
	

	

Mapping	 global	 shifts	 in	 Saccharomyces	 cerevisiae	 gene	 expression	 across	1	

asynchronous	time	trajectories	with	diffusion	maps	2	

	3	

Taylor	Reiter	1,2,3,#,	Rachel	Montpetit	2,	Ron	Runnebaum	2,4,	C.	Titus	Brown	3,	and	Ben	Montpetit	4	
1,2,#.	5	

	6	
1	Food	Science	Graduate	Group,	University	of	California	Davis,	Davis,	CA,	USA	7	
2	Department	of	Viticulture	and	Enology,	University	of	California	Davis,	Davis,	CA,	USA	8	
3	Department	of	Population	Health	and	Reproduction,	University	of	California,	Davis,	CA,	USA	9	
4	Department	of	Chemical	Engineering,	University	of	California,	Davis,	CA	95616,	USA	10	

	11	

#	Correspondence	 should	 be	 addressed	 to	Taylor	Reiter	 (tereiter@ucdavis.edu)	 and	Ben	12	

Montpetit	(benmontpetit@ucdavis.edu).		13	

	 	14	

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430862
http://creativecommons.org/licenses/by-nc/4.0/


	

	

Abstract		15	

Grapes	grown	in	a	particular	geographic	region	often	produce	wines	with	consistent	16	

characteristics,	 suggesting	 there	 are	 site-specific	 factors	 driving	 recurrent	 fermentation	17	

outcomes.	 However,	 our	 understanding	 of	 the	 relationship	 between	 site-specific	 factors,	18	

microbial	metabolism,	and	wine	fermentation	outcomes	are	not	well	understood.	Here,	we	19	

used	differences	in	Saccharomyces	cerevisiae	gene	expression	as	a	biosensor	for	differences	20	

among	 Pinot	 noir	 fermentations	 from	 15	 vineyard	 sites.	 We	 profiled	 time	 series	 gene	21	

expression	 patterns	 of	 primary	 fermentations,	 but	 fermentations	 proceeded	 at	 different	22	

rates,	making	analyzes	of	these	data	with	conventional	differential	expression	tools	difficult.	23	

This	led	us	to	develop	a	novel	approach	that	combines	diffusion	mapping	with	continuous	24	

differential	 expression	 analysis.	 Using	 this	 method,	 we	 identified	 vineyard	 specific	25	

deviations	 in	 gene	 expression,	 including	 changes	 in	 gene	 expression	 correlated	with	 the	26	

activity	 of	 the	 non-Saccharomyces	 yeast	 Hanseniaspora	 uvarum,	 as	 well	 as	 with	 initial	27	

nitrogen	concentrations	in	grape	musts.	These	results	highlight	novel	relationships	between	28	

site-specific	 variables	 and	 Saccharomyces	 cerevisiae	 gene	 expression	 that	 are	 linked	 to	29	

repeated	 wine	 fermentation	 outcomes.	 In	 addition,	 we	 demonstrate	 that	 our	 analysis	30	

approach	can	extract	biologically	relevant	gene	expression	patterns	in	other	contexts	(e.g.,	31	

hypoxic	response	of	Saccharomyces	cerevisiae),	indicating	that	this	approach	offers	a	general	32	

method	for	investigating	asynchronous	time	series	gene	expression	data.		 	33	
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Importance		34	

While	 it	 is	 generally	 accepted	 that	 foods,	 in	 particular	 wine,	 possess	 sensory	35	

characteristics	associated	with	or	derived	from	their	place	of	origin,	we	lack	knowledge	of	36	

the	 biotic	 and	 abiotic	 factors	 central	 to	 this	 phenomenon.	We	 have	 used	 Saccharomyces	37	

cerevisiae	gene	expression	as	a	biosensor	to	capture	differences	in	fermentations	of	Pinot	38	

noir	grapes	from	15	vineyards	across	two	vintages.	We	find	that	gene	expression	by	non-39	

Saccharomyces	 yeasts	 and	 initial	 nitrogen	 content	 in	 the	 grape	 must	 correlates	 with	40	

differences	 in	 gene	 expression	 among	 fermentations	 from	 these	 vintages.	 These	 findings	41	

highlight	important	relationships	between	site-specific	variables	and	gene	expression	that	42	

can	be	used	to	understand,	or	possibly	modify,	wine	fermentation	outcomes.	Our	work	also	43	

provides	a	novel	analysis	method	for	investigating	asynchronous	gene	expression	data	sets	44	

that	is	able	to	reveal	both	global	shifts	and	subtle	differences	in	gene	expression	due	to	varied	45	

cell	–	environment	interactions.	 	46	
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Introduction	47	

During	a	wine	fermentation,	Saccharomyces	cerevisiae	metabolizes	sugars	and	other	48	

nutrients	to	obtain	energy	and	increase	biomass,	while	also	dealing	with	a	common	set	of	49	

stresses	caused	by	the	must/wine	environment.	Given	these	general	features	of	the	system,	50	

the	cellular	activities	of	S.	cerevisiae	throughout	a	wine	fermentation	are	consistent,	which	is	51	

reflected	 in	 a	 core	 gene	 expression	 program	 (CGEP)	 that	 is	 present	 across	 diverse	52	

fermentation	conditions	(1–4).	However,	this	is	not	to	say	that	S.	cerevisiae	metabolism	is	53	

fixed,	as	S.	cerevisiae	dynamically	responds	to	differences	in	the	fermentation	environment	54	

(e.g.,	nutrient	 levels,	 temperature,	 and	differences	 in	microbial	 communities)	 to	maintain	55	

cellular	metabolism	and	overall	fitness	(1,	2,	5,	6).	For	example,	differences	in	grape	must	56	

nitrogen	concentrations	 leads	 to	changes	 in	metabolism	 that	are	accompanied	by	altered	57	

aroma	compound	in	wine	(7).	This	highlights	the	fact	that	metabolic	adaptation	to	varied	58	

fermentation	environments	leads	to	differences	in	wine	fermentation	outcomes,	including	59	

sensory	differences.	This	 relationship	 is	mirrored	by	many	 findings	 showing	 that	genetic	60	

changes	 causing	 altered	 expression	 of	 select	 genes	 or	 pathways	 in	 S.	 cerevisiae	 leads	 to	61	

quantifiable	 differences	 in	 wine	 fermentation	 outcomes	 (8).	 These	 facts	 support	 the	62	

generally	accepted	idea	that	interactions	between	S.	cerevisiae	and	the	unique	chemical	and	63	

biological	 matrix	 of	 each	 grape	 must	 are	 central	 to	 defining	 primary	 fermentation	64	

characteristics.	We	reason	that	these	differences	are	the	result	of	1)	the	expression	of	unique	65	

genes	outside	those	in	the	CGEP	required	for	fermentation	and/or	2)	variation	in	expression	66	

of	CGEP	genes	that	changes	the	activity	of	various	core	pathways	during	fermentation.		67	

The	chemical	and	biological	diversity	of	grape	musts	is	in	large	part	a	reflection	of	68	

biotic	 and	 abiotic	 pressures	 encountered	 by	 a	 grapevine	 during	 a	 growing	 season.	 For	69	

example,	wines	 produced	 under	 similar	 vinification	 conditions	 from	 genetically	 identical	70	

grapes	grown	in	different	locations	have	diverse	sensory	outcomes	(9),	many	of	which	are	71	

reproducible	 across	multiple	 vintages	 (10).	 After	 observing	 diverse	 sensory	 outcomes	 in	72	

wines	where	 a	 consistent	 variable	 between	 fermentations	was	 vineyard	 location	 (9),	we	73	

sought	 to	 uncover	 quantifiable	 contributions	 of	 vineyard	 site	 by	 using	 S.	 cerevisiae	 gene	74	

expression	as	a	biosensor	to	detect	differences	between	fermentations.	This	is	motivated	by	75	

the	 fact	 that	high	 throughput	gene	expression	surveys	 (microarray	and	RNA	sequencing)	76	

have	revealed	the	causes	of	stuck	and	sluggish	fermentations	(11),	 triggers	 for	entry	 into	77	
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stationary	 phase	 (1,	 2),	 and	 the	 impact	 of	 inter-species	 interactions	 on	 S.	 cerevisiae	78	

metabolism	in	wine	(6,	12,	13).	In	addition,	as	an	organism	commonly	used	in	life	science		79	

and	biotechnology	research,	the	S.	cerevisiae	genome	and	transcriptome	is	well	understood	80	

with	published	datasets	focused	on	gene	expression	in	diverse	environments,	including	wine	81	

(1–3,	 14–16).	 This	 makes	 S.	 cerevisiae	 a	 powerful	 tool	 for	 understanding	 the	 wine	82	

fermentation	 environment	 and	 identifying	 key	 biotic	 and	 abiotic	 factors	 underlying	83	

fermentation	outcomes.		84	

Towards	 this	 end,	 we	 performed	 time	 series	 RNA	 sequencing	 on	 Pinot	 noir	85	

fermentations	 with	 the	 aim	 of	 identifying	 gene	 expression	 differences	 by	 vineyard	 site.	86	

However,	using	standard	analysis	methods	(17–22),	we	only	 identified	 the	dominant	and	87	

consistent	 global	 shift	 in	 gene	 expression,	 the	 CGEP,	 across	 fermentations	 and	 not	 gene	88	

expression	 patterns	 indicating	 altered	 S.	 cerevisiae	 metabolism	 that	 would	 differentiate	89	

vineyard	site	(4).	A	major	issue	was	that	sampled	fermentations	proceeded	at	different	rates,	90	

leading	to	asynchronous	biological	progression	among	sequenced	samples	with	respect	to	91	

fermentation	status	(e.g.,	sugar	consumption).	This	was	problematic	because	samples	need	92	

to	be	at	the	same	stage	of	fermentation	to	interpret	the	biological	significance	of	differentially	93	

expressed	genes	(3,	23).	This	is	a	common	problem	in	time	series	experiments	with	multiple	94	

groups	and	in	some	experimental	systems	there	are	strategies	to	combat	this	issue	(23).	For	95	

example,	in	experiments	that	study	the	cell	cycle,	inhibitors	arrest	the	cell	cycle	at	the	same	96	

stage	across	groups	thereby	enabling	comparisons	(24).	This	experimental	approach	is	not	97	

applicable	to	wine	fermentations	where	nutrient	availability	is	more	important	than	stage	of	98	

the	cell	cycle	(25).	99	

To	address	a	similar	issue,	methods	have	recently	been	developed	for	the	analysis	of	100	

single	 cell	 RNA	 sequencing	 data	 from	 differentiating	 cells.	 In	 these	 experiments,	 as	 cells	101	

differentiate,	absolute	time	may	not	reflect	the	extent	of	differentiation	in	each	individual	102	

cell	(26).	Consequently,	pseudotime	analysis	has	been	used	to	reorder	cells	from	absolute	103	

time	to	the	stage	in	differentiation	relative	to	other	cells	undergoing	the	same	process	(26).	104	

In	 particular,	 diffusion	 maps	 have	 been	 used	 to	 reorder	 asynchronous	 cell	 populations	105	

because	 this	 analysis	 approach	 preserves	 relationships	 between	 samples	 (26).	 Diffusion	106	

mapping	 is	 a	manifold	 learning	 technique	 that	 uses	 information	 from	 the	k	most	 similar	107	

samples	to	construct	non-linear	composites	of	the	major	sources	of	variation	among	samples	108	
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(27,	28).	Diffusion	mapping	has	strengths	over	other	dimensionality	reduction	algorithms,	109	

like	principal	component	analysis	(PCA)	and	t-distributed	stochastic	neighbor	embedding	110	

(tSNE)	that	are	applied	to	sequencing	data	to	identify	sources	of	variation	(29,	30).	The	major	111	

advantages	 are	 that	diffusion	mapping	 is	non-linear	 and	 robust	 to	 the	 “horseshoe	effect”	112	

(unlike	PCA)	(31),	preserves	distances	between	samples	(unlike	tSNE),	and	is	insensitive	to	113	

sampling	 density.	 As	 a	 dimensionality	 reduction	 algorithm,	 diffusion	maps	 extract	 latent	114	

variables	that	are	inferred	from	relationships	in	the	data,	which	can	be	used	to	represent	115	

composite	sources	of	variation	between	samples.	116	

Here,	we	use	diffusion	mapping	to	analyze	time-series	RNA-sequencing	data	from	S.	117	

cerevisiae	 during	wine	 fermentation.	We	use	 the	 resulting	diffusion	maps	 to	 synchronize	118	

gene	expression	across	treatment	groups	and	to	extract	latent	variables,	termed	diffusion	119	

components	(DCs),	which	represent	the	dominant	sources	of	structure	in	the	data.	Diffusion	120	

maps	per	se	provide	no	suggestion	of	the	underlying	genes	that	lead	to	separation	of	samples	121	

along	diffusion	components;	therefore,	we	apply	continuous	differential	expression	analysis	122	

using	each	diffusion	component	to	determine	what	genes	vary	among	samples	across	a	given	123	

diffusion	component.	Notably,	this	method	was	not	exclusively	useful	for	the	analysis	of	RNA	124	

sequencing	data	from	wine	fermentations.		We	additionally	apply	this	method	to	time	series	125	

data	 collected	 from	 S.	 cerevisiae	 during	 hypoxia,	 which	 showed	 that	 diffusion	 mapping	126	

captures	 the	dominant	global	 shift	 in	gene	expression	 that	occurs	when	yeast	 transitions	127	

from	 aerobic	 to	 anaerobic	 metabolism.	 These	 findings	 suggest	 that	 our	 method	 enables	128	

analysis	of	diverse	 asynchronous	 time	 series	 gene	expression	data,	 revealing	both	global	129	

shifts	and	subtle	differences	in	gene	expression	among	groups.	In	the	context	of	wine,	we	130	

find	that	diffusion	mapping	extracted	the	CGEP	across	Pinot	noir	fermentations,	in	addition	131	

to	distinguishing	subtler	differences	between	fermentations	that	reflect	differences	 in	the	132	

grape	musts.	These	 findings	offer	 important	 insights	 into	variable	wine	 fermentation	and	133	

sensory	outcomes	driven	by		vineyard	specific	cell-environment	interactions.	 	134	
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Results	and	Discussion	135	

Diffusion	maps	reorder	asynchronous	cell	populations	while	preserving	relationships	136	

between	samples	(26),	which	provides	latent	variables	that	represent	non-linear	composites	137	

of	genes	that	vary	between	samples	(Figure	1).	We	refer	to	these	latent	variables	as	diffusion	138	

components,	 the	 number	 of	 which	 is	 constrained	 by	 the	 number	 of	 samples	 in	 the	 data.	139	

Within	each	diffusion	component	(DC),	a	sample	is	represented	by	a	single	value	and	samples	140	

that	have	similar	gene	expression	profiles	among	the	genes	captured	in	that	component	will	141	

have	 similar	 values.	 Moreover,	 samples	 at	 the	 origin	 of	 a	 DC	 (i.e.,	 near	 0)	 have	 gene	142	

expression	profiles	that	do	not	vary	along	that	component,	while	samples	with	positive	or	143	

negative	values	diverge.	Each	DC	captures	diminishing	structure	among	samples	with	the	144	

first	 diffusion	 component	 (DC1)	 accounting	 for	 the	 largest	 variation	 among	 all	 samples.	145	

Differential	 expression	 analysis	 can	 then	 be	 used	 to	 identify	 genes	 that	 vary	 among	 the	146	

samples	along	a	given	diffusion	component.	We	expect	the	information	extracted	from	each	147	

DC	in	this	way	will	provide	important	insight	into	gene	expression	patterns	caused	by	the	148	

time	in	fermentation	(e.g.,	based	here	on	Brix	level)	and	vineyard	site.		149	

	150	

Diffusion	 mapping	 captures	 the	 global	 shift	 of	 gene	 expression	 during	 primary	151	

fermentation	152	

We	 had	 previously	 performed	 inoculated	 primary	 fermentations	 of	 genetically	153	

similar	 Pinot	 noir	 grapes	 grown	 in	 15	 vineyard	 sites	 in	 California	 and	 Oregon	 over	 five	154	

vintages	 at	 the	 UC	 Davis	 Teaching	 and	 Research	Winery	 (Figure	 2A)	 (4,	 9,	 32,	 33).	We	155	

profiled	the	2017	and	2019	vintages	using	time-course	RNA	sequencing	data,	with	the	aim	156	

of	using	S.	cerevisiae	gene	expression	as	an	indicator	of	similarities	and	differences	across	157	

fermentations.	In	the	2017	vintage,	we	took	samples	approximately	corresponding	to	early	158	

growth	phase	(16	hours),	late	growth	phase	(40	hours),	stationary	phase	(64,	88	hours),	and	159	

end	of	fermentation	(112	hours)	(Figure	2B).	In	the	2019	vintage,	we	shifted	sampling	to	160	

capture	cellular	adaptation	after	inoculation	(2	and	6	hours)	and	reduced	sampling	later	in	161	

fermentation	(16,	64,	and	112	hours).	The	initial	grape	musts	varied	in	parameters	like	initial	162	

nitrogen,	pH,	malic	acid,	tartaric	acid,	non-Saccharomyces	microbial	profile,	and	elemental	163	

profile,	while	the	final	wines	differed	in	volatile	profiles	and	sensory	characteristics	(9,	32,	164	
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33).	From	these	data	we	determined	that	S.	cerevisiae	had	a	consistent	core	gene	expression	165	

program	(CGEP)	across	fermentations	from	different	vineyards	and	vintages	(4).		166	

Given	 the	 variable	 inputs	 and	 sensory	 differences	 described	 for	wines	 from	 these	167	

vineyards	(9),	we	expected	that	there	would	be	differences	in	S.	cerevisiae	gene	expression	168	

that	may	 include	 genes	 known	 to	 impact	 the	 sensory	 outcome	 of	 wine	 (34).	 Yet,	 in	 our	169	

previous	analysis	(4),	site-specific	differences	were	hard	to	quantify	because	fermentations	170	

progressed	at	different	rates,	even	with	rigorous	control	of	 temperature	at	a	200	L	scale,	171	

leading	 to	 asynchronous	biological	 progression	 among	 samples	with	 respect	 to	 sampling	172	

time	 (Figure	 2C).	 To	 address	 this	 issue	 and	 gain	 insight	 into	 vineyard-specific	 factors	173	

altering	fermentation	outcomes,	here	we	have	applied	diffusion	mapping	to	extract	DCs	and	174	

performed	differential	gene	expression	analysis	using	DC	values	as	a	continuous	variable	to	175	

identify	key	gene	expression	patterns	differentiating	these	fermentations.		176	

In	DC1,	which	accounts	 for	the	 largest	variation	among	all	samples,	we	captured	a	177	

clear	transition	during	fermentation	that	is	observed	by	the	ordering	of	samples	across	DC1	178	

in	both	the	2017	and	2019	vintages	based	on	Brix	(Figure	3A–B).	In	a	previous	analysis,	we	179	

used	 Brix	 to	 perform	 continuous	 differential	 expression	 and	 identified	 the	 CGEP	 of	 S.	180	

cerevisiae	in	these	Pinot	noir	fermentations	(4).	To	test	whether	diffusion	mapping	and	DC1	181	

captured	the	CGEP	during	fermentation,	we	performed	differential	expression	over	DC1	and	182	

compared	this	to	values	calculated	previously	across	the	Brix	variable	(4).	Log2	fold	change	183	

values	were	strongly	correlated	between	both	methods	of	differential	expression	(Figure	184	

3C,	Figure	S1),	indicating	that	DC1	captured	the	dominant	global	shift	in	gene	expression	185	

during	both	2017	and	2019	fermentations.	186	

We	 next	 explored	 subsequent	 diffusion	 components	 (e.g.,	 DC2	 through	 DC8)	 to	187	

determine	other	less	dominant	drivers	of	structure	among	samples.	In	general,	within	the	188	

2019	data	set	we	observed	that	lower	diffusion	components	(DC2–DC4)	captured	structure	189	

across	samples	relating	to	the	time	of	fermentation	(Figure	4).	For	example,	we	observed	190	

separations	along	DCs	2-4	based	on	Brix	levels	and	not	vineyard	site	(compare	Figure	4A	191	

and	4B).	These	differences	were	driven	by	cellular	remodeling	in	early	fermentation	(DC2,	192	

DC3)	and	starvation	during	late	fermentation	(DC4),	based	on	the	differentially	expressed	193	

genes	associated	with	each	diffusion	component	 (Table	S1).	 In	contrast,	higher	diffusion	194	

components	 (DC5–DC8)	 showed	 patterns	 that	 suggest	 these	 DCs	 varied	 more	 based	 on	195	
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vineyard	site	than	on	time	in	fermentation	(Figure	5	and	Table	S1).	In	addition,	we	saw	the	196	

total	 number	 of	 differentially	 expressed	 genes	 diminished	 as	 the	 diffusion	 component	197	

number	increased,	indicating	more	subtle	differences	between	samples	(Table	1).		198	

	199	

Table	 1:	 Number	 of	 significantly	 differentially	 expressed	 genes	 for	 the	 top	 diffusion	 com-	200	

ponents	for	the	2017	and	2019	vintages.		201	

Diffusion	
component	

2017	 2019	
induced	 repressed	 induced	 repressed	

DC1	 335	 435	 470	 457	
DC2	 320	 331	 169	 16	
DC3	 122	 127	 32	 293	
DC4	 200	 74	 57	 74	
DC5	 80	 481	 13	 0	
DC6	 36	 26	 92	 46	
DC7	 82	 56	 50	 7	
DC8	 36	 8	 0	 24	

	202	

Notably,	 while	 we	 detected	 the	 global	 shift	 in	 gene	 expression	 during	 primary	203	

fermentation	from	data	collected	in	2017	along	DC1	(Figure	3A),	we	did	not	observe	clear	204	

delineations	among	higher	DCs	(Figure	S2).	All	gene	expression	data	are	inherently	noisy	205	

(35),	which	is	continuously	improved	upon	by	technical	and	methodological	advancements	206	

in	 sequencing.	 Applying	 these	 advances,	 we	 sequenced	 the	 2019	 vintage	 with	 unique	207	

molecular	 identifier	 (UMI)	 barcodes	 and	were	 able	 to	 demultiplex	 sequencing	 lanes	 and	208	

remove	PCR	duplicates	(36).	With	this	improvement	in	data	quality	in	the	2019	vintage	over	209	

2017,	 we	 expect	 that	 signals	 associated	 with	 higher	 diffusion	 components	 were	 better	210	

captured	in	the	2019	sequencing	data.	These	improvements	are	also	likely	reflected	in	the	211	

number	 of	 differentially	 expressed	 genes	 across	 each	 DC	 in	 the	 2017	 vs.	 2019	 vintages	212	

(Table	1).	Consequently,	our	are	focused	on	the	2019	data.		213	

	214	

Diffusion	mapping	identified	global	shifts	in	gene	expression	during	hypoxia	215	

While	diffusion	maps	successfully	distinguished	major	fermentation	transitions,	we	216	

wanted	to	confirm	that	this	method	could	consistently	report	on	other	RNA-sequencing	data	217	

where	 global	 shifts	 in	 gene	 expression	 occur.	 To	 address	 this,	 we	 identified	 a	 publicly	218	
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available	 gene	 expression	 dataset	 during	 hypoxia	 in	 S.	 cerevisiae	 (GSE85595	 and	219	

GSE115171).	Hypoxia	occurs	when	a	cell	becomes	oxygen	limited,	which	is	accompanied	by	220	

large	scale	reprograming	of	gene	expression	for	continued	growth	(37).	We	applied	diffusion	221	

mapping	to	this	dataset	and	observed	an	ordered	time-dependent	transition	to	a	hypoxic	222	

phenotype	 along	 DC1	 (Figure	 6A).	 Sample	 positions	 along	 DC1	 show	 a	 rapid	 transition	223	

within	5	minutes	of	nitrogen	exposure,	indicating	a	fast	metabolic	transition	to	hypoxia	that	224	

matured	over	the	remainder	of	 the	time	course.	As	part	of	 this	genetic	reprogramming,	a	225	

transient	 shift	 in	 gene	 expression	 has	 been	 previously	 identified	 at	 ~30	minutes	 of	 the	226	

hypoxic	response	and	shown	to	partially	overlap	with	the	environmental	stress	response	227	

(37).	Within	the	diffusion	mapping	data,	DC6	differentiated	this	transient	state	at	30	minutes	228	

of	hypoxia	(Figure	6B).		229	

We	 next	 investigated	 whether	 genes	 differentially	 expressed	 along	 DC1	 matched	230	

oxygen-regulated	genes	identified	by	previous	studies	of	hypoxia.	Across	seven	microarray	231	

studies,	11	genes	 (3	aerobic,	8	hypoxic)	were	consistently	 identified	as	being	 involved	 in	232	

aerobiosis	or	anaerobiosis	in	at	least	six	studies	(compiled	by	Bendjilali	et	al.	in	(37)).	We	233	

identified	all	11	of	these	genes	as	differentially	expressed	(p	<	0.05)	along	DC1.	We	further	234	

compared	our	results	to	time-series	RNA-sequencing	profiles	of	wild	type	S.	cerevisiae	during	235	

a	hypoxic	response	(37).	Along	DC1,	239	of	291	(82.1%)	aerobic	genes	were	significantly	236	

expressed	 prior	 to	 exposure	 to	 nitrogen,	while	 422	 of	 519	 (81.3%)	 hypoxic	 genes	were	237	

significantly	induced	after	prolonged	exposure	to	nitrogen	(Table	S2).	Genes	expressed	at	238	

time	zero	were	enriched	in	pathways	like	ribosome	biogenesis,	oxidative	phosphorylation,	239	

and	 sterol	metabolic	 process,	while	 genes	 induced	 after	 prolonged	 exposure	 to	 nitrogen	240	

were	enriched	in	pathways	like	oxidation	reduction	process,	cell	wall,	glycogen	metabolic	241	

process,	 and	 glycolysis/gluconeogenesis	 (Figure	 S3).	 These	 findings	 align	well	 with	 our	242	

knowledge	of	the	hypoxic	transition	in	yeast	(37,	38).	Moreover,	these	results	indicate	that	243	

diffusion	mapping	accurately	captured	global	changes	in	gene	expression	during	the	hypoxic	244	

shift,	including	transient	gene	expression	states.	245	

	246	

Diffusion	mapping	detected	metabolic	remodeling	throughout	wine	fermentation		247	

With	 the	 knowledge	 that	 diffusion	mapping	 effectively	 identified	 gene	 expression	248	

changes	across	two	different	data	sets,	we	set	out	to	investigate	the	gene	expression	patterns	249	
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captured	within	each	DC	 in	our	wine	 fermentation	datasets.	 In	 the	2019	data,	 along	DC2	250	

there	were	clear	separations	among	the	2,	6,	and	16	hour	samples,	while	the	64	and	112	hour	251	

samples	 fell	on	 the	origin	 (Figure	4B).	Within	 the	genes	 captured	along	 this	 component,	252	

arginine	biosynthetic	process	was	enriched	in	genes	that	were	more	highly	expressed	in	the	253	

2	hour	samples	(ARG1,	ARG3,	ARG5,6,	ARG8)	(Figure	S4,	Figure	S5).	Arginine	is	likely	the	254	

most	abundant	amino	acid	 in	Pinot	noir	grape	must	 (39)	and	genes	 that	encode	proteins	255	

involved	 in	 arginine	 biosynthesis	 are	 suppressed	 by	 the	 presence	 of	 arginine	 (40).	256	

Expression	of	these	biosynthetic	genes	in	early	fermentation	likely	reflects	that	S.	cerevisiae	257	

is	 yet	 adapted	 to	 the	 wine	 environment	 by	 2	 hours	 after	 inoculation.	 By	 6	 hours	 of	258	

fermentation,	 expression	 of	 these	 genes	 decreases,	 potentially	 signaling	 completion	 of	259	

cellular	 adaptation	 to	 the	 grape	 must	 environment.	 Interestingly,	 four	 of	 the	 16	 genes	260	

(YMR244W,	YPR078C,	YGL117W,	YER085C)	expressed	in	the	2	hour	samples	have	no	known	261	

function.	Given	that	very	few	genes	were	differentially	expressed	at	2	hours	and	they	were	262	

enriched	for	arginine	biosynthesis,	one	speculation	is	that	these	genes	may	have	functions	263	

related	to	nitrogen	and	arginine	biosynthetic	processes.	Alternatively,	expression	of	these	264	

genes	may	be	associated	with	other	cellular	processes	associated	with	early	adaptation	to	265	

the	must	environment.	266	

	 The	6	hours	samples	segregated	to	the	opposite	extrema	of	DC2	and	were	the	most	267	

differentiated	from	the	2	hours	samples	along	this	component	(Figure	4B).	Glycolysis	was	268	

enriched	among	genes	induced	in	these	samples	(Figure	S5),	which	was	also	accompanied	269	

by	gene	expression	changes	that	support	a	transition	to	anaerobic	metabolism.	For	example,	270	

we	detected	induction	of	anaerobic	translation	elongation	factor	encoded	by	ANB1	(Figure	271	

S4),	which	is	optimally	expressed	below	0.5	µmol/L	O2	(41),	likely	indicating	must	oxygen	272	

levels	at	this	timepoint.	Genes	important	for	cell	wall	processes	were	also	induced	at	6	hours,	273	

with	TIR1-4	being	four	of	the	top	five	genes	induced	(Figure	S4).	These	genes	encode	cell	274	

wall	 mannoproteins	 that	 are	 required	 for	 anaerobic	 growth	 (42).	 These	 genes	 are	 also	275	

important	in	DC3	for	separating	the	6	and	16	hours	samples,	along	with	many	genes	induced	276	

by	anaerobiosis	that	included	DAN1	and	PAU	genes	(PAU2-PAU5,	PAU7,	PAU8,	PAU10-PAU12,	277	

PAU15-PAU17,	PAU19,	PAU20,	PAU23,	and	PAU24)	in	the	16	hour	samples	(43,	44).	Together,	278	

the	 induction	 of	 these	 genes	 regulated	 in	 response	 to	 oxygen	 across	DC2	 and	DC3	 likely	279	
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signal	 the	 transition	 to	 anaerobiosis.	 In	 DC3,	 there	 were	 also	 many	 other	 biological	280	

processes,	cellular	compartments,	and	molecular	functions	enriched	among	the	293	genes	281	

that	were	 induced	 in	 the	16	hour	samples	(Figure	S6),	consistent	with	a	 transition	to	an	282	

active	growth	phase	at	this	stage	of	fermentation.	As	diffusion	components	are	ordered	with	283	

the	most	variation	among	samples	occurring	 first,	DC2	and	DC3	demonstrated	 that	early	284	

metabolic	 remodeling	 was	 second	 only	 to	 gene	 expression	 changes	 that	 occur	 as	 Brix	285	

decrease	(e.g.,	captured	in	DC1)	during	fermentation.	286	

Along	 DC4,	 we	 observed	 separation	 of	 the	 64	 hour	 samples	 from	 the	 112	 hour	287	

samples.	 In	 the	 64	 hour	 samples,	 transmembrane	 transport,	 including	 amino	 acid	 and	288	

polyamine	transport,	were	enriched	categories	among	the	genes	that	were	induced	(Figure	289	

S7).	Many	induced	genes	(DUR3,	DAL5,	DAL7)	are	involved	in	allantoin	metabolism,	a	non-290	

preferred	nitrogen	source	(Figure	S4).	Induction	of	these	genes	at	64	hours	likely	indicates	291	

relief	of	nitrogen	catabolite	repression	consistent	with	decreasing	nitrogen	concentrations	292	

and	nutrient	availability.	Genes	repressed	by	the	presence	of	amino	acids	were	also	induced	293	

in	the	112	hours	samples	(GAT2,	ARG3).	Interestingly,	HXT13	and	MAN2	were	among	the	top	294	

induced	genes,	 along	with	HXT17,	 in	 the	112	hours	 samples	 (Figure	S4).	These	 two	HXT	295	

genes	 encode	 mannitol	 transporters	 (45)	 and	MAN2	 encodes	 mannitol	 dehydrogenase.	296	

Expression	 of	 these	 genes	 would	 enable	 S.	 cerevisiae	 to	 metabolize	 mannitol	 as	 a	 non-297	

preferred	carbon	source	(45–47).	Mannitol	is	produced	by	non-Saccharomyces	organisms,	298	

including	 lactic	acid	bacteria	(48)	and	other	non-Saccharomyces	yeast	(49).	Expression	of	299	

these	 genes	 late	 in	 fermentation	 likely	 signals	 an	 increasingly	 generalized	 metabolic	300	

program	that	is	utilizing	non-preferred	carbon	sources	as	preferred	sugars	were	exhausted.		301	

Overall,	we	interpret	the	patterns	of	separation	along	DC1-4	to	be	reflective	of	gene	302	

expression	changes	occurring	as	S.	cerevisiae	proceeds	through	fermentation,	adapts	to	the	303	

increasingly	nutrient	limited	environment,	and	deals	with	associated	stresses.	While	these	304	

changes	appear	common	to	the	fermentations	conducted	here,	future	work	will	be	required	305	

to	 address	 if	 individual	 processes	 captured	 in	 DC2-4	 occur	 in	 the	 context	 of	 other	wine	306	

strains	 and	 grape	 varieties	 or	 are	 unique	 to	 the	 wine	 yeast	 RC212	 and	 Pinot	 noir	307	

fermentations.	 Nonetheless,	 these	 observations	 indicate	 that	 this	 analysis	 approach	 is	 a	308	

robust	means	 for	 dealing	with	 asynchronous	 gene	 expression	data	 across	 fermentations.	309	

Moreover,	it	raises	many	questions	about	the	genes	important	for	defining	separation	along	310	
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these	 DCs,	 including	 gene	 products	 involved	 in	 arginine,	 mannitol,	 and	 anaerobic	311	

metabolism.	Of	notable	interest	are	the	large	family	of	PAU	genes,	the	vast	majority	of	which	312	

have	no	known	function	in	S.	cerevisiae,	but	have	been	previously	noted	for	being	induced	313	

during	fermentation	and	in	response	to	stress	(50).		314	

	315	

Lower	diffusion	components	captured	varied	progression	through	fermentation		316	

Along	lower	diffusion	components,	patterns	of	separation	were	based	on	the	time	of	317	

fermentation	(discussed	above),	but	outliers	from	select	vineyard	sites	were	also	noted.	We	318	

expect	 this	 indicates	 site-specific	 differences	 that	 influence	 S.	 cerevisiae	 activities	 during	319	

fermentation.	For	example,	in	the	2017	vintage,	samples	taken	at	40	hours	from	SMV	sites	320	

and	OR1	were	shifted	toward	the	16	hour	samples	along	DC1	indicating	a	different	metabolic	321	

trajectory	(Figure	3).	Interestingly,	we	detected	Lactobacillus	kunkeei	transcripts	in	primary	322	

fermentations	 from	SMV	sites	 (4,	 32).	L.	 kunkeei	 is	 a	 fructophilic	 lactic	 acid	bacteria	 that	323	

produces	 mannitol	 and	 lactic	 and	 acetic	 acids	 during	 wine	 fermentation	 (48).	 The	324	

observation	of	an	altered	metabolic	program	in	early	fermentation	with	the	unique	presence	325	

of	 L.	 kunkeei	 may	 indicate	 inter-species	 interactions	 that	 modulated	 S.	 cerevisiae	 gene	326	

expression.	In	support	of	this,	expression	of	genes	involved	in	mannitol	metabolism	at	112	327	

hours	were	the	highest	for	the	SMV	sites	(HXT13,	HXT17,	MAN2).	One	possibility	is	that	L.	328	

kunkeei	 may	 have	 induced	 a	 [GAR+]	 prion	 state,	 which	 is	 known	 to	 alter	 the	metabolic	329	

strategy	employed	by	S.	cerevisiae	(51).	Following	these	observations	in	2017,	we	attempted	330	

to	detect	the	[GAR+]	prion	state	in	yeast	isolated	from	the	2019	fermentations,	but	failed	to	331	

detect	[GAR+]	yeast.		332	

Other	outliers	included	SRH1,	which	in	the	2019	vintage	at	6	hours,	and	to	a	lesser	333	

extent	at	2	hours,	did	not	cluster	with	other	samples	from	these	same	time	points	along	DC2	334	

and	DC3	(Figure	4).	The	SRH1	6	hour	samples	were	instead	shifted	toward	other	16	hour	335	

samples,	 potentially	 indicating	 faster	 cellular	 adaptation	 to	 the	 wine	 environment.	 In	336	

support	of	this,	fermentations	from	SRH	sites	decreased	in	Brix	faster	than	other	sites	in	the	337	

2017	vintage	(Figure	2C).	Another	example	involved	64	hour	samples	from	OR1	and	OR2	338	

sites	being	shifted	along	DC4	toward	the	112	hour	cluster	(Figure	4),	which	may	relate	to	339	

nutrient	conditions	specific	to	OR	sites	(see	further	discussion	below).	Similarly,	112	hour	340	

samples	from	SNC1	and	AS2	were	shifted	toward	the	64	hour	cluster	(Figure	4).	We	expect	341	
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these	 outliers	 in	 the	 lower	 DC	 components	 related	 to	 the	 time	 in	 fermentation	 reflect	342	

differences	 between	 the	 musts	 (e.g.,	 nutrient	 levels	 or	 presence	 of	 specific	 non-343	

Saccharomyces	 organisms)	 that	 impact	 S.	 cerevisiae	 metabolism	 and	 the	 timing	 of	 gene	344	

expression	transitions	as	fermentations	progress.		345	

	346	

Higher	diffusion	components	identified	vineyard	specific	gene	expression	patterns		347	

The	common	patterns	and	existence	of	outliers	across	lower	diffusion	components,	348	

which	aligned	with	fermentation	progression	and	presence	of	non-Saccharomyces	species,	349	

indicated	that	information	about	specific	sites	were	captured	by	these	analyses.	Given	that	350	

some	higher	diffusion	components	clearly	separated	samples	within	a	stage	of	fermentation	351	

(Figure	 5),	 we	 used	 gene	 expression	 differences	 across	 the	 higher	 DCs	 to	 investigate	352	

vineyard-specific	patterns	(Figure	S8	and	Table	S1).	 In	 this	way,	we	aimed	to	 identify	S.	353	

cerevisiae	 activities,	 inferred	 by	 the	 genes	 involved,	 specific	 to	 a	 vineyard	 site(s).	 We	354	

specifically	concentrated	on	the	2019	samples	that	separated	to	the	extremes	of	each	DC,	as	355	

this	 separation	 indicates	 that	 these	 samples	 were	 the	 most	 differentiated	 at	 the	356	

transcriptome	level.	For	example,	at	2	hours	SMV1,	SMV2,	SRH1,	AV2,	and	RRV3	were	most	357	

separate	 from	RRV2,	CRN1,	SNC1,	and	AS2	along	DC5	(Figure	5).	When	comparing	these	358	

sites,	a	standout	difference	was	the	induction	of	genes	in	samples	from	SMV1,	SMV2,	SRH1,	359	

AV2,	and	RRV3	that	were	enriched	for	vitamin	metabolic	and	cell	wall	processes	(Figure	S8A	360	

and	S9).	Given	 that	 co-culture	 experiments	have	demonstrated	 that	S.	 cerevisiae	 induces	361	

genes	involved	in	cell	wall	remodeling	and	vitamin	biosynthesis	in	response	to	the	presence	362	

of	non-Saccharomyces	 yeasts	 (6,	52,	53),	we	 tested	whether	detected	gene	expression	by	363	

non-Saccharomyces	 yeasts	 in	 2	 hour	 samples	 correlated	 with	 DC5.	 Indeed,	 DC5	 values	364	

correlated	with	total	gene	expression	of	Hanseniaspora	uvarum	(R2	=	0.49,	p	<	0.001),	but	365	

not	with	 total	 gene	 expression	 of	 other	 organisms	 (Table	 2),	 suggesting	 that	H.	 uvarum	366	

activity	 leading	 up	 to	 these	 early	 fermentation	 samples	may	 have	 impacted	 S.	 cerevisiae	367	

metabolism.	 This	 is	 consistent	 with	 a	 previous	 study	 which	 reported	 that	 S.	 cerevisiae	368	

remodels	its	cell	wall	in	the	presence	of	H.	uvarum	at	three	hours	post-inoculation	in	a	wine	369	

fermentation	(6).	Interestingly,	PDC5	was	among	genes	induced	in	fermentations	with	higher	370	

gene	expression	by	H.	uvarum	along	DC5	(Table	S1).	PDC5	encodes	one	of	three	isoforms	of	371	

pyruvate	decarboxylase,	an	enzyme	involved	in	the	formation	of	flavor–active	higher	372	
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Table	 2:	 Correlation	 between	 total	 gene	 expression	 by	 non-Saccharomyces	organisms	 and	373	

DC5.	374	

Organism	 R2	 p	value	
Aureobasidium	pullulans	 -0.03555	 0.947	
Botrytis	cinerea	 -0.03261	 0.774	
Cladosporium	sp	SL	16	 -0.03341	 0.804	
Hanseniaspora	opuntiae	 -0.03524	 0.911	
Hanseniaspora	uvarum	 0.490605	 <	0.001	
Lachancea	thermotolerans	 -0.02741	 0.638	
Metschnikowia	fructicola	 0.069637	 0.086	
Pichia	kudriavzevii	 -0.02819	 0.654	
Rhizopus	stolonifer	 -0.02439	 0.582	

	375	

	376	

alcohols	in	wine	via	the	Ehrlich	pathway	(54).	This	suggests	that	the	presence	of	H.	uvarum		377	

may	 lead	 to	 gene	 expression	 changes	 that	 directly	 impact	 wine	 sensory	 outcomes.	 The	378	

activity	of	this	non-Saccharomyces	yeast	may	also	relate	to	the	altered	metabolic	program	379	

detected	 in	 SMV1/2	 and	 SRH1	 fermentations	within	 the	 lower	 diffusion	 components	 (as	380	

discussed	 above).	 Notably,	 in	 a	 previous	 study	 we	 found	 that	 all	 fermentations	 had	381	

detectable	H.	uvarum	DNA,	but	only	a	subset	had	detectable	H.	uvarum	gene	expression	(32).	382	

Given	the	potential	for	H.	uvarum	to	impact	S.	cerevisiae	gene	expression	and	metabolism,	in	383	

the	future	it	will	be	important	to	determine	the	factors	that	lead	to	H.	uvarum	(in)activity	in	384	

select	fermentations.	385	

SMV	 and	 SRH	 are	 neighboring	 American	 Viticultural	 Areas	 in	 southern	 California	386	

(Figure	2A).	While	 samples	 from	the	SMV	sites	and	SRH1	group	 together	at	2	hours,	we	387	

detected	separation	of	these	fermentations	at	16	hours	along	DC7	(Figure	5).	This	suggests	388	

that	while	these	sites	were	 initially	similar,	 they	differed	later	 in	fermentation.	While	few	389	

genes	were	 significantly	 induced	 in	 SMV	 vs.	 SRH	 samples	 along	 DC7,	ADH4	 was	 the	 top	390	

induced	 gene	 (Figure	 S8C).	 ADH	 genes	 encode	 alcohol	 dehydrogenases	 that	 play	 an	391	

important	role	in	fermentation	by	facilitating	transitions	between	acetaldehyde	and	ethanol	392	

involving	 the	 redox	 cofactor	 NAD+.	 ADH1	 encodes	 the	 primary	 alcohol	 dehydrogenase	393	

isoform	 responsible	 for	 this	 reaction	 during	 wine	 fermentation	 (55).	 Alcohol	394	

dehydrogenases	 are	 also	 involved	 in	 the	 formation	 of	 fusel	 alcohols	 within	 the	 Ehrlich	395	
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pathway	 (56).	 As	 such,	 differences	 in	ADH4	gene	 expression	 could	 be	 an	 important	 site-396	

specific	difference	that	has	a	role	in	S.	cerevisiae	metabolism	and	wine	aroma	development.	397	

Other	genes	more	highly	 expressed	 in	SMV	sites	were	 involved	 in	 cell	 growth	processes,	398	

including	 translation	 (MRP2	 and	 TIF2),	 transcription	 (MED1),	 and	 cell	 division	 (CLB6)	399	

(Figure	S8C).	In	site	SRH1,	more	highly	expressed	genes	along	DC7	vs.	SMV	were	involved	400	

in	oxidative	stress	(RCK1)	and	sporulation	(SPO74	and	SSP1).	These	site-specific	differences	401	

in	gene	expression	involving	growth	vs.	stress	indicate	varied	fermentation	environments	402	

leading	to	altered	gene	expression	at	16	hours.	Given	that	genes	associated	with	the	Ehrlich	403	

pathway	and	fusel	alcohol	anabolism	differentiated	SMV	sites	and	SRH1	at	2	and	16	hours	of	404	

fermentation,	 the	 Ehrlich	 pathway	 may	 be	 an	 important	 component	 to	 consider	 in	 the	405	

context	of	site-specific	differences	in	these	Pinot	noir	wines.		406	

In	the	case	of	DC6,	at	64	hours	OR1/2	and	RRV2	samples	segregated	to	one	extrema	407	

(Figure	5).	Genes	induced	in	these	samples	were	associated	with	nitrogen	limitation	(DAL5,	408	

PUT1,	PUT2;	(1)),	while	genes	involved	in	ammonia	metabolism	(MEP3,	SSY1,	AUA1)	were	409	

induced	within	fermentations	from	sites	at	the	other	extrema	(Table	S1).	In	line	with	these	410	

patterns	that	reflect	differences	in	nitrogen	availability,	DC6	values	correlated	with	initial	411	

grape	 must	 nitrogen	 as	 measured	 by	 an	 o-phthaldialdehyde	 assay	 (NOPA)	 and	 NH3	412	

measurements	(initial	NOPA:	R2	=	0.62,	p	<	0.001,	initial	NH3:	R2	=	0.60,	p	<	0.001),	led	by	413	

low	 initial	 nitrogen	 levels	 in	 OR1,	 OR2,	 and	 RRV2	 (Figure	 7).	 Interestingly,	while	 initial	414	

nitrogen	 levels	 in	 OR1,	 OR2,	 and	 RRV2	were	 the	 lowest	 among	 all	 fermentations,	 these	415	

fermentations	 were	 supplemented	 approximately	 24	 hours	 after	 inoculation	 with	 a	416	

combination	 of	 DAP	 and	 a	 complex	 nitrogen	 sources	 to	 adjust	 total	 yeast	 assimilable	417	

nitrogen	(YAN)	levels	to	250	mg/L.	Yet,	these	data	indicate	persistent	nitrogen	limitation	for	418	

these	sites,	suggesting	that	these	nitrogen	additions	may	not	have	been	sufficient	to	meet	419	

nutrient	requirements	in	these	fermentations.	These	findings	suggest	that	more	research	is	420	

needed	to	understand	the	impact	of	nitrogen	additions	on	fermentation,	including	the	timing	421	

of	addition	and	the	nitrogen	source.	422	

DC8	separated	112	hour	samples	with	SNC1	and	AS2	segregating	from	other	samples	423	

(Figure	 5).	 Interestingly,	 14	 of	 the	 24	 genes	 induced	 in	 these	 samples	 are	 of	 unknown	424	

function	(Table	S1	and	Figure	S8D).	Among	the	induced	genes	with	known	functions	were	425	

DDR2	 and	HSP30,	which	 are	 stress	 related	 genes	 transcribed	 in	 response	 to	 a	 variety	 of	426	
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environmental	or	physiological	stresses	(57),	as	well	as	YDL218W	that	is	induced	in	response	427	

to	the	mycotoxin	patulin	produced	by	a	variety	of	molds	(58).		Associated	with	these	stress-428	

related	genes	were	genes	that	function	in	meiosis	and	sexual	reproduction,	including	SPO74,	429	

MFA1,	and	AFB1.	These	data	are	suggestive	of	stresses	in	these	fermentations	that	could	be	430	

driving	 the	 diploid	 wine	 yeast	 into	 meiosis	 and	 a	 sexual	 reproduction	 cycle.	 This	 is	 of	431	

particular	 note,	 since	 the	 stresses	 associated	with	 a	wine	 fermentation	 environment	 are	432	

thought	 to	 impart	 strong	 selective	 pressures	 that	 drive	 adaptive	 evolution	 (59).	 This	 is	433	

reflected	by	 the	 fact	 that	S.	 cerevisiae	 strains	associated	with	wine	show	a	propensity	 for	434	

genetic	diversity,	 including	many	 instances	of	hybridization	(60).	Future	research	will	be	435	

required	to	understand	what	particular	stresses	in	SNC1	and	AS2	are	driving	these	unique	436	

patterns	 of	 gene	 expression,	 in	 addition	 to	 what	 outcome	 this	 has	 on	 fermentation	437	

performance.	438	

Finally,	across	diffusion	components,	it	is	worth	noting	that	fermentations	from	the	439	

same	American	Viticultural	Area	(AVA)	were	commonly	grouped	together	(Figure	4,	Figure	440	

5).	For	example,	fermentations	from	OR,	AV,	and	SMV	sites	often	grouped	together,	providing	441	

support	for	the	concept	of	AVA	and	regional	differences	from	the	perspective	of	S.	cerevisiae	442	

gene	expression.	However,	we	did	not	observe	grouping	among	all	fermentations	from	the	443	

same	AVA		along	all	diffusion	components.	For	example,	samples	from	AS	grouped	together	444	

along	 DC5	 (2	 hours)	 and	 DC6	 (64	 hours),	 but	 not	 in	 DC8	 (112	 hours).	 The	 AS	 sites	 are	445	

separated	by	1	km	and	yet	separation	along	DC8	suggests	there	was	detectable	variation	in	446	

S.	cerevisiae	metabolism	in	primary	fermentation	(Figure	4,	Figure	5).	Replicates	from	these	447	

same	vineyard	site	co-cluster,	suggesting	that	lack	of	reproducibility	in	fermentations	was	448	

not	a	factor	in	this	observation.	Similarly,	fermentations	from	RRV	did	not	cluster	together	449	

along	any	diffusion	component,	suggesting	that	sub-appellations	within	the	Russian	River	450	

Valley	 are	 associated	 with	 significantly	 different	 S.	 cerevisiae	 gene	 expression	 patterns	451	

(Figure	 4,	 Figure	 5).	 This	 matches	 recent	 findings	 that	 show	 sub-regional	 variation	 in	452	

elemental	 profiles	 of	 wine	 from	 the	 Russian	 River	 Valley	 (61).	 Importantly,	 the	 gene	453	

expression	 differences	 we	 detected	 across	 each	 of	 these	 diffusion	 components	 provides	454	

candidate	genes	and	pathways	that	may	underlie	vineyard-specific	fermentation	outcomes.		455	

	456	

	457	
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Conclusion	458	

In	this	study,	we	paired	diffusion	mapping	with	differential	expression	and	captured	459	

global	shifts	in	gene	expression.	This	method	revealed	differences	in	primary	fermentation	460	

of	Pinot	noir	wine	from	15	vineyard	sites,	as	well	as	changes	in	S.	cerevisiae	gene	expression	461	

induced	by	hypoxia.	Diffusion	mapping	was	especially	well	suited	for	these	studies	as	in	both	462	

cases	 cells	 progressed	 asynchronously	 through	 transcriptome	 changes	 with	 respect	 to	463	

sampling	time.	Through	our	analysis	of	wine	fermentations,	we	found	vineyard-site	specific	464	

gene	 expression	 patterns	 that	 correlated	 with	 H.	 uvarum	 metabolic	 activity	 and	 initial	465	

nitrogen	composition	of	grape	must,	as	well	as	indications	of	sexual	reproduction	in	select	466	

fermentations.	Together,	these	data	provide	important	 insight	 into	the	wine	fermentation	467	

environment,	 including	 pathways,	 genes,	 and	 environmental	 factors	 that	 should	 be	468	

considered	 in	 the	 context	 of	 differential	 fermentation	 outcomes.	 Given	 the	 tremendous	469	

complexity	of	gene-environment	interactions,	we	expect	these	data	also	serve	to	highlight	470	

the	large	amount	of	work	to	be	done	to	understand	both	the	biological	mechanisms	at	play	471	

and	how	this	knowledge	can	be	applied	by	industry.	In	particular,	we	report	transcriptomic	472	

heterogeneity	that	arises	from	the	same	strain	of	yeast,	fermented	in	the	same	facility,	using	473	

grape	must	from	genetically	identical	plants.	How	this	variability	changes	across	the	diverse	474	

landscape	of	wine	yeasts	strains	and	fermentation	environments	(e.g.,	grape	varieties	and	475	

associated	chemical	and	microbiological	profiles)	remains	to	be	seen.	Importantly,	we	expect	476	

that	the	approaches	pioneered	here	for	studying	S.	cerevisiae	gene	expression	in	a	complex	477	

environment	using	diffusion	mapping	provide	an	effective	tool	to	probe	these	questions.		 	478	
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Methods	479	

	480	

Sampling,	sequencing	and	preprocessing	of	wine	fermentation	samples	481	

The	winemaking	protocol	has	been	described	previously	(9,	62).		The	grapes	used	in	482	

this	study	originated	from	15	vineyards	 in	eight	American	Viticultural	Areas	 in	California	483	

and	Oregon,	U.S.A.	All	grapes	were	Vitis	vinifera	L.	cv.	Pinot	noir	clone	667,	with	rootstock	484	

101-14	(AV1,	RRV1,	SNC1,	SNC2,	CRN1,	AS1,	AS2,	SMV1,	SMV2,	SRH1),	Riparia	Gloire	(OR1,	485	

OR2),	or	3309C	(AV2,	RRV2,	RRV3).	Grapes	were	harvested	at	approximately	24	Brix	and	486	

transported	to	University	of	California,	Davis	Pilot	Winery	for	fermentation.	We	performed	487	

separate	fermentations	for	grapes	from	each	site,	with	two	fermentations	per	site,	totaling	488	

of	 20	 fermentations	 per	 vintage	 (40	 fermentations	 total).	 After	 harvest,	 the	 fruit	 was	489	

separated	into	half-ton	macrobins	on	harvest	day	and	Inodose	SO2	added	to	40	ppm.	Bins	490	

were	stored	in	a	14°C	cold	room	until	destemming	and	dividing	of	the	fruit	into	temperature	491	

jacket-controlled	 tanks.	 N2	 sparging	 of	 the	 tank	 headspace	 was	 performed	 prior	 to	492	

fermentation	and	tanks	sealed	with	a	rubber	gasket.	We	cold	soaked	the	must	at	7°C	for	three	493	

days	and	adjusted	TSO2	to	40	ppm	on	the	second	day.	After	three	days,	the	must	temperature	494	

was	increased	to	21°C	and	programmed	pump	overs	were	used	to	hold	the	tank	at	a	constant	495	

temperature.	We	reconstituted	S.	cerevisiae	RC212	with	Superstart	Rouge	at	20	g/hL	and	496	

inoculated	 the	must	with	 25	 g/hL	 of	 yeast.	 At	 approximately	 24	 hours	 after	 inoculation,	497	

nitrogen	content	in	the	fermentations	was	adjusted	using	DAP	(target	YAN	–	35	mg/L	–	initial	498	

YAN)/2,	and	Nutristart	using	25	g/hL.	Nitrogen	was	adjusted	only	 if	YAN	was	below	250	499	

mg/L.	 Approximately	 48	 hours	 after	 fermentation,	 fermentation	 temperatures	 were	500	

permitted	to	increase	to	27°C,	and	again	added	DAP	using	the	formula	(target	YAN	-	35	mg/L	501	

-	initial	YAN)/2,	and	fermentation	were	then	continued	until	Brix	<	0.	Fermentation	samples	502	

were	taken	for	Brix	measurements	and	RNA	isolation	at	16,	64,	and	112	hours	relative	to	503	

inoculation.	To	ensure	uniform	sampling,	a	pumpover	was	performed	ten	minutes	prior	to	504	

sampling	each	tank.	For	RNA	samples,	12mL	of	juice	was	obtained,	centrifuged	at	4000	RPM	505	

for	5	minutes,	supernatant	was	discarded,	and	the	cell	pellet	snap	frozen	in	liquid	nitrogen.		506	

Samples	were	stored	at	-80°C	until	RNA	extraction.	507	

	508	

	509	
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RNA	Extraction	and	Sequencing	510	

Yeast	pellets	were	thawed	on	ice,	resuspended	in	5ml	Nanopure	water,	centrifuged	511	

at	2000g	for	5min,	and	aspirated	the	supernatant.	RNA	was	extracted	using	the	Quick	RNA	512	

Fungal/Bacterial	 Miniprep	 kit	 including	 DNase	 l	 column	 treatment	 (cat#R2014,	 Zymo	513	

Research).	RNA	was	eluted	in	30µL	of	molecular	grade	water	and	assessed	for	concentration	514	

and	quality	via	Nanodrop	and	RNA	gel	electrophoresis.	Sample	concentrations	were	adjusted	515	

to	200ng/µl	and	used	for	sequencing.	3´	Tag-seq	single-end	sequencing	(Lexogen	QuantSeq)	516	

was	applied	in	both	the	2017	and	2019	vintage,	with	the	addition	of	UMI	barcodes	in	2019.		517	

The	University	of	California,	Davis	DNA	Technologies	Core	performed	all	library	preparation	518	

and	sequencing.	519	

Sequencing	 samples	 were	 preprocessed	 according	 to	 manufacturer	520	

recommendations.	 First,	 we	 hard-trimmed	 the	 first	 12	 base	 pairs	 from	 each	 read	 and	521	

removed	 Illumina	 TruSeq	 adapters	 and	 poly	 A	 tails.	 Next,	 STAR	was	 used	 to	 align	 reads	522	

against	 S.	 cerevisiae	 S288C	 genome	 (R64,	 GCF_000146045.2)	 with	 parameters	 --523	

outFilterType	 BySJout	 --outFilterMultimapNmax	 20	 --alignSJoverhangMin	 8	 --524	

alignSJDBoverhangMin	1	--outFilterMismatchNmax	999	--outFilterMismatchNoverLmax	0.6	525	

--alignIntronMin	 20	 --alignIntronMax	 1000000	 --alignMatesGapMax	 1000000	 --526	

outSAMattributes	NH	HI	NM	MD	--outSAMtype	BAM	SortedByCoordinate	(63).	For	the	2019	527	

vintage,	UMI	tools	was	used	to	deduplicate	alignments	(64).	Reads	mapping	to	each	open	528	

reading	frame	were	quantified	using	htseq	count	(65).		529	

	530	

Hypoxia	data	set	531	

Gene	 expression	 counts	 data	 was	 downloaded	 using	 from	 GEO	 using	 accession	532	

numbers	GSE85595	and	GSE115171.	533	

	534	

Construction	of	Diffusion	Maps	535	

Diffusion	maps	were	built	as	described	previously	(66).	To	build	diffusion	maps	from	536	

wine	fermentations	samples,	k	=	10	nearest	samples	was	used,	while	for	hypoxia	k	=	20	was	537	

used.	We	increased	the	k	size	for	hypoxia	given	the	larger	number	of	samples	(n	=	146	in	538	

2017	 vintage,	 n	 =	 150	 in	 2019	 vintage,	 and	 n	 =	 336	 in	 hypoxia).	 Prior	 to	 diffusion	map	539	
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construction,	 gene	 counts	were	 to	non-mitochondrial	mRNA	and	 read	counts	normalized	540	

based	on	total	number	of	reads	per	sample	(library	size).	541	

	542	

Differential	expression	543	

To	 determine	 which	 genes	 drove	 separation	 of	 samples	 along	 each	 component,	544	

differential	expression	was	used	to	correlate	each	gene	with	diffusion	component	values.	The	545	

R	package	 limma	was	used	to	 fit	a	 linear	regression	model	to	each	gene	(20).	As	 input	to	546	

differential	expression,	raw	sequencing	counts	were	used	as	input	to	differential	expression,	547	

and	 were	 filtered	 and	 normalized	 with	 the	 limma	 package	 using	 the	 calcNormFactors()	548	

function	 (20).	Using	 this	model,	 the	 log2	 fold	change	 is	 the	slope	of	 the	 line	 for	each	unit	549	

increase	in	the	diffusion	component.	Log2	fold	change	values	were	normalized	by	calculating	550	

the	 length	of	 the	diffusion	 component	and	multiplying	all	 log2	 fold	 change	values	by	 this	551	

amount,	(max	-	minimum)	*	log2	fold	change.	Log2	fold	change	values	that	were	greater	than	552	

two	were	analyzed,	i.e.,	genes	with	a	log2	fold	change	of	at	least	2	between	the	most	separated	553	

samples	along	a	diffusion	component.	Gene	Ontology	and	KEGG	enrichment	analysis	were	554	

performed	using	the	R	clusterProfiler	package	(67).	555	

	556	

Data	Availability	557	

Data	is	available	in	the	Sequence	Read	Archive	under	accession	PRJNA680606.	All	558	

analysis	code	is	available	at	github.com/montpetitlab/Reiter_et_al_2020_DiffusionMapping.		 	559	
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Figure 1: Extracting data from diffusion maps. Diffusion maps provide the underlying 
manifold in gene expression data through non-linear dimensionality reduction. A) When 
applied to many genes across many samples, diffusion maps extract features that represent 
combinations of genes that drive similarities and differences among samples. B) These 
features are termed diffusion components. Samples at either extreme of the diffusion 
component are the most different from each other, while samples that fall at the origin are 
invariant along that component. In the above graphic, the orange and purple dots are the 
most different, while the purple and green dot are most similar. Diffusion maps do not 
provide information on which genes lead to separation of samples along each diffusion 
component. C) Performing differential expression using the diffusion component as a 
continuous variable reveals the genes that significantly contribute to separation of samples. 
In the graphic, gene 1 has significantly higher expression in samples that fall on the right 
extrema of the diffusion component, as compared to samples that fall on the left extrema. 
D) While all genes are used to perform differential expression, not all genes are differentially 
expressed along an individual diffusion component. In this example, gene2 is not 
differentially expressed along the diffusion component.
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Figure 2: AVA locations of vineyard sites and sampling info across wine fermentations. A) 
Map of vineyard site American Viticultural Areas represented in this study. B) Primary 
fermentation sampling time points for 2017 and 2019 vintages. Times are shown in hours 
and are relative to inoculation. C) Vineyard site fermentation kinetics where Brix (total 
soluble solids) is used as a proxy for sugar levels. 
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Figure 3: Diffusion mapping captures the core gene expression program of S. cerevisiae 
during wine fermentation. A, B) DC1 captures the metabolic transition that occurs as Brix 
decreases during fermentation. The same transition occurs in the 2017 vintage and the 2019 
vintage. Each point represents a sample from one time from one fermentation. Points that 
are closer along the x axis are more similar. The y axis is jittered to allow all points to be 
visualized. Points are colored by Brix, a proxy for sugar concentration during fermentation, 
where Brix = 0 indicates end of fermentation. C) Graphic displays calculated correlations 
between differentially expressed genes in diffusion component 1 and genes that are 
differentially expressed as Brix decreases. Select samples in panel 3A are marked (∗ = SMV 
and + = OR sites) for ease of identification. 
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Figure 4: One-dimensional plots of DC2–DC4 for the 2019 vintage. Plots are colored by A) 
American Viticultural Area (AVA) and B) hours post inoculation and show that diffusion 
components capture different latent structure in the dataset. Each diffusion component 
represents a different relationship among samples with these components appearing to 
capture shifts between stages of fermentation, not vineyard site. Select samples in panel 4B 
are marked (∗ = SRH, + = OR, ▲ = SNC, and ◆ = AS sites) for ease of identification. 
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Figure 5: One-dimensional plots of DC5–DC8 for the 2019 vintage. Plots are colored by A) 
American Viticultural Area (AVA) and B) hours post inoculation. Higher diffusion components 
capture differences between vineyard site within a stage of fermentation, as seen by samples 
clustering together along a single or multiple diffusion components based on AVA, not Brix,  
indicating similarity in gene expression profiles within an AVA.
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Figure 6: Diffusion map of S. cerevisiae exposed to nitrogen for 0–240 minutes. The 
trajectory of samples are displayed along A) DC1 that captured the transition from aerobic 
to anaerobic metabolism and B) DC6 that captured a transient transcriptome remodeling at 
30 min.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 12, 2021. ; https://doi.org/10.1101/2021.02.11.430862doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430862
http://creativecommons.org/licenses/by-nc/4.0/


initial NH3 initial NOPA

O
R

1
O

R
2

AV
1

AV
2

SN
C

1
SN

C
2

R
RV

1
R

RV
2

R
RV

3
C

R
N

1
AS

1
AS

2
SM

V1
SM

V2
SR

H
1

O
R

1
O

R
2

AV
1

AV
2

SN
C

1
SN

C
2

R
RV

1
R

RV
2

R
RV

3
C

R
N

1
AS

1
AS

2
SM

V1
SM

V2
SR

H
1

0
100
200
300
400
500

vineyard site

co
nc

en
tra

tio
n

40

80

120

160

−0.4 −0.3 −0.2 −0.1 0.0 0.1
DC6

in
iti

al
 N

H
3

100

150

200

250

−0.4 −0.3 −0.2 −0.1 0.0 0.1
DC6

in
iti

al
 N

O
PA

AVA
OR

AV

SNC

RRV

CRN

AS

SMV

SRH

A

B C

Figure 7: DC6 separates samples by initial nitrogen concentration in the grape must. A) 
Initial concentration of NH3 and nitrogen by o-phthaldialdehyde assay (NOPA) was lower in 
fermentations from OR1, OR2, and RRV2 than other vineyards. B, C) Initial NH3 and NOPA in 
grape must correlates with DC6, driven by low nitrogen in fermentations from vineyard sites 
OR1, OR2, RRV3.
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Figure S1: Upset plot depicting intersections between differentially expressed genes using 
diffusion component 1 or Brix as continuous variable. A) Intersection of differentially 
expressed genes from the 2017 vintage. B) Intersection of genes from the 2019 vintage. C) 
Intersection of genes differentially expressed along diffusion component 1 from the 2017 
and 2019 vintages. D) Intersection of genes differentially expressed relative to change in Brix 
from the 2017 and 2019 vintages.
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Figure S2: One-dimensional plots of DC2–DC4 for the 2017 vintage. Plots are colored by A) 
American Viticultural Area (AVA) and B) Brix. Diffusion components capture different latent 
structure in the data set. Unlike in the 2019 vintage, samples in lower diffusion components 
do not cluster, potentially indicating a data quality issue that was remediated in the 2019 
vintage using UMI barcodes.
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Figure S3: Gene set enrichment for differentially expressed genes along DC1 during onset 
of hypoxia. All enriched categories with p < 0.05 after Bonferroni correction are shown. 
Pathways on the right side of the figure are induced in samples with a high diffusion 
component value, while pathways on the left of the figure are induced in samples with a low 
diffusion component value.
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Figure S4: Top 10 genes induced along each diffusion components that separate stages of 
fermentation in the 2019 vintage. Sites on the diffusion map are colored by hour at which 
samples were taken. Full gene lists are provided in Supplemental Table 1. 
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glutamine family amino acid biosynthetic process
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one−carbon metabolic process
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Purine metabolism
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One carbon pool by folate

Methane metabolism
Biosynthesis of amino acids

Glycolysis / Gluconeogenesis
Cysteine and methionine metabolism

Figure S5: Gene set enrichment for differentially expressed genes along DC2 in the 2019 
vintage. All enriched categories with p < 0.05 after Bonferroni correction are shown. 
Pathways on the right side of the figure are induced in samples with a high diffusion 
component value, while pathways on the left of the figure are induced in samples with a low 
diffusion component value.
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organic hydroxy compound biosynthetic process

steroid metabolic process
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cellular amino acid catabolic process
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secondary alcohol metabolic process
alcohol metabolic process
sterol biosynthetic process

one−carbon metabolic process
thiamine−containing compound metabolic process

ATP metabolic process
steroid biosynthetic process

cysteine biosynthetic process
sulfur compound transport
sterol metabolic process

nucleobase−containing small molecule metabolic process
nucleotide metabolic process
cysteine metabolic process

extracellular region
cell wall

external encapsulating structure
fungal−type cell wall

storage vacuole
fungal−type vacuole

lytic vacuole
vacuole

anchored component of membrane
coenzyme binding
cofactor binding

oxidoreductase activity
NAD binding

sulfur compound transmembrane transporter activity
transaminase activity

transferase activity, transferring nitrogenous groups
vitamin binding

structural constituent of cell wall
magnesium ion binding

pyridoxal phosphate binding
vitamin B6 binding

Biosynthesis of secondary metabolites
Biosynthesis of amino acids

Carbon metabolism
Glycolysis / Gluconeogenesis

Cysteine and methionine metabolism
Sulfur metabolism

2−Oxocarboxylic acid metabolism
Tyrosine metabolism
Steroid biosynthesis
Thiamine metabolism
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maturation of SSU−rRNA
ribosomal small subunit biogenesis

rRNA processing
rRNA metabolic process

ncRNA processing
ribosome biogenesis

endonucleolytic cleavage in 5'−ETS of tricistronic rRNA transcript
endonucleolytic cleavage to generate mature 5'−end of SSU−rRNA from

rRNA 5'−end processing
ncRNA 5'−end processing
RNA 5'−end processing

maturation of 5.8S rRNA from tricistronic rRNA transcript
maturation of 5.8S rRNA

endonucleolytic cleavage in ITS1 to separate rRNA
RNA phosphodiester bond hydrolysis, endonucleolytic

nucleolus
preribosome

preribosome, small subunit precursor
small−subunit processome

Figure S6: Gene set enrichment for differentially expressed genes along DC3 in the 2019 
vintage. All enriched categories with p < 0.05 after Bonferroni correction are shown. Pathways 
on the right side of the figure are induced in samples with a high diffusion component value, 
while pathways on the left of the figure are induced in samples with a low diffusion 
component value.
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Pathway
transmembrane transport

ion transport
anion transport

ion transmembrane transport
amino acid transport

integral component of plasma membrane
intrinsic component of plasma membrane

storage vacuole
fungal−type vacuole

lytic vacuole
vacuole

transmembrane transporter activity
transporter activity

inorganic molecular entity transmembrane transporter activity
ion transmembrane transporter activity

secondary active transmembrane transporter activity
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active transmembrane transporter activity
cation transmembrane transporter activity

solute:cation symporter activity
amide transmembrane transporter activity
anion transmembrane transporter activity

carboxylic acid transmembrane transporter activity
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organic anion transmembrane transporter activity

active ion transmembrane transporter activity
amino acid transmembrane transporter activity
polyamine transmembrane transporter activity

Biosynthesis of secondary metabolites
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Pathway
DNA−binding transcription factor activity

Figure S7: Gene set enrichment for differentially expressed genes along DC4 in the 2019 
vintage. All enriched categories with p < 0.05 after Bonferroni correction are shown. Pathways 
on the right side of the figure are induced in samples with a high diffusion component value, 
while pathways on the left of the figure are induced in samples with a low diffusion 
component value.
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Figure S8: Genes induced along each diffusion components that separate fermentations 
within a stage of fermentation in the 2019 vintage. Sites on the diffusion map are colored by 
American Viticultural Area (AVA) of each sample. Full gene lists are provided in Supplemental 
Table 1.
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Figure S9: Gene set enrichment for differentially expressed genes along DC5 in the 2019 
vintage. All enriched categories with p < 0.05 after Bonferroni correction are shown. Pathways 
on the right side of the figure are induced in samples with a high diffusion component value, 
while pathways on the left of the figure are induced in samples with a low diffusion 
component value.
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