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ABSTRACT 49 

Oligodendrocytes exert a profound influence on neural circuits by accelerating axon potential 50 

conduction, altering excitability and providing metabolic support. As oligodendrogenesis 51 

continues in the adult brain and is essential for myelin repair, uncovering the factors that control 52 

their dynamics is necessary to understand the consequences of adaptive myelination and 53 

develop new strategies to enhance remyelination in diseases such as multiple sclerosis. 54 

Unfortunately, few methods exist for analysis of oligodendrocyte dynamics, and even fewer are 55 

suitable for in vivo investigation. Here, we describe the development of a fully automated cell 56 

tracking pipeline using convolutional neural networks (Oligo-Track) that provides rapid 57 

volumetric segmentation and tracking of thousands of cells over weeks in vivo. This system 58 

reliably replicated human analysis, outperformed traditional analytic approaches, and extracted 59 

injury and repair dynamics at multiple cortical depths, establishing that oligodendrogenesis after 60 

cuprizone-mediated demyelination is suppressed in deeper cortical layers. Volumetric data 61 

provided by this analysis revealed that oligodendrocyte soma size progressively decreases after 62 

their generation, and declines further prior to death, providing a means to predict cell age and 63 

eventual cell death from individual time points. This new CNN-based analysis pipeline offers a 64 

rapid, robust method to quantitatively analyze oligodendrocyte dynamics in vivo, which will aid in 65 

understanding how changes in these myelinating cells influence circuit function and recovery 66 

from injury and disease. 67 

 68 

 69 

 70 

 71 

 72 
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INTRODUCTION 73 

Advances in genetically encoded fluorescent indicators, CRISPR-mediated gene editing and 74 

multiphoton microscopy provide unprecedented opportunities for studying cellular dynamics at 75 

single-cell resolution in the brains of living animals. While these approaches hold the potential 76 

for profound discoveries about brain function, they also come with a host of quantitative 77 

challenges. In particular, living brain tissue is unstable; tissue warping disrupts image quality 78 

and uneven refractive indices increase noise and produce anisotropic distortions during 79 

longitudinal image acquisition (Lecoq et al., 2019). Moreover, large multi-dimensional datasets 80 

are cumbersome to quantify, and often require specialized software for 4D visualization and 81 

manual curation (Pidhorskyi et al., 2018). As imaging tools become more advanced and enable 82 

researchers to delve deeper into the brain in vivo (Horton et al., 2013), the challenges 83 

associated with quantification of enormous datasets become more acute. Further advances 84 

depend critically on the availability of robust analysis platforms to rapidly extract multi-85 

dimensional observations about cellular dynamics. 86 

 Developing rigorous analysis tools for in vivo investigation of oligodendrocytes is 87 

particularly important. Oligodendrocytes enhance the speed of action potential conduction by 88 

ensheathing neuronal axons with concentric wraps of membrane, support neuronal metabolism 89 

and control neuronal excitability (Simons and Nave, 2016; Larson et al., 2018). While the 90 

population of neurons in the brain remains relatively stable throughout life (Bhardwaj et al., 91 

2006; Ming and Song, 2011), new oligodendrocytes are generated in the adult CNS, allowing for 92 

dynamic alteration of myelin patterns in both healthy and pathological conditions (El Waly et al., 93 

2014). This dynamism highlights the need for automated, longitudinal tracking tools to quantify 94 

the location, timing and extent of myelin plasticity within defined circuits in response to particular 95 

behavioral paradigms, as well as the regeneration of oligodendrocytes after demyelination 96 

(Bergles and Richardson, 2015). In this study, we sought to develop fully automated 97 
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methodologies to overcome the analytic challenges associated with longitudinal tracking of 98 

oligodendrocytes in vivo. 99 

Currently, most available cell tracking algorithms are designed for in vitro analysis and 100 

are not readily adaptable to in vivo conditions (Van Valen et al., 2016; Zhong et al., 2016; Nketia 101 

et al., 2017; Lugagne et al., 2020; Wang et al., 2020). The few in vivo tracking algorithms that 102 

exist are modality specific and cannot be readily adapted to our fluorescent longitudinal datasets 103 

(Acton et al., 2002; Nguyen et al., 2011). The closest in vivo tools that can be applied to 104 

oligodendrocyte datasets are those developed for analyzing calcium imaging (Pachitariu et al., 105 

2017; Giovannucci et al., 2019). However, calcium imaging tools normally work best with high-106 

frame rate videos taken over seconds, rather than image volumes collected on a weekly basis 107 

that often experience large-scale tissue warping between imaging sessions. To resolve this 108 

longitudinal volumetric tracking challenge, we opted to use convolutional neural networks 109 

(CNN), which are known to find accurate efficient solutions to high-dimensional problems. 110 

Convolutional kernels allow CNNs to adaptively assess local features and global spatial 111 

relationships to make tracking decisions that are more perceptual, or human-like. Moreover, 112 

additional techniques such as transfer learning can help trained models generalize to entirely 113 

new imaging challenges with minimal new training data (Zhuang et al., 2020), extending their 114 

use to other contexts.  115 

Here, we describe the development of Oligo-Track, a fast and reliable cell tracker for in 116 

vivo semantic segmentation of oligodendrocyte dynamics across cortical layers in longitudinal 117 

imaging experiments. We validated our algorithm using the cuprizone model of demyelination in 118 

vivo and show that Oligo-Track outperforms traditional analytic approaches in extracting 119 

dynamics of oligodendrogenesis at greater depths than previously available with manual 120 

annotation. Moreover, this approach generated volumetric segmentations of tracked cells that 121 

were inaccessible to human analysis, due to the considerable time investment required for 122 

manual volumetric tracing. This volumetric data revealed that oligodendrocyte soma size varies 123 
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predictably with age and proximity to death, allowing additional information about the timing of 124 

oligodendrogenesis and cell death to be extracted from fixed timepoint imaging experiments.   125 
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MATERIALS and METHODS: 126 

Animal care and use 127 

Female and male adult mice were used for experiments and randomly assigned to experimental 128 

groups. All mice were healthy and did not display any overt behavioral phenotypes, and no 129 

animals were excluded from the analysis. Generation and genotyping of BAC transgenic lines 130 

from Mobp-EGFP (GENSAT) have been previously described (Hughes et al., 2018). Mice were 131 

maintained on a 12 hr light/dark cycle, housed in groups no larger than 5, and food and water 132 

were provided ad libitum (except during cuprizone-administration, see below). All animal 133 

experiments were performed in strict accordance with protocols approved by the Animal Care 134 

and Use Committee at Johns Hopkins University. 135 

 136 

Cranial windows 137 

Cranial windows were prepared as previously described (Holtmaat et al., 2012; Hughes et al., 138 

2018; Orthmann-Murphy et al., 2020). Mice aged 7 to 10 weeks were deeply anesthetized with 139 

isoflurane (5% with 1 L/min O2 induction; 1.5–2% with 0.5 L/min maintenance), the head 140 

shaved, and the scalp removed to expose the skull. The skull was cleaned and dried and a 141 

position over somatosensory cortex (−1.5 mm posterior and 3.5 mm lateral from bregma) was 142 

marked for drilling. A custom aluminum headplate with a central hole was cemented onto the 143 

skull (C and B Metabond) and fixed in place with custom clamping headbars. A 2 mm x 2 mm 144 

square or 3 mm x 3 mm circle of skull was removed using a high-speed dental drill. A coverslip 145 

(VWR, No. 1) the size of the craniotomy was put in its place and sealed with cyanoacrylate glue 146 

(Vetbond and Krazy glue).  147 

 148 

In vivo two photon microscopy 149 

In vivo imaging was performed as previously described (Orthmann-Murphy et al., 2020). After 150 

two to three weeks of recovery from cranial window surgery, baseline images of the cortex were 151 
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acquired with two photon microscopy on a Zeiss LSM 710 microscope (average power at 152 

sample < 30 mW). Image stacks were 425 μm × 425 μm × 550 μm or 850 μm × 850 μm × 550 153 

μm (1024 × 1024 pixels; corresponding to layers I – IV), relative to the pia. Mice were 154 

subsequently imaged weekly for up to 12 weeks. 155 

 156 

Cuprizone treatment 157 

Directly following baseline two photon image acquisition, mice were switched from regular diet 158 

to a diet consisting of milled, irradiated 18% protein chow (Teklad Global) supplemented with 159 

0.2% w/w bis(cyclohexanone) oxaldihydrazone (“cuprizone,” Sigma). Control mice received only 160 

the milled chow. After three weeks, mice returned to regular pellet diet for the duration of the 161 

recovery period (Orthmann-Murphy et al., 2020). 162 

 163 

Analytic pipeline overview 164 

Timeseries acquired from our two-photon imaging setup were first registered using ImageJ’s 165 

correct 3D drift plugin (Schindelin et al., 2012; Parslow et al., 2014), which accounted for major 166 

alignment shifts from week to week. Registered timeseries were then analyzed crop-by-crop 167 

using our segmentation CNN (Seg-CNN) which identified cell somas on a voxel-wise basis. 168 

These cell somas were then extracted as individual seeds for our tracking CNN (Track-CNN) 169 

that identified the location of each seeded cell soma on a subsequent time point. In parallel, we 170 

also developed a cell tracking method based on traditional imaging informatics approaches that 171 

used the structural similarity index (SSIM) (Zhou Wang et al., 2004) and local tissue movement 172 

calculations to track cells. This heuristic model was used as a baseline to assess the 173 

improvements of our Track-CNN approach. Cells tracked by either Track-CNN or our heuristic 174 

method were also curated by human researchers using syGlass virtual reality software 175 

(Pidhorskyi et al., 2018) to assess the accuracy of tracking. Some of these curated traces were 176 
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also returned to the training pipeline to improve our deep learning approaches in a positive-177 

feedback loop (Figure 2A). 178 

  179 

Training data generation 180 

All training data was curated by a human expert using syGlass software to provide point 181 

coordinates. To obtain volumetric segmentations, we trained an ilastik random forest regressor 182 

(Berg et al., 2019) to procure an over-sensitive voxel-wise segmentation model. Then, we 183 

excluded every ilastik identified object that did not overlap with a ground truth point coordinate 184 

to eliminate false positives in our over-sensitive ilastik model. Datasets were pooled from 12 185 

animals and multiple treatment conditions. Image scales were standardized to 0.83 µm/pixel in 186 

XY and 3 µm/pixel in Z. Data was cropped to the appropriate input size for each respective 187 

neural network: Track-CNN 256 × 256 × 64 voxels, and seg-CNN 128 × 128 × 32 voxels. 188 

Overall, Seg-CNN was trained with 6,828 training volumes and 759 validation volumes. Track-189 

CNN was trained with 38,696 volumes and a validation set containing 4,300 volumes.  190 

 191 

Segmentation CNN training and inference 192 

Seg-CNN employed a UNet architecture (Ronneberger et al., 2015) with 3D convolutional 193 

kernels built in Pytorch 1.6 (Paszke et al., 2017). The neural network took as input a 256 × 256 194 

× 64 voxel volume containing fluorescently labelled oligodendrocytes in a single image channel 195 

(Figure 2B). The downsampling branch of the CNN contained 5 convolutional blocks with 5 × 5 196 

× 5 filters, batch normalization, and max pooling to downsample the data and extract local 197 

features. The upsampling branch employed the same blocks in reverse. Max pooling operations 198 

were replaced by trilinear upsampling and 1 × 1 × 1 convolutions to resize the image back to the 199 

same input size while extracting global spatial features (Supplementary Figure S1). A final 1 × 1 200 

× 1 convolution reduced the output to a two-channel volume which was softmaxed with a 201 

threshold of 0.5 to two classes corresponding to background and cell soma. Training was 202 
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performed using a batch size of 2 for 30 epochs on an RTX 2080 Ti GPU. Loss was calculated 203 

as cross entropy and optimized using an Adam optimizer with weight decay (Loshchilov and 204 

Hutter, 2019) set at a learning rate of 10-5.  During inference on unseen data, entire timeseries 205 

were fed to the neural network one timepoint at a time. Our algorithm then acquired 256 × 256 × 206 

64 voxel crops from these volumes with 50% overlap to ensure all regions were assessed. Each 207 

crop was fed to Seg-CNN individually. The output segmentations of individual crops, with 50% 208 

overlap, were summed together and binarized before being stitched back into a full volume. The 209 

final analyzed timeseries is saved and returned to the user (Figure 2B). 210 

 211 

Track-CNN training and inference 212 

Track-CNN employed a similar architecture to Seg-CNN except for a filter size of 7 × 7 × 7 for 213 

each convolution and a three channel 128 × 128 × 32 voxel input for our “seed-based” training 214 

approach. Seed-based training was employed to draw the attention of our CNN to individual 215 

cells in a volume by marking a cell of interest with a binary mask, or “seed” (Figure 3A). The 216 

input is thus a three-channel volume where channel 1 contains a raw fluorescence volume 217 

cropped from timepoint t and centered around a cell soma of interest. Channel 2 contains the 218 

binary mask/seed to indicate the cell of interest on timepoint t. All adjacent cells excluding the 219 

seed are set to a lower value. Finally, channel 3 contains a raw fluorescence volume cropped 220 

from timepoint t + 1 but centered around the same position as in channel 1 (Figure 3A). In 221 

summary, this input provides the raw fluorescence from two consecutive timepoints and also 222 

indicates which cell we wish to track from timepoint t to timepoint t + 1 using the binary mask in 223 

channel 2. Thus, the ground truth for optimization is a binary volumetric mask indicating the 224 

location of the cell of interest on timepoint t + 1 (Figure 3A). Training was performed using a 225 

batch size of 4 for 18 epochs on an RTX 2080 Ti GPU. Loss was calculated as cross entropy 226 

and optimized using Adam optimizer with weight decay (Loshchilov and Hutter, 2019) set at a 227 

learning rate of 10-5 that was dropped to 10-6 at 13 epochs. During inference, volumes were 228 
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cropped around each cell of interest in timepoint t along with seed masks and crops from 229 

timepoint t + 1 to form a three-channel input for Track-CNN. This is repeated until all cells on 230 

timepoint t are assessed. Unassociated cells on t + 1 are then added as newly formed 231 

oligodendrocytes to our list of candidate cells, and the analysis continues until all consecutive 232 

timepoints are tested (Figure 3A).  233 

 234 

Post-processing 235 

To prevent misalignment of tracks, we included one major post-processing step in our analytic 236 

pipeline. We first noticed that, given a human tracked dataset, we could predict the location of a 237 

cell body on a subsequent timepoint within ~10 pixels error by using the local directional vector 238 

of the tracks of five nearest neighbor cells from timepoint t to t + 1 (Figure 3B, C).  Thus, given 239 

that Track-CNN accurately tracks the majority of cells between consecutive timepoints, we can 240 

use the average local vector shift of the five nearest neighbors of any cell to correct for tracks 241 

that have severely gone off-target ( > 12 pixel difference from predicted directional vector 242 

endpoint). These gross errors can then be re-evaluated. If an unassociated cell exists at the 243 

location of the predicted vector endpoint on t + 1, then the wrongly associated track now points 244 

to this unassociated cell. Otherwise, the track is terminated. We also included minor post-245 

processing steps comprising of: (1) a minimum size threshold of 100 voxels for objects to be 246 

considered a cell soma; (2) objects that only exist on a single frame (excluding the first and last 247 

frame) are dropped, as they were likely to be debris. 248 

 249 

Heuristic baseline method 250 

Since no baseline methods exist for comparison, we developed an approach to assess the 251 

extent to which deep learning outperforms traditional imaging informatics methods. We 252 

developed a tracking program in MATLAB R2020a (Mathworks) where cells are cropped from 253 

timepoint t and assessed on a pair-wise basis to identify whether its’ nearest neighbors on t + 1 254 
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correspond to the same cell at timepoint t. To determine this association, we employed a few 255 

simple heuristics and rules: (1) successful tracking required a structural similarity index (SSIM) 256 

greater than 0.2 between cropped volumes from different timepoints. SSIM is an indicator of 257 

similarity that considers structure, intensity, and contrast-based differences between images. 258 

We applied the assumption that if a cell exists at t + 1, the overall local environment should look 259 

rather similar at timepoint t, thus a correct association would have a moderate to high SSIM. (2) 260 

Similar to the post-processing used for Track-CNN, we estimated the average vector of all 261 

nearest neighbors to model local tissue movement in a cropped field of view from t to t + 1. This 262 

allowed us to evaluate if the current track from t to t + 1 flows in the same direction as the local 263 

shift of neighboring tracked cells. If the proposed track does not align with the local shift of 264 

neighboring tracked cells, then the track is terminated. 265 

 266 

SNR calculation 267 

Since there is no standard for defining signal-to-noise ratio (SNR) in fluorescence imaging (Zhu 268 

et al., 2012), we adapted a standard logarithmic signal-processing SNR equation for our usage: 269 

𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
) 270 

Where we defined Psignal as the average signal (meaningful input) and Pnoise as the standard 271 

deviation of the background noise. However, since we have no reference image to define what 272 

perfect signal is in any raw dataset, we defined our signal to be any pixels above a certain value 273 

j and noise to be any pixels below that value. 274 

𝑆𝑁𝑅̂𝑗 =  10 ∗ 𝑙𝑜𝑔 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙 ≥ 𝑗

𝑃𝑛𝑜𝑖𝑠𝑒 < 𝑗
)  275 

Where Psignal is defined as the mean of all values above j, and Pnoise is defined as the standard 276 

deviation of all values below j. Since j would otherwise be arbitrarily determined, we chose to 277 
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calculate j from the entire image volume using Otsu threshold for binarization (Otsu, 1979), 278 

providing us with a reference free metric of SNR. 279 

 280 

Statistical analysis 281 

 All statistical analysis was performed using Python statsmodels and scipy libraries. N 282 

represents the number of animals used in each experiment, unless otherwise noted. Data are 283 

reported as mean ± SEM or median ± SEM as indicated, and p < 0.05 was considered 284 

statistically significant. Level of significance is marked on figures as follows: * denotes p<0.05; 285 

** denotes p<0.01; *** denotes p<0.001. 286 

 287 

Code availability 288 

 Packaged software code for Oligo-Track is readily available at github.com/Bergles-289 

lab/Xu_Bergles_2021_Oligo_Track along with instructions for use. The algorithm is prepared to 290 

work independent of Linux and Windows operating systems, with minimum Python 3.6. 291 

 292 

 293 

RESULTS 294 

Quantifying oligodendrocyte dynamics in vivo using CNN-assisted cell tracking 295 

To visualize individual oligodendrocytes in the cerebral cortex, cranial windows were surgically 296 

implanted in mice that express EGFP under control of the Mobp promoter/enhancer (Hughes et 297 

al., 2018; Orthmann-Murphy et al., 2020) (Figure 1A). Using two-photon microscopy, the somas 298 

and cytosolic processes of oligodendrocytes could be resolved up to a depth of ~400 µm from 299 

the pial surface (Figures 1B,C), providing the means to quantify changes in both the number 300 

and distribution of oligodendrocytes over weeks to months with repeated imaging. The dramatic 301 

increase in density of oligodendrocytes with depth (Figure 1C) presents challenges for 302 

unambiguous identification and increases the time necessary to mark and track cell positions 303 
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throughout a time series. To overcome this quantitative challenge, we trained two sequential 304 

CNNs employing a UNet architecture (Supplementary Figure S1), which we termed Seg-CNN 305 

and Track-CNN, to follow oligodendrocytes in vivo during repetitive bouts of imaging over many 306 

weeks (Figure 2A). 307 

 Images were first acquired over a 850 μm × 850 μm × 550 μm volume and then 308 

registered across time using ImageJ’s correct 3D drift plugin (Schindelin et al., 2012; Parslow et 309 

al., 2014) to adjust for small offsets. Seg-CNN was then used to perform semantic segmentation 310 

to identify the position of all oligodendrocyte cell bodies within the imaging volume at each 311 

timepoint in the timeseries. This process was completed sequentially on 256 × 256 × 64 voxel 312 

volumes that were adaptively cropped with 50% spatial overlap to reduce the amount of 313 

computer memory required to perform the computations (Figure 2B). The resulting binary 314 

segmentations were then re-stitched to create a stacked timeseries. Image stacks from 315 

sequential time points were then analyzed using Track-CNN, which employs a “seed-based” 316 

inference approach to determine whether any specific cell of interest exists in a subsequent 317 

timepoint. For all comparisons, we defined a tracked cell (or cell track), as a set of locations 318 

where a binary object was determined to be the same cell over subsequent timepoints by an 319 

algorithm or human researcher. The displacement vector for any cell thus starts at a soma on 320 

timepoint t and ends at the same tracked soma on t + n. Cell identification in Track-CNN is 321 

accomplished by providing a three-channel input to the CNN, which includes (1) a crop of raw 322 

fluorescence from timepoint t centered around a cell of interest, (2) a binary seed-mask that 323 

emphasizes the current cell of interest, and (3) a crop of raw fluorescence from timepoint t + 1 324 

that is centered around the cell on t. This allows the CNN output to be a volumetric 325 

segmentation of the same cell on timepoint t + 1, given a masked cell of interest on timepoint t 326 

(Figure 3A). Additional post-processing was performed using local tissue movement vectors to 327 

detect gross errors in tracking between sequential timepoints (Figures 3B, C). This post-328 

processing used the observation that the displacement vector for any cell can be predicted 329 
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within 10-pixel accuracy using the average displacement vectors of the nearest five tracked 330 

cells (Figure 3C). Thus, any cells with displacement vectors that varied drastically from 331 

predicted vectors, calculated from nearest neighbor tracks, could be classified as incorrect 332 

associations. Overall, during training, Seg-CNN performance plateaued after ~30 epochs, 333 

demonstrating accurate segmentation of cell somas relative to ground truth (Jaccard overlap 334 

index ~0.7) and detection of cells across all volumes (95% sensitivity, 91% precision; 335 

Supplementary Figure S2A). Track-CNN performance plateaued after ~5 epochs with highly 336 

accurate track associations (98% accuracy, 99% sensitivity, and 99% precision; Supplementary 337 

Figure S2B). 338 

To determine if this CNN-based method outperforms a heuristic cell tracking method that 339 

employs similarity metrics and local tissue movement modeling, similar to the post-processing 340 

mentioned above, we tested both algorithms for their ability to extract biological trends of 341 

spontaneous cell regeneration in the cuprizone model of demyelination (Chang et al., 2012; 342 

Baxi et al., 2017; Hughes et al., 2018; Orthmann-Murphy et al., 2020). In this model, mice are 343 

fed cuprizone for three weeks, resulting in loss of >95% of oligodendrocytes in the upper layers 344 

of cortex, which are progressively regenerated as the mice are returned to a normal diet (Figure 345 

4A). Both CNN and heuristic models detected the general trend of cell loss during the first three 346 

weeks of cuprizone treatment and subsequent oligodendrogenesis during recovery, as 347 

assessed relative to human counting (Figure 4B). However, closer examination revealed that 348 

Oligo-Track provided a more accurate accounting of cell dynamics. In particular, the heuristic 349 

method greatly mis-identified existing cells as being newly formed (Figure 4C), suggesting 350 

disrupted tracking. This conclusion was further supported by the increased number of wrongly 351 

terminated cell tracks by the heuristic algorithm at each timepoint (Figure 4D), suggesting that 352 

the heuristic approach often failed to identify existing oligodendrocytes in subsequent time 353 

points. We also assessed the difference in track length (persistence of cells during the time 354 

series) between ground truth and machine outputs (Figure 4E). Positive values in this plot 355 
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indicate under-tracking, where the machine failed to track a cell in subsequent timepoints, while 356 

negative values indicate over-tracking, where the machine tracked a cell onto additional 357 

timepoints despite cell elimination determined in the ground truth. This graph reveals that Track-358 

CNN markedly reduced the total rate of over-tracked segments errors two-fold from the heuristic 359 

algorithm (Figure 4F). Moreover, the severe error rate (under or over-tracking for > 1 timepoint) 360 

decreased almost five-fold. Together, these findings indicate that Oligo-Track provides 361 

substantial benefits for following oligodendrocytes in longitudinal 3D imaging datasets. 362 

 363 

CNN-based analysis retains tracking ability despite changes in image quality 364 

Many factors can influence image quality in vivo, limiting the ability to accurately assess cell 365 

dynamics. Cranial windows can become obscured by local inflammation at later (or earlier) 366 

timepoints, resulting in incorrect track associations by both humans and machines. Image scale, 367 

cellular debris, and laser power also commonly vary between experiments and impair 368 

implementation of standardized analyses. To assess the impact of these factors on our tracking 369 

algorithm, we started by first varying image scale, using bilinear interpolation to up- or down-370 

sample raw data before performing Track-CNN analysis. The algorithm was mostly scale 371 

invariant, but struggled with up-sampling beyond two-fold (Figure 5A,B) showing that, optimally, 372 

input data should be scaled to the same 0.83 µm/pixel XY and 3 µm/pixel in Z resolution as the 373 

training dataset. 374 

 We then assessed the impact of cranial window/image quality on tracking, using a 375 

custom reference free signal-to-noise (SNR) metric. We chose two representative imaging 376 

volumes, one from a mouse with an optimal cranial window, and one from a mouse with a 377 

window that had not yet become optically clear. The obscured window reduced the detection of 378 

fluorescence at lower cortical depths. Our average SNR metric clearly delineated the depth-379 

dependent decay of image quality, as the SNR in maximum projections of the obscured volume 380 

dropped rapidly after a depth of 200 µm (Figure 5C,D). This image quality decay was verified 381 
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visually, and while Seg-CNN still generalized and was able to identify oligodendrocyte somata in 382 

deeper layers despite the reduction in SNR, it was clear that many cells were obscured from 383 

view from both machine and human trackers (Figure 5C). By visual assessment, we set a 384 

threshold of SNR ~ 1.5 dB as a limit under which image quality becomes a concern for Oligo-385 

Track analysis. Fluctuations in SNR between timepoints can lead to disrupted tracking as cells 386 

are arbitrarily obscured and falsely labelled as terminated or newly formed. This threshold was 387 

incorporated into our pipeline and offers users a warning during implementation of the algorithm. 388 

Seg-CNN was also able to avoid some fluorescent, non-cellular components or weak 389 

cellular autofluorescence associated with cells other than oligodendrocytes, which can be 390 

difficult for non-deep learning approaches (Supplementary Figure 3A). However, the 391 

overwhelming density of brightly autofluorescent debris, such as lipofuscin found near the pial 392 

surface, were sometimes detected as false positives by Seg-CNN (Supplementary Figure 3B). 393 

We suggest that researchers using this software avoid areas with dense debris or lipofuscin, or 394 

at least exclude these regions from analysis, although this can be difficult when imaging in aged 395 

tissue (Moreno-García et al., 2018; A. Yakovleva et al., 2020). We also determined that while 396 

low imaging power impairs cell detection, post-hoc adjustments of the intensity histogram 397 

towards higher values recovered some undetected cells (Supplementary Figure 3C). Finally, we 398 

found that Track-CNN was robust to some variations in noise and motion blur. This was 399 

assessed by applying sequentially larger standard deviations of noise (10, 40, 50) and 400 

increasing the rotation range of random motion artifacts (4, 6, 10 degrees) using the Torchio 401 

python library (Pérez-García et al., 2021) (Supplementary Figure 3D,E). Together, this analysis 402 

shows that Oligo-Track can maintain performance despite changes in environmental variables 403 

that affect the distribution of the data. Moreover, we demonstrated that pre-processing of input 404 

data, such as intensity adjustments and the exclusion of regions with high debris or low SNR, 405 

can reduce instances of inaccurate tracking. 406 

 407 
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CNN detects layer-specific suppression of oligodendrogenesis at extended depth  408 

To assess the capacity of our pipeline to extract biological trends, we used the fully automated 409 

system to analyze oligodendrocyte dynamics for up to 12 weeks in cuprizone treated and non-410 

treated control mice. As anticipated, cuprizone treatment resulted in a predictable time course of 411 

oligodendrocyte degeneration and subsequent regeneration after mice were no longer exposed 412 

to the drug, while control mice gradually added oligodendrocytes over several weeks 413 

(Orthmann-Murphy et al., 2020) (Figures 6A,B, Videos 1 and 2). Moreover, when cells were 414 

segregated into 100 µm thick blocks from the pial surface, greater suppression of 415 

oligodendrocyte regeneration was observed in the deeper layers of the cortex (Figure 6C), as 416 

reported previously (Orthmann-Murphy et al., 2020). The sensitive detection of Oligo-Track 417 

allowed rapid extension of the analysis by another 100 µm (300 – 400 µm block), revealing that 418 

regeneration was even less efficient than in the area above, providing further evidence of the 419 

depth dependent decline in oligodendrocyte regeneration in the somatosensory cortex.  420 

 It is possible that the higher demand for oligodendrocyte regeneration in deeper cortical 421 

layers outstrips the regenerative capacity of OPCs (Hughes et al., 2013; Streichan et al., 2014). 422 

If the extent of oligodendrogenesis is limited by the availability of local cues or accumulation of 423 

myelin debris, then newly generated cells should preferentially appear in regions with lower 424 

initial oligodendrocyte density (and lower oligodendrocyte death) (Orthmann-Murphy et al., 425 

2020). Our prior studies indicate that new oligodendrocytes do not regenerate in locations 426 

where previous cells had died, suggesting possible inhibition of proliferation by myelin debris 427 

after cell death (Lampron et al., 2015; Gruchot et al., 2019). As a measure of sparsity, we 428 

calculated the average distance from each cell to its five nearest neighbors. We limited our 429 

analysis to the first 300 µm of the cortex to avoid errors in sparsity calculations due to the lack of 430 

tracked nearest-neighbor cells past 400 µm depth. Given this measure, we found that there was 431 

no strong correlation between sparsity, cell death or regeneration (Figures 6D,E and Video 3), 432 

suggesting that cell death and regeneration are not strongly influenced by local oligodendrocyte 433 
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density at baseline. Rather, global gradients of inhibitory factors such as cytokines released by 434 

astrocytes, which become persistently reactive in deeper layers of the cortex after cuprizone 435 

mediated demyelination (Orthmann-Murphy et al., 2020), may inhibit oligodendrocyte precursor 436 

cell differentiation (Skripuletz et al., 2008; Zhang et al., 2010; Su et al., 2011; Chang et al., 437 

2012; Kirby et al., 2019).  438 

 439 

Volumetric segmentation enables identification of newly born oligodendrocytes 440 

Oligodendrocytes undergo dramatic morphological changes as they transition from progenitors 441 

to mature myelinating cells, accompanied by an elaboration of myelin forming processes and 442 

changes in soma size (Kuhn et al., 2019). To quantify the time course of these somatic 443 

changes, we analyzed volumetric morphological data provided by Oligo-Track, from longitudinal 444 

imaging datasets where the birth date of newly formed oligodendrocytes was known. We limited 445 

our investigation to the first 300 µm of the cortex as tissue refraction often reduced brightness of 446 

cells in deeper cortical layers, resulting in inaccurate measurement of cell soma volume from 447 

dim fluorescence. This analysis revealed oligodendrocyte soma size was highly correlated with 448 

cell age. Most newly formed oligodendrocytes had larger cell bodies than stable cells at any 449 

timepoint across all depths (Figure 7A and Video 4). Projecting this across cell age, the soma 450 

volume of newly formed oligodendrocytes decayed exponentially over subsequent weeks from 451 

first appearance (Figure 7B,C;  p < 0.001 @ 1 week, p=0.027 @ 2 weeks; Kruskal-Wallis test 452 

with Dunn’s post-hoc analysis). Moreover, the average volume of newly generated cells, post-453 

cuprizone injury, was significantly higher compared to stable mature cells in control animals up 454 

to 3 weeks after oligodendrogenesis (Figure 7D; 1.6 ± 0.04 fold change p<0.001 and D=1.29 @ 455 

1 week, 1.4 ± 0.04 fold change p<0.001 and D=0.85 @ 2 weeks, 1.2 ± 0.03 fold change 456 

p<0.001 and D=0.33 @ 3 weeks, 1.0 ± 0.03 fold change p=0.39 and D=0.07 @ 4 weeks; 457 

Kruskal-Wallis test with Dunn’s post-hoc analysis and Cohen’s effect size calculation). To 458 

confirm that this size difference is not associated with cuprizone induced changes, we also 459 
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compared the volume of spontaneously generated oligodendrocytes in control animals with their 460 

stable counterparts and found that newly formed cells also had significantly larger cell somata 461 

(Figure 7D; 1.7 ± 0.09 fold change p< 0.001 and D=1.22 @ 1 week, 1.4 ± 0.07 fold change  462 

p<0.001 and D=1.1 @ 2 weeks, 1.3 ± 0.06 fold change p<0.001 and D=0.54 @ 3 weeks, 1.0 ± 463 

0.05 fold change p=0.28 and D=0.09 @ 4 weeks; Kruskal-Wallis test with Dunn’s post-hoc 464 

analysis and Cohen’s effect size calculation). Thus, the increased soma size of newly formed 465 

oligodendrocytes is an innate biological phenomenon, rather than a response to cuprizone 466 

exposure.  467 

 Given the substantially larger cell somas of newly formed oligodendrocytes, we 468 

assessed the predictive power of cell soma size as an indicator of cell age. To examine the 469 

probability that a cell soma of a certain volume is exactly a certain age or within a range of ages, 470 

we plotted the kernel density estimate (KDE) for each distribution of soma volumes at different 471 

timepoints (Figure 7E). The KDE offers a normalized estimate of the probability density function 472 

such that we can visualize the probability of multiple conditions simultaneously. For example, 473 

we observed that a cell with a soma volume greater than 5000 µm3 has an almost 100% chance 474 

of being exactly 1 week old from time of differentiation. Similarly, cell somata between the range 475 

of 3500 - 5000 µm3 are most likely less than 2 weeks old, while somata larger than 3000 µm3 476 

are likely newly generated cells within the first 3 weeks post-differentiation (Figure 7E). Finally, 477 

by comparing the mean soma volume of stable control oligodendrocytes to newly formed cells 478 

at multiple timepoints, we also confirmed the statistical significance of the predictive relationship 479 

between soma volume and cell age (Figure 7F; p<0.001 all comparisons; 1-way ANOVA with 480 

Tukey’s Honest Significant Difference post-hoc test). 481 

 482 

Oligodendrocyte death can be predicted from soma size 483 

Oligodendrocyte death is typically preceded by nuclear condensation and shrinkage of the soma 484 

(Bortner and Cidlowski, 2002; Miller and Zachary, 2017). To determine if the soma size analysis 485 
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could also be used to predict whether an oligodendrocyte will later degenerate, we plotted the 486 

soma volumes of all cells later observed to degenerate. After multiple weeks of cuprizone 487 

treatment, the median soma volume of all cells shrank significantly (Figures 8A–C, Video 4; 488 

p<0.001 @ 1 week, 2 weeks and 3 weeks), consistent with the high degree of oligodendrocyte 489 

degeneration observed in the cortex. When compared to oligodendrocytes at comparable 490 

timepoints in control mice, soma size was also significantly smaller after extended cuprizone 491 

treatment (Figure 8D; 0.83 ± 0.013 fold change p<0.001 and D=0.26 @ 1 week, 0.73 ± 0.013 492 

fold change p<0.001 and D=0.65 @ 2 weeks, 0.6 ± 0.015 fold change p<0.001 and D=1.1 @ 3 493 

weeks; Kruskal-Wallis test with Dunn’s post-hoc analysis and Cohen’s effect size calculation), 494 

consistent with progression to apoptosis. Given the large statistical power when sampling 495 

thousands of cells, we additionally defined a significant difference in soma volume as one 496 

having a medium to large effect size (> 0.5 Cohen’s D), which only occurred at 2 and 3 weeks of 497 

cuprizone treatment. Assessing the predictive power of soma volume again, we attempted to 498 

predict the likelihood that a cell would die within the next subsequent week given that the cell is 499 

smaller than a certain soma volume. While not as striking as the predictive power for newly 500 

formed oligodendrocytes, the probability that cells with somata below 500 µm3 would disappear 501 

within one week was over 90% (Figures 8E,F). Together, this analysis reveals that the size of 502 

oligodendrocyte somata calculated using deep neural networks can be used to predict, without 503 

prior or later longitudinal imaging data, whether a cell was recently generated and whether it is 504 

likely to degenerate. 505 

 506 

 507 

DISCUSSION 508 

To facilitate analysis of oligodendrocyte dynamics in the adult brain we designed Oligo-Track, a 509 

deep learning pipeline that uses two sequential CNNs to allow cell tracking in volumetric 510 

imaging datasets. This methodology provides a substantial improvement over traditional 511 
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imaging informatics approaches as it was faster, less subject to user bias and less influenced by 512 

factors that commonly deteriorate image quality, allowing reliable automated cell tracking over 513 

time series spanning multiple weeks. This automated volumetric analysis enabled us to increase 514 

the number of oligodendrocytes analyzed in deeper layers of the mouse cortex and to identify 515 

newly formed oligodendrocytes and those that are in the process of degenerating simply based 516 

on soma size at a single time point without longitudinal tracking information.  517 

This CNN tracking pipeline follows a two-step approach to optimize multi-object tracking 518 

(MOT). We first setup a detection step, where oligodendrocytes are identified in a volume, 519 

followed by an association step, to link tracked cells across time frames (Ciaparrone et al., 520 

2020). Unlike other deep learning MOT approaches, which often only use CNNs to generate 521 

bounding boxes or extract features (Ciaparrone et al., 2020), we employed two sequential 522 

CNNs that both performed semantic segmentation in the MOT detection and association stages 523 

(Seg-CNN and Track-CNN, respectively). The output of this pipeline provides not only the 524 

location of all tracked cells, but also the volume of each cell soma. This volumetric tracking was 525 

made possible by training our association network (Track-CNN) with a seed-based learning 526 

approach. Previous studies have shown that, when given input data containing several cells, 527 

one can mark cells of interest with a binary mask, or “seed”, to draw the attention of CNNs (Xu 528 

et al., 2019). This forces a semantic classifier to not only learn to identify oligodendrocyte 529 

somas, but also to identify the somas of individually marked cells of interest across different 530 

timepoints. 531 

 From a computational standpoint, there are several advantages to this automated 532 

approach. Roughly estimating the time for manual analysis with syGlass, a 3D virtual reality 533 

based visualization tool, we found that a 10-week, 10-timepoint dataset with a size of 800 × 800 534 

× 300 µm per timepoint would take a researcher approximately six hours to identify and track all 535 

oligodendrocytes within this volume. This estimate only considers the time to place point 536 

coordinates and does not include the considerable additional time it would take to trace every 537 
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voxel to generate volumetric segmentations. This estimate also does not consider how much 538 

longer manual analysis would take without access to specialized VR software (e.g. syGlass). By 539 

comparison, Oligo-Track requires ~20 minutes for Seg-CNN segmentation (~2 minutes per 540 

timepoint) and ~25 – 35 minutes for Track-CNN associations for the same volume across 10 541 

timepoints, for a total analysis time of 45 – 55 minutes, more than six times faster than achieved 542 

with VR-assisted manual tracking, just for cell identification. This processing time is also purely 543 

computational, so manual labor time is reduced to almost zero, and offers fully volumetric 544 

segmentations. Total runtime will vary depending on cell density, number of timepoints, the size 545 

of volumes during inference and the exact computer configuration. 546 

Standardization of methodology and accuracy are also important advantages of the CNN 547 

analysis approach. Losing dimensionality can be extremely detrimental to quantification speed 548 

and accuracy, as cells can often lie on top of one another or shift in unpredictable ways that can 549 

be missed if viewing 4D data in lower dimensional space. As many researchers do not yet have 550 

access to 4D visualization/tracking tools, Oligo-Track standardizes the approach to longitudinal 551 

cell tracking, removing the reliance on specialized proprietary software and reducing tracking 552 

inconsistencies between individuals. 553 

 Although there are clear technical advantages of using CNNs to track cells over time, the 554 

decision to use deep learning as an underlying analytic framework comes with additional 555 

considerations. Deep learning is often criticized for its “black box” nature, as researchers are 556 

unable to understand the intricate decision-making process of millions of weighted connections 557 

in a CNN, resulting in sometimes unpredictable behavior (Heaven, 2019; Yampolskiy, 2019). 558 

For example, as we see in our own network, it was difficult to define the exact level of debris 559 

avoidance that the neural network was capable of, and why certain debris were more likely to be 560 

identified as false positives. This variability could be addressed in future work by data 561 

augmentation, whereby data containing high levels of real or synthetic debris could be 562 

introduced during CNN training. Currently, we partially addressed the unpredictability of deep 563 
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learning by using VR-based 4D manual curation post-CNN analysis to ensure accuracy in 564 

unpredictable scenarios. We also used these post-hoc manually curated datasets to further 565 

improve the CNNs, highlighting a major advantage of deep learning approaches. CNN models 566 

are extraordinarily data hungry and can be continuously improved with new training data that 567 

help generalize to new imaging conditions (Klabjan and Zhu, 2020). For instance, while Oligo-568 

Track has only been trained on cells up to 400 µm depth in the cortex, it will be possible to 569 

further train these networks to imaging conditions in deeper cortical layers. This training 570 

advantage is not available for traditional algorithms that may require extensive manual fine-571 

tuning for extrapolation to slight variations in imaging conditions. 572 

While the main limiting factor for developing deep learning technologies is the generation 573 

of large ground-truth training datasets to reach optimal performance levels, there are a growing 574 

number of methods by which researchers can reduce this high data demand of CNNs. For 575 

instance, transfer learning techniques have demonstrated how a network that is pretrained on a 576 

large dataset can be rapidly adapted to a new dataset with minimal new training data (Zhuang 577 

et al., 2020). Given the large database that our network was trained on, and the relatively similar 578 

features of cells that express fluorescent proteins, our pretrained CNN can serve as a basis for 579 

additional tool development, in which transfer learning is used to adapt this model to other cell 580 

types, where ground truth training data may not be readily available. 581 

Automated quantitative tools will play a growing, critical role in the age of big data that is 582 

spurned by advances in biological imaging technologies. Of note for oligodendrocyte biology, 583 

three photon imaging promises to take us deeper in vivo (Horton et al., 2013; Lecoq et al., 584 

2019), allowing us to examine the dynamics of these myelinating cells in layers 5 and 6 of the 585 

cortex and perhaps even into the white matter of the corpus callosum. Additionally, block-face 586 

imaging presents us with the opportunity to examine distributions of oligodendrocytes across the 587 

entire mouse brain, correlating myelination patterns with neuron type and brain region (Ragan et 588 

al., 2012; Amato et al., 2016; Winnubst et al., 2019). To match the scale of these imaging 589 
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technologies, an important extension of the current work is to extract not only positional 590 

information about cells in vivo, but also the entire structure of cells. For oligodendrocytes, that 591 

means the soma, cytosolic branches, and individual myelin sheaths formed by each cell. As 592 

highlighted in this study, gaining quantitative access to even a single parameter, such as soma 593 

volume, can greatly extend biological understanding, allowing robust predictions to be made 594 

with limited data. Here, the strong correlations we observed between soma size, age, and 595 

survival provide us with a tool to infer the regenerative capacity of oligodendrocytes on fixed 596 

timepoint experiments acquired from individual tissue sections or from block-face imaging 597 

(Ragan et al., 2012). By extension, having access to the complete morphological structures of 598 

thousands of oligodendrocytes in the brain would enable us to assess complex region-specific 599 

differences in adaptive myelination, regenerative capacity and survival across the brain in mice 600 

subjected to different interventions.  601 

Deep learning is well situated to provide us with the adaptable, reliable tools needed for 602 

the analysis of enormous new imaging datasets that can no longer be practically annotated 603 

using a manual brute force selection approach. Computational power is growing rapidly each 604 

year with new GPUs and the development of dozens of new deep learning techniques. Here, we 605 

demonstrate one powerful application of deep learning to resolve a multi-dimensional tracking 606 

challenge, which not only facilitates analysis of oligodendrocyte dynamics, but also extends our 607 

quantitative limits to extract novel insight into regional differences in regenerative capacity and 608 

allows predictions to be made about future behaviors. Having access to more cellular features 609 

and dynamics will bring us closer to understanding the events that underlie myelin regeneration 610 

that will aid in the discovery of therapeutics for treating demyelinating diseases. 611 

 612 

 613 

 614 

 615 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

ACKNOWLEDGMENTS 616 

We thank Dr. M. Pucak and N. Ye for technical assistance, T. Shelly for machining expertise, 617 

and members of the Bergles laboratory for discussions. Y.K.T.X. was supported by a fellowship 618 

from the Johns Hopkins University Kavli Neuroscience Discovery Institute and C.C. was 619 

supported by a National Science Foundation Graduate Research Fellowship. Funding was 620 

provided by NIH BRAIN Initiative grant R01 RF1MH121539, a Collaborative Research Center 621 

Grant from the National Multiple Sclerosis Society and the Dr. Miriam and Sheldon G Adelson 622 

Medical Research Foundation. 623 

 624 

Author contributions 625 

Y.K.T.X. model design, conceptualization, data curation, formal analysis, supervision, validation, 626 

investigation, visualization, methodology, writing – original draft, writing – review and editing. 627 

C.C. conceptualization, data curation, supervision, methodology, writing – original draft, writing 628 

– review and editing. J.S. methodology, supervision, investigation, writing – original draft, writing 629 

– review and editing. D.E.B. conceptualization, Resources, Supervision, Funding acquisition, 630 

Investigation, Methodology, Writing – original draft, Project administration, Writing – review and 631 

editing. 632 

 633 

Conflict of Interest 634 

The authors declare that the research was conducted in the absence of any commercial or 635 

financial relationships that could be construed as a potential conflict of interest. 636 

 637 

REFERENCES 638 
 639 
Acton, S. T., Wethmar, K., and Ley, K. (2002). Automatic Tracking of Rolling Leukocytes in 640 

Vivo. Microvascular Research 63, 139–148. doi:10.1006/mvre.2001.2373. 641 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Amato, S. P., Pan, F., Schwartz, J., and Ragan, T. M. (2016). Whole Brain Imaging with Serial 642 
Two-Photon Tomography. Front Neuroanat 10. doi:10.3389/fnana.2016.00031. 643 

A. Yakovleva, M., Sh. Radchenko, A., B. Feldman, T., A. Kostyukov, A., M. Arbukhanova, P., 644 
A. Borzenok, S., et al. (2020). Fluorescence characteristics of lipofuscin fluorophores 645 
from human retinal pigment epithelium. Photochemical & Photobiological Sciences 19, 646 
920–930. doi:10.1039/C9PP00406H. 647 

Baxi, E. G., DeBruin, J., Jin, J., Strasburger, H. J., Smith, M. D., Orthmann‐Murphy, J. L., et al. 648 
(2017). Lineage tracing reveals dynamic changes in oligodendrocyte precursor cells 649 
following cuprizone-induced demyelination. Glia 65, 2087–2098. doi:10.1002/glia.23229. 650 

Berg, S., Kutra, D., Kroeger, T., Straehle, C. N., Kausler, B. X., Haubold, C., et al. (2019). ilastik: 651 
interactive machine learning for (bio)image analysis. Nature Methods 16, 1226–1232. 652 
doi:10.1038/s41592-019-0582-9. 653 

Bergles, D. E., and Richardson, W. D. (2015). Oligodendrocyte Development and Plasticity. 654 
Cold Spring Harb Perspect Biol 8, a020453. doi:10.1101/cshperspect.a020453. 655 

Bhardwaj, R. D., Curtis, M. A., Spalding, K. L., Buchholz, B. A., Fink, D., Björk-Eriksson, T., et 656 
al. (2006). Neocortical neurogenesis in humans is restricted to development. PNAS 103, 657 
12564–12568. doi:10.1073/pnas.0605177103. 658 

Bortner, C. D., and Cidlowski, J. A. (2002). Apoptotic volume decrease and the incredible 659 
shrinking cell. Cell Death & Differentiation 9, 1307–1310. doi:10.1038/sj.cdd.4401126. 660 

Chang, A., Staugaitis, S. M., Dutta, R., Batt, C. E., Easley, K. E., Chomyk, A. M., et al. (2012). 661 
Cortical remyelination: A new target for repair therapies in multiple sclerosis. Annals of 662 
Neurology 72, 918–926. doi:10.1002/ana.23693. 663 

Ciaparrone, G., Sánchez, F. L., Tabik, S., Troiano, L., Tagliaferri, R., and Herrera, F. (2020). 664 
Deep Learning in Video Multi-Object Tracking: A Survey. Neurocomputing 381, 61–88. 665 
doi:10.1016/j.neucom.2019.11.023. 666 

El Waly, B., Macchi, M., Cayre, M., and Durbec, P. (2014). Oligodendrogenesis in the normal 667 
and pathological central nervous system. Front. Neurosci. 8. 668 
doi:10.3389/fnins.2014.00145. 669 

Giovannucci, A., Friedrich, J., Gunn, P., Kalfon, J., Brown, B. L., Koay, S. A., et al. (2019). 670 
CaImAn an open source tool for scalable calcium imaging data analysis. eLife 8, 671 
e38173. doi:10.7554/eLife.38173. 672 

Gruchot, J., Weyers, V., Göttle, P., Förster, M., Hartung, H.-P., Küry, P., et al. (2019). The 673 
Molecular Basis for Remyelination Failure in Multiple Sclerosis. Cells 8. 674 
doi:10.3390/cells8080825. 675 

Heaven, D. (2019). Why deep-learning AIs are so easy to fool. Nature 574, 163–166. 676 
doi:10.1038/d41586-019-03013-5. 677 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Holtmaat, A., de Paola, V., Wilbrecht, L., Trachtenberg, J. T., Svoboda, K., and Portera-Cailliau, 678 
C. (2012). Imaging neocortical neurons through a chronic cranial window. Cold Spring 679 
Harb Protoc 2012, 694–701. doi:10.1101/pdb.prot069617. 680 

Horton, N. G., Wang, K., Kobat, D., Clark, C. G., Wise, F. W., Schaffer, C. B., et al. (2013). In 681 
vivo three-photon microscopy of subcortical structures within an intact mouse brain. 682 
Nature Photonics 7, 205–209. doi:10.1038/nphoton.2012.336. 683 

Hughes, E. G., Kang, S. H., Fukaya, M., and Bergles, D. E. (2013). Oligodendrocyte progenitors 684 
balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat 685 
Neurosci 16, 668–676. doi:10.1038/nn.3390. 686 

Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J., and Bergles, D. E. (2018). Myelin 687 
remodeling through experience-dependent oligodendrogenesis in the adult 688 
somatosensory cortex. Nature Neuroscience 21, 696–706. doi:10.1038/s41593-018-689 
0121-5. 690 

Jaccard, P. (1912). The Distribution of the Flora in the Alpine Zone.1. New Phytologist 11, 37–691 
50. doi:10.1111/j.1469-8137.1912.tb05611.x. 692 

Kirby, L., Jin, J., Cardona, J. G., Smith, M. D., Martin, K. A., Wang, J., et al. (2019). 693 
Oligodendrocyte precursor cells present antigen and are cytotoxic targets in 694 
inflammatory demyelination. Nature Communications 10, 3887. doi:10.1038/s41467-695 
019-11638-3. 696 

Klabjan, D., and Zhu, X. (2020). Neural Network Retraining for Model Serving. 697 
arXiv:2004.14203 [cs, stat]. Available at: http://arxiv.org/abs/2004.14203 [Accessed 698 
October 31, 2020]. 699 

Kuhn, S., Gritti, L., Crooks, D., and Dombrowski, Y. (2019). Oligodendrocytes in Development, 700 
Myelin Generation and Beyond. Cells 8. doi:10.3390/cells8111424. 701 

Lampron, A., Larochelle, A., Laflamme, N., Préfontaine, P., Plante, M.-M., Sánchez, M. G., et al. 702 
(2015). Inefficient clearance of myelin debris by microglia impairs remyelinating 703 
processes. J Exp Med 212, 481–495. doi:10.1084/jem.20141656. 704 

Larson, V. A., Mironova, Y., Vanderpool, K. G., Waisman, A., Rash, J. E., Agarwal, A., et al. 705 
(2018). Oligodendrocytes control potassium accumulation in white matter and seizure 706 
susceptibility. Elife 7. doi:10.7554/eLife.34829. 707 

Lecoq, J., Orlova, N., and Grewe, B. F. (2019). Wide. Fast. Deep: Recent Advances in 708 
Multiphoton Microscopy of In Vivo Neuronal Activity. J. Neurosci. 39, 9042–9052. 709 
doi:10.1523/JNEUROSCI.1527-18.2019. 710 

Loshchilov, I., and Hutter, F. (2019). Decoupled Weight Decay Regularization. 711 
arXiv:1711.05101 [cs, math]. Available at: http://arxiv.org/abs/1711.05101 [Accessed 712 
October 30, 2020]. 713 

Lugagne, J.-B., Lin, H., and Dunlop, M. J. (2020). DeLTA: Automated cell segmentation, 714 
tracking, and lineage reconstruction using deep learning. PLoS Comput Biol 16. 715 
doi:10.1371/journal.pcbi.1007673. 716 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

Marshall, L., Call, C., Bergles, D. E., and Morehead, M. Quicker, cost effective tracking of 4D 717 
data. 718 

Miller, M. A., and Zachary, J. F. (2017). Mechanisms and Morphology of Cellular Injury, 719 
Adaptation, and Death. Pathologic Basis of Veterinary Disease, 2-43.e19. 720 
doi:10.1016/B978-0-323-35775-3.00001-1. 721 

Ming, G., and Song, H. (2011). Adult Neurogenesis in the Mammalian Brain: Significant 722 
Answers and Significant Questions. Neuron 70, 687–702. 723 
doi:10.1016/j.neuron.2011.05.001. 724 

Moreno-García, A., Kun, A., Calero, O., Medina, M., and Calero, M. (2018). An Overview of the 725 
Role of Lipofuscin in Age-Related Neurodegeneration. Front. Neurosci. 12. 726 
doi:10.3389/fnins.2018.00464. 727 

Narayanan, R. T., Udvary, D., and Oberlaender, M. (2017). Cell Type-Specific Structural 728 
Organization of the Six Layers in Rat Barrel Cortex. Front. Neuroanat. 11. 729 
doi:10.3389/fnana.2017.00091. 730 

Neyshabur, B., Bhojanapalli, S., McAllester, D., and Srebro, N. (2017). Exploring Generalization 731 
in Deep Learning. arXiv:1706.08947 [cs]. Available at: http://arxiv.org/abs/1706.08947 732 
[Accessed November 1, 2020]. 733 

Nguyen, N. H., Keller, S., Norris, E., Huynh, T. T., Clemens, M. G., and Shin, M. C. (2011). 734 
Tracking Colliding Cells In Vivo Microscopy. IEEE Transactions on Biomedical 735 
Engineering 58, 2391–2400. doi:10.1109/TBME.2011.2158099. 736 

Nketia, T. A., Sailem, H., Rohde, G., Machiraju, R., and Rittscher, J. (2017). Analysis of live cell 737 
images: Methods, tools and opportunities. Methods 115, 65–79. 738 
doi:10.1016/j.ymeth.2017.02.007. 739 

Orthmann-Murphy, J., Call, C. L., Molina-Castro, G. C., Hsieh, Y. C., Rasband, M. N., Calabresi, 740 
P. A., et al. (2020). Remyelination alters the pattern of myelin in the cerebral cortex. 741 
eLife 9, e56621. doi:10.7554/eLife.56621. 742 

Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions 743 
on Systems, Man, and Cybernetics 9, 62–66. doi:10.1109/TSMC.1979.4310076. 744 

Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L. F., Dalgleish, H., et al. (2017). 745 
Suite2p: beyond 10,000 neurons with standard two-photon microscopy. bioRxiv, 061507. 746 
doi:10.1101/061507. 747 

Parslow, A., Cardona, A., and Bryson-Richardson, R. J. (2014). Sample Drift Correction 748 
Following 4D Confocal Time-lapse Imaging. J Vis Exp. doi:10.3791/51086. 749 

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al. (2017). Automatic 750 
differentiation in PyTorch. Available at: https://openreview.net/forum?id=BJJsrmfCZ 751 
[Accessed October 30, 2020]. 752 

Pérez-García, F., Sparks, R., and Ourselin, S. (2021). TorchIO: a Python library for efficient 753 
loading, preprocessing, augmentation and patch-based sampling of medical images in 754 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

deep learning. arXiv:2003.04696 [cs, eess, stat]. Available at: 755 
http://arxiv.org/abs/2003.04696 [Accessed January 18, 2021]. 756 

Pidhorskyi, S., Morehead, M., Jones, Q., Spirou, G., and Doretto, G. (2018). syGlass: 757 
Interactive Exploration of Multidimensional Images Using Virtual Reality Head-mounted 758 
Displays. arXiv:1804.08197 [cs]. Available at: http://arxiv.org/abs/1804.08197 [Accessed 759 
October 30, 2020]. 760 

Ragan, T., Kadiri, L. R., Venkataraju, K. U., Bahlmann, K., Sutin, J., Taranda, J., et al. (2012). 761 
Serial two-photon tomography: an automated method for ex-vivo mouse brain imaging. 762 
Nat Methods 9, 255–258. doi:10.1038/nmeth.1854. 763 

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Networks for 764 
Biomedical Image Segmentation. Available at: https://arxiv.org/abs/1505.04597v1 765 
[Accessed March 7, 2020]. 766 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., et al. (2012). 767 
Fiji: an open-source platform for biological-image analysis. Nature Methods 9, 676–682. 768 
doi:10.1038/nmeth.2019. 769 

Simons, M., and Nave, K.-A. (2016). Oligodendrocytes: Myelination and Axonal Support. Cold 770 
Spring Harb Perspect Biol 8. doi:10.1101/cshperspect.a020479. 771 

Skripuletz, T., Lindner, M., Kotsiari, A., Garde, N., Fokuhl, J., Linsmeier, F., et al. (2008). 772 
Cortical Demyelination Is Prominent in the Murine Cuprizone Model and Is Strain-773 
Dependent. The American Journal of Pathology 172, 1053–1061. 774 
doi:10.2353/ajpath.2008.070850. 775 

Streichan, S. J., Hoerner, C. R., Schneidt, T., Holzer, D., and Hufnagel, L. (2014). Spatial 776 
constraints control cell proliferation in tissues. Proc Natl Acad Sci U S A 111, 5586–777 
5591. doi:10.1073/pnas.1323016111. 778 

Su, Z., Yuan, Y., Chen, J., Zhu, Y., Qiu, Y., Zhu, F., et al. (2011). Reactive Astrocytes Inhibit the 779 
Survival and Differentiation of Oligodendrocyte Precursor Cells by Secreted TNF-α. 780 
Journal of Neurotrauma 28, 1089–1100. doi:10.1089/neu.2010.1597. 781 

Theer, P., and Denk, W. (2006). On the fundamental imaging-depth limit in two-photon 782 
microscopy. J. Opt. Soc. Am. A, JOSAA 23, 3139–3149. doi:10.1364/JOSAA.23.003139. 783 

Van Valen, D. A., Kudo, T., Lane, K. M., Macklin, D. N., Quach, N. T., DeFelice, M. M., et al. 784 
(2016). Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-785 
Cell Imaging Experiments. PLoS Comput Biol 12. doi:10.1371/journal.pcbi.1005177. 786 

Wang, J., Su, X., Zhao, L., and Zhang, J. (2020). Deep Reinforcement Learning for Data 787 
Association in Cell Tracking. Front Bioeng Biotechnol 8. doi:10.3389/fbioe.2020.00298. 788 

Winnubst, J., Bas, E., Ferreira, T. A., Wu, Z., Economo, M. N., Edson, P., et al. (2019). 789 
Reconstruction of 1,000 Projection Neurons Reveals New Cell Types and Organization 790 
of Long-Range Connectivity in the Mouse Brain. Cell 179, 268-281.e13. 791 
doi:10.1016/j.cell.2019.07.042. 792 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Xu, Y. K. T., Chitsaz, D., Brown, R. A., Cui, Q. L., Dabarno, M. A., Antel, J. P., et al. (2019). 793 
Deep learning for high-throughput quantification of oligodendrocyte ensheathment at 794 
single-cell resolution. Commun Biol 2, 1–12. doi:10.1038/s42003-019-0356-z. 795 

Yampolskiy, R. V. (2019). Unpredictability of AI. arXiv:1905.13053 [cs]. Available at: 796 
http://arxiv.org/abs/1905.13053 [Accessed October 31, 2020]. 797 

Zhang, Y., Zhang, J., Navrazhina, K., Argaw, A. T., Zameer, A., Gurfein, B. T., et al. (2010). 798 
TGFβ1 induces Jagged1 expression in astrocytes via ALK5 and Smad3 and regulates 799 
the balance between oligodendrocyte progenitor proliferation and differentiation. Glia 58, 800 
964–974. doi:10.1002/glia.20978. 801 

Zhong, B., Pan, S., Wang, C., Wang, T., Du, J., Chen, D., et al. (2016). Robust Individual-802 
Cell/Object Tracking via PCANet Deep Network in Biomedicine and Computer Vision. 803 
Biomed Res Int 2016. doi:10.1155/2016/8182416. 804 

Zhou Wang, Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality 805 
assessment: from error visibility to structural similarity. IEEE Transactions on Image 806 
Processing 13, 600–612. doi:10.1109/TIP.2003.819861. 807 

Zhu, X., Li, X., Li, Z., and Zhu, B. (2012). Study on Signal-to-noise ratio algorithms based on no-808 
reference Image quality assessment. in 2012 International Conference on Systems and 809 
Informatics (ICSAI2012), 1755–1759. doi:10.1109/ICSAI.2012.6223383. 810 

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. (2020). A Comprehensive Survey on 811 
Transfer Learning. arXiv:1911.02685 [cs, stat]. Available at: 812 
http://arxiv.org/abs/1911.02685 [Accessed October 30, 2020]. 813 

  814 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

 815 
Figure 1: In vivo imaging of oligodendrocytes. (A) Cranial windows were surgically 816 
implanted in adult Mobp-EGFP mice in which only oligodendrocytes express EGFP. (B) 817 
Orientation of oligodendrocytes from imaging surface to white matter. Oligodendrocytes in upper 818 
cortical layers myelinate horizontally aligned axons, while those in deeper cortical layers are 819 
aligned perpendicularly to pial surface. Standard imaging range of two-photon and three-photon 820 
microscopy highlighted with approximate gradients (Theer and Denk, 2006; Lecoq et al., 2019) 821 
(C) XY maximum projections of 100 µm thick volumes at indicated depths (0 – 100 µm, 100 – 822 
200 µm, 200 – 300 µm, 300 – 400 µm). Layer depths as estimated in somatosensory cortex 823 
(Narayanan et al., 2017). Oligodendrocyte density increases rapidly with depth, increasing the 824 
time needed for manual tracking. Scale bar: 50 µm. 825 
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 826 
Figure 2: Computational neural network analysis pipeline. (A) Overview of the sequential 827 
CNN multi-object tracking pipeline Oligo-Track (top). CNNs marked in green. Overview of 828 
heuristic baseline method (orange) for comparison to Oligo-Track (bottom). Compatibility with 829 
optional syGlass curation provides validation of tracking in both pipelines (blue). Curated tracks 830 
can also be reintroduced into training pipeline for refinement of CNNs. (B) Seg-CNN pre-831 
processing extracts cropped regions from larger volumes with 50% overlap for computational 832 
efficiency at each timepoint t to t + n. Cropped regions are restitched to form timeseries. Scale 833 
bar: 50 µm. 834 
 835 
  836 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.12.430879doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430879
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

Figure 3: Track-CNN processing steps. (A) Crops are taken from each pair of timepoints t 837 
and t + 1 centered around a cell denoted by magenta arrow on channel 1. Channel 1 contains 838 
raw fluorescence from timepoint t. Channel 2 contains seed mask of cell of interest (magenta 839 
arrow). Adjacent segmented cells are set to a lower value (green). Channel 3 contains raw 840 
fluorescence from timepoint t + 1. Cropped images are concatenated together to form input to 841 
network. The network output is a semantic segmentation indicating the location of the seed 842 
masked cell on timepoint t + 1. This procedure is repeated for all cells on all consecutive 843 
timepoints. Scale bar: 30 µm. (B) Example showing local coherence in how tracked cells in a 844 
local region shift between timepoint t (green) and t + 1 (magenta), allowing for predictive post-845 
processing using average movement vectors (right). Scale bar: 30 µm. (C) Distribution of 846 
distances from predicted to actual location of cell on timepoint t + 1 given any cell on timepoint t. 847 
The prediction is generated by taking the average displacement vector of five nearest neighbor 848 
tracks. Differences between predicted and actual location were typically within 6 pixels. 849 
 850 
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 851 
Figure 4: CNN-based tracking outperforms heuristic tracking. (A) Diagram illustrating 852 
cuprizone induced oligodendrocyte loss and recovery during the imaging period. (B) Overall 853 
normalized trends for human, CNN and heuristic tracking methods on test timeseries withheld 854 
from training data. (C) Number of new cells detected per timepoint for each method. (D) Number 855 
of cells terminated per timepoint for each method. (E) Track difference (length of track in ground 856 
truth - length of track by machine count) comparing ground truth to CNN and heuristic methods, 857 
respectively. (F) Comparison of major errors, defined as under- or over-tracking for > 1 858 
timepoint, and total errors by CNN and heuristic methods. 859 
 860 
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 861 

Figure 5: Oligo-Track enables robust cell tracking under different experimental 862 
conditions. (A) Input image for Track-CNN used in (B) to assess impact of different rescaling 863 
on Track-CNN performance. Cell of interest denoted by magenta arrow. Scale bar: 30 µm. (C) 864 
Representative XY maximum projections at indicated SNR values and depths in a volume with 865 
optimal image quality (left), and a volume with a less transparent cranial window (right). Overlay 866 
of cells detected by Oligo-Track in Magenta. Scale bar: 30 µm. (D) Plotting average SNR across 867 
depth of optimal quality and degraded quality volumes. Dashed grey line indicates human 868 
perceptual limit for reliably tracing data. Also represents point at which algorithm will provide 869 
warning to user. 870 
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 871 
 872 
Figure 6: Local oligodendrocyte density does not correlate with region specific 873 
suppression of regeneration. (A) Normalized values for baseline and newly formed 874 
oligodendrocytes across weeks of cuprizone treatment and recovery. Bars indicate cell numbers 875 
averaged across animals for each week. (B) Normalized values for baseline and newly formed 876 
cells in no treatment condition. (C) Cortical depth-specific changes in oligodendrocyte 877 
regeneration showing suppressed regeneration in deeper layers. Volume split into 4 sections 878 
based on depth (0 – 100 µm, 100 – 200 µm, 200 – 300 µm, 300 – 400 µm). (D) Cell sparsity 879 
(average distance to 10 nearest neighbors) of stable and newly formed oligodendrocytes at 880 
baseline and week 2 of recovery shows no obvious clustering patterns at any timepoint. (E) 881 
Sparsity of cells that will die within one week (red) at week 1 and week 3 of cuprizone also 882 
shows no obvious clustering patterns at any timepoint. Cells pooled from n = 4 cuprizone 883 
treated and n = 3 control mice. 884 
 885 
 886 
 887 
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Figure 7: Newly generated oligodendrocytes can be identified by cell soma volume. (A) 888 
Soma volume of stable and newly formed oligodendrocytes at baseline, 1 week recovery, and 2 889 
weeks recovery across different cortical depths. (B) Representative example of the change in 890 
soma size of newly formed oligodendrocyte tracked across 4 weeks of recovery. Scale bar: 20 891 
µm. (C) Plot of decrease in soma volume for 250 cells over weeks relative to time of cell 892 
generation. Red dots are mean ± SEM. (D) Comparison of soma volume in newly formed 893 
oligodendrocytes during recovery compared with stable cells in non-treated mice. Also includes 894 
comparison of soma volume between spontaneously formed oligodendrocytes and stable cells 895 
in non-treated mice. All values are normalized to the mean soma volume of stable control cells 896 
at each matched timepoint. (E) Kernel density estimate for each distribution of soma volumes at 897 
indicated timepoints. These normalized distributions help visualize the probability that a cell with 898 
a certain soma volume is within a certain age range post-oligodendrogenesis. (F) Distribution of 899 
soma volumes of cells that are 1, 2, and 3 weeks old relative to cells in mice that are not treated 900 
with cuprizone at matched timepoints. Cells pooled from n = 4 cuprizone treated and n = 3 901 
control mice. See Supplementary file 1 for statistical tests and significance level for each 902 
comparison. 903 
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Figure 8: Oligodendrocyte death can be predicted from cell soma volume. (A) Volume of 904 
cell somata within 1 week of dying (red) at baseline, 1 week cuprizone, and 2 week cuprizone 905 
timepoints. (B) Representative example of cell soma shrinkage throughout cuprizone treatment, 906 
resulting in eventual death. Scale bar: 20 µm. (C) Plot of soma volume decrease for 860 cells 907 
during cuprizone treatment. (D) Plot of average soma volume of dying cells at each timepoint of 908 
cuprizone treatment relative to timepoint matched cells from control mice. All values are 909 
normalized to the mean soma volume of stable control cells at each matched timepoint. (E) 910 
Overall distribution of soma volumes for non-treated cells and cells within 1 week of death 911 
during cuprizone treatment. (F) Probability that a cell soma below a certain volume is within 1 912 
week of death. Cells pooled from n = 4 cuprizone treated and n = 3 control mice. 913 
See Supplementary file 1 for statistical tests and significance level for each comparison. 914 
 915 
 916 
Video 1: Cell tracking across two stable timepoints. Timepoint t (left) and t + 1 (right). 917 
Magenta indicates the cell that is currently undergoing assessment by Track-CNN. After 918 
assessment, a color is assigned to the cell on t and t + 1 to represent a tracked cell across 919 
timepoints. If the cell is untracked (or dies between timepoints), the cell soma is set to pure 920 
white on t. 921 
 922 
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https://www.dropbox.com/s/nz9ll1n2ucw5v7w/Video_1_tracking_stable_cells_compressed.mp4923 
?dl=0 924 
 925 
Video 2: Cell tracking across cuprizone injury timepoints. Timepoint t (left) and t + 1 (right). 926 
Magenta indicates the cell that is currently undergoing assessment by Track-CNN. After 927 
assessment, a color is assigned to the cell on t and t + 1 to represent a tracked cell across 928 
timepoints. If the cell is untracked (or dies between timepoints), the cell soma is set to pure 929 
white on t. 930 
 931 
https://www.dropbox.com/s/zd647mqtnwsiokz/Video_2_tracking_cuprizone_cells_compressed.932 
mp4?dl=0 933 
 934 
Video 3: Cell sparsity over weeks of cuprizone treatment and recovery. Newly formed cells 935 
marked in green (left) and cells that will die within a week marked in red (right) starting from 936 
baseline followed by three weeks of cuprizone treatment and subsequent recovery. 937 
 938 
https://www.dropbox.com/s/vaem5qncd2jz5fh/Video_3_sparsity_over_weeks_compressed.avi?939 
dl=0 940 
 941 
Video 4: Soma size of dying and newly formed cells over weeks of cuprizone treatment. 942 
Newly formed cells marked in green (left) and cells that will die within a week a marked in red 943 
(right) starting from baseline followed by three weeks of cuprizone treatment and subsequent 944 
recovery. 945 
 946 
https://www.dropbox.com/s/vb2sgbilrcpuzdp/Video_4_volume_over_weeks_compressed.avi?dl947 
=0 948 
 949 
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