined the variation in the abundance of the 

UE and TE classes in each of the different 

tissues. As indicated in Figure 3A, all tissues 

display a broad spectrum of RNA abundance for  
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Figure 2. RNA abundance divides snoRNAs into two classes with distinct expression levels and tissue distribution. (A) 

SnoRNA expression accurately clusters healthy human tissues. The heatmap indicates the abundance level of the expressed 

snoRNAs in 21 RNA samples from 7 different human tissues (legend for the abundance class color bar on the left is shown 

in (B)). Only snoRNAs with an abundance greater than 1 TPM in at least one sample are considered. The color scale for the 

abundance is shown on the right. (B) SnoRNAs are divided into two abundance classes. The number of snoRNAs in the 

uniformly expressed and tissue-enriched classes is shown in the form of a pie chart. (C) Most tissue-enriched snoRNAs are 

less abundant than their uniformly expressed counterparts. The bar chart indicates the number of both tissue-enriched and 

uniformly expressed snoRNAs in the different ranges of average RNA abundance across tissues. (D) Most tissue-enriched 

snoRNAs are expressed in the brain. The number of uniformly expressed and tissue-enriched snoRNAs expressed to at least 

1 TPM in the examined tissues is displayed on the left, while the total RNA abundance of each class of snoRNAs detected in 

the different tissues is shown on the right. 
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Figure 3. The snoRNA abundance classes represent two groups with distinct characteristics, expression and 

conservation patterns. (A) The TE and UE snoRNA abundances peak in different tissue types. The abundance of snoRNAs 

in each tissue per abundance class is represented in the form of a violin plot. (B) Box C/D snoRNAs form the majority of both 

abundance classes. The percentage of box C/D and H/ACA snoRNAs in each abundance class is shown in the form of a 

stacked bar chart. The stars indicate the statistical significance of the difference between the two classes of snoRNA abundance 

(Fisher’s exact test ***p<0.001). (C) Most TE snoRNAs are orphans, whereas most UE snoRNAs target rRNA. The stacked 

bar charts indicate the distribution of the targets (either rRNA, snRNA and orphan, i.e. no known canonical target) of the 

different snoRNAs in each abundance class. The stars indicate the statistical significance of the difference between the two 

classes of snoRNA abundance (Fisher’s exact test ***p<2x10-14) (D) Most TE snoRNAs are embedded in the introns of non-

coding HGs, whereas UE snoRNAs are mostly embedded in the introns of protein-coding HGs. The distribution of snoRNA 

HG biotype in each abundance class is shown as a stacked bar chart. The stars indicate the statistical significance of the 

difference between the two classes of snoRNA abundance (Fisher’s exact test ***p<2x10-10). (E) TE snoRNAs are less 

evolutionarily conserved than the UE class. The violin plots indicate the distribution of the phastCons conservation score in 

vertebrates for each abundance class. The stars indicate the statistical difference between the two distributions (Mann-Whitney 

U test, ***p<8x10-11).  
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both groups. Notably, we observe a loose and 

subtle inverse correlation between the 

expression of the two groups: the tissue 

expressing the lowest amount of TE snoRNAs 

(Figure 3A, breast tissue) appears to express the 

highest level of the UE class and vice versa. This 

suggests that the distribution of these two classes 

is not random but reflects a tissue-specific 

expression program that chooses between the 

housekeeping UE snoRNAs and the specialized 

TE snoRNAs. To determine whether the 

abundance classes are driven at least in part by 

snoRNA type, we then compared the proportion 

of box C/D and H/ACA snoRNAs in each class. 

As indicated in Figure 3B, box C/D snoRNAs 

are well represented in both classes, but the 

greatest difference is observed with box H/ACA 

snoRNA, which are significantly more 

represented in the UE class (Fisher’s exact test, 

***p<0.001). These differences in abundance 

and snoRNA type appear to reflect a degree of 

functional specialization of the snoRNA 

abundance classes. Indeed, examining the type 

of RNA targeted by the snoRNA classes, we 

notice clear differences in the groups’ target 

preferences. In general, most targets of the UE 

class are in rRNA or snRNA, while most TE 

snoRNAs have no known canonical targets 

(Fisher’s exact test, ***p<2x10-14) (Figure 3C), 

indicating different functions associated with the 

two abundance classes.  

To further characterize the differences 

between the two snoRNA abundance classes, we 

compared the genomic organization and 

conservation of the genes in each class. 

Interestingly, we found that while the majority 

of UE snoRNAs are embedded in the introns of 

protein-coding genes, the majority of the TE 

snoRNAs are embedded in the introns of non-

coding HGs (mainly lncRNAs) (Fisher’s exact 

test, ***p<2x10-10) (Figure 3D). This suggests 

that TE snoRNAs have a greater degree of 

regulatory freedom than the UE group that needs 

to take in consideration the constraints of the HG 

expression and function. The presence of 

snoRNAs in non-coding HGs also suggests a 

more modern evolutionary origin, since many 

lncRNAs show low sequence conservation [32]. 

Indeed, comparison of the gene conservation 

between the two snoRNA groups indicates that 

the UE class is much more conserved among 

vertebrates than TE snoRNAs (Mann-Whitney 

U test, ***p<8x10-11) (Figure 3E). TE snoRNAs 

also tend to be slightly more conserved across 

primates than vertebrates, but still significantly 

less than UE snoRNAs (Mann-Whitney U test, 

***p<4x10-9) (Figures S7B and 3E), 

highlighting the fact that some TE snoRNAs are 

potentially only conserved in humans. 

Altogether, these results indicate that the 

snoRNA abundance classes represent two 

groups of snoRNAs with distinct genomic 

context, conservation, expression patterns and 

function. 

The snoRNA abundance classes display 

different degrees of correlation with their HG 

depending on their HG function and 

characteristics  

Since most snoRNAs in the human genome are 

embedded in introns [33,34], it is presumed that 

their expression is linked to that of their HG. To 

further characterize the relationship between the 

abundance of snoRNAs and their HG, we thus 

calculated Pearson correlation coefficients 

(Pearson’s r or correlation of abundance) and 

their associated false discovery rate 

(FDR)-adjusted p-value based on the abundance 

of the different snoRNA/HG pairs across tissues 

(Figure 4A). Surprisingly, we find that 40 % of 

expressed snoRNAs are either non-correlated 

(-0.25 ≤ correlation of abundance ≤ 0.25) or 

anticorrelated (correlation of 

abundance < -0.25) with the expression of their 

HG, suggesting that not all snoRNAs are linked 

to the expression of their HG and supporting 

recent findings in other models [16–18]. Indeed, 

only 60 % of snoRNAs are positively correlated 

with their HG (correlation of abundance > 0.25) 

(Figure 4A). The difference in the correlation 

patterns is not linked to the abundance of 

snoRNAs as we find that anticorrelated 

snoRNAs are expressed at similar levels to non-

correlated or positively correlated snoRNAs 

(Figure S8A). On the other hand, snoRNAs are  
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Figure 4. The snoRNA abundance classes correlate differently with their HG expression due to different HG 

characteristics. (A) SnoRNAs display a wide range of correlation with their HG abundance. The scatter plot indicates the 

correlation of abundance of the snoRNA/HG pairs and their associated false discovery rate (FDR)-adjusted p-value for each 

snoRNA. The green and grey dots indicate respectively significant (p<0.05) and non-statistically significant correlations. (B) 

The expression of most TE snoRNAs positively correlates with that of their HG as opposed to UE snoRNAs. The number of 

snoRNAs displaying various degrees of correlation depending on the abundance class is represented as a bar graph. (C) Non-

coding HGs are more positively correlated with their embedded snoRNAs than protein-coding HGs. Shown is the density 

distributions for either UE or TE snoRNAs as a function of the correlation of abundance between the snoRNA and either their 

protein-coding or non-coding HG. The stars represent the statistical significance of the difference between the two 

distributions (Mann-Whitney U test, ***p<4x10-15 and ***p<1x10-5, respectively for UE and TE snoRNAs). (D) Most 

anticorrelated non-coding HGs are subject to NMD. The proportion of protein-coding and non-coding HGs subject to NMD 

is plotted as a function of the correlation of abundance with their embedded snoRNAs (<-0.25: anticorrelation, [-0.25; 0.25]: 

non-correlation and >0.25: positive correlation), for each snoRNA abundance class. (E) Correlation between UE snoRNAs 

and their HG abundance is determined at least in part by the HG function. The proportion of anticorrelated and positively 

correlated snoRNAs embedded in each functional HG group is shown as a stacked bar chart, for each snoRNA abundance 

class. The number above each bar represents the number of HGs in that subgroup. The stars indicate the statistical significance 

of the difference between anticorrelated and correlated groups of HGs (Fisher’s exact test, *p<0.05 and ***p<2x10-4). 
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generally more expressed than their HG, and the 

anticorrelated group in particular is significantly 

more abundant than their HGs compared to non- 

or positively correlated snoRNAs (Mann-

Whitney U test, *p<0.05 and ***p<0.0005, 

respectively) (Figure S9). The increased 

difference between anticorrelated snoRNAs and 

their HG suggests a negative regulatory loop by 

which the expression of snoRNAs represses that 

of the HG. Notably, we find that in general 

anticorrelated snoRNAs, regardless of their HG 

biotype, are more evolutionarily conserved than 

the other two correlation classes, which 

underlines the importance of their potential 

regulatory relationship with the HGs (Figure 

S8B). 

Since snoRNA abundance spans a wide and 

variable range of correlation with the HG 

abundance (Figure 4A), we next wanted to 

uncover where the two snoRNA abundance 

classes occur within this broad range of 

correlation. Interestingly, the TE snoRNAs are 

much more likely to be correlated with the 

expression of their HG than the UE class, which 

is represented all along the spectrum of 

correlation of abundance with the HG (Figure 

4B). Since UE and TE snoRNAs have distinct 

embedding preferences (Figure 3D), we then 

re-examined the distribution of correlation of 

abundance, but this time by splitting the two 

snoRNA abundance classes based on their HG 

coding potential (Figure 4C). Remarkably, non-

coding HGs display clear positive correlation of 

abundance with either UE or TE snoRNAs, 

whereas protein-coding HGs exhibit a more 

complex abundance relationship with their 

embedded snoRNAs (Mann-Whitney U test, 

***p<4x10-15 and ***p<1x10-5, respectively for 

UE and TE snoRNAs) (Figure 4C). Overall, 

these findings suggest that snoRNAs are not 

always strictly linked to the expression of their 

HGs and that the snoRNA abundance classes 

display distinct patterns of correlation with their 

HG. 

Given that snoRNA abundance classes 

displayed differences in their HG coding 

potential, we examined the possibility of a link 

between the snoRNA expression patterns and 

the function of their protein-coding genes.  

Remarkably, we find that UE and positively 

correlated snoRNAs are predominantly 

embedded in HGs coding for ribosomal protein 

(Fisher’s exact test, ***p<2x10-4) (Figure 4E, 

left panel). On the other hand, most 

anticorrelated UE snoRNAs are located in genes 

coding for RNA processing and ribosome 

biogenesis factors (Fisher’s exact test, *p<0.05) 

(Figure 4E, left panel). A similar pattern is 

observed in the few protein-coding HGs 

harboring TE snoRNAs, but the small number of 

HGs prevents accurate estimation of statistical 

significance (Figure 4E, right panel). Following 

the same logic but with non-coding HGs, we 

explored the possibility that lncRNA 

functionality could be associated with a 

snoRNA’s correlation of abundance. Indeed, 

based on documented functions of lncRNAs in 

human diseases [35], which are conceivably 

present but perhaps to a lesser degree in healthy 

humans, lncRNAs with documented functions 

are significantly more positively correlated with 

the abundance of their embedded snoRNAs than 

lncRNAs with no reported function (Mann-

Whitney U test, ***p<2x10-21) (Figure S10). 

Altogether, these results indicate that correlation 

between the snoRNAs and their HG reflects at 

least in part the functional relationship of these 

pairs.  

To understand the basis of the difference in 

the expression pattern of anti-, non- and 

positively correlated HGs, we evaluated the 

susceptibility of HGs to NMD, bearing in mind 

that NMD could regulate HG transcript levels 

and thereby modulate the correlation of 

abundance. Interestingly, we find an increased 

susceptibility to NMD in anticorrelated 

non-coding HGs which are enriched in the UE 

snoRNA class (Figure 4D, top panel). In 

contrast, we find no association with NMD in the 

TE class of snoRNAs. This is due to the lack of 

anticorrelated non-coding HGs of TE snoRNAs 

and also because non- and positively correlated 

non-coding HGs of TE snoRNAs are not subject 
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to NMD (Figure 4D, bottom panel), which is 

consistent with the fact that most TE snoRNAs 

are highly correlated with the expression of their 

non-coding HG (Figure 4C). Of note, NMD does 

not seem to modulate alone the correlation of 

abundance between protein-coding HGs and 

their embedded snoRNAs, as we observe no 

significant trend across correlations of 

abundance for either UE or TE snoRNAs (Figure 

4D). Taken together, these findings indicate that 

NMD may provide means to repress the 

expression of the HGs without affecting the 

expression of the embedded snoRNAs and thus 

enable the uncoupling of the HG and snoRNA 

expression. 

Dual-initiation of transcription uncouples the 

expression of the host and snoRNA genes and 

generates various snoRNA expression 

patterns 

Since it was recently suggested that promoters 

with dual transcription initiation sites may 

uncouple the expression of host and snoRNA 

genes [19], we compared the number of HGs 

with single-initiation (SI) or dual-initiation (DI) 

promoters in both the UE and TE classes of 

snoRNAs. In addition to a canonical initiation 

promoter with pyrimidine/purine (YR) 

dinucleotide, DI promoters carry an additional 

intertwined polypyrimidine initiation site (YC or 

5’TOP) [19]. Interestingly, we find that DI 

promoters are significantly more present in non- 

and anticorrelated snoRNA/HG pairs regardless 

of whether they are UE or TE (***p<6x10-4 and 

***p<2x10-5, respectively for UE and TE 

snoRNAs) (Figure 5A). Furthermore, 

significantly more HGs with DI promoters than 

SI promoters are detected in the UE class of 

snoRNAs (Fisher’s exact test, ***p<3x10-8) 

(Figure 5B). This is consistent with the increased 

number of non- and anticorrelated genes 

detected in the UE class of snoRNAs (Figure 4B) 

and supports the duality of transcription 

initiation as a means for uncoupling the HG and 

snoRNA expression. The initiation pattern 

dependent uncoupling of either UE and TE 

snoRNA expression is also supported by the 

increased susceptibility of HG transcripts 

produced from DI promoter to NMD when 

compared to those generated from a SI promoter 

(Fisher’s exact test, ***p<2x10-14 and 

***p<9x10-5, respectively for UE and TE 

snoRNAs) (Figure 5C). Strikingly, TE 

snoRNAs produced from DI and SI promoters 

have distinct tissue distribution patterns. The SI 

types are mainly enriched in brain and display 

positive correlation between the snoRNA and 

HG, whereas the DI types are highly expressed 

in breast and ovary tissues and are mostly non- 

or anticorrelated with their HG (Figure 5D). 

Collectively, these results indicate that DI 

promoters present a way for cells to 

independently optimize the expression of the 

HG and snoRNA to meet the difference in the 

functional requirements of human tissues. 

Discussion 
In this study, we present a detailed and reliable 

portrait of the human snoRNome and define the 

basis of snoRNA tissue specificity and 

expression patterns. By simultaneously 

detecting both protein-coding and non-coding 

RNAs with little or no structural bias, we were 

able to directly compare the snoRNA expression 

patterns to the expression of all non-rRNA 

biotypes in each studied tissue type (Figure 1), 

thereby defining a core group of 475 expressed 

snoRNAs that will serve as valuable resources 

for future functional analysis. Interestingly, the 

data indicate that snoRNAs produce the highest 

number and diversity of transcripts on average 

across human tissues after tRNAs (Figure 1). 

Indeed, unlike snRNAs which occupy a major 

part of the transcriptome through the expression 

of only a handful of genes, more than 50 % of 

snoRNA genes contribute to the abundance of 

this biotype (Figures S2 and S3). Interestingly, 

and unlike most highly abundant RNAs in the 

cells such as snRNAs and tRNAs, not all 

snoRNAs are uniformly expressed in all tissues 

(Figures 1 and 2). Instead, a subset of snoRNAs 

are specifically enriched in brain and 

reproductive tissues (Figures 2 and S6). 

Comparison between the UE and TE classes of 

snoRNAs indicate that they diverge in their 

target preferences and conservation levels and  
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Figure 5. Dual-initiation of transcription uncouples the expression of the host and snoRNA genes and generates various 

expression patterns. (A) Most non- or anticorrelated snoRNA/HG pairs are expressed from promoters with dual-initiation 

sites. The density of snoRNA/HG pairs with dual-initiation (DI promoter) or single-initiation (SI promoter) promoter is plotted 

as a factor of the correlation of abundance between snoRNA and their HG, for either UE or TE snoRNAs. The stars indicate 

the statistical significance of the difference between the DI and SI promoter groups (Mann-Whitney U test, ***p<6x10-4 and 

***p<2x10-5, respectively for UE and TE snoRNAs). (B) TE snoRNAs are mostly expressed from genes with SI promoters. 

The proportion of snoRNAs with HGs displaying DI or SI promoters is represented in the form of a stacked bar chart, 

depending on their abundance class. The stars indicate the statistical significance of the difference between the two HG 

promoter types (Fisher’s exact test, ***p<3x10-8). (C) Most HGs displaying DI promoters are subject to NMD. The proportion 

of snoRNAs with a HG displaying a DI or a SI promoter, depending on if the HG is subject to NMD or not, was plotted as a 

stacked bar chart, for either UE or TE snoRNAs. The stars indicate the statistical significance of the difference between the 

two HG promoter types (Fisher’s exact test, ***p<2x10-14 and ***p<9x10-5, respectively for UE and TE snoRNAs). (D) Anti- 

or non-correlated TE snoRNAs embedded in a DI promoter HG are mainly expressed at high levels in female reproductive 

tissues. The HG name, the correlation of abundance, the tissue enrichment and the average abundance in the enriched tissue(s) 

of the seven non- or anticorrelated snoRNAs embedded in DI promoter HGs are represented in the form of a summary table. 

A 

B 

D 

C 

SnoRNA name 
Host gene 

name 
Correlation of 

abundance 
Tissue 

enrichment 
Average 

abundance 
(TPM) 

SNORA81 EIF4A2 -0,36 Breast-
Ovary 

1188,69 

SNORD111B SF3B3 -0,36 Breast-
Ovary 

510,99 

SNORA19 EIF3A -0,18 Breast-
Ovary 

227,05 

SNORA21 RPL23 -0,09 Testis 4,25 

SNORD36A RPL7A -0,08 Breast-
Ovary 

636,55 

SNORD72 RPL37 -0,03 Ovary 42,87 

SNORA11 TRO 0,21 Ovary 204,39 
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that the majority of TE snoRNAs are generated 

from the introns of lncRNAs that mostly 

correlate with the expression of their embedded 

snoRNAs (Figures 3 and 4). In contrast, UE 

snoRNAs are divided into two groups: the first 

is highly correlated with its ribosomal protein-

coding HG and the second is either non- or 

anticorrelated with the expression of its HG 

(Figure 4). The non- and anticorrelated 

snoRNAs are mostly expressed from HGs with 

DI promoters and their HG transcript is 

susceptible to NMD, which provides a 

mechanism to independently regulate the 

expression of the HG and snoRNA (Figure 5). 

Overall, the results indicate that snoRNAs are 

not a mere group of uniformly expressed genes 

that obey the instruction of their HG but include 

subgroups with distinct gene organization and 

expression patterns that meet the demand for 

both housekeeping and tissue-specific functions. 

Altogether, our data suggest a model in which 

intron-embedded snoRNA expression patterns 

and tissue specificity are products of the HG 

function and architecture (Figure 6). In this 

model, the majority of TE snoRNAs are encoded 

in the introns of lncRNA genes, while the 

majority of UE snoRNAs are encoded in protein-

coding genes. Non-coding HGs free the cell to 

optimize the expression and/or rapidly evolve 

specialized snoRNAs to meet tissue-specific 

requirements while embedding snoRNAs within 

protein-coding genes provides a broad range of 

regulatory relationships between the snoRNA 

and host protein functions. Indeed, the majority 

of non-coding HGs use uncomplicated 

expression modules where the expression of the 

host and snoRNA are positively regulated 

(Figure 6, third expression module from the left), 

whereas in contrast, most protein-coding HGs 

are non- or anticorrelated with the expression of 

their embedded snoRNAs (Figure 6, second 

expression module from the left). 

Almost all positively regulated snoRNAs are 

expressed from promoters with a single 

transcription initiation site, confirming their 

obligate joint expression pattern (Figure 6, first 

and third expression modules from the left). 

Conversely, non- or anticorrelated snoRNAs 

embedded in lncRNAs are also generated 

through monolithic transcription, but since the 

HG transcript has no known associated function 

and is highly susceptible to NMD, only a stable 

UE snoRNA remains after the transcription of 

the HG that thereby serves the only purpose of 

expressing its embedded snoRNA (Figure 6, last 

expression module from the left). Given the 

monolithic expression pattern of host and 

snoRNA genes combined to the observed 

insensitivity to NMD of positively correlated 

snoRNA-containing lncRNAs (Figure 6, third 

expression module from the left), it is thus likely 

that these stable lncRNAs play compatible or 

complementary roles with their embedded 

snoRNAs. Interestingly, most brain-enriched 

snoRNAs, which are encoded in the Prader-Willi 

syndrome region, are generated through this 

monolithic and joint expression with their non-

coding HG (Figure 6, third expression module 

from the left). Genes of this genomic region 

were recently reported to produce 5’-snoRNA-

capped and 3’-polyadenylated lncRNAs (SPAs) 

and lncRNAs flanked by snoRNA (sno-

lncRNAs), which are hybrids involved in RNA 

binding protein trapping [36–38]. This suggests 

that these TE snoRNA/lncRNAs pairs either 

work as a whole or as separate entities to achieve 

common tissue-specific functions. Following the 

same logic, positively correlated protein-coding 

HGs (Figure 6, first expression module from the 

left) produce through monolithic expression 

both the snoRNA and the HG transcript, which 

is most likely coding for a ribosomal protein. 

Since this expression module produces UE 

snoRNAs, which mostly target rRNA, this 

confirms once again that a positive correlation of 

abundance reflects a functional link between 

snoRNAs and their HG: UE snoRNA-guided 

modification of rRNA and ribosomal proteins 

being both important factors of ribosome 

structure integrity [39]. 

In contrast to the simple positive expression 

module of most TE snoRNAs, the majority of 

UE snoRNAs and few ovary- and breast- 
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Figure 6. Model explaining the dynamics and modulation of snoRNA expression. In this model, the expression pattern of 

snoRNAs is determined by the host function and transcription pattern. Alternative initiation of transcription (either canonical 

YR-initiation or non-canonical YC-initiation) provides a means to independently regulate the expression of the snoRNA and 

its HG and is often found in UE and a few TE snoRNAs embedded in protein-coding HGs. On the other hand, monolithic 

transcription initiation is the hallmark of positively correlated snoRNA/HG pairs. Only the main pathways and features 

determining the snoRNA expression patterns are illustrated. The anticorrelated, non-correlated and positively correlated 

snoRNAs are indicated by -, 0 and +, respectively. Bold arrows represent the principal expression pathways adopted by 

snoRNAs. PTC, NMD, SI and DI promoters stand for premature termination codon, nonsense-mediated decay, single-

initiation and dual-initiation promoters respectively.  

enriched snoRNAs use a complex regulatory 

module that separates the expression of the 

snoRNA from its HG (Figure 6, second 

expression from the left). In most cases, this 

separation of expression is achieved through DI 

promoters that use different transcription 

initiation sites (either canonical YR-initiation or 

non-canonical YC-initiation) depending on the 

need of the different tissues. The snoRNA is 

expressed regardless of the initiation site, but the 

host transcript accumulates only when the YR-

initiation is used, which protects the transcript 

from degradation by NMD.  In this way, the cell 

may regulate the expression of the HG without 

interfering with the uniformity of snoRNA 

expression, which likely responds to the need for 

snoRNAs with a housekeeping function such as 

most UE snoRNAs. As expected, the non- and 

anticorrelated HGs using DI sites are not 

enriched in housekeeping genes like ribosomal 
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protein genes. Instead, they mainly include 

genes that regulate RNA maturation and 

processing such as genes involved in ribosome 

biogenesis. Indeed, it seems that in most cases 

the separation of HG and snoRNA functions is 

needed to liberate the snoRNA from tissue and 

condition dependent control of the HG. 

Interestingly, in few cases like SNORD63 and 

SNORD50A, the promoter duality may even 

allow the snoRNA to develop non-canonical 

functions such as regulating pre-mRNA stability 

and polyadenylation [40,41]. Further studies are 

however needed to characterize the biological 

relevance of a lack of positive correlation 

between a snoRNA and its HG and to decipher 

what distinguishes anticorrelated from non-

correlated snoRNAs. Collectively, the data 

presented here and summarized in Figure 6 

indicate that the human snoRNome meets the 

demands of both uniform and tissue-enriched 

expression through a broad spectrum of 

regulatory mechanisms that define the 

relationship between the snoRNA and its HG 

expression. 

Conclusions 
SnoRNAs are implicated in a myriad of crucial 

functions in eukaryotic cells, yet their abundance 

patterns across healthy human tissues and their 

relationships with their HG had never been 

comprehensively studied. In this study, we 

generated fragmented and ribodepleted TGIRT-

Seq expression datasets of both structured and 

non-structured RNAs in seven healthy human 

tissues, enabling us to reliably characterize for 

the first time the entire human snoRNome. 

SnoRNAs were identified as major contributors 

of the abundance in all the tissues and were 

divisible in two abundance classes with clear and 

distinct characteristics: UE and TE snoRNAs. 

Almost half of all expressed snoRNAs were 

found to be non- or anticorrelated with the 

expression of their HG, highlighting a complex 

abundance regulation. The HG function and 

promoter duality were identified as crucial 

features that modulate the abundance patterns of 

snoRNAs and their HG in order to meet the 

functional requirements of both UE and TE 

snoRNAs in human tissues. Overall, our study 

represents a reliable reference from which future 

research can draw upon to better characterize the 

importance of snoRNAs in human physiological 

and pathological conditions.  

Methods 
Sample origin and preparation 

RNA from healthy skeletal muscle, liver, testis 

and brain tissues was purchased from BioChain 

(3 RNA samples per tissue originating from 

different individual donors). Healthy breast, 

ovary and prostate tissue samples were obtained 

from the FRSQ tissue bank (Université de 

Sherbrooke). Each 30 mg tissue sample was 

homogenized in 1 mL of TRIzol Reagent 

(Ambion) using a Polytron tissue homogenizer 

and kept at -80°C until RNA extraction. 

RNA extraction 

Since RNA was directly purchased for the 

skeletal muscle, liver, testis and brain tissues, 

only total RNA extractions from breast, ovary 

and prostate tissues were performed using 

RNeasy Mini Kit (Qiagen) as recommended by 

the manufacturer including on column DNase 

digestion with RNase-Free DNase Set (Qiagen). 

However, 1.5 volume of ethanol 100 % was used 

instead of the recommended 1 volume of ethanol 

70 % in order to retain smaller RNA. RNA 

integrity of each sample was assessed with a 

2100 Bioanalyzer (Agilent).  

Ribodepletion, library preparation and 

paired-end sequencing 

RNA-Seq libraries were built as previously 

described [17]. Briefly, 2 μg of DNA-free total 

RNA was ribodepleted using Ribo-Zero Gold 

(Illumina) according to the manufacturer 

protocol. The resulting rRNA-free RNA was 

then purified with RNA Clean and Concentrator 

(RCC) kit (Zymo Research) using a modified 

protocol to retain RNA ≤ 80 nucleotides (400 μL 

ethanol 100 % per 50 μL sample). Purified RNA 

was fragmented 2-4 minutes (depending on the 

RNA Integrity Number) using NebNext 

Magnesium RNA Fragmentation Module (New 

England Biolabs) and once again purified with 

the RCC kit (Zymo Research) followed by 
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dephosphorylation using T4 Polynucleotide 

Kinase (Epicentre) and final purification using, 

again, the RCC kit (Zymo Research).  

cDNAs were synthesized via TGIRT 

template-switching with 1 μM TGIRT-III 

reverse transcriptase (Ingex, LLC) for 15 min at 

60℃, during which a DNA oligonucleotide 

containing the complement of an Illumina Read 

2 sequencing primer-binding site became 

seamlessly linked to the 5’ cDNA end. After 

reaction cleanup, a 5’ adenylated DNA 

oligonucleotide containing the complement of 

an Illumina Read 1 sequencing primer-binding 

site was then ligated to the 3’ cDNA end with 

Thermostable 5’ AppDNA / RNA Ligase (New 

England Biolabs). Properly ligated cDNAs were 

amplified by PCR (12 cycles) to synthesize the 

second strand and add Illumina flowcell capture 

and index sequences. Libraries were purified 

with 2 rounds of Ampure XP beads (Beckman-

Coulter) and evaluated on a 2100 Bioanalyzer 

(Agilent). Libraries were then pooled and 

sequenced on a NextSeq 500 platform (Illumina) 

(2 x 75 bp) using a NextSeq 500/550 High 

Output Kit v2.5 (150 cycles) (Illumina). Three 

distinct sequencing runs were performed to 

sequence all tissue samples: the first pool was 

composed of the Breast_1, Breast_2, Ovary_1, 

Ovary_2, Ovary_3, Prostate_1, Prostate_2 and 

Prostate_3 RNA samples; the second pool was 

composed of the Brain_1, Brain_2, Brain_3, 

Liver_1, Liver_2, Liver_3, Testis_1 and 

Testis_2 RNA samples; the third pool was 

composed of the Breast_3, Skeletal_muscle_1, 

Skeletal_muscle_2, Skeletal_muscle_3 and 

Testis_3 RNA samples. 

TGIRT-Seq processing pipeline 

All expression datasets were generated using a 

succession of bioinformatics tools regrouped in 

a reproducible Snakemake workflow. All details 

about parameters and tools used can be found in 

the Snakemake workflow at 

http://gitlabscottgroup.med.usherbrooke.ca/etie

nne/tgirt_seq_pipeline, but are also briefly 

described below. The datasets we generated are 

of high depth and quality for each tissue (Table 

S3) and are available for download from the 

Gene Expression Omnibus (the breast, ovary and 

prostate datasets are available under the 

accession number GSE126797 and the 

remaining datasets are available under the 

accession number GSE157846). In short, 

paired-end reads were first trimmed using 

Trimmomatic v0.36 [42] (with the following 

parameters: 

ILLUMINACLIP:<fastaWithAdaptersEtc>:2:1

2:10:8, TRAILING:30, LEADING:30, 

MINLEN:20, all other parameters at default 

values) to remove adapters and low-quality 

reads. FastQC v0.11.5 was used before and after 

trimming to assess the quality of the reads. 

Trimmed reads were aligned to the human 

genome assembly GRCh38 (hg38, v87) using 

the aligner STAR v2.6.1a [43] (with the 

following parameters: --runMode alignReads, --

outSAMunmapped None, --outSAMtype BAM 

SortedByCoordinates, --outFilterScoreMinOver

Lread 0.3, --outFilterMatchNminOverLread 0.3, 

--outFilterMultimapNmax 100, --

winAnchorMultimapNmax 100, --

alignEndsProtrude 5 ConcordantPair, all other 

parameters at default values). The index needed 

to align reads to the human genome was 

generated using STAR v2.6.1a [43] (with the 

following parameters: --runMode 

genomeGenerate and --sjdbOverhang 74). 

Counts were attributed to genomic features 

using CoCo v0.2.1p4 [27] (with the following 

parameters: cc -countType both -strand 1 --

paired, all other parameters at default values), 

using our custom annotation (.gtf file available 

at 

https://zenodo.org/record/3981426/files/human

_ensembl_87_wo_dup_v2.BB_v3.correct_anno

tation.gtf) described in [17]. Normalized counts 

in TPM were obtained from the output of CoCo. 

Only snoRNAs with an abundance greater than 

1 TPM in at least one tissue sample, thus referred 

to as "expressed snoRNAs", were included in 

this study in order to filter out poorly expressed 

snoRNAs. Also, even though their associated 

biotype was "snoRNA", 4 snoRNAs with a gene 

name starting with "SCARNA" were manually 

excluded from this analysis. 
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Collection of GTEx expression data  

The 10 most expressed protein-coding genes in 

GTEx for the seven tissues studied were 

manually curated through the GTEx portal [28]. 

Mitochondrial genes were excluded from both 

the GTEx and TGIRT-Seq rankings.  

Regrouping of RNA biotypes 

In order to simplify the analysis, RNA biotypes 

obtained from our custom annotation were 

regrouped in classes according to Ensembl 

nomenclature. Thus, IG_C_gene, IG_D_gene, 

IG_J_gene, IG_V_gene, TR_C_gene, 

TR_D_gene, TR_J_gene, TR_V_gene, 

polymorphic_pseudogene and protein_coding 

biotypes were grouped under the generic 

"protein-coding" biotype; unitary_pseudogene, 

unprocessed_pseudogene, 

processed_pseudogene, 

transcribed_unprocessed_pseudogene, 

transcribed_unitary_pseudogene, 

transcribed_processed_pseudogene, 

IG_pseudogene, IG_C_pseudogene, 

IG_J_pseudogene, IG_V_pseudogene, 

TR_J_pseudogene, TR_V_pseudogene and 

pseudogene biotypes were grouped under the 

generic "pseudogene" biotype; 

3prime_overlapping_ncRNA, antisense, 

lincRNA, macro_lncRNA, 

bidirectional_promoter_lncRNA, 

processed_transcript, sense_intronic, 

sense_overlapping, non_coding and lncRNA 

biotypes were grouped under the generic 

"lncRNA" biotype; Mt_tRNA and tRNA 

biotypes were grouped under the generic 

"tRNA" biotype; rRNA, Mt_rRNA, ribozyme, 

scRNA, vaultRNA and sRNA biotypes were 

grouped under the generic "other" biotype. Of 

note, RNAs with missing abundance value in 

any tissue sample and RNAs with the "TEC" 

biotype were not considered in this study. 

Following the same logic, HG biotypes were 

grouped under three generic biotypes: "protein-

coding" for all protein-coding HG, "intergenic" 

for snoRNAs without a HG and "non-coding" 

for all other HG biotypes.  

Collection of snoRNA related information 

Protein-coding HG biological functions were 

manually curated from UniProt [44] and 

non-coding HG (lncRNAs) associated functions 

in various human diseases were retrieved from 

LncTarD [35]. NMD susceptibility of the HG 

was obtained using the relaxed criterion of 

Lykke-Andersen et al. [15]. The presence or 

absence of DI promoter in HGs was retrieved 

from Nepal et al [19]. The score of conservation 

across vertebrates ("phastCons 100 

Vertebrates") and across primates ("phastCons 

30 primates") for each snoRNA was obtained 

from the UCSC Genome Browser [45,46]. In 

short, a conservation score was associated to 

each nucleotide of a snoRNA and the 

conservation score per snoRNA was generated 

by calculating the average score of all the 

nucleotides included in that snoRNA sequence. 

Otherwise, all other information (e.g. a 

snoRNA’s target, HG name and biotype, etc.) 

was retrieved from snoDB [34]. SnoRNAs 

without known target in rRNA or snRNA were 

designated as "orphan" snoRNAs. All snoRNA 

abundance and features are available in Table 

S4. 

Abundance class categorization 

To categorize snoRNAs according to their 

expression patterns across healthy human 

tissues, a coefficient of variation (CV) was 

calculated for each snoRNA. This method was 

also applied to other RNA biotypes (snRNA, 

tRNA, protein-coding RNA and lncRNA). In 

short, the CV was calculated as the standard 

deviation of the expression of that snoRNA 

across the tissues divided by the average 

expression of that snoRNA across the tissues, all 

of that multiplied by 100. These CVs were 

represented in a kernel density estimate plot and 

the resulting bimodal curve was divided in two 

by tracing the tangent at the point where the 

derivative of the bimodal curve function was the 

most negative. The point at which the tangent 

crossed the x-axis was defined as the threshold 

for the two snoRNA abundance classes. Above 

that threshold of CV=125, snoRNAs were 

dubbed "Tissue-enriched" or "TE", whereas 

snoRNAs with a CV below that threshold were 
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dubbed "Uniformly expressed" or "UE". To 

classify in which tissue TE snoRNAs were 

predominantly expressed, the tissue where the 

snoRNA abundance (in TPM) was the highest 

was established as the enrichment tissue. This 

was the case for all TE snoRNAs except for 4 

snoRNAs (SNORA81, SNORA19, SNORD36A 

and SNORD111B) that were highly expressed in 

both breast and ovary and had a difference of 

abundance (in TPM) of at most 2 time the 

abundance seen in the other tissue (either breast 

or ovary).    

Statistical analyses and graph generation 

All statistical analyses and graphs were realized 

using Python-based packages. Pearson 

correlation coefficients (Pearson’s r) and their 

associated p-values, Fisher’s exact test p-values 

and Mann-Whitney U test p-values were 

generated using the Stats module from Scipy 

v1.4.1. SnoRNAs with a correlation of 

abundance with their HG (Pearson’s r) inferior 

to -0.25 were considered "anticorrelated" 

whereas those with a Pearson’s r greater than 

0.25 were considered "positively correlated"; 

snoRNAs with a Pearson’s r comprised 

inclusively between -0.25 and 0.25 were 

considered "non-correlated". P-value correction 

for false-discovery rate (FDR) using the 

Benjamini-Hochberg correction (for the 

correlation of abundance between snoRNAs and 

their HG) was performed using the Multitest 

module from Statsmodels v0.11.0. Throughout 

this study, all results were considered significant 

at *p < 0.05, **p < 0.01 and ***p < 0.001. 

Graphs were generated using either the pandas 

v1.0.1, Matplotlib v3.1.1 or Seaborn v0.9.0 

libraries. 
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