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Abstract

The developmental patterns of the amygdala in children and adolescences have

been inconsistent in previous studies. This discrepancy may be partly due to

methodological differences in segmentation by tracing the human amygdala. To

investigate the impact of tracing methods on amygdala volume, we compared

FreeSurfer and volBrain segmentation measurements with those obtained by

manual tracing. The manual tracing method, as the ’Gold Standard’, exhibited

almost perfect intra- and inter-rater reliability. We observed systematic differ-

ences in amygdala volumes between automatic and manual methods. Specifi-

cally, compared with the manual tracing, FreeSurfer estimated larger amygdalae

while volBrain produced smaller amygdalae. This tracing bias was larger for

smaller amygdalae. We further modeled amygdalar growth curves using accel-

erated longitudinal cohort data from the Chinese Color Nest Project (total 427

magnetic resonance imaging scans from 198 participants aged 6-17 years at base-

line). Trajectory modeling and statistical assessments of the manually traced

amygdalae revealed linearly increasing and parallel developmental patterns for

both girls and boys, although the amygdalae of boys were larger than those of
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girls. Comparing these trajectories, the shapes of developmental trajectories

were similar when using the volBrain derived volumes while FreeSurfer led to

more nonlinear and flattened, but statistically non-significant, growth patterns.

The use of amygdala volumes adjusted for total gray-matter volumes, but not

intracranial volumes, resolved the shape discrepancies and led to reproducible

growth curves across the three methods. Our findings revealed steady growth

of the human amygdala, mirroring the functional development across the school

age. We argue that methodological improvements are warranted for current

automatic tools to achieve more accurate tracing of the amygdala at school age.

Keywords: amygdala, brain development, growth chart, MRI, reliability

1. Introduction

Childhood and adolescence are key periods for socioemotional development,

which correlate strongly with the development of risk factors for diverse neu-

ropsychiatric disorders (Paus et al., 2008). Together with enhanced efforts to

prevent such disorders, many large-scale studies have been undertaken to ex-5

plore behavioral and biological development of children and adolescents (Ortiz

and Raine, 2004; Silk et al., 2007; Connor, 2004). Rapid progress in in-vivo

brain imaging technologies has accelerated the use of structural magnetic reso-

nance imaging (MRI) to quantify volumes of different brain structures. These

morphological features have been demonstrated by MRI to be sensitive for de-10

velopmental brain changes (Tamnes et al., 2013; Albaugh et al., 2017; Wierenga

et al., 2018). The accurate developmental trajectories of brain structures using

MRI is thus an important requirement for understanding the neurodevelopment

mechanism of these disorders occurring during childhood and adolescence.

The amygdala is an almond-shaped brain structure of the limbic system and15

is highly connected with other brain regions (Schumann and Amaral, 2005). It

plays important roles in emotional and cognitive processes, especially fear and

threat processing (LeDoux, 1998; Cardinal et al., 2002; Pessoa, 2010) and ex-

hibits network-level connectivity changes across the human lifespan (He et al.,
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2016). Abnormal amygdalar structure in children and adolescents has been re-20

lated to a plethora of neurodevelopmental abnormalities (Scherf et al., 2013;

Schumann et al., 2011), including autism (Mosconi et al., 2009; Schumann

et al., 2004), anxiety disorder (De Bellis et al., 2000; Redlich et al., 2015) and

schizophrenia (Ganzola et al., 2014). Meanwhile, many studies have explored

age-related changes of the amygdala in pediatric and adolescent samples (Ue-25

matsu et al., 2012; Gilmore et al., 2012; Wierenga et al., 2014; Barnea-Goraly

et al., 2014; Herting et al., 2018), indicating the promise of using normal growth

patterns for monitoring abnormal development. Growth charts are expected to

aid risk evaluation, early diagnosis and educational monitoring by delineat-

ing typical development standards. In several recent studies, researchers have30

tracked the age-related increases of amygdala volume from childhood through

adolescence (Herting et al., 2018; Goddings et al., 2014; Albaugh et al., 2017).

However, a study including 271 individuals aged 8-29 years reported no signif-

icant changes in amygdala volume (Wierenga et al., 2018). This was similar

to the observation from a sample of 85 individuals scanned twice across 8-2235

years (Tamnes et al., 2013). Thus, there are mixed findings in the literature re-

lated to age-related differences or changes in amygdala volume. The anatomical

complexity can limit the accurate measurement of amygdalar volume, leading

to a large variation in findings obtained using different amygdala segmentation

methods (Lyden et al., 2016), which may explain this inconsistency and less40

reproducibility (Mills and Tamnes, 2014; Lyden et al., 2016).

Manual tracing is commonly considered the ’gold standard’ for amygdala

segmentation (Morey et al., 2009). It enables flexible quantification guided by

prior anatomical knowledge, without the need to make any of the assumptions

built into algorithms. Experienced human tracers can correctly label ambigu-45

ous borders by adjusting for variation caused by complex or atypical anatomy

and image artifacts. To increase reliability and reduce potential biases asso-

ciated with manual tracing, multiple protocols have been generated and de-

scribed in the literature (Schumann et al., 2004; Pruessner et al., 2000; Watson

et al., 1992). These protocols significantly increase intra- and inter-rater agree-50
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ment (Pruessner et al., 2000). However, manual tracing is time-consuming and

requires the operator to have sufficient anatomical expertise. For large MRI

datasets, the labor cost of manual tracing is prohibitive (Akudjedu et al., 2018;

Schmidt et al., 2018). There is also subtly drift in tracing criteria of manual

raters during the course of a long study. Accordingly, it is critical to develop55

automatic techniques that can accurately segment amygdala structures from

large and growing datasets while providing consistent results and minimizing

the human effort necessary for manual tracing.

Several tools have been developed to achieve automatic segmentation in a

time-efficient manner including FreeSurfer and volBrain, which are both freely60

available, ease to use, nearly fully automated, and very accurate (Fischl et al.,

2002; Manjón and Coupé, 2016; Morey et al., 2009; Akudjedu et al., 2018;

Schmidt et al., 2018; Næss-Schmidt et al., 2016). Although automated seg-

mentation has been shown to be comparable to manual tracing for adult popu-

lations (Fischl et al., 2002; Manjón and Coupé, 2016; Morey et al., 2009; Grimm65

et al., 2015), its performance for child and adolescent samples, in which head

size and shape as well as the pace of structural growth differ, has not been

validated adequately (Herten et al., 2019). In addition, the effects of any differ-

ences in the accuracy of automatic and manual amygdala segmentation on the

subsequent examination of amygdala development in school-age children and70

adolescents remain incompletely understood. To fully characterize similarities

and discrepancies among techniques, we compared amygdala volumes obtained

manually to those extracted by FreeSurfer and volBrain using 427 longitudinal

structural MRI scans from 198 healthy children and adolescents (baseline age:

6-17 years). To answer the aforementioned question, we examined how different75

tracing methods lead to trajectory differences in amygdala development across

school age. Based upon previous reports (Morey et al., 2009; Schoemaker et al.,

2016), we expected to observe systematic differences in amygdala segmenta-

tion performance among the three tracing methods. We hypothesized that such

differences would affect the modeling of human amygdala growth.80
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2. Materials and Methods

2.1. Participants

The sample described in this study was part of a five-year accelerated lon-

gitudinal data of the Chinese Color Nest Project (CCNP) (Liu et al., 2020). It

was part of the developmental component of CCNP (devCCNP), and collected85

at Southwest University (CCNP-SWU), Chongqing, China. The devCCNP was

designed to delineate normative trajectories of brain development in the Chinese

population across the school-aged years. The participants had no neurological

or mental health problem and did not use psychotropic medication; their es-

timated intelligence quotients were > 80. The CCNP-SWU samples included90

data from 201 typically developing controls (TDCs) aged 6-17 years who were

invited to participate in three consecutive waves of data collection at intervals of

approximately 1.25 years (Dong et al., 2020). T1-weighted MRI examinations

were performed at these time points, and the images were visually inspected

to exclude those with substantial head-motion artifacts and those with struc-95

tural abnormalities. After this initial quality control, the final sample included

427 scans from 198 participants (105 females; 93 males; Table 1). Scans from

three time points, two time points, and one time point were available for 79, 71,

and 48 participants, respectively. The mean number of scans per participant

was 2.16 (standard deviation = 0.79). The current study was approved by re-100

view committees of the participating institutions (the Institute of Psychology,

Chinese Academy of Sciences, and Southwest University).

2.2. MRI acquisition

All participants underwent MRI examinations performed with a Siemens

TrioTM 3.0 Tesla MRI scanner. A high-resolution magnetization-prepared rapid105

gradient-echo (MP-RAGE) T1 sequence (matrix = 256 × 256, FOV = 256 ×

256 mm2, slices thickness = 1mm, repetition time (TR) = 2600 ms, echo time

(TE) = 3.02 ms, inversion time (TI) = 900 ms, flip angle = 15◦, number of

slices = 176) was obtained for each individual.
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2.3. Volumetric MRI preprocessing and segmentation110

All the images were anonymized by removing all the personal information

from the raw MRI data. We removed the facial information by using the

facemasking tool (Milchenko and Marcus, 2013). The anonymized images

were then uploaded to the online image processing system volBrain (http:

//volbrain.upv.es) (Manjón and Coupé, 2016), which performed spatially115

adaptive non-local means of denoising and correction for intensity normaliza-

tion. All the preprocessed individual brain volumes were in the native space

and ready for subsequent manual and automatic tracing procedures.

2.3.1. Manual tracing and reliability assessment

Anatomically trained raters QZ (the first author Quan Zhou) and ZQZ per-

formed manual amygdala segmentation in the native space using the ITK-SNAP

software (ver. 3.8.0) (Yushkevich et al., 2006). The anatomical boundaries

of amygdala structures were defined and segmented according to the protocol

described by Pruessner et al. (2000). This protocol has been demonstrated

to achieve almost perfect intra- and inter-rater reliability. The reliability was

quantified with intraclass correlation coefficient (ICC), which was interpreted

as indicating slight [0, 0.20), fair [0.20, 0.40), moderate [0.40, 0.60), substantial

[0.60, 0.80), or almost perfect [0.80, 1] reliability (Landis and Koch, 1977). To

assess reliability for the protocol implementation in this study, QZ and ZQZ

independently traced the amygdala volumes of 30 scans twice at a two-week

interval. They were chosen from 30 subjects at baseline examination balanced

for age and sex. The ICCs with a 95% confidence interval (CI) are derived by

the following hierarchical linear mixed model on the repeated tracing volumes

Vijk = γ000 + subjecti00 + orderj + raterk

+ subject× orderij

+ subject× raterik

+ order× raterjk

+ eijk

(1)
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where Vijk represents the amygdalar volume measurement for the i−th (i =120

1, 2, · · · , 30) participant in the j−th (j = 1, 2) manual tracing by the k−th

rater (k = 1, 2); γ000 is the intercept for a fixed effect of the group average;

the following three terms represent random effects for the i−th participant, the

j−th tracing order, the k−th rater, respectively; and other three terms denote

random interaction effects between the j−th tracing and the i−th participant,125

between the k−th rater and the i−th participant, between the j−th tracing and

the the k−th rater; and rijk is an error term.

The above-mentioned model assumes that the seven included variables are

independent and distributed normally with zero means. The total variances can

be decomposed into the variance component:130

• among participants σ2
subject

• between repeated tracings by the same rater σ2
order

• between raters for the same tracing order σ2
rater

• among participants due to the differences in tracing order σ2
subject×order

• among participants due to the differences in rater σ2
subject×rater135

• between two raters due to the differences in tracing order σ2
order×rater

• of the residual σ2
r .

We define the inter-rater reliability of the human amygdala volumetric mea-

surements by manual tracing as:

interICC =
σ2
subject

σ2
subject + σ2

rater + σ2
subject×rater + σ2

r

(2)

and the intra-rater reliability of the human amygdala volumetric measurements

by manual tracing as:

intraICC =
σ2
subject

σ2
subject + σ2

order + σ2
subject×order + σ2

r

(3)
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2.3.2. Automatic tracing and visual inspection

Amygdala volumes were estimated using volBrain (http://volbrain.upv.140

es), a fully automated segmentation method that has outperformed other seg-

mentation methods across many brain structures. The operational pipeline has

been described and evaluated previously (Manjón and Coupé, 2016). Intracra-

nial volume (ICV) and total gray matter volume (GMV) were also derived using

volBrain. Automatic segmentation and labeling of the human amygdala were145

also performed using the “recon-all” pipeline in FreeSurfer (ver. 6.0.0; http:

//surfer.nmr.mgh.harvard.edu). The FreeSurfer processing stages have been

documented in (Fischl et al., 2002). Amygdala volumes provided in aseg.stats

files were used in the subsequent analysis, and aseg.mgz volume files were

converted into NIFTI files in native space for visualization. Transformation150

for segmentation and its inverse transformation to native space for volumetric

comparison have been described in (Morey et al., 2009). Both ICV and GMV

measurements were also provided by the FreeSurfer outputs. Visual inspection

of the traced amygdala volumes in a representative subject using manual and

automatic methods is illustrated in Figure 1.155

1cm

FreeSurfer FreeSurfer FreeSurferManual Manual ManualvolBrain volBrain volBrain

Right View Anterior View Inferior Viewa b c

Figure 1: Tracing left amygdala with the three methods in a sample subject. Purple:

volBrain; Yellow: manual; Green: FreeSurfer
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2.4. Accuracy assessments on automatic segmentation

QZ manually traced all the 427 amygdala of the CCNP-SWU samples, which

served as the reference volumes (i.e., gold standard) for the subsequent analy-

ses. We validated the accuracy of automatic segmentation separately for each

of the three waves of the samples. For each wave, we performed paired t-tests160

on traced volumes between the automatic and manual methods. We quantified

volume difference between the automatic and manual tracing as the equation

4. A greater volume difference indicates increased discrepancy relative to the

manually segmented amygdala volumes. To examine systematic changes of the

traced volumes, we tested the Pearson’s correlation of traced volumes between165

the automatic and manual methods across individual subjects. A strong correla-

tion (R ≥ 0.8) is taken to indicate good consistency on the individual differences

in amygdala volumes between the manual and automatic methods. We further

calculated the spatially overlapping volumes and the false positive rate to quan-

titatively measure the degree of correct or incorrect estimation of the automatic170

methods. These metrics are defined as:

• percentage of volume difference

D(VA, VM ) =
|VA − VM |

VM
× 100% (4)

• percentage of spatial overlap

P (VA, VM ) =
VA ∩ VM

0.5(VA + VM )
× 100% (5)

• false-positive rate

F (VA, VM ) =
VA − VA ∩ VM

VA
× 100% (6)

In these equations, VA is the volume measured automatically and VM is that

measured manually (the reference, i.e., the gold standard). The maximum

P (VA, VM ) value is 100%, reflecting identical tracing between manual and auto-

matic method while smaller values indicated less perfect spatial overlaps (Morey175

et al., 2009), implying the worse performance of the automatic tracing. The

9
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minimum F (VA, VM ) value is 0, reflecting identical tracing between manual and

automatic method while larger values indicate higher error rates of automatic

segmentation, i.e., the inclusion of larger proportions of non-amygdalar struc-

ture(s).180

To further investigate how the accuracy of the automatic tracing methods

varies with amygdala sizes, we employed a generalized additive mixed model

(GAMM) to model the size effect of amygdala on the automatic tracing ac-

curacy. Specifically, we plotted the spatial overlap (the overlap percentage P )

between automatic and manual segmentation as a function of the reference (i.e.,

the manually traced) volumes. Unlike the common parametric linear models

(Herting et al., 2018), GAMM does not require a-priori knowledge of the rela-

tionship between the response and predictors, which enables more flexible and

efficient estimation of changing patterns (Mills and Tamnes, 2014; Wood, 2017).

In addition, GAMMs are well suited for the repeated measurements (e.g., our

accelerated longitudinal samples from developing brains), as they account for

both within-subject dependency and developmental differences among partici-

pants at the time of study enrollment (Alexander-Bloch et al., 2014; Harezlak

et al., 2005). Such a GAMM was implemented using the following formula in R

language with the mgcv package:

P (VA, VM ) ∼ s(VM ) + (1|subject) (7)

where the s() is a smoothing function with a fixed degree of freedom and cubic

B-splines, whose number of knots is set at 5 (determined to be optimal for our

data). This was set to be sufficiently large to have adequate degrees of freedom

across both spline terms from fits of the model to the amygdala volume, but

sufficiently small to maintain reasonable computational efficiency.185

2.5. Modeling growth curves of human amygdala development

To fully model method-related differences in the growth curves of human

amygdala volumes, we employed the following GAMM to examine age-related
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changes of the human amygdala by including the tracing method and its inter-

action with age as variables of interests:

V ∼ s(age) + method + s(age, by = method) + (1|subject) (8)

where V represents the amygdala volume and s() is a smoothing function, with a

fixed degree of freedom and cubic B-splines (the number of knots = 5). Tracing

method was entered as an ordinal factor (manual = 0, automatic = 1). The

method term reflects the method differences in the intercept (i.e., the main effect190

of method). The first smoothing term models the slope of age for manual tracing,

and the second smoothing term models the difference in the age-related slope

between methods (i.e., age×method interaction). The p value associated with

this term is the basis of statistical inference regarding methodological differences

in developmental trajectories of bilateral amygdala volume.195

To more specifically understand differences in age trajectories between meth-

ods, a set of GAMMs (see the equation 8) were proposed to detect age-related

changes revealed by each method separately:

V ∼ s(age) + (1|subject)

V ∼ s(age) + sex + (1|subject)

V ∼ s(age) + sex + s(age, by = sex) + (1|subject)

(9)

The first GAMM models the traced volume as a smoothing function of age. As

previous studies have consistently shown larger brain regions in males than in

females (Herting et al., 2018), we established the second GAMM model with sex

as a fixed term to assess the sex difference in the trajectory intercept as well as

the third GAMM model including age×sex interaction to test the sex differences200

in the trajectory slope. The Akaike Information Criterion (AIC) was used to

determine which model had the best fit (the lowest AIC value). These analyses

were performed using the mgcv (Wood, 2017) and ggplot2 (Wickham, 2016)

packages in R (R Core Team, 2014).

We also tested growth curves of the human amygdala by accounting for205

global brain features in the GAMMs. The volumes of subcortical structures

11
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are known to be related to brain size (Brown et al., 2014; Brain Development

Cooperative Group, 2012; Uematsu et al., 2012). Accordingly, we included

ICV as a co-variate for regression control to enable the removal of individual

variability that can be explained by brain size (Narvacan et al., 2017; Sawiak210

et al., 2018; Herting et al., 2014). Researchers have also demonstrated that

the size of the amygdala often scales with the GMV (Van Petten, 2004; Rice

et al., 2014). We thus accounted for brain size by controlling for the GMV in

the GAMMs. We performed the analysis with ICV and GMV measurements

obtained by FreeSurfer and volBrain, respectively.215

3. Results

3.1. Measurement reliability of manually traced human amygdala

We reported almost perfect reliability of the human amygdala volumes mea-

sured by the manual tracing protocol. Specifically, as in Table 2, both intra-

rater and inter-rater reliability of the volumes for the manually traced amygdala220

were achieved. Inter-rater ICCs were around 0.88 with 95%CI= [0.80, 0.96] for

the left amygdala, and 0.89 with 95%CI= [0.83, 0.95] for the right amygdala.

Intra-rater ICCs were also almost perfect: 0.91 with 95%CI=[0.82, 0.96] for rater

ZQZ while 0.95 with 95%CI= [0.89, 0.97] for rater QZ. These results confirmed

that the raters’ manual tracings could be used as the gold standard or the225

reference for comparisons with automatic segmentation.

3.2. Measurement accuracy of automatically traced human amygdala

For the first-wave samples, one-way analysis of variance with repeated mea-

sures indicated significant differences in volumes of human amygdala across

the three segmentation methods (left amygdala: F = 925.70, p < 0.001; right230

amygdala: F = 725.60, p < 0.001). Our post-hoc paired comparisons revealed

that volumes obtained with FreeSurfer were significantly larger than those ob-

tained by manual tracing (left amygdala: t = 15.45, p < 0.001; right amygdala:

t = 14.51, p < 0.001), which in turn were larger than those obtained with

12
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volBrain segmentation (left amygdala: t = 53.32, p < 0.001; right amygdala:235

t = 50.09, p < 0.001). These findings (Figure 2) are reproducible for the

second and third waves of samples (see Supplementary Figure S1 and S2).

****

****

0.0

0.5

1.0

1.5

2.0

2.5

3.0

volBrain Manual FreeSurfer

Vo
lu

m
e(

m
l)

Left Amygdala

****

20

40

60

80

100

volBrain FreeSurfer

O
ve

rla
p 

(%
)

Left
****

0

20

40

60

volBrain FreeSurfer

Fa
lse

 P
os

itiv
e 

(%
)

Left

****

****

0.0

0.5

1.0

1.5

2.0

2.5

3.0

volBrain Manual FreeSurfer
Vo

lu
m

e(
m

l)

Right Amygdala

****

20

40

60

80

100

volBrain FreeSurfer

O
ve

rla
p 

(%
)

Right
****

0

20

40

60

volBrain FreeSurfer

Fa
lse

 P
os

itiv
e 

(%
)

Right

wave 1

a b

Figure 2: Human amygdala volumes produced by the three tracing methods in

CCNP wave 1 samples. Brackets indicate differences between manual and automated

methods on pairwise comparisons. In the left (a) and right (b) amygdala, spatial overlap and

false positive rate for segmentation using volBrain and FreeSurfer compared to the manual

“gold standard”. Percentage of volume overlap between volBrain segmentation and manual

tracing is lower than that of the overlap between FreeSurfer and manual tracing for the

left and right amygdala. The false-positive rate was significantly lower for volBrain than for

FreeSurfer segmentation for the left and right amygdala. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001

As depicted in Figure 2, paired two-sample t-tests revealed that FreeSurfer

had higher percentages of spatial overlap than volBrain with the manual tracing

for the first-wave data (left amygdala: t = 22.16, p < 0.001; right amygdala: t =240

26.09, p < 0.001). The false-positive rates were significantly lower for volBrain

than for FreeSurfer segmentation of the left amygdala (t = 38.12, p < 0.001)

and the right amygdala (t = 31.78, p < 0.001). Both the left and right amyg-
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dala volumes obtained with the two automatic methods only showed moderate

Pearson’s correlations with those obtained by the manual tracing although sta-245

tistically significant (Rs = 0.58−0.62, ps < 0.001; Table 3), but did not exceed

0.8. This indicated that the individual differences measured by the automatic

methods were not fully consistent with those measured by the manual tracing

method. These findings are reproducible for the second-wave and the third-wave

samples (see Supplementary Figures S1 and S2).250
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Figure 3: Percentage of spatial overlap of automatic methods as function of the

amygdala volume. A: volBrain; B: FreeSurfer ; ∗p < 0.05; ∗ ∗ p < 0.01; ∗ ∗ ∗p < 0.001

The GAMM-based regression showed that the accuracy of volBrain segmen-

tation (i.e., the percentage of spatial overlap with manual tracing) increased
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with the amygdala size before reaching a stable accuracy with a larger volume

of the amygdala (Figure 3A). For FreeSurfer, as in Figure 3B, the segmen-

tation accuracy displayed a linearly significant increase pattern with the left255

amygdala size while a two-stage (first increase and then remain stable) pattern

with the right amygdala size. In all cases of the automatic segmentation meth-

ods, a smaller amygdala structure is associated with the worse segmentation

accuracy, especially for those small amygdalae. These results indicated that

neuroanatomical features can possibly affect the accuracy of automatic segmen-260

tation in a systematic way.
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Figure 4: Longitudinal developmental trajectories of volume for human amygdala

traced by volBrain, manual and FreeSurfer . The blue color indicates trajectories for

boys while the red color for girl’s trajectories. The trajectories are surrounded by shaded 95%

confidence intervals. Note that boys and girls showed very similar developmental trajectories

with no significant age-by-sex interactions, although boys had significantly larger amygdala

volumes across the school ages (all ps < 0.001)
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3.3. Growth curves of human amygdala volume

The unified GAMM method, which includes age and interactions terms in-

dicated that the age effects on the human amygdala were not consistent across

the automatic tracing methods (Table 4). Specifically, these models reproduced265

the results of measurement accuracy for both volBrain and FreeSurfer reported

in the previous section. The volBrain produced amygdala’s age-related changes

highly similar to that of manual tracing, i.e., no age×method interactions (all

ps > 0.05). In contrast, the age-related amygdala changes showed discrepan-

cies between FreeSurfer and the manual tracing. This led to a much lower270

explained variance using the GAMMs with FreeSurfer compared to that by

the GAMMs with volBrain (left amygdala: 16% versus 77%; right amygdala:

16% versus 74%, respectively). Specifically, the age×method (FreeSurfer versus

manual tracing) interaction was detectable (with a nearly marginal significance:

p = 0.193) for the right amygdala but not for the left amygdala (Table 4). This275

indicated a trend toward a significant difference in the growth rate of the right

amygdala volume between the FreeSurfer and manual segmentation.

The post-hoc method-wise GAMMs further revealed the growth patterns of

the human amygdala as well as their sex differences. For all methods, the best

models were determined by AIC as the second model, which included sex as a280

fixed effect (Table 5), indicating no need for an interaction between age and sex.

This model revealed bigger amygdalae in boys than in girls, but their growth

rates did not differ by sex. Specifically, as shown in Figure 4, the growth

curve patterns were parallel in girls and boys for both manual and automatic

tracing methods although boys demonstrated larger volumes of their amygdalae285

than girls across the entire school age range (6-18 years old). As the reference

standard, the manual tracing method revealed that the human amygdala (both

left and right) exhibited linear growth during the school-age years in both boys

and girls. The volBrain tracing method yielded growth curves very similar to

those established by the manual tracing method. FreeSurfer tracing method290

produced less linear and flatter curves and not statistically significant, except

for a marginal significant growth curve in the right amygdala (p = 0.066). This
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growth curve had an inverted U shape: increasing during childhood and early

adolescence, and then decreasing in late adolescence (the peak age around 14.18

years old).295

0.60

0.95

1.30

1.65

2.00

6 9 12 15 18 21
Age (years)

 
 

Left

0.60

0.95

1.30

1.65

2.00

6 9 12 15 18 21
Age (years)

 
 

Right

Freesurfer 
(adjusted by FreeSurfer GMV)

Manual 
(adjusted by FreeSurfer GMV)

Manual
(adjusted by volBrain GMV)

volBrain 
(adjusted by volBrain GMV)

FreeSurfer FreeSurfer

volBrain
volBrain

Manual Manual

Manual Manual

v.adj
v.adj

v.adj v.adj

F.adj F.adj

F.adj F.adj

 
 

 
 

 
 

 
 

 
 

 
 

Vo
lu

m
e 

(A
dj

us
te

d 
by

 G
M

V,
 m

l)

Vo
lu

m
e 

(A
dj

us
te

d 
by

 G
M

V,
 m

l)

Figure 5: Longitudinal developmental trajectories of volume for human amygdala

adjusted by gray matter volume (GMV). Amygdala volumes are adjusted by GMV in

different ways: F.adj, adjusted by FreeSurfer produced GMV; v.adj, adjusted by volBrain

produced GMV. The trajectories are surrounded by shaded 95% confidence intervals.

Correction for GMV abolished the significant sex differences across the entire

age range (see details on the parameters for best-fitting models in Supplemen-

tary Table S1). This correction highly increased the reproducibility of the hu-

man amygdala growth curves across the three tracing methods (Figure 5). The

growth patterns derived by the manual tracing method after controlling for ei-300

ther volBrain-estimated GMV or FreeSurfer -estimated GMV remain consistent

with those without the GMV corrections. After the GMV-based correction, the

growth patterns derived by the two automatic tracing methods showed almost

identical shapes to those obtained using the manual tracing method (Figure 5).

In contrast, correction for ICV reduced the reproducibility of the human amyg-305

dala growth curves across the three tracing methods (see Supplementary Figure

S3). The growth patterns derived by the manual tracing method remained con-

sistent with those without ICV corrections, but with much less statistical power:

controlling for volBrain-estimated ICV led to much less significant age-related

changes while controlling for FreeSurfer -estimated ICV led to no significant age-310

related changes and even sex-related differences. The significant positive linear
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association with age remained for volBrain traced amygdala with less statistical

power, even after controlling for the ICV. However, correction for ICV changed

the FreeSurfer -derived growth curves of the amygdala volume from nonlinear

(not significant) to linear decrease (significant) patterns (Figure S3).315

4. Discussion

This study evaluated the performance of segmentation of the amygdala us-

ing either the automatic software volBrain and Freesurfer compared to manual

tracing in a longitudinal developmental sample. Importantly, we also explored

how the segmentation differences could impact the growth curve modeling of the320

amygdala development. The findings indicated systematic differences in tracing

performance across the three methods. FreeSurfer overestimated the volumes

with more spatial overlapping with the manual tracing method, but had higher

false-positive rates. In contrast, volBrain tended to underestimate the volumes

with less spatial overlap with the manual tracing method, but had lower false-325

positive rates. We noted that the tracing accuracy of automatic methods was

worse for smaller amygdalae. Furthermore, the growth curves of the amygdala

volume estimated by different methods were inconsistent. These discrepan-

cies indicated the importance to evaluate the segmentation performance across

methods, especially in a developmental sample. To our knowledge, this study330

performed manual tracing of the amygdalae in the largest longitudinal sample

to date and presented a systematic investigation of the method-wise variability

of the growth curves of the human amygdala across school age. This variability

of growth patterns could be normalized by adjusting for the total gray matter

volume, but not adjusting for intracranial volume. The manual tracing method335

revealed linear growth of the amygdala in both boys and girls throughout the

school-aged years, which is valuable to provide a growth norm for pediatric

studies in the future.

The measurement accuracy of the amygdala volume varied across the auto-

matic methods. FreeSurfer overestimated amygdala volumes (13–17%), and this340
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overestimation has been observed in previous studies of the amygdala volume

measurement by Freesurfer (Morey et al., 2009; Schoemaker et al., 2016). It is

likely due to the greater variability in the definition of the amygdala boundary

and liberal inclusion of voxels near this boundary (Morey et al., 2009; Schoe-

maker et al., 2016). The degree of overestimation observed here was greater than345

that reported for adults (7−9%) (Morey et al., 2009), but less than that reported

for children aged 6–11 years (93–100%) (Schoemaker et al., 2016). Schoemaker

et al.(2016) suggested it might be caused by using a standard brain template

derived from 39 adults (mean age 38± 10 years). This may introduce greater

bias when applied to a pediatric sample, in which amygdala sizes and shapes350

differ from adults. Another possible reason for this overestimation might be

artifacts caused by more movements in children during imaging, causing a less

precise differentiation and classification of amygdala structures by FreeSurfer.

In contrast, volBrain underestimated the amygdala volume (35–37%) compared

to the manual tracing. The underestimation may reflect the stringent inclusion355

of the amygdala during the segmentation by volBrain. This underestimation

has been also observed previously, but is greater in children than for adults

(3.38%) (Manjón and Coupé, 2016). volBrain segmentation uses manually la-

beled brain templates from 50 individuals with ages from 2 years old and 24-80

years old (Manjón and Coupé, 2016), which have no overlap with the age range360

of the current study (6-19 years old). The opposite directions of the estimation

differences from the two automatic methods imply, other than using unmatched

templates, the potential opposition in tracing algorithms between the two meth-

ods may exist. Further studies are clearly warranted to explore whether the use

of age-matched templates could improve the accuracy of automatic amygdala365

segmentation (Dong et al., 2020). Given the systematic differences in the amyg-

dala volume between automatic and manual segmentation, it calls for caution

on interpreting the results of the absolute amygdala volumes obtained by using

the automatic methods in children and adolescents.

FreeSurfer exhibited more spatial volume overlap than volBrain with the370

manual tracing method. The spatial overlap (76 − 79%) observed between
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FreeSurfer and the manual segmentation is consistent with the results reported

by Morey et al. (2009). A higher overlap of volBrain was reported in a previous

study (Manjón and Coupé, 2016), which is inconsistent with the observation

in the present work. This could be related to the excessive underestimation of375

volume caused by the age-mismatched brain templates used by volBrain when

segmenting amygdala for children and adolescents. In terms of spatial overlap,

FreeSurfer outperformed volBrain for human pediatric amygdala segmentation.

However, in terms of false-positive rate, FreeSurfer performed less than vol-

Brain. The high false-positive rate of FreeSurfer could be an indication of its380

overestimation of the volume. A previous study suggested that it was due to

excessive segmentation of brain structures in FreeSurfer by including structures

and areas not part of the target structure (Næss-Schmidt et al., 2016). Although

few studies have explored the performance of volBrain on human amygdala seg-

mentation in terms of the false-positive rates, similar performance results have385

been shown for the automatic segmentation of the hippocampus and thalamic

volume (Næss-Schmidt et al., 2016). According to inter-individual differences in

segmented amygdala volumes, the two automatic methods only demonstrated

moderate correlation with the manual segmentation, which are consistent with

previous work (Morey et al., 2009; Grimm et al., 2015), implying its potential390

challenge for reliable measurements of their growth curves. Overall, the two

automatic tracing methods have advantages and disadvantages for the assess-

ment of amygdala volume. The complex amygdala structure adds difficulty to

reliably and validly estimate its volume. It’s a trade-off to choose which method

should be used, requiring careful evaluation, and also demonstrates which facet395

of the automatic methods should be further improved in the future.

In this study, we found that the automatic segmentation performed worse

in smaller amygdalae in developmental neuroimaging studies of school age chil-

dren. The segmentation accuracy increased with amygdala volume, and then

remained stable when the amygdala has reached a large enough size. Previous400

studies have found that smaller brain structures were associated with greater

automatic segmentation errors (Schoemaker et al., 2016; Biffen et al., 2020;
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Sánchez-Benavides et al., 2010). Our results are consistent with that neuro-

anatomical and geometric features could systematically influence the accuracy

of their automatic segmentation. This bias is likely less problematic in adults,405

whose structures are commonly larger than in children. The human amygdala

has been widely investigated in pediatric studies and associated with many de-

velopmental disorders such as autism (Mosconi et al., 2009; Schumann et al.,

2009, 2004) and anxiety disorder (De Bellis et al., 2000; Hill et al., 2010; Milham

et al., 2005). Our findings further highlighted the importance of improving the410

measurement accuracy of automatic segmentation for developing individuals.

We argue that, in the current stage, manual tracing should be given priority for

amygdala volume estimation in pediatric research. In the future, the technique

development to eliminate the bias in automatic segmentation methods will be

of great importance.415

Although the statistical models indicated that the systematic differences in

amygdala volume exhibited moderately marginal effects on growth curve model-

ing between the automatic and manual segmentation, our post-hoc growth chart

analyses demonstrated remarkable discrepancies in age-related changes of the

human amygdala across development. As the ’gold standard’, manually traced420

amygdala volumes exhibited linear growth patterns without sex differences in

growth rate. This is completely consistent with the patterns validated by the

manual tracing method for amygdala growth from youth to adulthood in the

macaque monkey (Schumann et al., 2019). Most previous studies of amygdala

development in children and adolescents have been based on automatic seg-425

mentations (Wierenga et al., 2014; Goddings et al., 2014; Herting et al., 2018;

Uematsu et al., 2012) while manual segmentation has been used in only two

studies (Giedd et al., 1996; Merke et al., 2003). We noted that the develop-

mental patterns of the amygdala have been inconsistent across these studies

between automatic and manual methods. The growth patterns we detected by430

manual tracing were generally consistent with that by Giedd et al. (1996) and

Merke et al. (2003) although they observed volume increases only in boys, but

not in girls. In our study, the amygdala volumes grew in both boys and girls

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 13, 2021. ; https://doi.org/10.1101/2021.02.11.430883doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430883
http://creativecommons.org/licenses/by-nc-nd/4.0/


along highly similar trajectories. Such distinction may be an indication of the

difference in scanning field strengths (3T versus 1.5T). Higher-resolution MRI435

enabled us to detect subtle changes in the human amygdala volume. Regarding

automatic segmentation, previous studies generated amygdala growth curves

with inverted U shapes from childhood to adolescence with peaks around 12–15

years old (Wierenga et al., 2014; Goddings et al., 2014; Herting et al., 2018;

Uematsu et al., 2012). These were similar to our findings based on FreeSurfer440

segmentation, which showed a nonlinear trend of growth, especially for the right

amygdala, with an inverted U-shaped trajectory (the volume peak at 14.18 years

old). volBrain segmentation yielded growth curves very similar to that obtained

by the manual tracing for the amygdala development. volBrain seems to have

less error modeling growth curves than FreeSurfer. However, given limited stud-445

ies using volBrain to investigate amygdala development in children and adoles-

cents, it is hard to compare our results with others directly. It is interesting

that the growth curves show similar shapes between the automatic and manual

tracing methods when we adjusted amygdala volumes by the total gray matter

volume rather than the intracranial volume. This may reflect the reduction in450

the bias related to the amygdala size in automatic segmentation as mentioned

above correcting the amygdala volume. It works only for the gray matter vol-

ume and probably because that the measurement bias of the amygdala volume

is more highly associated with the gray matter than the whole brain. These re-

sults suggest that controlling for the gray matter volume improved the accuracy455

of curve-fitting on the automatic segmentation of amygdala from childhood to

adolescence.

Accurate delineation of the development of the human amygdala is funda-

mentally important to providing a reference to develop neuroimaging markers

for various developmental disorders (DiMartino et al., 2014; Zuo, 2020; Holla460

et al., 2020). Our findings present a challenge for charting the growth of the hu-

man amygdala across school-age development considering that the growth curve

modeling was highly dependent on the segmentation method. The methodolog-

ical differences may contribute to the inconsistencies among previous findings
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regarding the patterns of amygdala development during childhood and adoles-465

cence (Wierenga et al., 2018; Uematsu et al., 2012; Albaugh et al., 2017; Herting

et al., 2018). Given the inconsistency, we suggest that researchers working on the

amygdala of children and adolescents should, 1) manually trace the amygdala if

possible; 2) check and correct the automatic segmentation of the amygdala by

a trained professional to improve the accuracy and save the effort if the manual470

segmentation not feasible; 3) use age-matched brain templates for automatic

segmentation (Dong et al., 2020); 4) use high-resolution MRI protocol on scan-

ning the amygdala; 5) adjust the amygdala volume by total gray matter volume

when conducting statistical analysis; 6) cautiously compare and interpret pre-

vious findings using different segmentation methods than the study proposed.475

To facilitate the use of the growth curves we developed for human amygdala

development at school age, we generated their charts and made them publicly

open to the community (LINK TO BE ADDED after a final publication).

Our study has some limitations that should be noted. First, the age span of

our sample might not be sufficient for examining the full range of development480

of the human amygdala from childhood, adolescence and into young adulthood.

While the previous work in the macaque monkey revealed the linear pattern

of amygdala growth from youth to adulthood (Schumann et al., 2019), further

work would benefit from the extension of the age span into adulthood for di-

rect growth assessments in human in future. Second, we did not investigate485

the measurement reliability across different versions of automatic segmentation

tools, which has been shown remarkable influences on the brain segmentation

(Gronenschild et al., 2012). This factor should be carefully evaluated by using

different versions of these tools to model amygdala growth. Third, we only ex-

amined the overall volume measurement of the human amygdala. In the future,490

we will employ more local and shape measurements (Li et al., 2012; Roshchup-

kin et al., 2016) for investigating more details of human amygdala growth. To

provide more efficient and accurate tracing of the pediatric amygdala, we also

plan to develop an automatic algorithm based upon the manually traced samples

using more advanced methods such as deep learning (Ataloglou et al., 2019).495
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5. Conclusion

By manually tracing a large-sample pediatric MRI dataset from the accel-

erated longitudinal cohort, we charted the growth of human amygdala across

school age. We identified measurement biases for the automatic amygdala seg-

mentation methods and their impacts on modeling growth curves of the amyg-500

dala volumes from childhood to adolescence. There is considerable room for

the methodological improvement of automatic tools to achieve more accurately

tracing of the human amygdala during development. Our work provides not

only a practical guideline for future studies on amygdala in children and adoles-

cents but also its growth standard resources for translational and educational505

applications.
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Table 1  Sample characteristics for each wave 
 

Wave 1 Wave 2 Wave 3 

n 183 149 95 

n females/males 100/83 75/74 48/47 

Age,  

mean (SD) 
11.82  

(3.14) 
12.33  

(2.87) 
12.77  

(2.61) 

Age, range 6-17 7-18 9-19 

Table 2 Intra- and inter-rater reliability for manual tracing human amygdala 

Reliability Type Rater Hemisphere ICC 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Intra-rater 

reliability 

Rater QZ 
Left 0.95 0.89 0.97 

Right 0.94 0.86 0.97 

Rater ZQZ 
Left 0.91 0.82 0.96 

Right 0.91 0.82 0.96 

Inter-rater 

reliability 

Between rater 

QZ and ZQZ  

Left 0.88 0.80 0.96 

Right 0.89 0.83 0.95 

Table 3 Comparison of segmented amygdala volumes between methods 

Wave Technique 

Structure volume 

 (mean cm
3
 ±SD) 

  Comparison of techniques to manual tracing 

%Volume difference  

±SD 

%Volume overlap  

±SD 

%False positive 

±SD 
Correlation  

Left Right Left Right Left Right Left Right Left Right 

Wave 1 

Manual 1.46±0.18 1.45±0.18 
        

volBrain 0.90±0.12 0.92±0.13 37.61±7.70 35.98±7.78 68.16±4.92 68.21±4.86 10.28±5.17 11.65±5.95 0.61*** 0.62*** 

FreeSurfer 1.65±0.21 1.66±0.25 14.99±11.22 16.67±13.63 78.32±3.65 78.78±3.33 26.76±5.61 26.69±6.13 0.62*** 0.59*** 

Wave 2 

Manual 1.48±0.17 1.48±0.18 
        

volBrain 0.92±0.11 0.93±0.12 37.56±6.42 36.73±6.91 67.78±4.06 68.23±4.67 11.17±4.81 11.05±5.27 0.63*** 0.61*** 

FreeSurfer 1.65±0.22 1.63±0.23 14.81±10.29 12.61±10.15 77.69±3.46 79.11±3.38 26.78±4.95 25.42±7.94 0.54*** 0.66*** 

Wave 3 

Manual 1.49±0.21 1.51±0.21 
        

volBrain 0.92±0.15 0.94±0.16 37.84±8.05 37.44±8.09 67.54±4.87 67.34±5.33 10.81±5.13 11.59±5.13 0.67*** 0.70*** 

FreeSurfer 1.63±0.23 1.68±0.25 12.81±10.11 14.32±12.88 76.90±4.88 77.25±4.15 26.91±5.70 27.06±6.44 0.66*** 0.59*** 

Note: Summary of automated segmentation performance, percent volume difference, percent volume overlap, percent false positive and Pearson’s correlations 

between automated and manual segmentations.    *p < 0.05; **p < 0.01;***p < 0.001 
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Table 4 GAMM statistical tests on developmental trajectories of bilateral amygdala volumes 

Left Amygdala  Right Amygdala 

Manual vs. volBrain       

Intercept Estimate SE      t p - value  Intercept Estimate SE      t p - value 

Method: volBrain -0.40 0.00 -81.77 < .001  Method: volBrain -0.38 0.00 -77.22 < .001 

Slope edf Ref.df F p - value  Slope edf Ref.df F p - value 

s (age) 3.57 3.57 4.00 0.006  s (age) 3.12 3.12 5.15 0.001 

s (age): volBrain 1.00 1.00 0.80 0.371  s (age): volBrain 1.59 1.59 0.52 0.627 

R
2
 = 0.77      R

2
 = 0.74     

Manual vs. FreeSurfer       

Intercept Estimate SE      t p - value  Intercept Estimate SE      t p - value 

Method:FreeSurfer 0.12 0.01 19.85 < .001  Method: FreeSurfer 0.13 0.01 19.79 < .001 

Slope edf Ref.df F p - value  Slope edf Ref.df F p - value 

s (age) 3.43 3.43 1.89 0.142  s (age) 2.57 2.57 3.59 0.026 

s (age): FreeSurfer 1.00 1.00 0.14 0.710  s (age): FreeSurfer 1.73 1.73 1.17 0.193 

R
2
 = 0.16      R

2
 = 0.16     

Note: Smooth function (edf) as well as degrees of freedom (Ref.df) and F-statistic and associated p-value for age (bold highlights p<.05).  

Table 5  

GAMM statistical tests on developmental trajectories of bilateral amygdala volumes for manual tracing, FreeSurfer and volBrain segmentation, respectively 

 
Hemisphere Best model fit R

2
(adjusted) 

Sex  Age spline 

 Estimate SE t p-value  edf Red.df F p-value 

Manual 
Left amygdala age + sex 0.14 0.13 0.02 6.07 0.000  1.12 1.12 8.32 0.003 

Right amygdala age + sex 0.12 0.12 0.02 5.86 0.000  1.38 1.38 8.47 0.001 

volBrain 
Left amygdala age + sex 0.19 0.10 0.01 7.15 0.000  2.17 2.17 8.07 0.000 

Right amygdala age + sex 0.17 0.11 0.02 6.84 0.000  1.83 1.83 7.34 0.001 

FreeSurfer 
Left amygdala age + sex 0.15 0.16 0.03 6.08 0.000  1.48 1.48 0.69 0.317 

Right amygdala age + sex 0.17 0.21 0.03 7.15 0.000  2.05 2.05 2.77 0.066 

Note: Smooth function (edf) as well as degrees of freedom (Ref.df) and F-statistic and associated p-value (bold highlights p < .05) for age. 
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