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 2 

Abstract 39 

Microbial community analysis of aquatic environments showed that an important component 40 

of microbial diversity consists of bacteria with cell sizes smaller than ~0.1 μm. However, so far 41 

no study investigated if such bacteria with small cell sizes exist in terrestrial environments as 42 

well.  43 

 44 

Here, we isolated soil bacteria that passed through a 0.1 µm filter, by applying a novel isolation 45 

and culturing approach. The complete genome of one of the isolates was sequenced and the 46 

bacterium was identified as Hylemonella gracilis. We performed a set of interaction assays with 47 

phylogenetically distant soil bacteria with larger cell and genome size. The interaction assays 48 

revealed that H. gracilis grows better when interacting with other soil bacteria like 49 

Paenibacillus sp. AD87 and Serratia plymuthica. Furthermore, we observed that H. gracilis is 50 

able to change the behavior of interacting bacteria without direct cell-cell contact. 51 

Transcriptomics and metabolomics analysis was performed with the aim to explain the 52 

mechanisms of these interactions.  53 

 54 

Our study indicates that soil bacteria that can pass through a 0.1 µM filter may have been 55 

overlooked in soil microbial communities and that such bacteria are able to induce 56 

transcriptional and metabolomics responses in other soil-bacteria. Furthermore, we revealed 57 

that the interaction allowed utilization of substrates that are not utilized by monocultures. 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 
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 3 

Introduction 70 

Bacteria are ubiquitous living organisms with various cell shapes and sizes surrounding us in 71 

all environments (1, 2).  Soil is the most complex habitat harboring the largest diversity and 72 

density of bacteria known to date (cell densities ranging from 107 to 1010 cells/g of soil (3-5).  73 

Soil bacteria are part of a community where they are in constant interaction with their own and 74 

other species (6-8). Bacteria produce and release a plethora of metabolites into their 75 

environment. In this way, they not only modify their niche but also affect the behavior and the 76 

secondary metabolite production of nearby bacteria (9-11). Soil bacteria are known to produce 77 

both soluble and volatile secondary metabolites with different physicochemical and biological 78 

properties (7, 12-14). In contrast to soluble compounds, volatile organic compounds (VOCs) 79 

are rather small molecules (< 300 Da) that can diffuse easily through air- and water-filled soil- 80 

pores, (15-17). These physiochemical properties make VOCs ideal metabolites for long- 81 

distance communication and interactions between soil microorganisms (18-21).  82 

In aquatic environments, bacteria are naturally found at lower cell density of 103 - 106 cells/mL 83 

(22-24). Recent studies have shown that a significant component of microbial diversity consists 84 

of bacteria with cell sizes smaller than ~0.1 μm (25-27). However, little is known about bacteria 85 

with such small cell sizes in soil environments. One can assume that small cell size can be an 86 

advantage in challenging environments like soil. The distribution of microorganisms in soil is 87 

influenced by its water and moisture content, a low soil moisture content leads to lower 88 

connectivity between soil pores, and thus to a lower number of accessible micro-habitats.  89 

Small bacterial cell size is often linked to a small genome size caused by genome 90 

streamlining (28). Recent metagenomics studies suggest that genome streamlining is ubiquitous 91 

in many bacteria (29, 30). In some cases, the primary metabolism of one organism can be 92 

directly built on the primary metabolism of another organism, known as syntrophic 93 

relationships (31, 32).  The Black Queen Hypothesis  states that genome-streamlined organisms 94 

have an evolutionary advantage because of the loss of genes whose function can be replaced by 95 

bacteria in the surrounding environment, effectively conserving energy (33). Since bacteria 96 

with smaller genomes have less adaptive capacity compared to bacteria with bigger genome 97 

sizes, many of them depend on specific environmental conditions and the presence of other 98 

specific organisms (34) to produce metabolites that support their persistence.  99 

Here, we explore if soil bacteria that are able to pass through 0.1 µm filters are present in soil 100 

and we investigated their interaction with other soil bacteria. The major research questions were 101 

if, and how inter-specific interactions between bacteria smaller than 0.1 µM and other common 102 
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 4 

soil bacteria affected fitness, behavior, gene expression, and the production of secondary 103 

metabolites. 104 

 105 

Materials and Methods 106 

Isolation and identification of bacteria that pass through 0.1 µm filters 107 

Please see Fig. S1 and Supplementary Methods. 108 

 109 

Identification of bacteria that passed through 0.1 µm filter 110 

One type of bacterial colony was observed on the inoculated plates. The grown colonies were 111 

later identified as Hylemonella gracilis by 16S rRNA sequence analysis. Please see 112 

Supplementary Methods. 113 

 114 

Bacteria and culture conditions  115 

Please see Supplementary Methods and Supplementary Table 1. 116 

 117 

Microscopy 118 

Please see Supplementary Methods. 119 

 120 

Bacterial interactions assays on 1/10th TSBA plates 121 

For the interaction assay, liquid bacterial cultures were diluted to an OD600 of 0.005 122 

(Paenibacillus and Serratia) or to an OD600 of 0.05 (H. gracilis). A 10 µl droplet was added in 123 

the middle of a 6 cm diameter Petri dish (monocultures) or next to each other in a distance of 124 

~0.5 cm (pairwise interactions), for details please see Supplementary Methods.  125 

 126 

Effects of cell-free supernatants of Paenibacillus and Serratia on the growth of H. gracilis  127 

Please see Supplementary Methods. 128 

 129 

DNA isolation and genome sequencing of H. gracilis 130 

Genomic DNA of H. gracilis was extracted using a QIAGEN Genomic-tip 500/G DNA kit 131 

Qiagen, cat# 10262 (for details see Supplementary Methods). The genome sequencing was 132 

performed on the PacBio RS II platform (Pacific Biosciences, Menlo Park, CA, USA) using 133 

P6-C4 chemistry at the Institute for Genome Sciences (IGS), Baltimore, Maryland, USA. The 134 

sequencing resulted in a total of 70,101 reads with N50 of 17 309 nucleotides. The PacBio raw 135 

sequences were analyzed using SMRT portal V2.3.0.140936. p.4150482. Sequences were 136 
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 5 

assembled de novo with the RS_HGAP_assembly 3 protocol (© Copyright 2010 - 2014, Pacific 137 

Biosciences, Menlo Park, CA, USA) with default settings on an estimated genome size of 3.8 138 

Mbp. The resulting assemblies were subjected to scaffolding using the RS_AHA_scaffolding 139 

1 protocol. The genome assembly properties are shown in Supplementary Table 2. The final 140 

contigs were annotated using PROKKA V1.11 (42) and InterproScan 5.16 55.0  (43). The 141 

whole genome sequence was submitted as Hylemonella gracilis strain NS1 to NCBI GenBank 142 

(https://www.ncbi.nlm.nih.gov/genbank/) under accession # CP031395. 143 

 144 

In silico analysis of secondary metabolite gene clusters 145 

For in silico analysis of secondary metabolite gene clusters, the genome sequences of H. 146 

gracilis, Paenibacillus sp. AD87 and Serratia plymuthica PRI2C were submitted to the 147 

antiSMASH web server (http://antismash.secondarymetabolites.org/) version 4.0 (44).  148 

 149 

RNA sampling, isolation and RNA- sequencing 150 

Please see Supplementary Methods. 151 

 152 

Pathway annotations 153 

Please see Supplementary Methods. 154 

 155 

Exploration of missing genes and genome streamlining in Hylemonella 156 

RAST annotations of Serratia, Paenibacillus and H. gracilis were used to compare the genomes 157 

and to explore the genomes for missing genes in metabolic pathways (http://rast.nmpdr.org) 158 

(52-54). RAST was used to identify missing core genes in genomes. The missing gene 159 

sequences were extracted and assigned with KEGG Orthology (50, 55). Presence/absence of 160 

genes belonging to metabolic pathways was compared across the three genomes to identify 161 

shared genes and pathways and to determine incomplete metabolic pathways in H. gracilis. 162 

 163 

Catabolic profiling using BioLog EcoPlate™ 164 

Please see Supplementary Methods.  165 

 166 

Trapping of volatile organic compounds and GC-Q-TOF analysis 167 

Please see Supplementary Methods.  168 

 169 

 170 
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Ambient mass-spectrometry imaging analysis (LAESI-MSI) 171 

Please see Supplementary Methods. 172 

 173 

Analysis of Ambient mass-spectrometry imaging (LAESI-MSI) Data 174 

Please see Supplementary Methods. 175 

 176 

Data availability 177 

The raw data of this article will be made available by the authors, to any qualified researcher. 178 

The whole genome sequence of Hylemonella strain NS1 is available at the NCBI GenBank 179 

under accession # CP031395, the raw reads of the transcriptomics data are available at the 180 

Sequence Read Archive (SRA) https://www.ncbi.nlm.nih.gov/sra under accession # 181 

SUB8619726. 182 

 183 

Results  184 

Isolation and identification of bacteria that pass through 0.1 µM filter 185 

Using a novel bacterial isolation and cultivation approach, we isolated bacteria from a terrestrial 186 

soil sample able to pass through a 0.22 µm and a 0.1 µm pore-size filters. The bacteria were 187 

identified as Hylemonella gracilis (Gram-negative, class betaproteobacteria, order 188 

Burkholderiales). The colonies showed a round and colorless morphology when grown on 189 

1/10th TSBA plates (Fig. 1a). Microscopically the bacteria had a spiraled morphology with a 190 

length of approximately 6 - 12 µM which is typical for Hylemonella species (Fig. 1b).  191 

 192 

Hylemonella grows better in interaction with other bacteria 193 

H. gracilis growth was determined during the interaction with two phylogenetically distantly 194 

related soil bacteria (Paenibacillus sp. AD87 and Serratia plymuthica PRI-2C) and compared 195 

to that of the monoculture. The bacterial colony forming units of H. gracilis (CFU/mL) obtained 196 

on 1/10th TSBA plates from monocultures and interactions are summarized in Fig. 2. Cell 197 

counts of Paenibacillus were 7.68 x 107 CFU/mL in interaction with H. gracilis (Fig. 2a). 198 

During the interaction with H. gracilis, the growth of Serratia was significantly negatively 199 

affected (P=0.037) after five days of incubation by reaching 1.47 x 109 CFU/mL compared to 200 

the monocultures (Fig. 2a).  201 

The bacterial colony forming units (CFU) obtained from H. gracilis grown in presence of cell 202 

free supernatants (CFS) of Paenibacillus and Serratia are summarized in Fig. 2b. H. gracilis 203 

growth was significantly increased (P=0.011) when growing in presence of cell free 204 
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supernatants of Paenibacillus resulting in higher cell counts compared to the monoculture by 205 

reaching 1.10 x 106 CFU/mL. In the presence of cell free supernatant from Serratia, H. gracilis 206 

reached the highest cell counts at 1.72 x 106 CFU/mL (P=0.000) after five days of incubation 207 

(Fig. 2b).  208 

 209 

Interaction between bacterial species allows use of substrates that are not used in 210 

monoculture  211 

The catabolic profiling using EcoPlatesTM revealed that Paenibacillus was able to utilize 11 of 212 

the 31 carbon sources in monoculture, Serratia and H. gracilis were able to utilize 17 and 16 213 

carbon sources respectively. Interestingly, three compounds could be utilized only during co-214 

cultivation of H. gracilis with one of the other species, these compounds could not be utilized 215 

by any of the species in monoculture. Specifically, alpha- cyclodextrin was utilized only during 216 

co-cultivation of H. gracilis with Paenibacillus, while L-threonine and glycyl-L-glutamic acid 217 

were utilized only during the interaction of Serratia and H. gracilis Fig. 3.  218 

 219 

Genomic features of H. gracilis, Serratia and Paenibacillus 220 

Sequencing of the complete genome of H. gracilis resulted in a genome size of 3.82 Mbp with 221 

3,648 coding sequences (CDS). As expected, the genome analysis revealed that the genome of 222 

Hylemonella is smaller and contains fewer genes when compared to both Serratia plymuthica 223 

PRI-2C (5.4 Mbp) and Paenibacillus sp. AD87 (7 Mbp). The genome features of all three 224 

bacteria are summarized in Supplementary Table 2. 225 

 226 

In silico analysis of gene clusters encoding for secondary metabolites  227 

In silico analysis of Paenibacillus revealed a total of 10 gene clusters coding for secondary 228 

metabolites. From which two gene clusters belonged to the class of terpenes, one to 229 

bacteriocins, one to lasso peptides, two to the class of lanthipeptides, one to nonribosomal 230 

peptides, one to others, one to the class of type III polyketide synthases and one gene cluster 231 

belonging to the class of siderophores (Fig. 4a). For Serratia the in silico analysis revealed in 232 

total 9 gene clusters from which two gene clusters belonged to the class of Non-Ribosomal 233 

Peptides, one to Hsr-lactones, one to Aryl polyene- Siderophores, one to the class of T1PKS-234 

NRPS hybrids, one to the class of Thiopeptides, one to the class of Butyrolactones, one to the 235 

class of Terpenes and one to the class of others (Fig. 4b). Flor H. gracilis the AntiSMASH 236 

analysis revealed that H. gracilis possesses relatively few gene clusters related to secondary 237 

metabolism. A total of three gene clusters for H. gracilis were detected, of which one belonged 238 
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to the class of bacteriocins, one to the class of terpenes, and one to aryl polyenes, the latter 239 

being a homolog to the aryl polyene gene cluster from Xenorhabdus doucetiae (Genbank: 240 

NZ_FO704550.1) Fig. 4c. 241 

 242 

Pathway analysis in H. gracilis compared to Serratia and Paenibacillus 243 

The RAST comparison of Paenibacillus and H. gracilis revealed that 504 unique enzymes 244 

(according to their EC numbers) were exclusive to Paenibacillus, while 434 were present only 245 

in H. gracilis; 532 EC numbers shared by both genomes (Fig. 5a). The RAST comparison of 246 

Serratia and H. gracilis revealed that 751 enzymes were present only in Serratia, and 260 were 247 

present only in H. gracilis. 727 EC numbers participating in diverse metabolic pathways were 248 

found in both genomes (Fig. 5b).  249 

The RAST analysis revealed five missing genes in H. gracilis compared to Serratia and 250 

Paenibacillus. The missing genes were annotated with the following ontology terms: 251 

GO:0008473 (ornithine cyclodeaminase activity), GO:0008696 (4-amino-4-252 

deoxychorismatelyase activity), GO:0003920 (GMP reductase activity), GO:0004035 (alkaline 253 

phosphatase activity) and GO:0008442 (3-hydroxyisobutyrate dehydrogenase). We verified if 254 

the loss of these genes would render specific pathways obsolete. However, alternative pathways 255 

routes are present for these GO terms according to the KEGG database. The pathway analysis 256 

by RAST did not suggest any essential missing pathway components in metabolic pathways in 257 

H. gracilis. Still, the comparison of the number (n) of genes present in each RAST subsystem 258 

category revealed major differences in several subsystem categories, specifically in the 259 

categories "Carbohydrates metabolism" and "Phosphorus metabolism" (Fig. 5c). H. gracilis 260 

possesses no genes for these categories, whereas Paenibacillus possesses 393 and 82 genes, 261 

and Serratia 395 and 46 genes, respectively. A major difference in the absolute number of genes 262 

in a category is also observed for Amino Acids and Derivatives, for which H. gracilis possesses 263 

318 genes, Paenibacillus possesses 358 and Serratia 448 genes. 264 

 265 

Effect of inter-specific interactions on gene expression 266 

RNA- sequencing was performed to better understand the effects of bacterial interaction on 267 

gene expression of each interacting partner. The transcriptome analysis of monocultures and 268 

interspecies interactions revealed a total of 277 significant differentially expressed genes; 100 269 

down-regulated and 177 up-regulated (Supplementary Table 2).  270 

 271 

 272 
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Effect of inter-specific interactions on gene expression in Paenibacillus and H. gracilis 273 

In Paenibacillus histidine biosynthesis and dephosphorylation genes were up-regulated 274 

(Supplementary Table 3), while cellular-growth-related genes were down-regulated 275 

(Supplementary Table 3) at day 10 of the interaction with H. gracilis (Fig. 6b). For the 276 

interaction of H. gracilis with Paenibacillus a total of 15 significant differentially expressed 277 

genes were found (0 at day 5 and 15 at day ten). At day five, genes related to sulfur assimilation, 278 

chemotaxis and response to (chemical/external) stimuli were upregulated in H. gracilis in the 279 

presence of Paenibacillus.  Genes related signal transduction (T) were the category with the 280 

most differentially expressed genes during the interaction of H. gracilis with Paenibacillus 281 

compared to the monoculture of H. gracilis (Supplementary Table 8 and 9, Fig. 6a, b).  282 

 283 

Effect of inter-specific interactions on gene expression Serratia and H. gracilis 284 

During the interaction of Serratia with H. gracilis, 61 genes were significantly differentially 285 

expressed at day five and 10 at day ten. At the day five, iron-sulfur cluster-assembly-related 286 

genes, a sulfur transferase and a transaminase were up-regulated, while genes related to 287 

inorganic diphosphatase activity, exonuclease activity and DNA repair were downregulated. At 288 

day ten, genes related to sulfur transmembrane transport, sulfur compound catabolism and 289 

cysteine biosynthesis were upregulated, and genes related to sulfur compound metabolism and 290 

translation were downregulated. (Supplementary Table 4 and 5).  For Serratia, genes related 291 

to signal transduction and translation, ribosome structure and biogenesis were the most 292 

differentially expressed gene categories (Fig. 6c). For H. gracilis in interaction with Serratia, 293 

182 differentially expressed genes were identified at day ten and only one at day five. At day 294 

five, genes related to the ribosome/ribonucleoproteins, organelle organisation/assembly and 295 

(iron)-sulfur cluster assembly were upregulated and genes related to the innate immune 296 

response (Toll Like Receptor signalling) were downregulated (Supplementary Table 6 and 7).  297 

At day ten, genes related to signal transduction and chemotaxis were up- regulated in H. 298 

gracilis. For H. gracilis, the most upregulated genes were linked to the chemotaxis pathway 299 

and iron scavenging, indicating activity in competition (Fig. 6a).  300 

 301 

Metabolomic analysis of volatile compounds 302 

The volatile blend composition of the monocultures differed from that of the co-cultures. Clear 303 

separations between the controls, monocultures and co-cultures were obtained in PLS-DA score 304 

plots (Fig. 7a). The analysis revealed a total of 25 volatile organic compounds produced by 305 

mono- and co-cultured bacteria that were not detected in the non-inoculated controls (Table 2). 306 
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Of these, 17 are identified and categorized in six chemical classes (alkenes, benzoids, sulfides, 307 

thiocyanates, terpenes, furans). The remaining eight compounds could not be assigned with 308 

certainty to a known compound. The most abundant volatile organic compounds were sulfur-309 

containing compounds such as dimethyl disulfide (C2H6S2) and dimethyl trisulfide (C2H6S3). 310 

These two sulfur compounds were produced by all three bacteria. Interestingly an unknown 311 

compound with RT 26.4 min produced by the monocultures of H. gracilis was not detected in 312 

the interactions with Serratia (Table 2). Two other unknown compounds with RT 4.15 min and 313 

with RT 24.34 min produced by the monocultures of Paenibacillus were not detected in the 314 

interactions with H. gracilis (Table 2).  315 

 316 

DART-MS based metabolomics 317 

The metabolomics analysis based on DART-MS revealed separations between the controls, 318 

monocultures, and co-cultures as presented in PLS-DA score plots (Fig. 7b). The metabolomic 319 

composition of the monocultures differed from that of the co-cultures (Fig. 7b). Statistical 320 

analysis (ONE-WAY ANOVA and post-hoc TUKEY HSD-test) revealed 617 significant mass 321 

features present on day five and day ten of which 48 could be tentatively assigned to specific 322 

compounds. Most of the significant peaks were found in the co-cultures of H. gracilis with 323 

Paenibacillus. The significant mass features and the corresponding tentative metabolites can 324 

be found in Supplementary Table 10.  325 

 326 

Mass spectrometry imaging metabolomics 327 

LAESI-MSI was performed to visualize the localization of metabolites in their native 328 

environments in monoculture as well as during interaction without performing any extraction. 329 

Across all treatments, clear separation was observed amongst the samples for controls, 330 

monocultures and interactions (Fig. 8a).  An average of 1050 mass features was detected per 331 

treatment. To list mass features that could explain separation amongst the controls, 332 

monocultures and interactions, values of variable importance in projection (VIP) were 333 

calculated. The top 40 statistically significant mass features with a VIP score > 2.0 are shown 334 

in Fig. 8b. The mass features have been listed based on their decreasing influence on 335 

classification amongst the different treatments. To visualize the statistically significant mass 336 

features between monoculture and interaction samples in a pairwise manner, volcano plots were 337 

constructed (Fig. S3). Metabolites with a log2 fold change threshold of 1.0 on the x-axis and a 338 

t-test threshold (p value) of 1.0 on the y-axis were considered significantly differentially 339 

abundant between monoculture and interaction samples.  340 
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The volcano plot (Fig. S3a) for Hylemonella monoculture (HM) and the interaction of H. 341 

gracilis with Paenibacillus (PH) shows 53 mass features (in green) located in the upper right 342 

quadrant, indicating that their concentrations are significantly higher in HM as compared to 343 

PH. 18 mass features (in red) in the upper left quadrant of the plot have a significantly lower 344 

concentration in HM as compared to PH. The box-and-whisker plots for the four statistically 345 

significant differentially abundant metabolites selected from the volcano plot for the pair HM 346 

and PH are shown in Fig. S2a. The ion intensity maps for these statistically significant 347 

metabolites are shown alongside box-and-whisker plots. The ion intensity maps are color coded 348 

based on the standard rainbow color scale where a pixel in red represented a high concentration 349 

and the pixel in black represents no concentration of the selected metabolite. As can be seen, 350 

m/z 425.2886 and m/z 558.2832 show higher abundance in interaction sample PH, whereas m/z 351 

410.8587 and m/z 716.7610 display high abundance in HM as compared to PH.  352 

 353 

For the pairwise analysis performed for Paenibacillus monoculture (PM) and the interaction of 354 

H. gracilis with Paenibacillus (PH), 149 mass features (in green) displayed significantly high 355 

concentration in PM and 75 mass features (in red) had significantly low concentration in PM 356 

as compared to PH (Fig. S3b). This is also evident in the box-and-whisker plots and the ion 357 

intensity maps that are presented for four statistically significant metabolites belonging to this 358 

set (Fig. S2b).  359 

 360 

For the pairwise analysis for H. gracilis monoculture (HM) and the interaction of Serratia and 361 

H. gracilis (SH), 57 mass features (in green) displayed significantly high concentration in HM 362 

and 42 mass features had significantly low concentration in HM as compared to SH (Fig. S3c).  363 

The box-and-whisker plots along with the ion intensity maps for four statistically significant 364 

metabolites belonging to this set are shown in Fig. S2c. For the pairwise analysis for Serratia 365 

monoculture (SM) and the interaction of Serratia and H. gracilis (SH), 135 mass features (in 366 

green) displayed significantly high concentration in SM and 65 mass features had significantly 367 

low concentration in SM as compared to SH (Fig. S3d).  The box-and-whisker plots along with 368 

the ion intensity maps for four statistically significant metabolites belonging to this set are 369 

shown in Fig. S2d.  370 

 371 

To visualize the number of shared and unique metabolites amongst the monoculture and 372 

interaction samples Venn diagrams were plotted. The Venn diagram (Fig. S3e) for 373 

monocultures H. gracilis and Paenibacillus and their interaction shows 80 metabolites unique 374 
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to H. gracilis monoculture, 75 metabolites unique to Paenibacillus monoculture and 100 375 

metabolites that are unique during their interaction. 1062 metabolites were shared within these 376 

three treatments. Similarly, the Venn diagram (Fig. S3f) for monocultures H. gracilis and 377 

Serratia and their interaction shows 196 metabolites unique to H. gracilis monoculture, 48 378 

metabolites unique to Serratia monoculture and 120 metabolites that are unique during their 379 

interaction.  380 

 381 
Discussion 382 
 383 
Here we report the first time isolation of H. gracilis from a terrestrial soil sample. This 384 

bacterium passed a 0.1 µm filter, which suggests a very small cell size, justifying  ultra-small 385 

bacteria (26). However, against our expectation, the microscopical analysis revealed that this 386 

bacterium is not ultra-small in cell size but possesses a very thin diameter and showed the 387 

typical spiraled morphology known for these species (63-66). These observations are in line 388 

with previous research by Wang et al. showing that H. gracilis is capable of passing through 389 

filters of various pore sizes ranging from 0.45 µM to 0.1µM (67), most probably thanks to their 390 

cell shape and cell morphology.  391 

The bacterial interaction assays revealed that H. gracilis grows better when interacting with 392 

Paenibacillus sp. Or Serratia. H. gracilis cell numbers were higher when exposed to cell-free 393 

supernatants of Paenibacillus and Serratia, suggesting that H. gracilis interaction benefits are 394 

related to the metabolites released by these bacteria. We hypothesized that H. gracilis grows 395 

better in co-culture, either because growth is stimulated by signals produced by the other 396 

organism, or because the environment that is created by the other organism allows H. gracilis 397 

to make more efficient use of the metabolic pathways. Indeed, the metabolic experiments with 398 

BioLog™ plates showed that during interspecific interactions of H. gracilis with Paenibacillus 399 

or with Serratia, more carbohydrates could be utilized compared to the monocultures. This is 400 

an interesting observation, as it indicates that the interaction of bacteria can trigger the 401 

production of exo-enzymes enabling the degradation of carbohydrates, which the bacteria were 402 

not able to degrade in monoculture. 403 

We speculated that since H. gracilis grows better in interaction with other bacteria and is of 404 

relatively small cell size, it is possible that H. gracilis has evolved a genome streamlining 405 

strategy, i.e. the adaptive loss of genes for which functions it relies on interaction with other 406 

bacteria. Indeed, whole-genome sequencing of H. gracilis revealed a genome size of 3.82 Mbp. 407 

This is a relatively small genome size for free-living soil bacteria that typically have estimated 408 

average genome sizes of ~4.7 Mbp (34, 68-71).  The in silico antiSMASH (44) comparison of 409 
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genes that are part of secondary metabolite gene clusters showed that the H. gracilis genome 410 

contained only three gene clusters encoding the production of secondary metabolites 411 

(bacteriocins, terpenes, and aryl polyenes), which provides additional evidence of genome 412 

streamlining. Terpenes and aryl polyenes are known as protective compounds against abiotic 413 

stressors, while bacteriocins have antimicrobial activities against closely related bacteria (17, 414 

72-76). We hypothesized that H. gracilis has undergone genome streamlining, to be more 415 

competitive, by retaining only the most essential metabolic functions. Genome streamlining 416 

refers to the reduction of genome size by loss of genes, which may for instance evolve in 417 

symbiotic or co-occurring species when some genomic functions are redundant in one species 418 

and are functionally compensated by other species (Giovannoni et. al., 2014). Thus, gene loss 419 

and reduced genome size may cause dependency on other microbes in their surroundings, and 420 

this may explain a considerable part of the phenomenon of the uncultured microbial majority. 421 

Interestingly, most of the data supporting streamlining theory come from the study of bacteria 422 

from aquatic environments, where bacterial cell density is lower. However, the same process 423 

may be important in high density soil microbial communities.  424 

 425 

To understand the mechanisms of interaction, we performed transcriptome analysis on 426 

the interaction pairs of H. gracilis with Serratia and Peanibacillus. Interestingly, more 427 

significantly differentially expressed genes were induced by H. gracilis in the other two 428 

competing bacteria as compared to the transcriptomic changes in H. gracilis induced by 429 

Serratia or Paenibacillus (Supplementary Table 2). Several processes, enriched according to 430 

GO term enrichment analysis, could be part of a mechanism(s) mediating interactions between 431 

H. gracilis and Serratia and Paenibacillus, for example genes related to chemotaxis. Moreover, 432 

the GO terms for signal transduction, secondary metabolite production and, cell motility were 433 

enriched in the transcriptome of H. gracilis during the interaction with Paenibacillus, 434 

suggesting that chemotaxis is an important feature during interspecific interactions between 435 

these two bacterial taxa (77, 78). In addition, Iron-sulfur (Fe-S) complex assembly GO terms 436 

were enriched in the transcriptomes of H. gracilis during the interaction with Serratia and 437 

Paenibacillus. Fe-S clusters are important for sustaining fundamental life processes: they 438 

participate in electron transfer, substrate binding/activation, iron or sulfur storage, regulation of 439 

gene expression, and enzyme activity (80, 81). This up-regulation could indicate that in co-440 

culture, the interacting bacteria releases metabolites that H. gracilis could use for synthesizing 441 

Fe-S complexes. It is also possible that iron-sulfur complex assembly is activated during 442 

competition with the interacting bacteria for sulfur, or iron collection (82-85).  443 
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The metabolic pathway analysis showed that the loss of genes in H. gracilis does not 444 

appear to have resulted in functional loss of metabolic pathways. However, shedding non-445 

necessary redundant genes in several metabolic pathways could explain why and how the 446 

genome of H. gracilis has become so small. Nevertheless, the lost genes are not essential to 447 

complete metabolic pathways and only appear to result in limited options in certain metabolic 448 

pathways. The RAST analysis showed that all metabolic pathways remain feasible. The only 449 

exception is EC term 5.2.1.1 (maleate isomerase) which makes it not clear which alternative 450 

pathway can be used by H. gracilis to synthesize fumarate. There are several ways to synthesize 451 

fumarate, e.g. in the glycolysis pathway (66, 92, 93) and in the citric acid cycle (66, 94). The 452 

performed metabolomics analysis revealed the production of specific antimicrobial compounds 453 

such as pyrollnitrin (Serratia) and 2,5-bis(1-methylethyl)-pyrazine (Paenibacillus) which are 454 

well known for their broad-spectrum antimicrobial activity (95-99). However, the produced 455 

antimicrobial compounds didn’t show activity against H. gracilis: in both interactions, H. 456 

gracilis showed increased growth when growing in co-culture with either Paenibacillus or 457 

Serratia.  458 

The understanding of natural metabolites that mediate interactions between organisms 459 

in natural environments is the key to elucidate ecosystem functioning. The detection and 460 

identification of the compounds that mediate such interactions is still challenging. Techniques 461 

such as mass spectrometry imaging (MSI) provide new opportunities to study environmentally 462 

relevant metabolites in their spatial context (35-37). In this study, the metabolomics was 463 

performed using three independent approaches namely DART-MS analysis, GC/MS-Q-TOF 464 

analysis and, ambient imaging mass spectrometry (LAESI- MS) from living bacterial colonies. 465 

The Imaging MS analysis revealed that several mass features were detected in higher abundance 466 

during the interaction of H. gracilis with Paenibacillus, these mass features were m/z 425.2886 467 

and m/z 558.2832. However, the here used technology (LAESI-MSI) is not suitable for 468 

unambiguous compound annotation, but LAESI- MSI can still be used for putative compound 469 

annotation. To annotate the detected mass features to compounds with high certainty, LAESI 470 

mass spectrometry imaging should be coupled with ion mobility separation as suggested by 471 

(100-102). Yet, LAESI-MSI can help to spatially distinguish the produced secondary 472 

metabolites of living bacterial colonies with limited sample preparation and can give insight 473 

into the spatial distribution of metabolites. 474 

Several studies indicate that the volatile composition of the volatiles greatly depends on biotic 475 

interactions and on growth conditions (15, 19, 59, 103, 104). Here, a higher number of volatile 476 

compounds were detected in the bacterial interaction pairs, most likely due to the combination 477 
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of emitted volatiles of the interacting bacteria. The high amount of sulfur-containing 478 

compounds indicates that these compounds are commonly produced by bacteria and might play 479 

an important role in signaling during interspecific interactions (105, 106). However, no novel 480 

volatile compounds during the co-cultivation of the three bacteria were detected. 481 

Overall, our study showed that H. gracilis is able to pass through 0.1 µM filter, and is present 482 

in terrestrial environments. The growth and behavior of H. gracilis were dependent on the 483 

interacting partner and they might be metabolically dependent on the neighboring bacteria. At 484 

the same time, H. gracilis is able to change the behaviour of the interacting bacteria without 485 

direct cell-cell contact. This study have laid a good bases for isolating soil bacterial with a small 486 

cell size and for exploring interactions between bacteria with different cell and genome size. 487 

Deciphering such interactions is key to understanding ecosystem functioning and the assembly 488 

of microbial communities. 489 
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 502 
Figure legends 503 

Figure 1: Microscopy pictures of Hylemonella gracilis (a) colonies on agar plates captured 504 

at 20x magnification and (b) single bacterial cells captured at 400 X magnification. 505 

 506 

Figure 2: Colony counts (CFU/mL) revealed after 5 days of incubation during the plate 507 

based interaction experiment (a) and (b) revealed during the cell free supernatant (CFS) 508 

exposure experiment. Abbreviations: H. gracilis monoculture (HM), Paenibacillus sp. AD87 509 

monoculture (PM), Paenibacillus sp. AD87 – H. gracilis coculture (PH), S. plymuthica 510 

monoculture (SM), S. plymuthica - H. gracilis coculture (SH). H. gracilis - Paenibacillus sp. 511 

AD87 coculture (HP), H. gracilis – S. plymuthica coculture (HS).  Significant differences in 512 
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cell counts (CFU/mL) between co-cultures (treatment) and monocultures (controls) are 513 

indicated by asterisks (ONE-WAY ANOVA, post-hoc TUKEY test). 514 

 515 

Figure 3: Results overview of the Biolog EcoPlateTM experiment. The EcoPlate contains 31 516 

different carbon sources, bacteria were inoculated in monoculture or in pairwise combinations. 517 

Colour codec: blue=carbon source could be utilized in monoculture, yellow= carbon source 518 

could be utilized in co-culture. Abbreviations: Paenibacillus sp. AD87 monoculture (PM), 519 

Paenibacillus sp. AD87 - H. gracilis coculture, (PH) H. gracilis monoculture (HM), S. 520 

plymuthica PRI-2C monoculture (SM), S. plymuthica PRI-2C -           H. gracilis coculture 521 

(SH). 522 

 523 

Figure 4: In silio comparison of biosynthetic gene clusters (BGCs) present in the three soil 524 

bacteria based on antismash in silico analysis (https://antismash.secondarymetabolites.org/). 525 

From left to right (a) Paenibacillus sp. AD87 with a genome size of 7.0 MBp, n=10 gene 526 

clusters for secondary metabolites, (b) S. plymuthica PRI-2C with a genome size of 5.4 MBp, 527 

n=9 gene clusters for secondary metabolites and (c) H. gracilis with a genome size of 3.8 MBp, 528 

n= 3 gene clusters for secondary metabolites.  529 

 530 

Figure 5: Results of the comparison analysis carried out with the RAST pipeline 531 

(https://rast.nmpdr.org/ ) (a) Venn- diagram showing the results for the number (n) of expressed 532 

genes present solely in monoculture and the number of shared expressed genes for the 533 

monocultures of Hylemonella (HM), Paenibacillus monoculture (PM) and Serratia 534 

monoculture (SM) and the interaction of Hylemonella with Paenibacillus (PH) and for the 535 

interaction of Hylemonella with Serratia (SH). (b) Boxplot showing number (n) of expressed 536 

genes present in each RAST subsystem category.  537 

 538 

Figure 6: Pie-charts representing up-regulated genes identified by differential gene 539 

expression analysis and COG annotation (a) Hylemonella gracilis monoculture gene 540 

expression level (b) H. gracilis in co-culture with Paenibacillus sp. AD87; (c) H. gracilis co-541 

culture with S. plymuthica PRI-2C. In the co-culture of H. gracilis with Paenibacillus sp. AD87, 542 

genes related to signal transduction (T) were the category with the most differentially expressed 543 

genes. In the co- culture of H. gracilis with S. plymuthica PRI-2C genes related to signal 544 

transduction (T), translation, ribosome structure and biogenesis (J) were the most prevalent 545 

differentially expressed gene categories. 546 
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Figure 7: PLSD-A plots of the metabolomics data (a) PLS-DA 2D- plots of volatiles emitted 547 

by monocultures and pairwise combinations of H. gracilis, Paenibacillus and Serratia 548 

plymuthica after ten days of inoculation, time point (t=10 days) (b) PLS-DA 2D- plots of the 549 

analysed DART-MS data of monocultures and mixtures of H. gracilis, Paenibacillus sp. AD87 550 

and Serratia plymuthica PRI-2C after ten days of inoculation, time point (t=10 days). 551 

 552 

Figure 8: PLS-DA plots of the first 40 significant mass features observed after analysis of 553 

the LAESI-MSI data. (a) PLS-DA score plot for H. gracilis monoculture (HM), Paenibacillus 554 

sp. AD87 monoculture (PM), Paenibacillus sp. AD87 – H. gracilis coculture (PH), S. 555 

plymuthica PRI-2C monoculture (SM), S. plymuthica PRI-2C - H. gracilis coculture (SH) and 556 

TSBA control (TSBA). (b) First 40 statistically significant features identified by PLS-DA based 557 

on Variable Importance in Projection (VIP) score. The colored boxes on the right indicate the 558 

relative concentrations of the corresponding metabolite in each group under study. 559 

 560 
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Table 1: Genome assembly statistics and outcome of the in silico analysis on secondary 

metabolite gene clusters of H. gracilis, Serratia plymuthica PRI-2C and Paenibacillus sp. 

AD87. 

 
 
 

Feature / Organism Hylemonella gracilis S. plymuthica PRI-2C Paenibacillus  sp. AD87

contigs 1 1 30
bases 3822245 5474685 7086713
number of chromosomes 1 1 1
size chromosome 1 3822245 5464425 7086713
CDS 3648 4929 6216
GC- content (%) 65.1 55.7 46.2
number of RNAs 53 109 146
genes 3625 5284 6375

in silico detected secondary 
metabolite clusters (antiSMASH) 3 9 10

Total genome size (bases) 3822245 5474685 7086713
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Table 2: Tentatively identified volatile organic compounds (VOCs) produced by a H. 1 

gracilis, Serratia plymuthica PRI-2C and Paenibacillus sp. AD87 strains in mono- and co-2 

cultures. 3 

 4 

Abbreviations: 5 

HM= H. gracilis monoculture, SM= Serratia plymuthica PRI-2C monoculture, PM= 6 

Paenibacillus sp. AD87 monoculture, PH= Paenibacillus sp. AD87 and H. gracilis co-7 

culture, SH= Serratia plymuthica PRI-2C and H. gracilis co-culture 8 

# = Compound number 9 

RT* = Retention time, the RT value stated is the average of three technical replicates. 10 

ELRI** = Experimental linear retention index value, the RI value stated is the average of 11 

three replicates. 12 

p-value***= statistical significance (peak area and peak intensity) 13 

 14 

# Compound name RT* ELRI** p-value***
chemical 

class
HM SM SH PM PH

1 2-methylfuran 2,18 738 0,041 Furan X X X X

2 2-methylpropanoic Acid 3,01 755 0,014 Alkenes X X X X X

3 mix pentanal + heptane 3,21 760 0,008 Alkenes X X X

4 methyl thycocyanate 3,44 764 0,020 Thioesters X X X X X

5 1-Pentanol 3,95 772 0,012 Alkenes X X X X

6 dimethyl disulfide 4,01 775 0,012 Sulfides X X X X X

7 unknown compound 1 4,15 778 0,003 - X X X

8 toluene 4,44 784 0,014 Benzenoids X X X X X

9 methyl Isovalerate 4,76 789 0,018 Terpenes X X X X

10 cyclohexane 8,07 852 0,031 Alkenes X X X X

11 dimethyl trisulfide 11,35 914 0,013 Sulfides X X X X X

12 benzonitrilie 12,06 928 0,037 Alkenes X X X X X

13 2-Ethyl-4-methylpentan-1-ol 17,26 1026 0,015 Alkenes X X X X

14 2,5-bis(1-methylethyl)-pyrazine 20,56 1090 0,031 Pyrazines X X

15 undecane 21,31 1100 0,014 Alkenes X X X X

16 unknown compound 2 24,34 1140 0,013 - X

17 unknown compound 3 25,92 1160 0,011 - X X X X X

19 unknown compound 4 26,40 1165 0,018 - X X X X

20 unknown compound 5 26,90 1170 0,003 - X X X

21 alpha-terpineol 27,34 1178 0,016 Terpenes X X X X X

22 undecane, 2,6-dimethyl 28,27 1190 0,004 Benzenoids X X X X X

23 gamma-terpineol 28,42 1192 0,006 Terpenes X X

24 terpene like compound 1 29,32 1202 0,012 Terpenes X X

25 terpene like compound 2 31,49 1231 0,009 Terpenes X X X X X

16 15 20 20 19

Detected in treatment

Number of detected compounds (n)
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Figure 1: Microscopy pictures of Hylemonella gracilis (a) colonies on agar plates captured 

at 20x magnification and (b) single bacterial cells captured at 400 X magnification. 
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Figure 2: Colony counts (CFU/mL) revealed after 5 days of incubation during the plate 

based interaction experiment (a) and (b) revealed during the cell free supernatant (CFS) 

exposure experiment. Abbreviations: H. gracilis monoculture (HM), Paenibacillus sp. 

AD87 monoculture (PM), Paenibacillus sp. AD87 – H. gracilis coculture (PH), S. plymuthica 

monoculture (SM), S. plymuthica - H. gracilis coculture (SH). H. gracilis - Paenibacillus sp. 

AD87 coculture (HP), H. gracilis – S. plymuthica coculture (HS).  Significant differences in 

cell counts (CFU/mL) between co-cultures (treatment) and monocultures (controls) are 

indicated by asterisks (ONE-WAY ANOVA, post-hoc TUKEY test). 
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Figure 3: Results overview of the Biolog EcoPlateTM experiment. The EcoPlate contains 

31 different carbon sources, bacteria were inoculated in monoculture or in pairwise 

combinations. Colour codec: blue=carbon source could be utilized in monoculture, yellow= 

carbon source could be utilized in co-culture. Abbreviations: Paenibacillus sp. AD87 

monoculture (PM), Paenibacillus sp. AD87 - H. gracilis coculture, (PH) H. gracilis 

monoculture (HM), S. plymuthica PRI-2C monoculture (SM), S. plymuthica PRI-2C -           

H. gracilis coculture (SH). 
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Figure 4: In silio comparison of biosynthetic gene clusters (BGCs) present in the three 

soil bacteria based on antismash in silico analysis 

(https://antismash.secondarymetabolites.org/). From left to right (a) Paenibacillus sp. AD87 

with a genome size of 7.0 MBp, n=10 gene clusters for secondary metabolites, (b) S. 

plymuthica PRI-2C with a genome size of 5.4 MBp, n=9 gene clusters for secondary 

metabolites and (c) H. gracilis with a genome size of 3.8 MBp, n= 3 gene clusters for 

secondary metabolites.  
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Figure 5: Results of the comparison analysis carried out with the RAST pipeline 

(https://rast.nmpdr.org/ ) (a) Venn- diagram showing the results for the number (n) of 

expressed genes present solely in monoculture and the number of shared expressed genes for 

the monocultures of Hylemonella (HM), Paenibacillus monoculture (PM) and Serratia 

monoculture (SM) and the interaction of Hylemonella with Paenibacillus (PH) and for the 

interaction of Hylemonella with Serratia (SH). (b) Boxplot showing number (n) of expressed 

genes present in each RAST subsystem category.  
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Figure 6: Pie-charts representing up-regulated genes identified by differential gene 

expression analysis and COG annotation (a) Hylemonella gracilis monoculture gene 

expression level (b) H. gracilis in co-culture with Paenibacillus sp. AD87; (c) H. gracilis co-

culture with S. plymuthica PRI-2C. In the co-culture of H. gracilis with Paenibacillus sp. 

AD87, genes related to signal transduction (T) were the category with the most differentially 

expressed genes. In the co- culture of H. gracilis with S. plymuthica PRI-2C genes related to 

signal transduction (T), translation, ribosome structure and biogenesis (J) were the most 

prevalent differentially expressed gene categories. 
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Figure 7: PLSD-A plots of the metabolomics data (a) PLS-DA 2D- plots of volatiles 

emitted by monocultures and pairwise combinations of H. gracilis, Paenibacillus and Serratia 

plymuthica after ten days of inoculation, time point (t=10 days) (b) PLS-DA 2D- plots of the 

analysed DART-MS data of monocultures and mixtures of H. gracilis, Paenibacillus sp. 

AD87 and Serratia plymuthica PRI-2C after ten days of inoculation, time point (t=10 days). 
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Figure 8: PLS-DA plots of the first 40 significant mass features observed after analysis 

of the LAESI-MSI data. (a) PLS-DA score plot for H. gracilis monoculture (HM), 

Paenibacillus sp. AD87 monoculture (PM), Paenibacillus sp. AD87 – H. gracilis coculture 

(PH), S. plymuthica PRI-2C monoculture (SM), S. plymuthica PRI-2C - H. gracilis coculture 

(SH) and TSBA control (TSBA). (b) First 40 statistically significant features identified by 

PLS-DA based on Variable Importance in Projection (VIP) score. The colored boxes on the 

right indicate the relative concentrations of the corresponding metabolite in each group under 

study. 
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