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Abstract 
 
COVID-19 disease outcome is highly dependent on adaptive immunity from T and B lymphocytes, which               

play a critical role in the control, clearance and long-term protection against SARS-CoV-2. To date, there                

is limited knowledge on the composition of the T and B cell immune receptor repertoires [T cell receptors                  

(TCRs) and B cell receptors (BCRs)] and transcriptomes in convalescent COVID-19 patients of different              

age groups. Here, we utilize single-cell sequencing (scSeq) of lymphocyte immune repertoires and             

transcriptomes to quantitatively profile the adaptive immune response in COVID-19 patients of varying             

age. We discovered highly expanded T and B cells in multiple patients, with the most expanded                

clonotypes coming from the effector CD8 + T cell population. Highly expanded CD8 + and CD4 + T cell                

clones show elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4: GZMA), whereas clonally              

expanded B cells show markers of transition into the plasma cell state and activation across patients. By                 

comparing young and old convalescent COVID-19 patients (mean ages = 31 and 66.8 years,              

respectively), we found that clonally expanded B cells in young patients were predominantly of the IgA                

isotype and their BCRs had incurred higher levels of somatic hypermutation than elderly patients. In               

conclusion, our scSeq analysis defines the adaptive immune repertoire and transcriptome in convalescent             

COVID-19 patients and shows important age-related differences implicated in immunity against           

SARS-CoV-2.  
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Introduction 

 

T and B lymphocytes are crucial for protection from SARS-CoV-2 infection, viral clearance and the               

formation of persisting antiviral immunity1,2 . Yet, adaptive immune responses have also been implicated in              

contributing to immunopathology during COVID-19, with higher mortality rates in elderly individuals3–6 .            

However, the exact determinants of a successful adaptive immune response against SARS-CoV-2 and its              

variability between different age groups remain to be fully elucidated.  

Lymphocytes express either T cell receptors (TCR) or B cell receptors (BCR), which possess a highly                

diverse pair of variable chains [variable alpha (Vα) and beta (Vβ) for TCR and variable light (VL ) and heavy                   

(VH ) for BCR] that are able to directly engage with antigen (e.g., viral proteins or peptides). Diversity in                  

these variable chains are generated by somatic recombination of V-, D- and J-gene germline segments               

and along with combinatorial receptor chain pairing and somatic hypermutation (BCR only) results in an               

estimated human TCR and BCR diversity of 10 18 and 10 13 , respectively7,8 . Upon encountering cognate              

antigens, lymphocytes are phenotypically activated and undergo massive proliferation, also referred to as             

clonal selection and expansion. Deep sequencing of TCRs and BCRs has become a powerful strategy to                

profile the diversity of immune repertoires and to reveal insights on clonal selection, expansion and               

evolution (somatic hypermutation in B cells)9–12 and has been instrumental in studying long term effects               

following vaccination, infection and ageing 13–17. In the context of COVID-19, immune repertoire sequencing             

has shown diminished TCR repertoire diversity and BCR isotype switching and respective expansion             

during early disease onset18 . 

 

In recent years, single-cell sequencing (scSeq) of transcriptomes has progressed substantially through the             

development and integration of technologies such as cell sorting, microwells and droplet microfluidics19,20 ;             

most notably commercial systems like those of 10X Genomics have been established and are providing               

standardized protocols for wider implementation of scSeq. To find interactions across multiple genes and              

cells, analysis and visualisation of this high dimensional single-cell data is facilitated by clustering and               

nonlinear dimensionality reduction algorithms [e.g., t-distributed stochastic neighbor embedding (t-SNE) or           

Uniform Manifold Approximation and Projection (UMAP)]21,22 . scSeq of transcriptomes has been used            

extensively to profile the gene expression signatures of T and B cells to identify novel cellular subsets and                  

phenotypes as well as their response to vaccination, infection and cancer23–26. Furthermore, clustering with              

scSeq data enables the unbiased identification of cellular states and analyses of the broad continuum of T                 

and B cell populations as well as their differentiation trajectories27 . In the context of patients with severe                 

symptoms of COVID-19, scSeq has revealed a dysfunctional T cell response of interferon expression              

combined with elevated levels of exhaustion 28 .  

 

In addition to transcriptome sequencing, a major advantage of scSeq is that it also enables information on                 

the native pairing of TCR Vα and Vβ chains and BCR VL and VH chains29–32, which was not previously                   

possible with the standard bulk sequencing of lymphocytes as these receptor chains are expressed as               

unique transcripts from separate chromosomes 33 . Coupling TCR or BCR sequence to the transcriptome              

2 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.12.430907doi: bioRxiv preprint 

https://paperpile.com/c/83U9sv/XL8W+4aTp
https://paperpile.com/c/83U9sv/p0AA+eYcC+glUD+lqpd
https://paperpile.com/c/83U9sv/bz4An+C6oIv
https://paperpile.com/c/83U9sv/L1wAs+Y8W4z+zPgn7+cmzDf
https://paperpile.com/c/83U9sv/Uto2h+F1mYM+ufncW+KiK2H+Ph9I3
https://paperpile.com/c/83U9sv/dA8op
https://paperpile.com/c/83U9sv/EES0i+yKeJY
https://paperpile.com/c/83U9sv/RtTkT+cWeLa
https://paperpile.com/c/83U9sv/sLuvn+iXUtp+5sqjL+1OcUG
https://paperpile.com/c/83U9sv/D03p8
https://paperpile.com/c/83U9sv/jQRms
https://paperpile.com/c/83U9sv/1VpuM+k10d1+LMTX3+kbVPf
https://paperpile.com/c/83U9sv/irIjL
https://doi.org/10.1101/2021.02.12.430907
http://creativecommons.org/licenses/by-nc/4.0/


Bieberich et al., Single-cell atlas of lymphocytes in COVID-19 patients 
 

within an individual cell enables phenotypic analyses of a clonal population of lymphocytes and their               

dynamics34–36 . scSeq of transcriptomes and immune repertoires in COVID-19 patients with severe            

symptoms has shown a high level of clonal expansion in specific T cell subsets (Th1, Th2, and Th17) and                   

preferential germline gene usage in clonally expanded B cells28,34,37; while a more recent study found a                

positive correlation between clonal expansion of effector-like CD8+ T cells and disease severity38 .  

 

An important question that remains to be answered is whether there are age-related differences in               

mounting a successful adaptive immune response against SARS-CoV-2. Here, we perform scSeq on the              

immune repertoires and transcriptomes of T and B cells derived from eight convalescent COVID-19              

patients of two different age groups (mean ages = 31 and 66.8 years) at one month of convalescence                  

following mild to moderate disease. We observed preferential clonal expansion of effector CD8+ T cells               

across all patients, although a significantly higher CD8-to-CD4 T cell ratio was detected in young patients                

of our cohort. Further, clonally expanded B cells in young patients displayed significantly higher levels of                

somatic hypermutation and an increased immunoglobulin (Ig) class-switching compared to clonally           

expanded B cells from older patients. Our analyses serve as a valuable resource for future scSeq                

characterization of SARS-CoV-2 adaptive immunity and highlight important age-related differences in the            

adaptive immune status of convalescent COVID-19 patients. 

 

Results 
 

Study design and single-cell profiling of convalescent COVID-19 patient lymphocytes 

We performed scSeq of immune receptor repertoires and transcriptomes of lymphocytes from            

convalescent COVID-19 patients to characterize the adaptive immune response against SARS-CoV-2. For            

this purpose, we selected eight patients enrolled in the SERO-BL-COVID-19 clinical study39 , all of which               

fully recovered from COVID-19 without requiring hospitalization or the administration of Supplementary            

oxygen. Patients tested positive for the presence of SARS-CoV-2 after RT-PCR of naso/oropharyngeal             

swab samples (day 0), displayed COVID-19 symptoms for 4-14 days, and showed positive seroconversion              

at the time of blood collection (mean sample collection time = 32.5 ± 4.1 days post-symptom onset) (Fig.                  

1a and Supplementary Table 1). Since COVID-19 often affects older patients more severely40 , subjects              

were divided into two groups according to their age, namely Group 1 (mean = 66.75 ± 6.9 years) and                   

Group 2 (mean = 31 ± 5.9 years), with the aim of investigating potential differences in their responses                  

against SARS-CoV-2. In addition to older age, significant differences in Group 1 versus Group 2 included                

elevated IgA/IgG SARS-CoV-2-specific antibody titers and an increased duration of COVID-19 symptoms            

(Fig. 1b and Supplementary Fig.1 ). Patients from Group 1 also experienced an increased severity of               

COVID-19 symptoms relative to Group 2 (Supplementary Table 1). Despite increased symptom duration             

in the older cohort, correlation of this parameter with age was only modest (R 2 = 0.4647), likely reflecting                  

the small sample size (Supplementary Fig. 1c). 
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To profile patient lymphocytes, we isolated peripheral blood mononuclear lymphocytes (PBMC) from blood             

and purified T cells and B cells by negative immunomagnetic enrichment. Plasma cells (PCs) were               

depleted from PBMC samples prior to this step for scSeq in a companion study (Ehling et al., manuscript                  

in preparation), and thus were excluded from our analyses. After purification, T cells and B cells                

underwent the 10X genomics protocol for scSeq 5’ library preparation, which included gel encapsulation              

single-cell barcoding of mRNA, followed by cDNA generation through polydT reverse transcription. Finally,             

after full-length V(D)J segment enrichment, construction of TCR and BCR V(D)J and transcriptome             

sequencing libraries was done according to the V(D)J enrichment and 5’ library construction kits,              

respectively. Deep sequencing of immune repertoires and transcriptomes was performed using the            

Illumina NovaSeq with paired-end 26 x 91 bp cycles per read. For TCR and BCR V(D)J and transcriptome                  

libraries, we recovered on average 20.000 and 10.000 reads per cell, respectively (Fig. 1c). 

 

Single-cell transcriptome analysis defines major T and B cell subsets  

Bioinformatic filtering was performed to exclude the following: Cell doublets, cells with a very low or high                 

number of genes, and T cells with no detectable expression of CD8 and CD4 (see Methods), which                 

resulted in the identification of 30,096 cells in total from all eight patients. Cells were then split into CD8+ T                    

cell (Fig. 2a, 7,353 cells), CD4+ T cell (Fig. 2b, 8,334 cells) and B cell (Fig. 2c, 14,409 cells) datasets. In                     

order to reduce the dimensionality of the data, while preserving the global structure, we used UMAP for                 

better visualisation and interpretation purposes41 . UMAP and unsupervised clustering of these subgroups            

led to the identification of eleven dominant cell subsets (Figs. 2a-c). CD8+ T cells clustered into naïve                 

(SELL+, TCF7+), memory (IL7R+, CD40LG+) and effector cells (GZMB+, NKG7+) (Figs. 2a and 2d),              

which also encompassed exhausted CD8+ T cells (Supplementary Fig. 2). We identified four different              

CD4+ T cell subsets, namely naïve (SELL+, LEF1+), memory (S100A4+), effector (CCL5+, GZMK+) and              

regulatory cells (FOXP3+) (Figs. 2b and 2e). The B cell compartment consisted of naïve (CD23A+),               

marginal zone (MZ) (FCRL3+, CD1C+), activated (CD83+) and memory cells (CD27+, TACI+) (Figs. 2c              

and 2f). Notably, clustering of single cells based on transcriptome data revealed a trajectory that reflected                

a progression in lymphocyte differentiation from naïve to effector (or activated) subsets (Figs. 2a-c).              

Pseudotime analysis of the dataset supports this differentiation trajectory in CD8+ and CD4+ T cells (Figs.                

2g and 2h). Interestingly, pseudotime analysis of B cell data not only showed naïve-MZ-memory and               

naïve-MZ-activated trajectories, but also a third MZ-memory-activated trajectory that suggests the           

presence of reactivated memory B cells, possibly through antigen encounter (Fig. 2i). 

Having defined the major T cell and B cell subsets from pooled patient data, we next compared their                  

proportions across patients (Figs. 2j-l) and between different age groups (Supplementary Fig. 3). We              

found that young patients had a significantly higher CD8-to-CD4 T cell ratio relative to older ones                

(Supplementary Fig. 3a ), which may reflect a previously reported age-dependent difference 42 .           

Interestingly, despite this reduction, there was a trend that older patients had a higher proportion of                

effector CD8+ T cells relative to their younger counterparts (Supplementary Fig. 3b). While this              

difference was not significant, it is consistent with the increased symptom severity experienced by older               

patients (Supplementary Table 1), a feature that has been associated with elevated proportions of              
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effector/exhausted CD8+ T cells in the periphery28 . Of note, we found that older patients had a small but                  

significant increase in CD4+ Tregs compared to young patients (Supplementary Fig. 3h), and that              

increased proportions of MZ B cells occurred in two of the older patients (Supplementary Fig. 3l). Taken                 

together, our data highlights the diversity of elevated responses in specific patients across age groups, as                

exemplified by individuals with a high abundance of effector CD8+ T cells (e.g., Pt-2 and Pt-3) and/or                 

activated B cells (e.g., Pt-2, Pt-5 and Pt-8). 

 

Single-cell profiling of immune receptor repertoires identifies highly expanded TCR and BCR            

clonotypes  

We next determined the clonal expansion levels of T cells and B cells in convalescent COVID-19 patients                 

by quantifying the number of cells expressing unique TCRs (Fig. 3a) or BCRs (Fig. 3c) (clonotype                

definition in the methods section). We found substantial heterogeneity in T cell clonal expansion levels               

across patients, with the highest number of expanded TCR clonotypes occurring in four patients, namely               

Pt-2 and Pt-3 (Group 1), Pt-7 and Pt-8 (Group 2). Within these patients, Pt-2 displayed the largest amount                  

of expanded TCR clonotypes, which is consistent with the high abundance of effector CD8+ T cells in this                  

subject (Fig. 2g). Analysis of TCRα and TCRβ germline V-gene usage in the ten most expanded                

clonotypes per patient revealed a frequent occurrence of TRBV20-1 (7 out of 8 patients) and               

TRAV-29/DV5 genes (5 out of 8 patients), though pairing of these germline genes was not observed (Fig.                 

3b and Supplementary Fig. 4 ). In agreement with the overall higher expansion of CD8+ effector over                

CD4+ effector T cell subsets (Figs. 2g and 2h), we found that the vast majority (85%) of the ten most                    

expanded TCR clonotypes per patient originated from CD8+ T cells (Supplementary Fig. 5 ). Based on               

this observation, we genotyped patient HLA class I alleles by means of amplicon deep sequencing               

(Supplementary Table 2). We found that the two patients with the highest levels of T cell clonal                 

expansion (i.e., Pt-2 and Pt-8) shared the HLA-A*0201 allele, as well as a number of TRBV and TRAV                  

genes in their most expanded clonotypes, which indicates a possible convergence towards germlines that              

may be related to SARS-CoV-2 specificity. Analysis of single-cell BCR repertoire sequencing data             

revealed that highly expanded BCR clonotypes occurred more frequently in younger patients, for example              

in Pt-5, Pt-6 and Pt-8 (Fig. 3c). This is an unexpected finding, particularly as older patients in our cohort                   

displayed significantly higher SARS-CoV-2-specific IgA/IgG titers in serum (Supplementary Figs. 1e and            

1f). Thus, this suggests that older patients may harbor a higher diversity of relatively unexpanded               

SARS-CoV-2-specific B cells. Supporting this observation, we found that older patients had a wider range               

of heavy chain complementarity determining region 3 (CDR3H) lengths relative to younger ones,             

indicating a possible larger degree of variability in their antibody paratopes (Supplementary Fig. 6).              

Analysis of heavy chain and light chain germline V-gene pairing in the ten most expanded BCR clonotypes                 

per patient revealed a frequent occurrence of the IGHV-3-23 / IGKV-3-20 pairing (7 out 8 patients) (Fig.                 

3d and Supplementary Fig. 7 ). However, as this pairing is the most frequently found in healthy                

cohorts43,44 , such antibodies may not necessarily be enriched for SARS-CoV-2 specificity.  

To further characterize BCR repertoires across different levels of clonal expansion we divided clonotypes              

into additional subsets: unexpanded (1 cell per clonotype), expanded (2-4 cells per clonotype) and highly               
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expanded (≥5 cells per clonotype) and assessed their levels of somatic hypermutation (SHM). We found               

that the degree of SHM largely correlated with clonal expansion, with expanded and highly expanded               

clonotypes having higher SHM (i.e., more divergent from their germline V-genes) than unexpanded ones              

(Fig. 3e ). Strikingly, highly expanded BCR clonotypes from young patients had significantly higher SHM              

levels compared to older patients, potentially indicating more efficient affinity maturation had occurred in              

response to SARS-CoV-2 antigens (Fig. 3f). Finally, we examined the distribution of Ig isotypes across               

clonal expansion groups. As expected, IgM was the most frequent isotype in unexpanded BCR              

clonotypes, with the proportion of this isotype being reduced in expanded BCR clonotypes (2-4 cells) of all                 

patients. Conversely, the proportions of IgG and IgA isotypes in expanded clonotypes increased for all               

patients, thus indicating class-switching in response to clonal expansion. Analysis of Ig isotype distribution              

in highly expanded BCR clonotypes (≥5 cells) revealed that a subset of patients harbored a vast majority                 

of class-switched IgA (Pt-5, Pt-6 and Pt-7) or IgG (Pt-4). Notably, we found that Ig isotype class-switching                 

in highly expanded clonotypes was correlated with SHM levels across patients (Fig. 3e), highlighting the               

temporal connection between affinity maturation and class-switching processes in the germinal center45 . 

 

Single-cell transcriptome and TCR profiling reveals predominant cytotoxic programs in highly           
clonally expanded CD4+ and CD8+ T cells 
We next investigated the patterns of clonal expansion in different T cell subsets by mapping single-cell                

TCR sequencing data onto individual CD8+ and CD4+ T cells visualized by UMAP (Figs. 4a and 4b). For                  

this analysis, we identified a total of 4,730 CD8+ T cells and 5,509 CD4+ T cells with available TCR                   

clonotype and transcriptome information. Both CD8+ and CD4+ T cells showed increased levels of clonal               

expansion when progressing from naïve to effector phenotypes, with highly expanded TCR clonotypes (≥5              

cells) almost exclusively expressed by effector T cells (Figs. 4a and 4b, Figs. 2a and 2b). As previously                  

observed (Supplementary Figs. 3 and 5), CD8+ T cells showed substantially higher levels of clonal               

expansion relative to CD4+ T cells, in which highly expanded clonotypes were rare. Notably, young               

patients (Group 2) had a markedly higher abundance of unexpanded CD8+ T cell clonotypes compared to                

older patients (Group 1), which could indicate an ongoing resolution of their CD8+ T cell response at the                  

analyzed timepoint. Patients with high levels of CD8+ T cell clonal expansion, however, were identified               

across age groups (i.e., Pt-2, Pt-3, Pt-7 and Pt-8), with Pt-2 (Group 1) showing the highest abundance of                  

highly expanded clonal T cells. We further explored the relationship between clonal expansion and T cell                

phenotype by performing differential gene expression analysis in unexpanded, expanded and highly            

expanded T cell clonotypes (Figs. 4c and 4d). CD8+ T cells with high clonal expansion displayed                

elevated cytotoxicity (PRF1, GZMH, GNLY), activation (NKG7, CCL5), inflammation (NFGBIA, S100A4,           

S100A6) and type I interferon-induced (IFITM2) markers in all patients. Additionally, components of MHC              

class I (HLA-A, HLA-B, HLA-C and B2M) were also increased in this subgroup, indicating increased               

IFN-γ-induced activation 46 . Conversely, unexpanded CD8+ T cell clonotypes across age groups displayed            

upregulated markers found in naïve and memory CD8+ T cell subsets (IL7R, LTB)47 , as well as markers                 

likely associated with homeostatic proliferation (LDHB, NOSIP, EEF1B2, NPM1, TPT1, PABPC1). 
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Despite the low levels of clonal expansion observed in CD4+ T cells, we identified distinct gene                

expression signatures in the highly expanded clonotypes that were present in 5 of 8 patients. Similar to                 

CD8+ T cells, highly expanded CD4+ T cell clonotypes showed upregulation of genes related to activation                

(CCL5), cytotoxicity (GZMA), inflammation (IL32, CD99, NFKBIA) and MHC class I molecules (HLA-A,             

HLA-B, HLA-C and B2M), while unexpanded CD4+ T cells displayed markers of naïve T cells (SELL) and                 

proliferation markers (LDHB, NOSIP, PABPC1). Taken together, integration of TCR sequencing and            

transcriptome data reveals clonal expansion as a hallmark of effector T cell subsets, and highlights a                

dominant role of CD8+ T cells in possible clonal responses against SARS-CoV-2 in convalescent              

COVID-19 patients. 

 

Transcriptomic and BCR profiling of single B cells reveals plasma cell transition, class-switching             

and SHM patterns 

We next integrated single-cell BCR sequencing data onto the B cell transcriptional landscape to relate               

clonal expansion, SHM and isotype distribution to different B cell phenotypes. For this analysis we               

identified 11,227 individual B cells with available BCR and transcriptomic information. We observed a              

generally low level of B cell clonal expansion, with preferential localization of expanded B cell clonotypes                

(2-4 cells) to the memory and MZ B cell regions and a rare occurrence of highly expanded (≥5 cells)                   

clonotypes in most patients (Fig. 5a). Analysis of differential gene expression showed that expanded              

clonotypes had increased expression of genes involved in cytoskeleton reorganization (VIM) and genes             

associated with the unfolded protein response (HSBP90, CALR, PPIB), indicating B cell activation and              

transition into plasma cells, respectively48–50 (Fig. 5b ). Furthermore, expanded B cell clonotypes across             

patients showed downregulation of MHC class II genes (CD74, HLA-DR, -DQA1, -DRB1), further             

supporting their trajectory towards antibody-producing plasma cells51 . 

We next analysed single-cell BCR sequencing data to assess SHM levels in different B cell subsets.                

BCRs from memory B cells showed the highest levels of SHM across patients, while BCRs extracted from                 

naïve and activated B cells displayed similarly low median SHM values. Notably, however, activated B               

cells expressed a larger number of high-SHM outliers than naïve B cells, suggesting ongoing affinity               

maturation in this subset (Fig. 5c). Mapping of Ig isotype information onto the B cell transcriptional UMAP                 

space, revealed an even distribution of IgM expression across B cell subsets, rare occurrence of               

IgD-expressing B cells and, most notably, confinement of class-switched IgG- and IgA-expressing B cells              

to the memory and MZ B cell regions (Fig. 5d). Finally, assessment of Ig isotype distribution across                 

patients and B cell subsets revealed that as expected the vast majority of naïve B cells expressed the IgM                   

isotype (Fig. 5e), with minimal levels of class-switching observed in activated B cells but prominent               

class-switching to IgG and IgA isotypes in the memory B cell compartment across all patients (Fig. 5e).  

Together our results indicate ongoing transition of clonally-expanded B cells into antibody-producing            

plasma cells, as well as high levels of SHM and Ig isotype class-switching in the memory B cells of                   

convalescent COVID-19 patients. 

7 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.12.430907doi: bioRxiv preprint 

https://paperpile.com/c/83U9sv/qVjWf+wMZBw+JmYEM
https://paperpile.com/c/83U9sv/Bm0vf
https://doi.org/10.1101/2021.02.12.430907
http://creativecommons.org/licenses/by-nc/4.0/


Bieberich et al., Single-cell atlas of lymphocytes in COVID-19 patients 
 

Computational prediction of shared specificity identifies candidate SARS-CoV-2-specific TCRs  

Motivated by the high levels of CD8+ T cell clonal expansion and activation observed in convalescent                

COVID-19 patients, we further analyzed single-cell TCR repertoires for potential SARS-CoV-2 specificity.            

To this end, we applied GLIPH2, an algorithm developed by M. Davis and colleagues that clusters TCRs                 

with a high probability of recognizing the same epitope into specificity groups (based on conserved motifs                

and similarity levels in CDR3β)52 . In addition, the provision of HLA typing data enables the prediction of                 

HLA restriction in specific TCR clusters. Analysis of 23,010 paired TCRα and TCRβ sequences derived               

from the CD8+ T cells of eight patients led to the identification of a total of 552 specificity groups with                    

attributed HLA restriction (seven alleles). We observed distinct proportions of shared specificity groups             

between pairs of patients, with Pt-1:Pt-8, Pt-3:Pt-7 and Pt-1:Pt-7 showing the highest overlap (Fig. 6a).               

Furthermore, the vast majority of clusters were attributed with HLA-A*01:01, HLA-A*03:01, HLA-B*13:02            

or HLA-C*03:04 restriction, and HLA-A*02:01, A*24:02 and C*04:01 were attributed to less than 15% of               

TCR clusters (Fig. 6b). While some of these clusters may be defined by SARS-CoV-2 specificity, it is                 

difficult to exclude reactivity to common human viruses (e.g., CMV, EBV). To further investigate potential               

for SARS-CoV-2 specificity, we analyzed the sequences of known HLA-A*02:01-restricted          

SARS-CoV-2-specific, CMV-specific and EBV-specific TCRs alongside those derived from patients          

expressing the HLA-A*02:01 allele (i.e., Pt-2, Pt-4 and Pt-8) (Supplementary Tables 3 and 4). GLIPH2               

identified 35 unique patient TCR sequences that clustered together with known SARS-CoV-2-specific            

TCRs, with the great majority originating from Pt-8 (Fig. 6c and Table 1). Thus, such TCRs represent                 

candidates for mediating CD8+ T cell immunity against SARS-CoV-2 infection.  

 

Limitations of the study 

Our sample size of eight patients (four per age group) is small and reduces the number of conclusions that                   

we can confidently make from the observed data. Nevertheless, single-cell data offers a deeper              

characterization of each patient than normal bulk transcriptome and repertoire studies. Furthermore, while             

the time between symptom onset and sample collection is highly uniform across patients, the time               

between symptom resolution and sample collection is significantly shorter in the old patient group due to                

prolonged symptom duration. This is an important variable that should be considered when interpreting              

the findings presented here.  

 
Discussion 

 

Here we apply scSeq for in-depth immune repertoire and transcriptomic analysis of T cells and B cells                 

derived from non-severe COVID-19 patients at one month of convalescence. Our analyses of             

transcriptomic data defined eleven T cell and B cell subsets, of which the effector CD8+ T cell subset                  

(GZMB, NKG7) showed the highest levels of expansion in specific patients, both in terms of proportion                

and clonality. These findings are in agreement with recent scSeq studies of convalescent COVID-19              

patients 28,53 . For example, effector tissue-resident CD8+ T cells from bronchoalveolar lavage fluid were              
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found to be highly clonally expanded in convalescent COVID-19 patients that experienced moderate but              

not severe infection 53 . In addition, scSeq of PBMCs revealed increases in cytotoxic effector CD4+ and               

CD8+ T cell subsets in non-severe convalescent COVID-19 patients only28 . In our study, we observed high                

levels of clonal expansion of the effector CD8+ T cell subset but less evident expansion of CD4+ T cell                   

subsets. Importantly, however, differential gene expression analysis revealed that both highly clonally            

expanded CD8+ and CD4+ T cells had elevated markers of cytotoxicity (CD8: PRF1, GZMH, GNLY; CD4:                

GZMA).  

A recent study of functional T cell responses against SARS-CoV-2 reported significantly higher CD8+ T               

cell responses directed at spike, M/NP and ORF/Env epitopes in convalescent COVID-19 patients             

experiencing moderate symptoms compared to those recovering from severe infection 54 . Further evidence            

supporting a potential role of CD8+ T cells in rapid viral clearance comes from the occurrence of                 

SARS-CoV-2-specific T cells in asymptomatic seronegative family members of COVID-19 patients 55 , as             

well as in samples from asymptomatic seronegative control subjects obtained during the COVID-19             

pandemic but not prior to it 55,56 . In line with these findings, our analysis of clonal expansion in lymphocyte                   

subsets suggest a key role of CD8+ effector T cells in the clearance and protection against SARS-CoV-2                 

in patients with moderate disease. Notably, the fact that younger patients in our cohort had significantly                

higher CD8-to-CD4 T cell ratios might have contributed to reduced symptom duration relative to older               

patients. In this context, we predict that methods for the identification of CD8-derived             

SARS-CoV-2-specific TCRs including functional assays54,55 and the application of motif clustering 56 or            

machine learning 57 to TCR repertoire data, as well as methods for the identification of their corresponding                

epitopes58,59  will become increasingly important tools for monitoring SARS-CoV-2 immunity. 

In contrast to T cells, we found modest levels of B cell clonal expansion that was not exclusively restricted                   

to a particular subset but spanned activated, memory and MZ B cells. These low levels of B cell clonal                   

expansion are in contrast to the high IgG and IgA serum titers found in all patients of our cohort,                   

particularly those in the older patient group. This suggests that the B cell compartment may experience                

clonal contraction at one month of convalescence, with the disconnect from serum titers of IgG likely                

explained by the long half-lives of secreted IgG (~3 weeks)60 . It should also be noted that                

antibody-producing plasma cells, which were not included in our analysis, may display clonal expansion              

levels that are more congruent with the observed levels of SARS-CoV-2-specific antibodies in serum.              

Although rare, highly expanded B cell clones showed elevated markers of plasma cell transition and               

activation, thus indicating possible ongoing differentiation into plasma cells, albeit at low levels, at one               

month after symptom onset.  

Analysis of BCR repertoires and transcriptomes revealed that the highest levels of SHM and Ig               

class-switching occurred in the memory B cell subset. This finding is consistent with the generation of                

germinal center-derived memory B cells following antigen encounter61,62 . Similarly, SHM and Ig            

class-switching levels were directly correlated with B cell clonal expansion. Remarkably, we found that              

highly expanded B cell clones from the young patient group had significantly higher SHM levels (median =                 

6.7% divergence from germline) than those derived from the old patient group (median = 2.5% divergence                
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from germline). This occurred despite significantly higher serum titers of SARS-CoV-2-specific antibodies            

in the old patient group, and suggests that more effective affinity maturation may occur in younger                

patients. Initial studies characterizing SARS-CoV-2-specific antibodies reported low levels of SHM, with            

median divergence from germline ranging from 0.7-2% in convalescent patients of varied symptom             

severity analyzed at 20-40 days following symptom onset63–65. Notably, a recent report has described              

ongoing affinity maturation of SARS-CoV-2-specific antibodies at six months following symptom onset in             

non-severe patients, with SHM levels rising to 3% divergence from germline 2 . Interestingly, the cited study               

provides evidence of viable SARS-CoV-2 antigen in the gut of such patients, which has been proposed as                 

a source of antigen for ongoing affinity maturation linked to elevated IgA serum titers. It is thus unclear                  

whether increased SHM levels found in the young patients of our cohort are the result of a better capacity                   

for affinity maturation upon initial antigen encounter or of ongoing affinity maturation resulting from longer               

exposure to antigen following symptom resolution. The clear dominance of IgA class-switched BCRs             

expressed by highly expanded B cells in 3 out of 4 patients in the young group appears to support the                    

latter. 

In conclusion, our in-depth characterization integrating single-cell immune repertoire and transcriptome           

profiling of T and B cells represents a valuable resource to better understand the adaptive immune                

response and age-related differences in convalescent COVID-19 patients with moderate disease.           

Furthermore, it serves as an important point of reference for future single-cell characterization of              

lymphocytes at later time points of convalescence, or of lymphocytes isolated from patients experiencing              

long-term COVID-19 sequelae and can help in defining markers for clinical monitoring of disease              

progression. 

 

Methods 

Patient samples  

Patients were participants of the SERO-BL-COVID-19 study sponsored by the Department of Health,             

Canton Basel-Landschaft, Switzerland. All analyzed patients tested positive for SARS-CoV-2 after           

RT-PCR of naso- and oropharyngeal swab samples and experienced a resolution of COVID-19 symptoms              

without requiring hospitalization. Whole blood was collected 25 to 39 days following a positive RT-PCR               

test and subjected to density gradient centrifugation using the Ficoll Paque Plus reagent (GE Healthcare,               

#17-1440-02). After separation, the upper plasma layer was collected for ELISA detection of IgG and IgA                

SARS-CoV-2-specific antibodies (Euroimmun Medizinische Labordiagnostika, #EI2668-9601G,      

#EI2606-9601A). Peripheral blood mononuclear cells (PBMC) were collected from the interphase,           

resuspended in freezing medium (RPMI 1640, 10%(v/v) FBS, 10%(v/v) dimethyl sulfoxide) and            

cryopreserved in liquid nitrogen. Point-of-care lateral flow immunoassays assessing the presence of IgG             

and IgM SARS-CoV-2-specific antibodies (Qingdao Hightop Biotech, #H100) were performed at the time             

of blood collection.  
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Immunomagnetic isolation of B cells and T cells 

PBMC samples were thawed, washed in complete media (RPMI 1640, 10%(v/v) FBS) and pelleted by               

centrifugation. Cells were resuspended in 0.5 mL complete media, counted and treated with 10 U ml -1                

DNAse I (Stemcell Technologies, #) for 15 min at RT in order to prevent cell clumping. After DNase I                   

digestion, cells were washed twice in complete media, pelleted by centrifugation and resuspended in 0.5               

mL flow cytometry buffer (PBS, 2%(v/v) FBS, 2 mM EDTA). The cell suspension was filtered through a 40                  

μM cell strainer prior to immunomagnetic isolation. As a first step, plasma cells were isolated using the                 

EasySep Human CD138 Positive Selection Kit II (Stemcell Technologies, #17877) for analysis in a              

companion study (manuscript in preparation). The negative fraction of the above selections was divided              

into two aliquots that were subjected to negative immunomagnetic isolation of either B cells (EasySep               

Human Pan-B cell Enrichment Kit, Stemcell Technologies, #19554) or T cells (EasySep Human T cell               

Isolation Kit, Stemcell Technologies, #17951). After isolation, B cells and T cells were pelleted by               

centrifugation, resuspended in PBS, 0.4%(v/v) BSA, filtered through a 40 μM cell strainer and counted. T                

cells and B cells originating from the same patient were pooled in equal numbers and the final suspension                  

was counted and assessed for viability using a fluorescent cell counter (Cellometer Spectrum, Nexcelom).              

Whenever possible, cells were adjusted to a concentration of 1x10 6 live cells/mL in PBS, 0.04%(v/v) BSA                

before proceeding with droplet generation. 

 

 

Single cell droplet generation and preparation of sequencing libraries 

Encapsulation of lymphocytes and DNA-barcoded gel beads was performed using the Chromium            

controller (10x Genomics, PN-110203). Briefly, 1.4x10 4 to 1.7x10 4 cells (in reverse transcription mix) were              

loaded per channel for a targeted recovery of 8x10 3 to 1x10 4 cells per sample. Reverse transcription and                 

preparation of single-cell transcriptome, BCR and TCR libraries was performed according to the             

manufacturer’s instructions (CG000086 manual, RevM, 10x Genomics) and using the following kits:            

Chromium Single Cell 5' Library & Gel Bead Kit (PN-1000006), Chromium Single Cell 5' Library               

Construction Kit (PN-1000020), Chromium Single Cell V(D)J Enrichment Kit, Human T Cell (PN-1000005),             

Chromium Single Cell V(D)J Enrichment Kit, Human B Cell (PN-1000016), Chromium Single Cell A Chip               

Kit (PN-1000009), Chromium i7 Multiplex Kit (PN-120262). 

 

Deep sequencing  

The quality and concentrations of transcriptome (i.e., cDNA), TCR and BCR libraries were determined              

using a fragment analyzer (Agilent Bioanalyzer) at specific steps of library preparation, as recommended              

in the 10x Genomics scSeq protocol (CG000086 manual, RevM). Following multiplexing (Chromium i7             

Multiplex Kit, #PN-120262, 10x Genomics), transcriptome libraries were treated with free adapter blocking             

(FAB) reagent to prevent index switching (#20024144, Illlumina). Paired-end sequencing of multiplexed            

transcriptome libraries was performed using a NovaSeq 6000 sequencer (Illumina) and SP100-cycle kit             

(#20027464, Illumina). TCR and BCR libraries were multiplexed, FAB-treated and paired-end-sequenced           

using a second SP100-cycle kit in a separate run.  
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HLA class I typing 

HLA class I transcripts were amplified and deep-sequenced from two overlapping RT-PCR reactions             

flanking exons 2 (PCR 1) or 3 (PCR 2) using barcoded primers designed to target conserved regions                 

(Supplementary Table 5)66 . Total RNA was extracted from patient PBMCs by resuspension in TRIzol              

reagent (Invitrogen, # 15596018), and column-purified using the PureLink RNA Mini kit (Invitrogen,             

#12183025). For reverse transcription, 100 pmol of oligo dT, 10 nmol of each dNTP, 40 ng RNA and                  

sufficient nuclease-free water for a final 14 μl volume were mixed, incubated at 65°C for 5 min and chilled                   

on ice for 5 min. This was followed by addition of 4 μL of 5X RT buffer, 40 units of RiboLock RNAse                      

inhibitor (Thermo Fisher, #EO0381) and 200 units of Maxima H-minus reverse transcriptase (Thermo             

Fisher, #EP0751) and mixing. Reverse transcription was performed at 50°C for 30 min, followed by               

inactivation at 85°C for 5 min. 5 μl of the resulting cDNA-containing reverse transcription mixes were then                 

used as templates for 25 μL PCR reactions using the KAPA HiFi PCR kit with GC buffer (Roche                  

Diagnostics, #07958846001) and the following thermal cycling conditions: 95°C for 3 min; 35 cycles of               

98°C for 20 s, 61°C for 15 s, 72°C for 15 s; and final extension at 72°C for 30 s. HLA amplicons were                       

purified by gel-extraction (QIAquick gel extraction kit, Qiagen #28704) and submitted for Illumina             

paired-end deep-sequencing (Amplicon-EZ, Genewiz). Unique sequences originating from specific         

patients were identified from their respective DNA barcodes and aligned using the ClustalOmega tool to               

cluster sequences arising from the same allele. Sequences with the highest amount of reads in each                

cluster were used as input for the basic local alignment search tool (BLAST; Nucleotide collection, Homo                

sapiens). Sequences returning matching or highly similar alleles across PCR 1 and PCR 2 in each patient                 

were then assembled and queried against the IMGT/HLA database for final validation.  

 
Transcriptome scSeq alignment and quality control (QC) 

Reads from transcriptome scSeq (FASTQ format) were aligned to the GRCh38 reference human genome              

and output as filtered gene expression matrices using the 10x Genomics Cell Ranger software (version               

3.1.0). Subsequent data QC and analysis was performed using R (version 3.6.2) and the Seurat package                

(version 3.1.5). QC steps consisted of the exclusion of TCR and BCR genes (prevention of clonotype                

influence on subsequent clustering), the exclusion of cells with lower than 150 or greater than 3500 genes                 

(low quality cells), and the exclusion of cells in which more than 20% of UMIs were associated with                  

mitochondrial genes (reduction of freeze-thaw metabolic effects)67 .  

 

Dataset normalisation and integration of multiple datasets 

Patient datasets were merged into a Seurat object list using the merge and SplitObject function. Each                

patient dataset was then separately normalised using SCTransform. Variable integration features (3,000)            

were calculated using the SelectIntegrationFeatures function from the R package Seurat68 and setting             

them as variable features after merging the normalised patient datasets. Principal component analysis for              

dimensionality reduction was performed using the RunPCA function with up to 50 principal components.              

Potential batch effects between patient samples were addressed with the Harmony R package (version              
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1.0) using the RunHarmony function 69 . Finally, unsupervised clustering was performed using the             

FindNeighbours and FindClusters functions. Non-linear dimensionality reduction using the RunUMAP          

function was performed using the first 50 principal components to generate the final UMAP visualization of                

cell clusters. 

 

Dataset subsetting of CD8+ T cells, CD4+ T cells and B cells 

Initial T and B cell separation was performed by mapping of TCR and BCR (VDJ) cell-specific barcodes                 

onto the scSeq transcriptome dataset. Double attribution of TCR and BCR to the same cell (i.e., barcode)                 

was used to identify and exclude doublets. Separation of CD8+ and CD4+ T cells was performed using                 

the WhichCells function, from the R package Seurat, based on the singular expression of CD8A and CD4,                 

respectively. Additional filtering of B cells was done by discarding all B cells that showed expression of                 

CD3E or SDC1 as well as excluding B cells whose cellular barcodes occured in the Plasma cell BCR                  

(VDJ) cell barcodes (data not shown). 

 

Cell state annotation and marker identification 

The expression of specific markers in identified clusters was determined using the FindAllMarkers function              

using the Wilcoxon Rank Sum test. Cluster-specific markers were thresholded by having a             

log2(fold-change) greater than 0.25 between cells in the respective cluster and remaining cells; with              

marker expression occurring in at least 25% of cells in the cluster. Clusters were then attributed with                 

specific cell states based on the expression of canonical markers 

 

Differential gene expression analysis 

Differentially expressed genes between two groups of cells were identified using the FindMarkers function.              

Genes were thresholded by being expressed in more than 50% of the cells and by having a                 

log2(fold-change) greater than 0.5 between cells of the different groups using the Wilcoxon Rank Sum               

test. 

 

Paired TCR and BCR (VDJ) single-cell sequencing alignment and QC 

TCR and BCR reads in FASTQ format were aligned with the VDJ-GRCh38-alts-ensembl reference using              

the 10x Genomics Cell Ranger VDJ software (version 3.1.0). This generated single-cell VDJ sequences              

and annotations such as gene usage, clonotype frequency and cell-specific barcode information. As a QC               

step, only cells with one productive alpha and one productive beta chain (T cells) or with one productive                  

heavy and one productive light chain (B cells)were retained for downstream analysis.  

 

Paired TCR and BCR (VDJ) analysis 

Clonotype definition was adjusted to count all sequences as clonal if they met the following criteria: (1)                 

Same V and J gene usage in both chains, (2) Same CDR3 length in both chains and (3) 80% amino acid                     

sequence similarity in the CDR3 region of the TCRβ (T cells) or BCR heavy chain (B cells). Shared                  
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cellular barcode information between TCR/BCR (VDJ) scSeq and transcriptome scSeq data was used to              

project TCR and BCR clonotypes onto the UMAP plots (colour-coded by clonal expansion level). 

 

Somatic hypermutation analysis 

SHM levels in individual BCR clonotypes were determined using the change-o toolkit from the              

Immcantation portal as a wrapper to run IgBlast on the Cell Ranger VDJ output. The IgBlast output                 

enabled assessment of germline similarity of single-cell BCR (VDJ) sequences. Germline identity was             

used as a proxy for somatic hypermutation levels and was calculated from alignments of BCR clonotypes                

with their corresponding VH and VL germline sequences.  

 

TCR specificity group identification using GLIPH2 

GLIPH2 clusters TCRs into specificity groups predicted to share the same antigen specificity based on               

sequence similarity52 . We used this algorithm to cluster TCRs from HLA-A*0201 patients (Pt-2, Pt-4 and               

Pt-8) together with known SARS-CoV-2 binders as well as CMV and EBV binders, which were also from                 

HLA-A*0201 background (obtained from VDJdb database). Specificity groups that were reported by            

GLIPH2, were filtered for groups that were significant according to the Fisher’s Exact test (significance               

level < 5%) and contained at least one patient TCR and one TCR of known specificity (i.e., SARS-CoV-2,                  

EBV or CMV). Specificity groups were identified with either global (0-1 amino acid differences in CDR3β)                

or local similarities (CDR3β share a common motif that is rare in the reference dataset). CD4 expressing                 

clonotypes were filtered out. 

 

Pseudotime analysis 

Pseudotime and trajectory inference was applied to scSeq transcriptome data using the slingshot function              

with default parameters from the Slingshot package in R 70 . The naive cluster from each CD8+ T cell,                 

CD4+ T cell and B cell subgroup was set as the starting point for the minimum spanning tree. The                   

previously generated UMAP clustering was set as the cellular embedding on which Slingshot performed              

trajectory inference computation.  

 

Code availability 

The data analysis pipeline followed the standard procedures as outlined in Cell Ranger and Seurat               

documentations. Custom scripts and functions for easier downstream analysis and visualisation purposes            

are available upon request. 

 

List of utilized R packages 

Biobase (2.46.0), BiocGenerics (0.32.0), BiocParallel (1.20.1), Cell Ranger (3.1.0), Change-O (1.0.0),           

circlize (0.4.10), data.table (1.12.8), DelayedArray (0.12.3), dplyr (0.8.5), GenomeInfoDb (1.22.1),          

GenomicRanges (1.38.0), ggplot2 (3.3.2.9000), harmony (1.0), pheatmap (1.0.12), princurve (2.1.5),          

RColorBrewer (1.1-2), matrixStats (0.56.0), sctransform (0.2.1), Seurat (3.1.5), slingshot (1.4.0), stringdist           

(0.9.5.5), stringr (1.4.0), tibble (3.0.3), tidyr (1.1.0), tidyverse (1.3.0). 
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Figure 1. Overview of single-cell transcriptome and immune receptor profiling of           
convalescent COVID-19 patient lymphocytes. Convalescent COVID-19 patients enrolled        

in the SERO-BL-COVID-19 study were selected according to their age for single-cell            

sequencing analysis of their T cells and B cells. a, Timeline illustrates symptom onset,              

symptom resolution and collection of blood samples from individual patients relative to the             

time of positive SARS-CoV-2 RT-PCR test (day 0). b, Graph displays the ages and duration               

of COVID-19 symptoms in individual patients. Dotted lines show the mean duration of             

symptoms in the young (y = 6.75 days) and old (y = 12.25 days) groups. A significant                 

difference in symptom duration between groups is indicated with an asterisk (p = 0.0127;              

unpaired t-test). c, Single-cell sequencing protocol. Whole blood was collected following the            

resolution of COVID-19 symptoms and subjected to density gradient separation for isolation            

of PBMC. T cells and B cells from individual patients were purified from PBMC using               

negative immunomagnetic enrichment, pooled (intra-patient) and prepared for droplet         

generation using the 10x Genomics Chromium system. Single cells were emulsified with            

DNA-barcoded gel beads and mRNA transcripts were reverse-transcribed within droplets,          

resulting in the generation of first-strand cDNA molecules labelled with cell-specific barcodes            

at their 3’ ends (added by template switching). Emulsions were disrupted and cDNA was              

amplified by means of PCR for further processing of transcriptome libraries. Transcriptome            

libraries from individual patients were indexed and multiplexed for deep sequencing using            

the Illumina NovaSeq platform. Targeted enrichment of recombined V(D)J transcripts was           

performed by PCR and the resulting products were processed for the generation of BCR and               

TCR libraries, which were then indexed, multiplexed and deep-sequenced.  
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Figure 2. Single-cell transcriptomic analysis delineates major T and B cell subsets.            

a-c, Uniform manifold approximation and projection (UMAP) plots of major cellular subsets            

identified within the CD8+ T cell (a), CD4+ T cell (b) and B cell (c) populations. Cells from all                   

patients are displayed in each plot. d-f, UMAP plots showing the expression levels of              

selected genes used to delineate cellular subsets within the CD8+ T cell (d), CD4+ T cell (e)                 

and B cell (f) populations. Cells from all patients are displayed in each plot. g-i, Graphs                

display pseudotime and trajectory inference analysis applied to CD8+T cell (g), CD4+ T cell              

(h) and B cell (i) clusters. j-l, Bar graphs show the proportions of identified cellular subsets                

within the CD8+ T cell (j), CD4+ T cell (k) and B cell (l) populations in each patient. CCL5 =                    

C-C Motif Chemokine Ligand 5; CD27 = TNFRSF7; CD40LG = CD40 ligand; FCER2 = Fc               

Fragment of IgE Receptor II (also: CD23a); FCRL3 = Fc Receptor Like 3; FOXP3 =               

Forkhead Box Protein P3; GZMB = Granzyme B; GZMK = Granzyme K; IL7R = Interleukin-7               

Receptor; LEF1 = Lymphoid Enhancer Binding Factor 1; NKG7 = Natural Killer Cell Granule              

Protein 7; S100A4 = S100 Calcium Binding Protein A4; SELL = Selectin L; TCF7 =               

Transcription Factor 7; TNFRSF13B = TNF Receptor Superfamily Member 13B. 
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Figure 3. Single-cell profiling of immune repertoires highlights differential levels of           
inter-patient T cell and B cell clonal expansion. a-b , Analysis of T cell clonal expansion in                

convalescent COVID-19 patients. a, Bar graphs show T cell clonal expansion, as determined             

by the number of cells identified per TCR clonotype. Each box represents the size of               

individual TCR clonotypes. TCR clonotypes present in more than one cell are shown. b ,              

Circos plots display V-gene usage in the top ten most expanded TCR clonotypes for each               

patient. The size and colour (dark to light) of outer bars reflect the relative abundance of T                 

cells expressing specific V-genes on a per class basis (top: TCRα chain, bottom: TCRβ              

chain). c-e, Analysis of B cell clonal expansion in convalescent COVID-19 patients. c , Bar              

graphs show B cell clonal expansion, as determined by the number of cells identified per               

BCR clonotype. Each box represents the size of individual BCR clonotypes. BCR clonotypes             

present in more than one cell are shown. d, Circos plots display V-gene usage in the top ten                  

most expanded BCR clonotypes for each patient. The size and colour (dark to light) of outer                

bars reflect the relative abundance of B cells expressing specific V-genes on a per class               

basis (top: Ig light chain, bottom: Ig heavy chain). e , Graph displays the levels of somatic                

hypermutation (SHM) in unexpanded (1 cell), expanded (2-4 cells) and highly expanded (5             

cells) BCR clonotypes across patients. SHM levels are based on the percentage similarity             

between Ig heavy chain V-genes and their corresponding germlines. Data are displayed as             

median ± IQR. f, Graph displays SHM levels in highly expanded BCR clones (≥5 cells) of old                 

(n = 24 clones) and young (n = 29 clones) patients. Asterisks indicate a significant difference                

in SHM levels between groups (p = 0.0085; unpaired t-test). Data are displayed as median ±                

IQR. g, Bar graphs show the Ig isotype distribution in unexpanded (1 cell), expanded (2-4               

cells) and highly expanded (≥5 cells) BCR clonotypes across patients. 
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Figure 4. Single-cell transcriptome and TCR sequencing reveals preferential clonal          
expansion in effector T cells. a-b, UMAP plots display CD8+ (a) and CD4+ (b) T cells from                 

specific patients according to their clonal expansion levels. T cells from other patients in              

each individual plot are shown in grey. c-d, Heatmaps show differential gene expression             

(DGE) in unexpanded, expanded and highly expanded CD8+ (c) or CD4+ (d) T cells. Genes               

were filtered to include those with detectable expression in at least 50% of cells and that had                 

a minimum 50% fold-change in expression level between groups. 
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Figure 5. Single-cell transcriptome and BCR profiling reveals elevated class-switching          
and somatic hypermutation levels in memory B cells. a , UMAP plots display B cells from               

specific patients according to their clonal expansion levels. B cells from other patients in              

each individual plot are shown in grey. c, Heatmap shows differential gene expression             

(DGE) in unexpanded, expanded and highly expanded B cells. Genes were filtered to             

include those with detectable expression in at least 50% of cells and that had a minimum                

50% fold-change in expression level between groups. c , Graph displays the levels of             

somatic hypermutation (SHM) in the BCRs of naïve, activated and memory B cells across              

patients. SHM levels are based on the percentage similarity between BCR heavy chain             

V-gene and its corresponding germline. Data are displayed as median ± IQR. d , Graph              

shows the distribution of B cells expressing specific Ig isotypes relative to their location in               

transcriptome UMAP plots. B cells from all patients are shown. e, Bar graphs show Ig               

isotype distribution of BCRs found in naïve, activated and memory B cells across patients.              

CALR = Calreticulin; CD74 = HLA class II Histocompatibility Antigen Gamma Chain; DUSP1             

= Dual Specificity Phosphatase 1; HLA-D = Major Histocompatibility Complex, Class II;            

HSP90B1 = Heat Shock Protein 90 Beta Family Member 1; PPIB = Peptidylprolyl Isomerase              

B; VIM = Vimentin. 
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Figure 6. GLIPH2 analysis of single-cell paired TCR repertoires reveals candidate           
SARS-CoV-2-specific TCRs. a, Heatmap shows the proportion of TCR specificity groups           

containing sequences from specific pairs of patients, as determined by GLIPH2 analysis            

(total TCR clusters = 552). b, Bar plot displays the proportions of predicted HLA class I                

alleles in HLA-attributed TCR specificity groups (total TCR clusters = 552). c , Graph displays              

the proportions and numbers of candidate SARS-CoV-2-specific TCRs derived from          

HLA-A*0201-positive patients, as determined by GLIPH2 clustering with known         

SARS-CoV-2-specific TCR sequences. 

 

 

Bieberich et al., Single-cell atlas of lymphocytes in COVID-19 patients .CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.12.430907doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430907
http://creativecommons.org/licenses/by-nc/4.0/

