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Abstract 

Electrophysiological signals in the human motor system may change in different ways after 

deafferentation, with some studies emphasizing reorganization while others propose retained 

physiology. Understanding whether motor electrophysiology is retained over longer periods of time 

can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from 

sensorimotor areas may be used for communication or control over neural prosthetic devices. In 

addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb 

pains through prolonged use of these signals in a brain-machine interface (BCI). 

 Here, we were presented with the unique opportunity to investigate the physiology of the 

sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) 

measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for 

phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) 

hand and executed finger movements with the ipsilateral (healthy) hand. 

 The electrophysiology of the sensorimotor cortex contralateral to the amputated hand 

remained very similar to that of hand movement in healthy people, with a spatially focused increase 

of high-frequency band (65-175Hz; HFB) power over the hand region and a distributed decrease in 

low-frequency band (15-28Hz; LFB) power. The representation of the three different fingers (thumb, 

index and little) remained intact and HFB patterns could be decoded using support vector learning at 

single-trial classification accuracies of >90%, based on the first 1-3s of the HFB response. These 

results demonstrate that hand representations are largely retained in the motor cortex. The intact 

physiological response of the amputated hand, the high distinguishability of the fingers and fast 

temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex. 
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Introduction 

Deafferentation from the loss of a limb affects the inputs and outputs to and from sensorimotor 

areas in the brain. However, it is not yet clear what happens to the physiology of these cortical 

regions when a limb is amputated. Using electrocorticography (ECoG) measurements in humans, it 

has been well established that hand movements cause a spatially focal increase in high frequency 

amplitude in the sensorimotor cortex and a spatially distributed decrease in low frequency amplitude 

(Crone, Miglioretti, Gordon, and Lesser 1998; Crone, Miglioretti, Gordon, Sieracki, et al. 1998; Miller 

et al. 2007; Hermes, Miller, et al. 2012). Furthermore, the individual finger movements can be 

distinguished topographically using the high frequency signals (Miller et al. 2009; Siero et al. 2014). It 

is unknown whether these basic physiological changes are maintained after the amputation of a 

limb. 

 Several studies have reported that sensorimotor areas reorganize after amputation in 

humans using transcranial magnetic stimulation (Cohen et al. 1991; Röricht et al. 1999) and fMRI 

(Elbert et al. 1994; Dettmers et al. 2001; Lotze et al. 2001), and in macaque monkeys using electrical 

stimulation (Qi et al. 2000). These studies suggest that areas previously related to the amputated 

limb can associate with other muscle groups. However, another fMRI study on upper arm 

amputations shows that some form of representation is preserved, even over longer periods of time 

(Bruurmijn et al. 2017). Preserved motor physiology would be invaluable for specific clinical purposes 

such as Brain Computer Interfacing (BCI). Using BCIs, people with paralyses can use the 

electrophysiological signal from the brain, generated by attempted hand movement, to control 

communication devices (Vansteensel et al. 2016) or other assistive devices (Benabid et al. 2019). 

Furthermore, establishing BCI control could potentially help reduce phantom limb-pain (Yanagisawa 

et al. 2020), it is therefore important to understand the extent to which motor physiology is 

preserved. 

 In this study we were provided with a unique opportunity to investigate sensorimotor 

physiology with ECoG measurements in a patient with an amputated arm. The patient was implanted 

with an ECoG array for clinical evaluation of phantom limb pain and we measured ECoG signals 

during attempted finger movements of the contralateral, lost, hand. We found that the typical 

spatio-temporal organization of hand-movement physiology was preserved and that information of 

separate finger representations was retained. 
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Methods 

Participant 

A 62-year-old male with a left above-elbow amputation secondary to a snowmobile accident 

underwent temporary placement of a subdural electrode array for a trial treatment of phantom limb 

pain by electrical subdural cortical stimulation (Krushelnytskyy et al. 2019). Experimental data were 

collected during breaks in trials of different electrical stimulation parameters over a period of 10 

days. The patient was right-handed and had his left-arm amputated 3 years and 11 months before 

ECoG grid implantation. The patient reported waking from his initial left mid-forearm amputation 

with phantom arm and hand pain, and that his pain has persisted since that time. He underwent two 

additional surgeries, ultimately completing a shoulder disarticulation and full humeral amputation. 

His pain has resulted in functional impairment and reduced quality of life despite trials of opiate 

medications, mirror therapy, an intensive pain rehabilitation program, and treatment with an 

implanted spinal cord stimulator. After the monitoring period, the patient was equipped with a 

cortical stimulator. At a six months follow up, he reported that the phantom limb pain dropped from 

8-9/10 severity to a typical range of 5-6/10, and no side effects were reported. 

 The study was approved by the Institutional Review Board of Mayo Clinic (IRB 15-006530) 

and the patient provided informed consent to participate in the study, in accordance with the 

declaration of Helsinki (2013). 

Recordings 

An electrode array of 36 circular platinum contacts (AdTech, 6 x 6 electrodes, 2.3 mm exposed 

diameter, 10mm inter-electrode distance) embedded in a silastic sheet was surgically placed over the 

fronto-parietal region, including the sensorimotor cortex (Figure 1A). Electrodes were localized using 

a high-resolution CT-scan and projected (Hermes et al. 2010) onto a cortical surface rendering 

generated from the preoperative anatomical T1 weighted MRI scan (GE 3T Discovery). During 

recording, all electrodes were referenced to an inactive subgaleal electrode with the recording 

surface facing away from the brain. The signals were amplified and digitalized at 2048 Hz. Upon 

inspection of the electrode signals, two channels that contained severe noise were excluded from 

analysis. 

Tasks 

The subject was presented with two tasks: an attempted and executed movement task. During the 

attempted movement task, the subject was asked to attempt finger movements with the (left, 
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contralateral) amputated hand; During the executed movement task the subject was asked to 

perform finger movement with the (right, ipsilateral) hand on the healthy arm. Both tasks featured 

the exact same design with 5s of finger movement and 3s of rest. The subject was cued via a bedside 

monitor with a picture of a hand and asked to (attempt to) move one of three fingers: the thumb, 

index or little finger. Each run of a task featured 15 movement cues for each finger, resulting in 45 

randomized trials per run. The subject performed two runs of attempted movement and two runs of 

executed movement. 

Analysis 

The analysis and classification routines were implemented using custom MATLAB (Mathworks inc.) 

code that is provided alongside this article at: https://osf.io/vmxdn/. Before analysis, the two runs of 

each task were concatenated and a small number of trials, that showed large artifacts in the signal or 

in which the patient was distracted, were excluded (2 trials were excluded for attempted movement 

and 4 trials were excluded for executed movement). The data were re-referenced to the common 

average by regressing the common average out from each channel. 

Spectral power change 

The contralateral power changes during attempted hand movement were investigated by extracting 

an epoch of 1-4s after cue onset as movement. During executed movement (ipsilateral), the 

movement epoch was set to start 100ms before the actual movement of the healthy hand to the end 

of the actual hand movement based on the concurrent video; 100ms was subtracted to account for 

the delay between the cortical signal and initiation of the movement (Evarts 1973; Cheney and Fetz 

1984; Miller et al. 2009). An epoch of 2s before cue onset was considered as rest in both attempted 

and executed movements. The power spectral density of each epoch was calculated every 1 Hz by 

Welch’s method (Welch 1967) with a 250ms window and an overlap of 125ms. A Hann window 

(Nuttall 1981) was applied to each epoch to attenuate the edge effects. Per channel, the resulting 

power spectra were log10 transformed and normalized to the mean power over all epochs at each 

frequency. The high frequency band (HFB) power was obtained by calculating the average power 

over 65Hz to 175Hz, whereas low frequency band (LFB) power was the average over 15Hz to 28Hz.  

 In order to plot the spectral power changes on the rendered brain surface, we calculated the 

T-statistics for both the HBF and the LFB per channel by testing the power of movement trials against 

the rest trials. A Bonferroni correction was applied while testing the T-values for significance. 

 To visualize the electrophysiological response over time, we filtered each electrode signal 

using a third-order Butterworth filter for either the high frequencies (HFB, 65-175Hz), or the low 
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frequencies (LFB, 15-28Hz). After filtering, the power of the amplitude was calculated using a Hilbert 

transformation. Trial-epochs, of 2s before to 7s after cue onset, were extracted and normalized by 

subtracting the signal mean power of the 2s before cue onset from each individual trial. An average 

across each condition was calculated and smoothed with a moving average window of 1s. 

Temporal window for finger movement classification 

In order to investigate to what degree spatial finger-representations were preserved and 

distinguishable, single-trial classification was performed on the individual fingers. For executed hand 

movement, we used the signal when the patient was moving the finger on the healthy hand. 

However, during attempted finger-movement there is no external behavioral measurement available 

to assess when (after cue onset) the patient started to attempt the movements, where in time the 

strongest decodable response occurs and whether such a response is transient or sustained. In order 

to address these factors, we split the data in two halves. One half was used to explore decodability of 

the response over time and optimize the time-window parameters for decoding. These time-window 

parameters were then used in the other half for further decoding analysis. 

 We explored the response over time and optimized it for decoding by applying several 

different time-windows while decoding the finger-movement, thereby restricting the information 

available to the classifier. These time-windows differed in size from 250ms to 5000ms and in 

placement from cue onset, ranging from the beginning to the end of the trial. 

 An optimal time-window for classification was determined by first applying gaussian 

smoothing to the classification accuracies over the window size (σ: 2.5) and offset (σ: .5) dimensions. 

Smoothing prevents the selection of parameters with local classification accuracy peaks in the 

parameter optimization half of the data, and allows for the selection of temporal parameters that are 

optimal in general. After smoothing, the time-window with the highest classification score was 

selected, and its offset and size were used for further classification analyses. 

Classification 

For classification, the HFB power of the different channels at the trial-epochs were used as features 

in a Support Vector Machine (SVM) with a linear kernel (Bishop 2006). The HFB power was calculated 

per epoch in the same way as described above (i.e. using Welch’s method, log10 transformed and 

averaged over 65-175Hz), except that the spectra were not normalized. The unnormalized HFB 

power was used since the SVM maps each input feature to its own (scaled) dimension, and allows us 

to classify on the movement-epochs alone. We achieved multi-class classification (3 fingers) by 

applying a one-versus-all classification scheme in which every class is classified against the data of 
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the other classes together and the winner (that is furthest from the hyperplane) takes all. A leave-

one-out cross validation was used and resulted in a classification accuracy score, which is the 

percentage of trials predicted correctly. Classification scores were empirically tested for significance 

using a Monte Carlo distribution based on 100.000 permutations (Combrisson and Jerbi 2015). 

Spatial analyses 

Searchlight analyses were performed to establish which area on the cortex was most informative for 

attempted finger movement and how many electrodes (i.e. which grid configurations) would be 

needed to reliably classify the individual fingers. 

 The most informative cortical regions to decode attempted finger movements were 

identified using a random search procedure. During the random search procedure, a subset of 1 to 

36 electrodes was selected at random to classify from. This procedure was repeated 10.000 times 

and, for each electrode, the average accuracy over all iterations was calculated and z-scored. 

 Searchlight analyses were performed to identify which anatomical scale of coverage would 

provide the most information for classification. During the searchlight analyses, a searchlight (i.e. a 

block of electrodes) was used for classification. The searchlight, with a fixed block size (e.g. 2x2 

electrodes) was placed at every possible position within the grid. Afterwards, for each electrode, the 

average over all the iterations in which that particular electrode was involved was calculated. 

Searchlight analyses were performed with all possible searchlight sizes and shapes, representing 

grids of all different sizes (1x6/6x1 to 6x6 electrodes). 
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Results 

A typical electrophysiological motor response occurred upon attempted movement. In order to 

investigate to what extent the sensorimotor cortex showed typical physiology after deafferentation, 

we measured ECoG responses in a patient with an amputated arm. The patient reported vivid 

movements of the amputated hand and could describe in clear fashion how well the different fingers 

moved during the task. Figures 1A and 1B show the electrophysiological differences between 

attempted movement of the missing hand and rest. During attempted movement, a spatially 

distributed decrease of LFB power occurred. Simultaneously, significant focal increases of HFB power 

were found, most notably around the primary sensorimotor hand-areas. Strong decreases in power 

were observed in a narrow range of the lower frequencies (β band, 15-28Hz), for completeness, 

supplementary Figure 1 also illustrates the responses in the alpha range (8-13Hz). High frequency 

power increases were distributed over a broad range of higher frequencies (>65Hz) (Figure 1B).  

 
Figure 1. The electrophysiological response during attempted movement versus rest. (A) The changes in HFB (top, 65-

175Hz) and LFB (bottom, 15-28Hz) for each grid electrode. Electrodes with a red or blue color had a significant change in 
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band-power, whereas electrodes with in insignificant change in band-power are shown in grey; the two excluded electrodes 

are shown in white. (B) The power spectra of movement (solid line) and rest (dashed line) for a single electrode. (C) The 

HFB power changes over time, each graph represents one electrode. The black line represents all fingers, whereas the 

colored lines represent individual fingers. The two vertical dotted lines indicated the cue on- and offset. (D) The HFB power 

changes over time were averaged across those electrodes that showed a significant increase for a condition (blue: little, 

red: index, yellow: thumb, black: all fingers). The black trace has a lower amplitude because a different set of significant 

electrodes contributed to each trace, with more significant, but lower amplitude electrodes contributing to the black trace.  

 

During attempted movement there was no behavioral measurement available to determine when - 

after cue onset - the patient actually starts attempting the movement, nor where in time to expect 

the physiological response. Figures 1C and 1D present the changes in HFB power over time for each 

of the individual electrodes and the power averaged over all significant electrodes for each condition. 

A clear peak in HFB power is visible around 1s second after the cue onset for all fingers. 

 

Differential electrophysiological responses for the three individual fingers 

Figure 2. The HFB power changes upon attempted movement of each individual finger. Electrodes with a significant 

change in HFB band-power are shown in red, whereas electrodes with an insignificant HFB change are shown in grey, the 

two electrodes that were excluded are shown in white. The yellow line represents the central sulcus. 

 

Although each of the individual fingers provided a spatially different electrophysiological response, as 

shown in Figure 2, it is difficult to distinguish a clear topographical order.  

 To investigate whether the representations of the individual fingers were preserved and 

sufficiently distinguishable we wanted to perform single-trial classification of the individual fingers. 

However, since there was no behavioral movement information available, we first needed to 

establish where in time the most information on attempted finger movement was present. By 

restricting the classification to the information within specific time-windows we could explore where 

in time the most information about attempted finger movement resided. Figure 3 shows the 

classification accuracies based on the HFB power within a specific window of time, ranging from 
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250ms to 5000ms, placing the window at different moments between the cue onset (t = 0ms) and 

offset (t = 5000ms). 

 

Figure 3. The classification accuracies at different window sizes (y-axes) and offsets from cue onset (x-axes), based on 

half of the data (~45 trials). (A) The x-axis indicates the center of each window. (B)  The same plot shown, but with the x-

axis indicating the right of each window, such that each time point includes the information present before that time. (C) 

Shows the classification accuracies smoothed with a Gaussian filter (offset σ: .5, size σ: 2.5). The white-shaded regions in 

each graph indicate the classification accuracies in which the window included information unrelated to the trial (i.e. rest 

before or after the trial). 

 

Smaller time windows (<750ms) seem to provide less good decoding accuracies  (0% - 50%) in 

comparison to medium (750 - 2500ms) or larger time-windows. Medium-sized windows can perform 

reasonably well (60%-80%) depending on their offset in time. Window sizes of about 2500ms to 

5000ms performed well overall (> ~70%). In terms of window offset, the highest classifying windows 

take information from the beginning of the trial, regardless of window size. After Gaussian smoothing 

(Figure 3C) of the classification results, the optimal window (i.e. the highest classification score) was 

found at a width of 3000ms at 1950ms (window center) after cue onset, which converts to an epoch 

window from 450ms to 3450ms after cue onset. The remainder of the results are based on this epoch 

and are performed on the half of the data that was not used for parameter optimization. 

 The second half of the data showed that the classification accuracy of attempted finger 

movements based on the spatial features of the HFB power was significant at 93% (above 45% 

chance level calculated with Monte-Carlo simulation). The sensitivity values for the individual fingers 

(Little: 87%, Index: 93% and Thumb: 100%), shown in Figure 4, were also significantly above chance 

for all three fingers. 
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Figure 4. Confusion matrix with the classification scores of the individual fingers. Each column represents the finger of 

which movement was attempted. The rows represent how each of those finger movements was classified. 

 

Topographical organization of attempted hand movement information 

For all of the finger movements we investigated where on the cortex the related activity was located. 

Figure 1 and 2 already showed that most of the HFB power changes related to attempted movement 

occur around the hand and arm region of the pre and post central gyrus. Significant HFB changes 

extended beyond pre and post central gyrus to more anterior premotor regions as well. The random 

search classification results in Figure 5C confirm that most information indeed resides in S1 and M1, 

specifically in areas of the pre and post central gyrus that are well known to represent hand and 

finger movements (Penfield and Boldrey 1937).  

 To test the spatial extent of finger movement information, searchlight analyses with different 

types of grid configurations were performed (Figure 5A and 5B). Grid configurations with one or two 

electrodes tended to perform more poorly (~60%) compared to grids that include at least 3 

electrodes (> 60%). For electrodes strips (i.e. grids that have multiple electrodes only in one 

dimension), the orientation of the grid becomes important. Grids with 3 to 6 electrodes that are 

placed along the superior-inferior axis perform much better at > 70% than grids are oriented on the 

anterior-posterior axis (at ~60%). This coincides with the topographical organization of the different 

fingers on the cortex, which is more superior-inferior oriented than anterior-posterior (Dechent and 

Frahm 2003; Miller et al. 2009; Siero et al. 2014; Schellekens et al. 2018; Huber et al. 2020). In 

accordance with the most informative area in Figure 5C, grids perform best when 2-3 electrodes 

wide and at least 2-3 electrodes high, in order to cover enough area of the brain to include the most 

informative electrodes. Given the inter-electrode distance of 10mm, the minimum required grid size 

to obtain a good (>= 80%) classification would be around 13mm x 13mm (2x2 electrodes). 
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Figure 5. The spatial distribution of information. (A) Searchlight classification maps of searchlight with 2 x 2 (top) and 3 x 3 

electrodes (bottom). (B) The classification results of the different searchlights, ranging from 1x6 to 6x6 grids in two 

directions (superior-inferior, anterior-posterior). Each violin plot represents the searchlight results with a specific grid 

configuration. The violin represents the distribution of the classification accuracies at the different searchlight positions 

within the grid, with a black horizontal bar to indicate the searchlight position that classified the highest. The lower dotted 

blue line shows the chance level at 33%, while the upper blue line indicates the threshold of 45% above which the decoding 

accuracy was significant. (C) Most informative electrodes, identified by a random search classification on 10.000 subsets of 

electrodes. 

 

Ipsilateral finger representations 

In addition to attempted movement, the patient also performed runs of executed hand movements 

with the healthy, ipsilateral, hand. Frame-perfect video annotations were used to quantify the 

movement of the healthy hand. An average delay of 0.44s (std: .09) occurred between the cue onset 

and actual start of the movement. The patient moved his hand for about 3.69s (std: 0.53) on average 

over all trials, with about 3-5 flexions of the finger per trial. 

 Only a few channels on the hand-area showed a strong ipsilateral increase in HFB power 

during executed movement, whereas some other channels showed a smaller, yet significant, 

ipsilateral decrease in HFB power. An ipsilateral distributed decrease in LFB was found, but was less 

spread out over the cortex compared to attempted movement. The HFB power for executed 
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movement showed a transient response with a temporal peak between 0.5s and 1s, in line with the 

behavioral start of the hand movement and slightly earlier than the HFB peak in attempted 

movement at 1s. 

 

Figure 6. The, ipsilateral, electrophysiological response of executed movement versus rest. (A) The changes in HFB (top, 

65-175Hz) and LFB power (bottom, 15-28Hz) for each grid electrode. Electrodes with a red or blue color showed a 

significant change in band-power, whereas electrodes with an insignificant change in band-power are shown in grey; the 

two excluded electrodes are shown in white. (B) HFB power changes over time averaged across those electrodes that 

showed a significant positive increase. The black line represents all fingers, whereas the colored lines represent individual 

fingers. The two vertical dotted lines indicated the cue on- and offset. (C) The HFB power changes over time, each graph 

represents one electrode. 

 

Classification was performed on the ipsilateral response to the movement of the healthy hand. Based 

on the HFB power of all electrodes, finger movements could be classified with an accuracy of 56%. 
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Discussion 

In order to understand whether motor physiology is preserved after deafferentation, we investigated 

the contralateral electrophysiological responses of attempted finger movements in a patient with an 

upper-arm amputation. With attempted movement, a spatially-focal increase was found in 

broadband high-frequency ranges (65-175Hz) over the hand-area of the primary sensorimotor 

cortex. A spatially distributed decrease was found in the lower frequency bands (15-28Hz). Such an 

electrophysiological response is similar to that of executed finger and hand movements (Miller, 2009; 

Siero, 2014; Crone, 1998) suggesting that the motor physiology of the hand is retained.  

 Studies that investigated the motor electrophysiology in patients with locked-in-syndrome 

(i.e. ALS, PLS or brainstem-stroke) using EEG, MEG or permanent ECoG implants found similar results. 

In these patients, a robust HFB response was retained (Freudenburg et al. 2019). Whether and/or 

how the LFB response was affected varied between studies. Some studies observed robust low 

frequency power decreases in patients with ALS and/or PLS (Bai et al. 2010; Riva et al. 2012; 

Proudfoot et al. 2017). Other studies reported reduced power decreases in ALS (Kasahara et al. 

2012), or more variability between patients with ALS, tetraplegia and brainstem stroke, with only 

some patients showing robust low frequency power decreases (Höhne et al. 2014; Freudenburg et al. 

2019). These studies suggest that whether low frequency power decreases are retained depends on 

the disease (progression) and the influence of closed-loop feedback training. Here we have observed 

that there are strong and significant low frequency power decreases during attempted movement in 

a patient with an amputated arm. 

 Each individual finger resulted in a strong HFB response in the hand-region of the 

sensorimotor cortex. Although each of the fingers elicited a different HFB response pattern, no clear 

topographical representation of the fingers was found. Regardless, using support vector machine 

learning, we were able to decode the attempted movement of three individual fingers significantly at 

a classification accuracy of 93% (well above the 33% chance level). Which is similar to the decoding 

accuracies of executed movement of the fingers (Kubánek et al. 2009; Chestek et al. 2013). 

Attempted movements of the thumb could be decoded at 100% accuracy, however the index and 

little finger were less discriminable with sensitivity values of respectively 93% and 87%. Such 

decoding accuracies confirm that individual finger representations in the cortex are retained and can 

be distinguished in a patient with an amputated arm. Our results align with earlier fMRI research on 

patients with long term upper arm amputations (Bruurmijn et al. 2017), while other fMRI studies 

have shown displacement of the cortical activation into the deafferented motor and somatosensory 

areas during lip (Lotze et al. 2001), chin (Elbert et al. 1994) and face/shoulder movement (Dettmers 

et al. 2001). Two of these studies (Dettmers et al. 2001; Lotze et al. 2001) found that such 
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displacements occur primarily in patients with phantom limb pain. It is possible that the cortical 

representations of other body parts invade the cortical regions of an amputated limb, which would 

warrant further investigation. However, studies in the visual cortex have shown only a limited ability 

for the primary cortex to reorganize (Smirnakis et al. 2005). Our research similarly demonstrates that 

the representation of the missing hand is at least largely retained and not replaced. 

 The HFB response of attempted movement was both transient and sustained, similar to what 

was found in research on continuous/repeated executed finger movements (Hermes, Siero, et al. 

2012; Siero et al. 2013). For attempted movement, the HFB power peaked at ~1s after cue onset and 

returned gradually back to baseline during the remainder of the trial. Part of the latency between the 

cue onset and the peak of the cortical response can be explained by the lag between the 

interpretation of the cue and movement initiation, which in the executed movements of the patient 

already accounted for ~0.5s. Another factor that could have contributed to this ~1s latency may be 

related to the fact that motor imagery can be demanding in terms of mental fatigue and effort 

(Papadelis et al. 2007; Jacquet et al. 2020). In terms of decoding, both the transient and the 

sustained responses contained information about finger movements. The classifications of 

attempted finger movement over time confirmed that most information (i.e. the highest 

classification accuracies) was found around the peak of the response at 1s after cue presentation. 

The classification accuracies were more variable when including only the sustained response. 

However, larger time-windows (>2500ms) that included both the transient and sustained responses 

yielded higher classification accuracies than smaller windows (<2500ms), implying that the inclusion 

of (part of) the sustained response can contribute to the decodability. 

 In BCI applications, devices are often controlled with signals from the sensorimotor cortex 

using attempted movements (Collinger et al. 2013; Bouton et al. 2016; Vansteensel et al. 2016; 

Benabid et al. 2019). Our data showed that we could decode finger movements after 

deafferentation, suggesting that these signals can also be used to control a BCI. Understanding which 

signal properties allow for reliable decoding and BCI control is essential for these applications. 

Temporally, different parts of the electrophysiological signals can be included, but a tradeoff can 

occur between the speed of decoding and classification accuracy. A smaller window could allow for 

faster and more subsequent classifications, but could go at the expense of classification accuracy. 

Our data suggest that shorter (e.g. 1000ms) time windows may already provide a good accuracy 

(~80%) for decoding 3 fingers, while larger windows (e.g. 3000ms) will further improve accuracy 

(>90%). Patients may be able to use such short time windows, as one study in a patient with ALS 

already showed that movement versus rest can be decoded using a 1 sec window (Vansteensel et al. 

2016). Understanding how well movement activity is retained after deafferentation may have 
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implications for BCIs in patients with paralysis, as well as an amputated limb, as BCIs may reduce 

phantom limb pain (Yanagisawa et al. 2020). 

Attempted movement after loss of function is different from movement imagery, and this 

distinction is of particular importance for implanted BCIs. It has been debated whether motor 

imagery representation overlaps with overt movement in brain surface recordings (Miller et al. 2010; 

Hermes et al. 2011), and whether motor imagery is a good approximation of attempted movement 

after limb loss or paralysis. One would intuitively expect that, in the case of a lost limb, the native 

map of representation would either be retained, or generally degrade. This patient’s map shows that 

somatotopic distinction is retained several years after limb loss. Some types of motor imagery in 

healthy individuals may thus not be a good general approximation or motor representations after 

limb loss or paralysis for implanted BCIs. 

 An additional point of importance for BCIs is the electrode grid design and extent of cortical 

coverage, which can have a strong influence on BCI performance (Vansteensel et al. 2016; Van Den 

Boom et al., 2021). Our results show that most information about attempted movement is located on 

the hand-region of the primary motor and sensory cortex. In terms of cortical coverage, considering 

an inter-electrode distance of 10mm, a good (>80%) classification accuracy can already be achieved 

with as little as 2x2 electrodes (13mm x 13mm) placed over the primary sensorimotor cortex. More 

electrodes could provide up to ~90% classification accuracy. 

 Finger movement activity on the ipsilateral cortex of the intact hand could be decoded, but 

less accurately compared to decoding the contralateral attempted finger movements. Only a few 

channels showed power increases during ipsilateral movements, while some electrodes also showed 

significant high frequency power decreases. Whether previous ECoG studies show similar ipsilateral 

high frequency power decreases during executed hand movements is less clear (Zanos et al. 2008). 

However, ipsilateral decreases in sensorimotor activity during hand movement in healthy subjects 

have been observed in the fMRI BOLD signal (Hlushchuk and Hari 2006; Diedrichsen et al. 2013). TMS 

studies similarly show evidence for contralateral inhibition (Talelli, Ewas, et al. 2008; Talelli, 

Waddingham, et al. 2008). The ipsilateral decreases in high frequency power we observed with ECoG 

may thus potentially be related to inhibition resulting from activity of the contralateral hemisphere, 

or to some reorganization of function after the injury (as has been seen with patients after perinatal 

hemispheric stroke; Miller et al. 2011) 

 

Conclusion 

The electrophysiology of attempted hand movement is preserved in the sensorimotor cortex after 

deafferentation of an amputated hand, with a typical focal increase of HFB power over the hand 

region and a more distributed decrease in LFB. Attempted finger movements provided a transient 
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HFB peak around 1s after cue onset, followed by a sustained HFB response. Classification analyses 

confirm that most decodable information on the finger movement can be found around this peak. 

Furthermore, HFB power can be used to decode finger movements with high (>90%) accuracy. 

Optimal decoding could be achieved based on the first 1-3s of the signal and would only require 13-

13mm of cortical coverage. Our results demonstrate that the sensorimotor electrophysiology 

remains largely intact after long term (3 years and 11 months) amputations and therefore remains a 

viable region for BCIs that use the decoding of hand-gestures for control. 
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Supplementary material 

 

 

Supplementary Figure 1. The electrophysiological responses in the spatial and time domain for both the 15-28Hz and 8-

13Hz low-frequency bands during attempted movement (contralateral) and executed movement (ipsilateral). Electrodes 

with a red or blue color showed a significant change in band-power power, whereas electrodes with an insignificant change 

are shown in grey; the two excluded electrodes are shown in white. The time traces show the LFB power changes averaged 

across those electrodes that showed a significant decrease. The black line represents all fingers, whereas the colored lines 

represent individual fingers. The two vertical dotted lines indicated the cue on- and offset. 
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