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Abstract 45	

Microbial community analysis of aquatic environments showed that an important component 46	

of its microbial diversity consists of bacteria with cell sizes of ~0.1 µm. Such small bacteria 47	

can show genomic reductions and metabolic dependencies with other bacteria. However, so 48	

far no study investigated if such bacteria exist in terrestrial environments like e.g. soil. 49	

 50	

Here, we isolated soil bacteria that passed through a 0.1 µm filter, by applying a novel 51	

isolation and culturing approach. The complete genome of one of the isolates was sequenced 52	

and the bacterium was identified as Hylemonella gracilis. A set of co-culture assays with 53	

phylogenetically distant soil bacteria with different cell and genome sizes was performed. The 54	

co-culture assays revealed that H. gracilis grows better when interacting with other soil 55	

bacteria like Paenibacillus sp. AD87 and Serratia plymuthica. Transcriptomics and 56	

metabolomics showed that H. gracilis was able to change gene expression, behavior, and 57	

biochemistry of the interacting bacteria without direct cell-cell contact. 58	

 59	

Our study indicates that bacteria are present in the soil that can pass through a 0.1 µm filter. 60	

These bacteria may have been overlooked in previous research on soil microbial 61	

communities. Such small bacteria, exemplified here by H. gracilis, are able to induce 62	

transcriptional and metabolomic changes in other bacteria upon their interactions in soil. In 63	

vitro, the studied interspecific interactions allowed utilization of growth substrates that could 64	

not be utilized by monocultures, suggesting that biochemical interactions between 65	

substantially different sized soil bacteria may contribute to the symbiosis of soil bacterial 66	

communities. 67	

 68	

 69	

 70	

 71	

 72	

 73	

 74	

 75	
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Importance 76	

Analysis of aquatic microbial communities revealed that parts of its diversity consist of 77	

bacteria with cell sizes of ~0.1 µm. Such bacteria can show genomic reductions and metabolic 78	

dependencies with other bacteria. So far, no study investigated if such bacteria exist in 79	

terrestrial environments e.g. soil.  By applying a novel isolation method, we show that such 80	

bacteria also exist in soil. The isolated bacteria was identified as Hylemonella gracilis. 81	

 82	

Co-culture assays with phylogenetically different soil bacteria revealed that H. gracilis grows 83	

better when co-cultured with other soil bacteria. Transcriptomics and metabolomics showed 84	

that H. gracilis was able to change gene expression, behavior, and biochemistry of the 85	

interacting bacteria without direct contact. Our study revealed that bacteria are present in soil 86	

that can pass through 0.1 µm filters. Such bacteria may have been overlooked in previous 87	

research on soil microbial communities and may contribute to the symbiosis of soil bacterial 88	

communities. 89	

 90	

Introduction 91	

Bacteria are ubiquitous living organisms with various cell shapes and sizes surrounding us in 92	

all environments (1, 2).  Soil is the most complex habitat harboring the largest diversity and 93	

density of bacteria known to date (cell densities ranging from 107 to 1010 cells/g of soil (3-5).  94	

Soil bacteria are part of a community where they are in constant interaction with their own 95	

and other species (6-8). Bacteria produce and release a plethora of metabolites into their 96	

environment. In this way, they not only chemically modify their niche but also affect the 97	

behavior and the secondary metabolite production of nearby bacteria (9-11). Soil bacteria are 98	

known to produce a wide range of soluble and volatile secondary metabolites with different 99	

physicochemical and biological properties (7, 12-14). In contrast to soluble compounds, 100	

volatile organic compounds (VOCs) are rather small molecules (< 300 Da) that can diffuse 101	

easily through air- and water-filled soil pores (15-17). These physicochemical properties 102	

make VOCs ideal metabolites for long- distance communication and interactions between soil 103	

microorganisms (18-21).  104	

In aquatic environments, bacteria are naturally found at lower cell densities compared 105	

to soil (103 - 106 cells/mL) (22-24). Recent studies have shown that a significant component 106	

of aquatic microbial diversity consists of bacteria with small cell sizes of about ~0.1 µm (25-107	

27). However, little is known if bacteria with such cell sizes exist in soil environments, for 108	

instance in water-filled soil pores. One can assume that a small cell size can be an advantage 109	
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in challenging environments like soil. However, the distribution of microorganisms in soil is 110	

influenced by its water and moisture content, and a low soil moisture content leads to lower 111	

connectivity between soil pores, and thus to a lower number of accessible micro-habitats.		112	

Small bacterial cell size is often linked to a small genome size caused by genome 113	

streamlining (28). Recent metagenomics studies suggest that genome streamlining is 114	

ubiquitous in bacteria (29, 30). In some cases, the primary metabolism of one organism can be 115	

directly built on the primary metabolism of another organism, known as syntrophic 116	

relationships (31, 32).  The Black Queen Hypothesis states that genome-streamlined 117	

organisms have an evolutionary advantage because of the loss of genes whose function can be 118	

replaced by bacteria in the surrounding environment, effectively conserving energy (33). 119	

Since bacteria with fewer genes have less adaptive capacity compared to bacteria with more 120	

genes, many of them are expected to depend on specific environmental conditions or on the 121	

presence of other specific organisms (34) to produce metabolites that support their 122	

persistence.  123	

Here, we aimed to explore if bacteria that are able to pass through 0.1 µm filters are 124	

present in soil, and if such bacteria are cultivable. We further investigated their interaction 125	

with phylogenetically different bacteria commonly occurring in soil. The major research 126	

questions were if, and how inter-specific interactions between bacteria that pass a 0.1 µm 127	

filter and other common soil bacteria that cannot pass 0.1 µM filters affected their fitness, 128	

behavior, gene expression, and the production of secondary metabolites. 129	

 130	

Materials and Methods 131	

Isolation and identification of bacteria that pass through 0.1 µm filters	132	

Isolation of H. gracilis from soil 133	

After removing the grassland vegetation, a topsoil core was collected and mixed, a sample of 134	

10 g was suspended in 90 ml of 10 mM Phosphate-buffer (pH 6.5) and shaken with gravel (2-135	

4 mm) at 250 rpm for 45 min. The extract was filtered through sterile gauze pads and 136	

subsequently through sterile Whatmann 1mm paper filter using Buchner funnel. Purified 137	

extract was filtered again through a syringe filter 0.2 µM and afterwards through 0.1 µM filter 138	

(GE-Healthcare). The filtered extract was plated on 1/10th TSBA plates immediately after 139	

isolation and incubated at 25 °C (Supplementary Figure 1). The plates were inspected daily 140	

using a stereomicroscope (Leica M205C) screening for bacteria colonies.   141	

Bacteria and culture conditions  142	
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The bacterial strains used in this study are the Gram-negative strain S. plymuthica PRI-2C 143	

(gamma-Proteobacteria) (35), the Gram-positive strain Paenibacillus sp. AD87 (Firmicutes) 144	

(10, 36, 37) and the Gram-negative H. gracilis isolate NS1 (beta-Proteobacteria). The 145	

bacterial isolates were pre-cultured from -80 °C glycerol stocks on 1/10th TSBA (38) or on 146	

LB-A plates (H. gracilis) (LB-Medium Lennox, Carl Roth GmbH + Co. KG, 20 gL-1 Bacto 147	

Agar) and incubated at 24 °C prior application. All bacterial isolates are listed in 148	

Supplementary Table 1. 149	

 150	

Identification of H. gracilis 151	

For the identification of H. gracilis 16S rRNA PCR was performed from grown colonies in a 152	

50 µl PCR- GoTaq™ green master mix (Promega Corp. Madison, USA cat# M712). For 16S 153	

rRNA gene amplification the following primers were used: forward primer 27f (5’- AGA 154	

GTTT GAT CMT GGC TCAG -3’), reverse primer 1492r (5’- GRT ACC TTG TTA CGA 155	

CTT -3’), amplifying ~1465 bp from the 16S rRNA gene (39, 40) (modified). All PCR 156	

reactions were performed on a BIO-RAD C1000 Touch™ PCR machine (BIO-RAD, 157	

Veenendaal, the Netherlands) with these settings: initial cycle 95 °C for 3 min. and 30 cycles 158	

of 94 °C for 30 sec., 55 °C for 45 sec. and 72 °C for 1 min. and final extension at 72 °C for 5 159	

minutes. The PCR products were purified using the Qiagen PCR purification kit and sent to 160	

MACROGEN (MACROGEN Europe, Amsterdam, the Netherlands for 16S rRNA 161	

sequencing. 162	

 163	

Microscopy 164	

Microscopy pictures of H. gracilis cells were taken at 400-fold magnification with an Axio 165	

Imager M1 microscope (Carl Zeiss, Germany) under phase-contrast illumination with an 166	

AxioCam MRm camera. Macroscopic colony pictures of H. gracilis were taken with an 167	

OLYMPUS Binocular at 20 X magnification. Images were analyzed with AXIO VISION v4.7 168	

(Carl Zeiss Imaging Solutions GmbH, Germany).  169	

 170	

Bacterial interactions assays 171	

After four-days of pre-culture, a single colony of Paenibacillus sp. AD87 and S. plymuthica 172	

PRI-2C and H. gracilis was picked and inoculated in 20 mL 1/10th TSB (Paenibacillus sp. 173	

AD87 and S. plymuthica PRI-2C) and grown overnight at 24 °C at 220 rpm. For the 174	

inoculation of H. gracilis a single colony was picked from a TSBA plate and inoculated in 20 175	

mL LB-medium and grown for 3 days at 24 °C, 200 rpm. For the interaction assay an 176	
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inoculation mix of each bacterial strain (Paenibacillus sp. AD87, S. plymuthica PRI-2C, H. 177	

gracilis) was prepared by diluting the bacterial isolates in 20 mL of 10 mM Phosphate-buffer 178	

(pH 6.5) to an OD600 of 0.005 (Paenibacillus sp. AD87 and S. plymuthica PRI-2C) or to an 179	

OD600 of 0.05 (H. gracilis), which corresponds to 10^5 CFU/mL. A droplet of 10 µl was 180	

added in the middle of a 6 cm diameter Petri dish (monocultures) or next to each other in a 181	

distance of ~0.5 cm (pairwise interactions). All treatments were performed in triplicates on 182	

1/10th TSBA plates incubated at 24 °C. After the growth time of 3 days the bacteria were 183	

scratched and washed from the plates by using sterile cell scratchers and Phosphate buffer. 184	

For the enumeration of the cell counts (CFU/mL) dilution series of the scratched bacteria 185	

were prepared and plated in triplicates on 1/10th TSBA plates and grown for 48 hours. 186	

Enumeration was carried out on an aCOlyte Colony Counter (Don Whitley Scientific, 187	

Meintrup DWS Laborgeräte GmbH, Germany). 188	

 189	

Enumeration of growth inhibitory or growth promoting effects of cell-free supernatants 190	

of Paenibacillus sp. AD87and S. plymuthica PRI-2C on the growth of H. gracilis  191	

A bacterial growth assay in liquid media supplemented with cell-free supernatants (CFS) of 192	

Paenibacillus sp. AD87 and S. plymuthica PRI-2C was conducted. For the assay single 193	

colonies of Paenibacillus sp. AD87, S. plymuthica PRI-2C and H. gracilis were inoculated in 194	

20 mL 1/10th TSB (Paenibacillus sp. AD87 and S. plymuthica PRI-2C) or in 20 mL LB-195	

medium (H. gracilis) and grown overnight at 24 °C, 220 rpm or for three days (H. gracilis). 196	

For the preparation of Paenibacillus sp. AD87 and S. plymuthica PRI-2C cell-free supernatant 197	

(CFS) the grown cultures were centrifuged at 5000 rpm for 20 minutes (at room temperature) 198	

and filtered through 0.2 µM filters (GE Healthcare). For the assay, H. gracilis was inoculated 199	

into 20 mL liquid LB- media at an OD600 of 0.05. The growth media was then supplemented 200	

either with 20 % (v/v) CFS of Paenibacillus sp. AD87 or S. plymuthica PRI-2C or with 20 % 201	

(v/v) of filter sterilized liquid 1/10th TSB media (control). The cultures were incubated at 24 202	

°C at 220 rpm for 7 days and the bacterial growth was monitored by optical density 203	

(absorbance at 600nm) measurements and by plate counting. After five days of growth, the 204	

CFU/ml of H. gracilis grown in presence of CFS of Paenibacillus sp. AD87 or S. plymuthica 205	

PRI-2C were enumerated by plate counting. For this, the cultures were sampled and dilution 206	

series were prepared in triplicates and a volume of 100 µl of each serial dilution was plated in 207	

three replicates with a disposable Drigalski spatula on 1/10th TSBA plates. CFU Enumeration 208	

was carried out on an aCOlyte Colony Counter (Don Whitley Scientific, Meintrup DWS 209	

Laborgeräte GmbH, Germany). 210	
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DNA isolation and genome sequencing of H. gracilis 211	

Genomic DNA of H. gracilis was extracted using a QIAGEN Genomic-tip 500/G DNA kit 212	

Qiagen, cat# 10262 . Genome sequencing was performed on the PacBio RS II platform 213	

(Pacific Biosciences, Menlo Park, CA, USA) using P6-C4 chemistry at the Institute for 214	

Genome Sciences (IGS), Baltimore, Maryland, USA. The sequencing resulted in a total of 215	

70,101 reads with N50 of 17 309 nucleotides. The PacBio raw sequences were analyzed using 216	

SMRT portal V2.3.0.140936 p.4150482. Sequences were assembled de novo with the 217	

RS_HGAP_assembly 3 software (Pacific Biosciences, Menlo Park, CA, USA) with default 218	

settings on an estimated genome size of 3.8 Mbp. The resulting assemblies were subjected to 219	

scaffolding using the RS_AHA_scaffolding 1 software. The genome assembly properties are 220	

shown in Table 1. Final contigs were annotated using PROKKA V1.11 (41) and InterproScan 221	

5.16 55.0  (42). The whole genome sequence was submitted as Hylemonella gracilis strain 222	

NS1 to NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) under accession # 223	

CP031395. 224	

 225	

In silico analysis of secondary metabolite gene clusters 226	

For in silico analysis of secondary metabolite gene clusters, the genome sequences of H. 227	

gracilis, Paenibacillus sp. AD87 and S. plymuthica PRI-2C were submitted to the 228	

antiSMASH web server (http://antismash.secondarymetabolites.org/) version 4.0 (43).  229	

RNA isolation and sequencing 230	

Sampling for total RNA extractions was performed in triplicates after five and ten days of 231	

incubation on bacteria grown on 1/10th TSBA plates either in co-culture or monoculture as 232	

described previously (Bacterial interactions assays on 1/10th TSBA plates). For the isolation 233	

of bacterial cell material a volume of 1 mL of 10 mM phosphate buffer (pH 6.5) was added to 234	

the surface of the 1/10th TSBA plates and grown bacterial cells were suspended from the plate 235	

surface with a disposable cell scratcher (VWR international B.V., the Netherlands). For total 236	

RNA extraction the obtained cell suspension was transferred to a tube containing RNA 237	

Protect Bacteria Reagent (Qiagen, cat# 76506) and centrifuged for 20 min. at 20,000g, 4 °C. 238	

The supernatant was discarded and the resulting cell pellets were stored at -80 °C. Total RNA 239	

was extracted using the Aurum Total RNA Mini Kit (BIO-RAD) according to the 240	

manufacturer’s protocol. Samples were treated with TURBO DNA free Kit (AMBION) 241	

according to the manufacturer’s protocol. The RNA concentration and quality was checked on 242	

a NanoDrop Spectrophotometer (ND 2000, Thermo Fisher Scientific, the Netherlands) and on 243	

a 1.0 % TBE agarose gel. Samples were subjected to RNA sequencing at the Erasmus Center 244	
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for Biomics (www.biomics.nl), Erasmus MC, Rotterdam, The Netherlands using the Illumina 245	

HiSeq 2500 sequencing platform. The obtained reads were checked for quality using Fastq. 246	

For the estimation of the transcripts, the filtered sequences were aligned against the cDNA 247	

sequences of H. gracilis, Paenibacillus sp. AD87 and S. plymuthica PRI-2C using Bowtie 2 248	

(2.2.5) (44) with the following settings: -- no-mixed -- no-discordant -- gbar 1000 – end-to-249	

end. Transcript abundance was calculated using RSEM V1.1.26 (45) and differential 250	

expression between the treatments was calculated using edgeR V3.2 package in the R 251	

environment (46-48).  252	

 253	

Pathway annotations 254	

Please see Supplementary Methods. 255	

 256	

Exploration of missing genes and genome streamlining in Hylemonella 257	

RAST annotations of S. plymuthica PRI-2C, Paenibacillus sp. AD87 and H. gracilis were 258	

used to compare their genomes and to explore the genomes for missing genes in metabolic 259	

pathways (http://rast.nmpdr.org) (49-51). The missing gene sequences were extracted and 260	

assigned with KEGG Orthology (52, 53). Presence/absence of genes belonging to metabolic 261	

pathways was compared across the three genomes to identify shared genes and pathways and 262	

to determine incomplete metabolic pathways in H. gracilis. 263	

 264	

Catabolic profiling 265	

To determine the carbon source usage abilities of H. gracilis and Paenibacillus sp. AD87and 266	

S. plymuthica PRI-2C strains, Biolog EcoPlate (Labconsult S.A.- N.V., Bruxelles, Belgium) 267	

assays were performed (54, 55).  Bacteria were cultured in monoculture or in co-culture in 268	

single wells of the Biolog EcoPlate™. A, single colony of each bacterial strain was picked 269	

and inoculated in 15 mL 1/10th TSB or 15 mL LB- liquid media. Bacteria were grown 270	

overnight (Paenibacillus sp. AD87 and S. plymuthica PRI-2C) or for two days (H. gracilis) at 271	

24 °C at 250 rpm. Grown bacteria cultures were washed twice by centrifugation at 4.500 rpm 272	

for 15 minutes at room temperature, the supernatant discarded and the pellet was washed and 273	

re-suspended in 5 mL of 10 mM phosphate buffer.  The re-suspended cultures were diluted to 274	

an OD600 of 0.005 in 20 mL of 10 mM phosphate buffer either in monoculture or in co-275	

culture.  For the experiment Biolog EcoPlate™ were inoculated with 100 µl of each bacterial 276	

inoculation suspension (monocultures or co-cultures) in each well. For each bacterial 277	

monoculture one Biolog EcoPlate™ was inoculated, as well for each co-cultivation pair (S. 278	
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plymuthica PRI-2C with H. gracilis and Paenibacillus sp. AD87with H. gracilis). Plates were 279	

incubated for 1 week and absorbance was measured at 590 nm every 24 hours on a BIOTEK 280	

plate reader to determine the ability of the bacterial cultures to use the carbon sources present 281	

in the wells.  282	

 283	

Trapping of volatile organic compounds and GC-Q-TOF analysis 284	

Please see Supplementary Methods.  285	

 286	

Ambient mass-spectrometry imaging LAESI-MS data analysis 287	

For LAESI-MS analysis a single colony of each bacterial isolate was picked and inoculated in 288	

20 mL 1/10th TSB (Paenibacillus sp. AD87 and S. plymuthica PRI-2C) and grown overnight 289	

at 24 °C at 220 rpm. For the inoculation of H. gracilis a single colony was picked from plate 290	

and inoculated in 20 mL LB-medium and grown for three days at 24 °C at 200 rpm. The 291	

inoculation mix was prepared by diluting the bacterial isolates in 20 mL of 10 mM Phosphate-292	

buffer (pH 6.5) to an OD600 of 0.005. The inoculum mix was pulse- vortexed for 30 sec. and a 293	

droplet of 10 µl was added in the middle of a 6 cm diameter Petri dish (monocultures) or next 294	

to each other in a distance of approx. 0.5 cm (pairwise interactions). All treatments were 295	

inoculated in triplicates on 1/10th TSBA and incubated at 24 °C for five and ten days. After 296	

five and ten days of incubation bacterial colonies were cut out of the agar (size approximately 297	

1 – 3 cm2) and subjected to LAESI-MS measurement. The LAESI-MS analysis was carried 298	

out on a Protea Biosciences DP-1000 LAESI system (Protea Bioscience Inc., Morgantown, 299	

WV, USA) coupled to a Waters model Synapt G2S (Waters Corporation, Milford, MA, USA) 300	

mass spectrometer. The LAESI system was equipped with a 2940-nm mid-infrared laser 301	

yielding a spot size of 100 µm. The laser was set to fire 10 times per x-y location (spot) at a 302	

frequency of 10 Hz and 100% output energy. A syringe pump was delivering the solvent 303	

mixture of methanol/water/formic-acid (50:50:0.1% v/v) at 2 µL/min to a PicoTip (5cm x 100 304	

µm diameter) stainless steel nanospray emitter operating in positive ion mode at 4000 V. The 305	

LAESI was operated using LAESI Desktop Software V2.0.1.3 (Protea Biosciences Inc., 306	

Morgantown, WV, USA). The Time of Flight (TOF) mass analyzer of the Synapt G2S was 307	

operated in the V-reflectron mode at a mass resolution of 18.000 to 20.000. The source 308	

temperature was 150 °C, and the sampling cone voltage was 30 V. The positive ions were 309	

acquired in a mass range of 50 to 1200 m/z. The MS data was lock mass corrected post data 310	

acquisition using leucine encephalin (C25H37N5O7m/z= 556.2771), which was used as an 311	

internal standard. All the acquired Waters *.RAW data files were converted to open file 312	
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format *.imzML using an in-house script written in R. Later, this data was pre-processed in 313	

multiple steps to remove noise and to make the data comparable. First, square root 314	

transformation was applied to the data to stabilize the variance. Then, baseline correction was 315	

performed to enhance the contrast of peaks to the baseline. For better comparison of intensity 316	

values and to remove small batch effects, Total-Ion-Current (TIC)-based normalization was 317	

applied. This was followed by spectral alignment and peak detection to extract a list of 318	

significant mass features for each sample replicate per treatment. In the end, a mass feature 319	

matrix was generated with sample replicates for each treatment in columns and mass features 320	

in rows. This feature matrix was used to perform further statistical analysis. The pre-321	

processing and peak-detection steps were applied using R scripts developed in-house and 322	

using functions available within the MALDIquant R package (56). To perform multivariate 323	

analysis, the feature matrix was imported into the online version of Metaboanalyst 4.0 (57).  324	

Ion intensity maps displaying the spatial distribution for statistically significant mass features 325	

were created using R. Before generating the ion maps, the intensity values for the selected 326	

mass features were normalized to the maximum intensity within the image, measured for each 327	

mass value individually. Venn diagrams displaying unique and common masses amongst 328	

different treatments were drawn using the jvenn tool (58). 329	

 330	

Results  331	

Isolation and identification of bacteria that pass through 0.1 µM filter 332	

Using a novel bacterial isolation and culture approach, we isolated bacteria from a terrestrial 333	

soil sample that were able to pass through 0.22 µm and 0.1 µm pore-size filters. After several 334	

days of incubation, only one type of bacterial colonies was observed on the inoculated plates. 335	

The grown colonies were identified as Hylemonella gracilis (Gram-negative, class 336	

betaproteobacteria, order Burkholderiales) by 16S rRNA sequence analysis.  337	

The colonies showed a round and colorless morphology when grown on 1/10th TSBA plates 338	

(Fig. 1a). Microscopically the bacteria had a spiraled morphology with a length of 339	

approximately 6 - 12 µm, which is typical for Hylemonella species (Fig. 1b).  340	

 341	

Hylemonella grows better in interaction with other bacteria 342	

To test the hypothesis that small bacteria grow better in presence of normal-sized bacteria, 343	

growth of H. gracilis was determined in co-culture with two phylogenetically distantly related 344	

soil bacteria (Paenibacillus sp. AD87 and S. plymuthica PRI-2C) and compared to that of the 345	

monoculture. The bacterial colony forming units of H. gracilis (CFU/mL) obtained on 1/10th 346	
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TSBA plates from monocultures and co-cultures are summarized in Fig. 2. Cell counts of 347	

Paenibacillus sp. AD87 were 7.68 x 107 CFU/mL in co-culture with H. gracilis (Fig. 2a). 348	

During the interaction with H. gracilis, the growth of S. plymuthica was significantly 349	

negatively affected (P=0.037) after five days of incubation by reaching 1.47 x 109 CFU/mL 350	

compared to the monocultures (Fig. 2a).  351	

The bacterial colony forming units (CFU) obtained from H. gracilis grown in presence of cell 352	

free supernatants (CFS) of Paenibacillus sp. AD87 and of S. plymuthica are summarized in 353	

Fig. 2b. H. gracilis growth was significantly increased (P=0.011) when growing in presence 354	

of cell free supernatants of Paenibacillus sp. AD87 resulting in higher H. gracilis cell counts 355	

compared to the monoculture by reaching 1.10 x 106 CFU/mL. In the presence of cell free 356	

supernatant from S. plymuthica PRI-2C, H. gracilis reached the highest cell counts at 1.72 x 357	

106 CFU/mL (P=0.000) after five days of incubation (Fig. 2b).  358	

 359	

Interspecific interaction between bacterial species allows use of additional substrates  360	

During physiological or catabolic profiling, the metabolism of 31 carbon sources during 361	

bacterial growth are measured in 96-wells plates. The catabolic profiling assays revealed that 362	

Paenibacillus sp. AD87was able to utilize 11 out of the 31 carbon sources in monoculture, 363	

while S. plymuthica PRI-2C and H. gracilis were able to utilize 17 and 16 carbon sources, 364	

respectively. Interestingly, three compounds could be utilized only during the co-cultivation 365	

of H. gracilis with one of the other species, these compounds could not be utilized by any of 366	

the species in monoculture. Specifically, alpha- cyclodextrin was utilized only during the co-367	

cultivation of H. gracilis with Paenibacillus sp. AD87, while L-threonine and glycyl-L-368	

glutamic acid were utilized only during the co-cultivation of S. plymuthica PRI-2C and H. 369	

gracilis (Fig. 3).  370	

 371	

Genomic features of H. gracilis, S. plymuthica PRI-2C and Paenibacillus sp. AD87 372	

Sequencing of the complete genome of H. gracilis resulted in a genome size of 3.82 Mbp with 373	

3,648 coding sequences (CDS). As expected, the genome analysis revealed that the genome of 374	

H. gracilis is smaller and contains fewer genes compared to S. plymuthica PRI-2C (5.4 Mbp) 375	

and Paenibacillus sp. AD87 (7.0 Mbp). The genome features of all three bacteria are 376	

summarized in Table 1. 377	

 378	

 379	

 380	
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In silico analysis of gene clusters encoding for secondary metabolites  381	

The in silico tool antiSMASH allows the rapid genome-wide identification, annotation and 382	

analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genomes 383	

(59). In silico analysis of Paenibacillus sp. AD87 revealed a total of 10 gene clusters coding 384	

for secondary metabolites. From which two gene clusters encode pathways for producing 385	

terpenes, one for  bacteriocins, one for lasso peptides, two for lanthipeptides, one for 386	

nonribosomal peptides (NRPs), one for others, one for polyketides (type III enzyme 387	

mechanism) and one gene cluster for non-NRP Siderophores (Fig. 4a). For S. plymuthica 388	

PRI-2C, nine gene clusters, were found of which two gene clusters were annotated to encode 389	

the production of NRPs, one of homoserine lactones, one of aryl polyenes and/or non-NRP 390	

Siderophores, one of hybrid polyketide-NRP metabolites, one of thiopeptides, one of 391	

butyrolactones, one of terpenes and one of others (Fig. 4b). For H. gracilis the AntiSMASH 392	

analysis revealed that H. gracilis possesses relatively few gene clusters related to secondary 393	

metabolism. A total of three gene clusters for H. gracilis were detected, of which one 394	

belonged to the class of bacteriocins, one to the class of terpenes, and one to aryl polyenes, 395	

the latter being a homolog to the aryl polyene gene cluster from Xenorhabdus doucetiae	396	

(Genbank: NZ_FO704550.1) (Fig. 4c) 397	

 398	

Pathway analysis in H. gracilis compared to S. plymuthica PRI-2C and Paenibacillus sp. 399	

AD87 400	

For annotation and Pathway analysis RAST (Rapid Annotation using Subsystem Technology) 401	

and OrthoFinder were used. The RAST comparison of Paenibacillus sp. AD87 and H. 402	

gracilis revealed 504 unique enzymes (according to their EC numbers) exclusive for 403	

Paenibacillus sp. AD87, while 434 were present only in H. gracilis and 532 EC numbers 404	

were shared by both genomes (Fig. 5a). The RAST comparison of S. plymuthica PRI-2C and 405	

H. gracilis revealed that 751 enzymes were present only in S. plymuthica PRI-2C, and 260 406	

were present only in H. gracilis. 727 EC numbers participating in diverse metabolic pathways 407	

were found in both genomes (Fig. 5b).  408	

The missing genes and pathways found by OrthoFinder and EggNOG were annotated with 409	

GO terms. The analysis revealed that five genes related to metabolic pathways were absent in 410	

H. gracilis. Those missing genes were annotated with the following molecular function 411	

ontology terms: GO:0008473 (ornithine cyclodeaminase activity), GO:0008696 (4-amino-4-412	

deoxychorismatelyase activity), GO:0003920 (GMP reductase activity), GO:0004035 413	

(alkaline phosphatase activity) and GO:0008442 (3-hydroxyisobutyrate dehydrogenase). We 414	

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 24, 2022. ; https://doi.org/10.1101/2021.02.11.430889doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.11.430889
http://creativecommons.org/licenses/by-nd/4.0/


	 13	

verified if the absence of these molecular functions would render specific pathways obsolete 415	

or unavailable in H. gracilis. However, alternative pathways routes are present for these genes 416	

encoding certain molecular functions according to KEGG database annotations. The pathway 417	

analysis by RAST did not reveal the absence of essential genes in H. gracilis. Still, the 418	

comparison of the number (n) of genes present in each bacteria revealed major differences in 419	

several pathways, specifically in the categories "Carbohydrates metabolism" and "Phosphorus 420	

metabolism" (Fig. 5b). Interestingly, H. gracilis possesses no genes for those categories 421	

according to RAST, whereas Paenibacillus sp. AD87possesses 393 and 82 genes, and S. 422	

plymuthica PRI-2C 395 and 46 genes, respectively. A major difference in the absolute 423	

number of genes in a category is also observed for Amino Acids and Derivatives, for which 424	

H. gracilis possesses 318 genes, Paenibacillus sp. AD87 possesses 358 and S. plymuthica 425	

PRI-2C 448 genes. 426	

 427	

Effect of interspecific interactions on gene expression 428	

The Transcriptome analysis of monocultures and co-cultures revealed a total of 277 429	

significant differentially expressed genes; where from a total of 100 genes were down-430	

regulated and 177 genes were up-regulated between the different treatments (Table 2).  431	

 432	

Effect of inter-specific interactions on gene expression in Paenibacillus sp. AD87 and H. 433	

gracilis 434	

Genes related signal transduction (T) were the category with the most differentially expressed 435	

genes during the co-cultivation of H. gracilis with Paenibacillus sp. AD87 compared to the 436	

monoculture of H. gracilis (Supplementary Table 7 and 8, Fig. 6a, b).  437	

In Paenibacillus sp. AD87 histidine biosynthesis and dephosphorylation genes were up-438	

regulated (Supplementary Table 2), while cellular-growth-related genes were down-439	

regulated (Supplementary Table 2) at day 10 of the interaction with H. gracilis (Fig. 6b). 440	

For the interaction of H. gracilis with Paenibacillus sp. AD87 15 significant differentially 441	

expressed genes were found (0 at day five and 15 at day ten). At day five, genes related to 442	

sulfur assimilation, chemotaxis and response to (chemical/external) stimuli were upregulated 443	

in H. gracilis in the presence of Paenibacillus sp. AD87.   444	

 445	

Effect of inter-specific interactions on gene expression S. plymuthica PRI-2C and H. gracilis 446	

During the interaction of S. plymuthica PRI-2C with H. gracilis, 61 genes were significantly 447	

differentially expressed at day five and 10 at day ten. At day five, iron-sulfur cluster-448	
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assembly-related genes, a sulfur transferase and a transaminase were up-regulated, while 449	

genes related to inorganic diphosphatase activity, exonuclease activity and DNA repair were 450	

downregulated. At day ten, genes related to sulfur transmembrane transport, sulfur compound 451	

catabolism and cysteine biosynthesis were upregulated, and genes related to sulfur compound 452	

metabolism and translation were downregulated. (Supplementary Table 3 and 4).  For S. 453	

plymuthica PRI-2C, genes related to signal transduction and translation, ribosome structure 454	

and biogenesis were the most differentially expressed gene categories (Fig. 6c). For H. 455	

gracilis in interaction with S. plymuthica PRI-2C, 182 differentially expressed genes were 456	

identified at day ten and only one at day five. At day five, genes related to the 457	

ribosome/ribonucleoproteins, organelle organization/assembly and (iron)-sulfur cluster 458	

assembly were upregulated and genes related to the innate immune response (Toll Like 459	

Receptor signalling) were downregulated (Supplementary Table 5 and 6).  At day ten, genes 460	

related to signal transduction and chemotaxis were upregulated in H. gracilis. For H. gracilis, 461	

the most upregulated genes were linked to chemotaxis pathway and iron scavenging, 462	

suggesting activity in competition (Fig. 6a).  463	

 464	

Metabolomic analysis of volatile compounds 465	

The volatile blend composition of the monocultures differed from that of the co-cultures. 466	

Clear separations between the controls, monocultures and co-cultures were obtained in PLS-467	

DA score plots (Fig. 7a). The analysis revealed a total of 25 volatile organic compounds 468	

produced by mono- and co-cultured bacteria that were not detected in the non-inoculated 469	

controls (Table 3). Of these, 17 were identified and categorized in six chemical classes 470	

(alkenes, benzoids, sulfides, thiocyanates, terpenes, furans). The remaining eight compounds 471	

could not be assigned with certainty to a known compound. The most abundant volatile 472	

organic compounds were sulfur-containing compounds such as dimethyl disulfide (C2H6S2) 473	

and dimethyl trisulfide (C2H6S3). These two sulfur compounds were produced by all three 474	

bacteria.	 Interestingly an unknown compound with a retention time (RT) of 26.4 min 475	

produced by the monocultures of H. gracilis was not detected in the interactions with S. 476	

plymuthica PRI-2C (Table 3). Two other unknown compounds with RT 4.15 min and with 477	

RT 24.34 min produced by the monocultures of Paenibacillus sp. AD87 were not detected in 478	

the co-cultivation with H. gracilis (Table 3).  479	

 480	

 481	

 482	
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DART-MS based metabolomics 483	

Metabolomics analysis based on DART-MS revealed separations between the controls, 484	

monocultures, and co-cultures as presented in PLS-DA score plots (Fig. 7b). The 485	

metabolomic composition of the monocultures differed from that of the co-cultures (Fig. 7b). 486	

Statistical analysis (ONE-WAY ANOVA and post-hoc TUKEY HSD-test) revealed 617 487	

significant mass features present on day five and day ten of which 48 could be tentatively 488	

assigned to specific compounds. Most of the significant peaks were found in the co-cultures 489	

of H. gracilis with Paenibacillus sp. AD87. The significant mass features and the 490	

corresponding tentative metabolites can be found in Supplementary Table 10.  491	

 492	

Mass spectrometry imaging metabolomics 493	

LAESI-MSI was performed to visualize the localization of metabolites in their native 494	

environments in monoculture as well as during interaction without performing any extraction. 495	

Across all treatments, clear separation was observed amongst the samples for controls, 496	

monocultures and interactions (Fig. 8a).  An average of 1050 mass features was detected per 497	

treatment. To list mass features that could explain separation amongst the controls, 498	

monocultures and interactions, values of variable importance in projection (VIP) were 499	

calculated. The top 40 statistically significant mass features with VIP scores > 2.0 are shown 500	

in Fig. 8b. The box-and-whisker plots for the four statistically significant differentially 501	

abundant metabolites selected from the volcano plot for the pair HM and PH are shown in 502	

Supplementary Figure 2a. To visualize the statistically significant mass features between 503	

monocultures and co-cultures samples in a pairwise manner, volcano plots were constructed 504	

(Supplementary Figure 3).  505	

The volcano plot (Supplementary Figure 3a) for H. gracilis monoculture (HM) and the 506	

interaction of H. gracilis with Paenibacillus sp. AD87 (PH) shows 53 mass features (in green) 507	

located in the upper right quadrant, indicating that their concentrations are significantly higher 508	

in HM as compared to PH. 18 mass features (in red) in the upper left quadrant of the plot have 509	

a significantly lower concentration in HM as compared to PH. The ion intensity maps for 510	

these statistically significant metabolites are shown alongside box-and-whisker plots. The ion 511	

intensity maps are color coded based on the standard rainbow color scale where a pixel in red 512	

represented a high concentration and the pixel in black represents no concentration of the 513	

selected metabolite. As indicated, m/z 425.2886 and m/z 558.2832 show higher abundance in 514	

interaction sample PH, whereas m/z 410.8587 and m/z 716.7610 display high abundance in 515	

HM as compared to PH. For the pairwise analysis performed for Paenibacillus sp. AD87 516	
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monoculture (PM) and the co-culture of H. gracilis with Paenibacillus sp. AD87 (PH), 149 517	

mass features (in green) displayed significantly high concentration in PM and 75 mass 518	

features (in red) had significantly low concentration in PM as compared to PH 519	

(Supplementary Figure 3b). This is also evident in the box-and-whisker plots and the ion 520	

intensity maps that are presented for four statistically significant metabolites belonging to this 521	

set (Supplementary Figure 2b).  522	

For the pairwise analysis for H. gracilis monoculture (HM) and the co-culture of S. 523	

plymuthica PRI-2C and H. gracilis (SH), 57 mass features (in green) displayed significantly 524	

high concentration in HM and 42 mass features had significantly low concentration in HM as 525	

compared to SH (Supplementary Figure 3c).  The box-and-whisker plots along with the ion 526	

intensity maps for four statistically significant metabolites belonging to this set are shown in 527	

Supplementary Figure 2c. For the pairwise analysis for S. plymuthica PRI-2C monoculture 528	

(SM) and the interaction of S. plymuthica PRI-2C and H. gracilis (SH), 135 mass features (in 529	

green) displayed significantly high concentration in SM and 65 mass features had 530	

significantly low concentration in SM as compared to SH (Supplementary Figure 3d).  The 531	

box-and-whisker plots along with the ion intensity maps for four statistically significant 532	

metabolites belonging to this set are shown in Supplementary Figure 2d.  533	

To visualize the number of shared and unique metabolites amongst the monoculture and 534	

interaction samples Venn diagrams were plotted. The Venn diagram (Supplementary Figure 535	

3e) for monocultures H. gracilis and Paenibacillus sp. AD87 and their interaction shows 80 536	

metabolites unique to H. gracilis monoculture, 75 metabolites unique to Paenibacillus sp. 537	

AD87 monoculture and 100 metabolites that are unique during their interaction. 1062 538	

metabolites were shared within these three treatments. Similarly, the Venn diagram 539	

(Supplementary Figure 3f) for monocultures H. gracilis and S. plymuthica PRI-2C and their 540	

interaction shows 196 metabolites unique to H. gracilis monoculture, 48 metabolites unique 541	

to S. plymuthica PRI-2C monoculture and 120 metabolites that are unique during their 542	

interaction.  543	

 544	

Discussion 545	
 546	
Here we report the first time isolation of H. gracilis from a terrestrial soil sample. This 547	

bacterium passed a 0.1 µm filter, which suggests a very small cell size, theoretically justifying 548	

referring to these bacteria as ultra-small bacteria (26). However, against our expectation, the 549	

microscopical analysis revealed that this bacterium is not ultra-small in cell size but possesses 550	

a very thin diameter and showed the typical spiraled morphology known for these species (60-551	
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63). These observations are in line with previous research by Wang et al. showing that H. 552	

gracilis is capable of passing through filters of various pore sizes ranging from 0.45 µM to 553	

0.1µM (64), most probably thanks to their cell shape and cell morphology. In silico analysis 554	

of 16 terrestrial metagenome data available on MG-RAST (https://www.mg-rast.org/) showed 555	

that H. gracilis was not present in terrestrial metagenome data (not shown) suggesting that H. 556	

gracilis is not commonly present in terrestrial soils. The bacterial interaction assays revealed 557	

that H. gracilis grows faster when interacting with Paenibacillus sp. AD87 or S. plymuthica 558	

PRI-2C. The cell numbers of H. gracilis were higher when exposed to cell-free supernatants 559	

of Paenibacillus sp. AD87  and S. plymuthica PRI-2C, suggesting that the metabolites 560	

released by the latter bacteria in co-cultures with H. gracilis are associated with improved 561	

growth of H. gracilis. We hypothesized that H. gracilis grows better in co-culture, either 562	

because growth is stimulated by signals produced by the other organism, or because the 563	

environment that is created by the other organism allows H. gracilis to make more efficient 564	

use of certain metabolic pathways. Indeed, the metabolic experiments with BioLog™ plates 565	

showed that during interspecific interactions of H. gracilis with Paenibacillus sp. AD87 or 566	

with S. plymuthica PRI-2C, more carbohydrates could be utilized compared to the 567	

monocultures. This is an interesting observation, and it may indicate that interaction of 568	

bacteria can trigger the production of exo-enzymes enabling the degradation of carbohydrates, 569	

which the bacteria were not able to degrade in monoculture. 570	

We speculated that since H. gracilis grows better in interaction with other bacteria and is of 571	

relatively small cell size, H. gracilis might have evolved according to a genome streamlining 572	

strategy, i.e. the adaptive loss of genes for which functions it relies on interaction with other 573	

bacteria in the immediate environment. The whole-genome sequencing of H. gracilis revealed 574	

a genome size of 3.82 Mbp. This is a relatively small genome size for free-living soil bacteria 575	

that typically have estimated average genome sizes of ~4.7 Mbp (34, 65-68).  The in silico 576	

antiSMASH (43) comparison of genes that are part of secondary metabolite gene clusters 577	

showed that the H. gracilis genome contained only three gene clusters encoding the 578	

production of secondary metabolites (bacteriocins, terpenes, and aryl polyenes). Terpenes and 579	

aryl polyenes are known as protective compounds against abiotic stressors, while bacteriocins 580	

have antimicrobial activities against closely related bacteria (17, 69-73). We hypothesize that 581	

H. gracilis genome streamlining has allowed it to be more competitive, by retaining only the 582	

most essential metabolic functions while having roughly about one quarter less DNA to 583	

replicate during each cell division. Gene loss and reduced genome size may cause dependency 584	

on other microbes in their surroundings, and this may explain a considerable part of the 585	
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phenomenon that most of the detectable bacteria in the environment are not cultivable under 586	

laboratory conditions.  587	

To investigate the mechanisms of interaction, we performed transcriptome analysis on 588	

the interaction pairs of H. gracilis with S. plymuthica PRI-2C and Paenibacillus sp. AD87. 589	

Interestingly, a higher amount of significantly differentially expressed genes was induced by 590	

H. gracilis in the other two competing bacteria as compared to the transcriptomic changes in 591	

H. gracilis. Several processes, enriched according to GO term enrichment analysis, could be 592	

part of a mechanism(s) mediating interactions between H. gracilis and S. plymuthica PRI-2C 593	

and Paenibacillus sp. AD87, for example genes related to chemotaxis. Moreover, the GO 594	

terms for signal transduction, secondary metabolite production and, cell motility were 595	

enriched in the transcriptome of H. gracilis during the co-cultivation with Paenibacillus sp. 596	

AD87, suggesting that chemotaxis and cell movement is an important feature during 597	

interspecific interactions between these two bacterial taxa (74, 75). In addition, GO terms 598	

referring to Iron-sulfur (Fe-S) complex assembly were enriched in the transcriptomes of H. 599	

gracilis during the co-cultivation with S. plymuthica PRI-2C and Paenibacillus sp. AD87. Fe-600	

S clusters are important for sustaining fundamental life processes: they participate in electron 601	

transfer, substrate binding/activation, iron or sulfur storage, regulation of gene expression, 602	

and enzyme activity (76, 77). This up-regulation could indicate that, potentially, in co-culture, 603	

normal-sized bacteria released metabolites that H. gracilis used for synthesizing Fe-S 604	

complexes. It is also possible that iron-sulfur complex assembly is activated during 605	

competition with the interacting bacteria for sulfur, or iron collection (scavenging) (78-81).  606	

The metabolic pathway analysis showed that the loss of genes in H. gracilis does not 607	

appear to have resulted in functional loss of metabolic pathways. Loss of non-essential and 608	

possibly redundant genes in several metabolic pathways could explain why and how the 609	

genome of H. gracilis has become so small. The missing genes are not essential to complete 610	

metabolic pathways and only appear to result in limited options in certain metabolic 611	

pathways. RAST analysis showed that all basal metabolic pathways remain feasible with the 612	

annotated enzymes and pathways of H. gracilis. The only exception is EC term 5.2.1.1 613	

(maleate isomerase) (it would help to specify in which pathway this enzyme is reported); 614	

There are several ways to synthesize fumarate, e.g. in the glycolysis pathway (63, 82, 83) and 615	

in the citric acid cycle (63, 84). Based on the available data, it cannot be unambiguously 616	

determined which alternative pathway may preferably be used by H. gracilis to synthesize 617	

fumarate.  618	
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The metabolomics analysis revealed the production of specific antimicrobial 619	

compounds such as pyrollnitrin (S. plymuthica PRI-2C) and 2,5-bis(1-methylethyl)-pyrazine 620	

(Paenibacillus sp. AD87) which are well known for their broad-spectrum antimicrobial 621	

activity (85-89). However, the produced antimicrobial compounds didn’t show activity 622	

against H. gracilis: in both interactions, H. gracilis showed increased growth when growing 623	

in co-culture with either Paenibacillus sp.AD87 or S. plymuthica PRI-2C.  624	

The understanding of natural metabolites that mediate interactions between organisms 625	

in natural environments is the key to elucidate ecosystem functioning. The detection and 626	

identification of the compounds that mediate such interactions is still challenging. Techniques 627	

such as mass spectrometry imaging (MSI) provide new opportunities to study 628	

environmentally relevant metabolites in their spatial context (90-92). In this study, the 629	

metabolomics was performed using three independent approaches namely DART-MS 630	

analysis, GC/MS-Q-TOF analysis and Laser Ablation Electrospray Ionization-Mass 631	

Spectrometry Imaging mass spectrometry (LAESI- IMS) from living bacterial colonies. 632	

LAESI Imaging MS analysis revealed that several mass features were detected in higher 633	

abundance during the co-cultivation of H. gracilis with Paenibacillus sp. AD87, these mass 634	

features were m/z 425.2886 and m/z 558.2832. LAESI-MSI is not suitable for unambiguous 635	

compound annotation, but LAESI- MSI can still be used for putative compound annotation. 636	

To annotate the detected mass features to compounds with high certainty, LAESI mass 637	

spectrometry imaging should be coupled with ion mobility separation as suggested by (93-638	

95). Yet, LAESI-MSI can help to spatially distinguish the produced secondary metabolites of 639	

living bacterial colonies with limited sample preparation and can give insight into the spatial 640	

distribution of metabolites. 641	

Several studies indicate that the volatile blend composition of the volatiles greatly depends on 642	

biotic interactions and on growth conditions (15, 19, 96-98). Here, a higher number of volatile 643	

compounds were detected in the bacterial co-cultures, most likely due to the combination of 644	

emitted volatiles of the interacting bacteria. The high numbernumber of sulfur-containing 645	

compounds indicates that these compounds are commonly produced by bacteria and might 646	

play an important role in signaling during interspecific interactions (99, 100). No novel 647	

volatile compounds were detected during the co-culture of the three bacteria. 648	

Overall, our study showed that H. gracilis is able to pass through 0.1 µM filter, and is present 649	

in terrestrial environments. The growth performance and physiological behavior of H. gracilis 650	

were dependent on the co-cultivated bacterial partner and they might be metabolically 651	

depending on the co-cultivated bacteria. At the same time, H. gracilis was able to change the 652	
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physiology, release of volatile organic compounds and secreted enzymes of the co-cultivated 653	

bacteria without direct cell-cell contact.  654	

Microbial interspecific interactions play an important role in the functioning of the terrestrial 655	

ecosystem. Soil microbial communities are very diverse and dynamic and involve frequent 656	

and sporadic interspecific interactions.  Our study indicates that sulfur and Fe-S clusters could 657	

play important role in microbial interspecific interactions in terrestrial environments and more 658	

studies are required to understand their role.. The study of sporadic interspecific interactions 659	

and the inclusion of rare taxa in future analysis could help to better understand microbial 660	

communities and functions of those. Could you exemplify how this study improved our 661	

understanding? production of sulfur compounds and Fe-S clusters maybe? 662	
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Figures and Tables 984	

 985	

 986	

 987	

 988	

 989	

 990	

 991	

 992	

 993	
Figure 1: Morphology of Hylemonella gracilis (a) on 1/10th TSB- agar plates captured at 994	

20x magnification and (b) single bacterial cells captured at 400 X magnification showing 995	

their very thin, long and slender appearance in liquid media. 996	
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 997	
Figure 2: Growth of bacterial mono and cocultures (a) on the plate-based experiment   998	

and (b) during the cell-free-supernatant (CFS) experiment. Abbreviations: H. gracilis 999	

monoculture (H), Paenibacillus sp. AD87 monoculture (P), Paenibacillus sp. AD87 – H. 1000	

gracilis coculture (HP), S. plymuthica PRI-2C monoculture (S), S. plymuthica - H. gracilis 1001	

coculture (SH). H. gracilis - Paenibacillus sp. AD87 coculture (HP), H. gracilis – S. 1002	

plymuthica PRI-2C coculture (HS).  Significant differences in colony forming units per 1003	
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milliliter (CFU/mL) between co-cultures (treatment) and monocultures (controls) are 1004	

indicated by asterisks (ONE-WAY ANOVA, post-hoc TUKEY test). 1005	

 1006	
Figure 3: Results of the Biolog EcoPlate™ experiment. Bacteria were inoculated in 1007	

monoculture or in pairwise combinations on the EcoPlate™ with 31 different carbon sources. 1008	

Colour code: turquoise=carbon source could be utilized in monoculture (1), yellow= carbon 1009	

source could be utilized only in co-culture (2) purple= carbon source could not be utilized (0). 1010	

Abbreviations: Paenibacillus sp. AD87 monoculture (P), Paenibacillus sp. AD87 - H. gracilis 1011	

coculture, (PH) H. gracilis monoculture (H), S. plymuthica PRI-2C monoculture (S), S. 1012	

plymuthica PRI-2C - H. gracilis coculture (SH). 1013	

 1014	

 1015	

 1016	

 1017	

 1018	

 1019	

 1020	
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 1021	

 1022	

 1023	
Figure 4: In silico comparison of biosynthetic gene clusters (BGCs) predicted by 1024	

antiSMASH in the genomes of three soil bacteria. From left to right (a) H. gracilis with a 1025	

genome size of 3.8 MBp, n= 3 gene clusters for secondary metabolites, (b) S. plymuthica PRI-1026	

2C with a genome size of 5.4 MBp, n=9 gene clusters for secondary metabolites and (c) 1027	

Paenibacillus sp. AD87 with a genome size of 7.0 MBp, n=10 gene clusters for secondary 1028	

metabolites. 1029	

 1030	

1031	
Figure 5: Gene content comparison. (a) Box-plot showing the number (n) of all expressed 1032	

genes (n) for the monocultures of H. gracilis (H), Paenibacillus sp. AD87 monoculture (P) 1033	

and S. plymuthica PRI-2C monoculture (S) and during the interaction of H. gracilis with 1034	

Paenibacillus sp. AD87 (PH) and for the interaction of H. gracilis with S. plymuthica PRI-2C 1035	

(SH) determined by RAST. (b) Boxplot showing number (n) of expressed genes present in 1036	

each RAST subsystem category for each of the monocultures.  1037	
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 1038	

 1039	

 1040	

 1041	

 1042	

 1043	
Figure 6: Pie-charts representing up-regulated genes identified by differential gene 1044	

expression analysis and COG annotation (a) Hylemonella gracilis monoculture gene 1045	

expression level (b) H. gracilis in co-culture with Paenibacillus sp. AD87; (c) H. gracilis co-1046	

culture with S. plymuthica PRI-2C. In the co-culture of H. gracilis with Paenibacillus sp. 1047	

AD87, genes related to signal transduction (T) were the category with the most differentially 1048	

expressed genes. In the co- culture of H. gracilis with S. plymuthica PRI-2C genes related to 1049	

signal transduction (T), translation, ribosome structure and biogenesis (J) were the most 1050	

prevalent differentially expressed gene categories.	 COG-	 Abbreviations: C: energy 1051	

production and conversion; D: cell cycle control, cell division, chromosome partitioning; E: 1052	

amino acid transport and metabolism; F: nucleotide transport and metabolism; G: 1053	

carbohydrate transport and metabolism; H: coenzyme transport and metabolism; I: lipid 1054	

transport and metabolism; J: translation, ribosomal structure and biogenesis; K: transcription; 1055	

L: replication, recombination and repair; M: cell wall/membrane/envelope biogenesis; N: cell 1056	

motility; NA: not assigned; O: posttranslational modification, protein turnover; chaperones; P: 1057	

inorganic ion transport and metabolism; Q: secondary metabolites biosynthesis, transport and 1058	

catabolism; R: general function prediction only; S: function unknown; T: signal transduction 1059	

mechanisms; U: intracellular trafficking, secretion, and vesicular transport; V: defense 1060	

mechanisms. 1061	

 1062	

 1063	
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 1064	
Figure 7: PLS-DA plots of the metabolomics data (a) PLS-DA 2D- plots of volatiles 1065	

emitted by monocultures and pairwise combinations of H. gracilis, Paenibacillus sp. AD87 1066	

and Serratia plymuthica after ten days of inoculation, time point (t=10 days) (b) PLS-DA 2D- 1067	

plots of DART-MS data of monocultures and mixtures of H. gracilis, Paenibacillus sp. AD87 1068	

and S. plymuthica PRI-2C after ten days of inoculation, time point (t=10 days). 1069	

 1070	

 1071	
Figure 8: PLS-DA plots of the first 40 significant mass features observed in LAESI-MSI 1072	

data. (a) PLS-DA score plot for H. gracilis monoculture (H), Paenibacillus sp. AD87 1073	

monoculture (P), Paenibacillus sp. AD87 – H. gracilis co-culture (PH), S. plymuthica PRI-2C 1074	

monoculture (S), S. plymuthica PRI-2C - H. gracilis co-culture (SH) and TSBA control 1075	

(TSBA). (b) Top 40 statistically significant features identified by PLS-DA based on Variable 1076	
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Importance in Projection (VIP) score. The colored boxes on the right indicate the relative 1077	

concentrations of the corresponding metabolite in each group under study. 1078	

 1079	

Tables  1080	

Table 1: Genome assembly statistics and outcome of in silico analysis of secondary 1081	

metabolite gene clusters of H. gracilis, S. plymuthica PRI-2C and Paenibacillus sp. AD87. 1082	

 1083	
 1084	

 1085	

 1086	

 1087	

Table 2: Overview of the transcriptome analysis, number (n) of significantly differentially 1088	

expressed genes of H. gracilis responding to S. plymuthica PRI-2C or to Paenibacillus sp. 1089	

AD87, Serratia plymuthica PRI-2C responding to H. gracilis and Paenibacillus sp. AD87 1090	

responding to H. gracilis at day 5 and day 10.  1091	

 1092	
 1093	

 1094	

Feature / Organism Hylemonella gracilis S. plymuthica PRI-2C Paenibacillus  sp. AD87

contigs 1 1 30
bases 3822245 5474685 7086713
number of chromosomes 1 1 1
size chromosome 1 3822245 5464425 7086713
CDS 3648 4929 6216
GC- content (%) 65.1 55.7 46.2
number of RNAs 53 109 146
genes 3625 5284 6375

in silico detected secondary 
metabolite clusters (antiSMASH) 3 9 10

Total genome size (bases) 3822245 5474685 7086713

up-
regulated

down-
regulated

5 25 36 61
10 10 0 10
5 8 0 8
10 0 0 0
5 1 0 1
10 129 53 182
5 0 0 0
10 4 11 15

Total	(n) 177 100 277

Hylemonella	gracilis
Serratia	plymuthica	PRI-2C

Paenibacillus	sp.	AD87

Total	(n)Organism Interacting	organism
time	
point	
(d)

Significantly	
differentially	expressed	

genes

Hylemonella	gracilis
Serratia	plymuthica	PRI-2C

Paenibacillus	sp.	AD87
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 1095	

 1096	

 1097	

 1098	

Table 3: Tentatively identified volatile organic compounds (VOCs) produced by a H. 1099	

gracilis, S. plymuthica PRI-2C and Paenibacillus sp. AD87 strains in mono- and cocultures. 1100	

 1101	
Abbreviations: 1102	

H. gracilis monoculture, SM= Serratia plymuthica PRI-2C monoculture, PM= Paenibacillus 1103	

sp. AD87 monoculture, PH= Paenibacillus sp. AD87 and H. gracilis co-culture, SH= Serratia 1104	

plymuthica PRI-2C and H. gracilis co-culture 1105	

# = Compound number 1106	

RT* = Retention time, the RT value stated is the average of three technical replicates. 1107	

ELRI** = Experimental linear retention index value, the RI value stated is the average of 1108	

three replicates. 1109	

p-value***= statistical significance (peak area and peak intensity) 1110	

 1111	

# Compound name RT* ELRI** p-value*** chemical 
class H S P SH PH

1 2-methylfuran 2.18 738 0.041 Furan X X X X
2 2-methylpropanoic Acid 3.01 755 0.014 Alkenes X X X X X
3 mix pentanal + heptane 3.21 760 0.008 Alkenes X X X
4 methyl thycocyanate 3.44 764 0.020 Thioesters X X X X X
5 1-Pentanol 3.95 772 0.012 Alkenes X X X X
6 dimethyl disulfide 4.01 775 0.012 Sulfides X X X X X
7 unknown compound 1 4.15 778 0.003 - X X X
8 toluene 4.44 784 0.014 Benzenoids X X X X X
9 methyl Isovalerate 4.76 789 0.018 Terpenes X X X X

10 cyclohexane 8.07 852 0.031 Alkenes X X X X
11 dimethyl trisulfide 11.35 914 0.013 Sulfides X X X X X
12 benzonitrilie 12.06 928 0.037 Alkenes X X X X X
13 2-Ethyl-4-methylpentan-1-ol 17.26 1026 0.015 Alkenes X X X X
14 2,5-bis(1-methylethyl)-pyrazine 20.56 1090 0.031 Pyrazines X X
15 undecane 21.31 1100 0.014 Alkenes X X X X
16 unknown compound 2 24.34 1140 0.013 - X
17 unknown compound 3 25.92 1160 0.011 - X X X X X
19 unknown compound 4 26.40 1165 0.018 - X X X X
20 unknown compound 5 26.90 1170 0.003 - X X X
21 alpha-terpineol 27.34 1178 0.016 Terpenes X X X X X
22 undecane, 2,6-dimethyl 28.27 1190 0.004 Benzenoids X X X X X
23 gamma-terpineol 28.42 1192 0.006 Terpenes X X
24 terpene like compound 1 29.32 1202 0.012 Terpenes X X
25 terpene like compound 2 31.49 1231 0.009 Terpenes X X X X X

16 15 20 20 19

Detected in bacterial culture

Number of detected compounds (n)
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