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Abstract 1 

The topographical distribution of oscillatory power in the alpha band is known to vary 2 

depending on the current focus of spatial attention. Here, we investigated to what extend 3 

univariate and multivariate measures of post-stimulus alpha power are sensitive to the 4 

required spatial specificity of a task. To this end, we varied the perceptual load and the 5 

spatial demand in an auditory search paradigm. A centrally presented sound at the 6 

beginning of each trial indicated the to-be-localized target sound. This spatially unspecific 7 

pre-cue was followed by a sound array, containing either two (low perceptual load) or four 8 

(high perceptual load) simultaneously presented lateralized sound stimuli. In separate task 9 

blocks, participants were instructed either to report whether the target was located on the 10 

left or the right side of the sound array (low spatial demand) or to indicate the exact target 11 

location (high spatial demand). Univariate alpha lateralization magnitude was neither 12 

affected by perceptual load nor by spatial demand. However, an analysis of onset latencies 13 

revealed that alpha lateralization emerged earlier in low (vs. high) perceptual load trials as 14 

well as in low (vs. high) spatial demand trials. Finally, we trained a classifier to decode the 15 

specific target location based on the multivariate alpha power scalp topography. A 16 

comparison of decoding accuracy in the low and high spatial demand conditions suggests 17 

that the amount of spatial information present in the scalp distribution of alpha-band power 18 

increases as the task demands a higher degree of spatial specificity. Altogether, the results 19 

offer new insights into how the dynamic adaption of alpha-band oscillations in response to 20 

changing task demands is associated with post-stimulus attentional processing.   21 

Keywords: alpha oscillations, EEG, multivariate pattern analysis, selective attention, spatial 22 
specificity, sound localization  23 
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1. Introduction 24 

In everyday environments, containing multiple competing sensory inputs, focusing spatial 25 

attention on relevant information while ignoring or suppressing irrelevant information is 26 

crucial to engage in goal-directed behaviour. Consistently, covert shifts of spatial attention 27 

have been shown to improve various aspects of behavioural performance, including visual 28 

spatial acuity (reviewed by Anton-Erxleben & Carrasco, 2013), contrast sensitivity (Carrasco, 29 

Penpeci-Talgar, & Eckstein, 2000), or the rate of information accumulation (Carrasco & 30 

McElree, 2001). On the electrophysiological level, asymmetric modulations of parieto-31 

occipital alpha-band power present a robust signature of spatial attentional orienting. 32 

Typically, alpha-band power decreases contralateral to the attended location and / or 33 

increases over ipsilateral scalp sites. This phenomenon of alpha power lateralization has 34 

been found in response to anticipatory shifts of attention (Foxe, Simpson, & Ahlfors, 1998; 35 

Worden, Foxe, Wang, & Simpson, 2000), when retro-actively attending to working memory 36 

representations (Poch, Capilla, Hinojosa, & Campo, 2017; Schneider, Mertes, & Wascher, 37 

2016), as well as during post-stimulus attentional processing (e.g., in auditory or visual 38 

search paradigms; Bacigalupo & Luck, 2019; Klatt, Getzmann, Wascher, & Schneider, 2018b).  39 

 Accumulating evidence suggests that scalp-level alpha-band activity not only reflects 40 

the attended hemifield but is tuned specifically to the attended visual field location 41 

(Bahramisharif, Heskes, Jensen, & van Gerven, 2011; Rihs, Michel, & Thut, 2007). Moreover, 42 

this spatial selectivity is also reflected in the retinotopic organization of alpha sources 43 

(Popov, Gips, Kastner, & Jensen, 2019). First evidence for comparable ‘spatial tuning’ of 44 

alpha-band oscillations in the auditory domain comes from a recent study by Deng and 45 

colleagues (Deng, Choi, & Shinn-Cunningham, 2020) who found that the topographic 46 

distribution of posterior alpha-band lateralization changes monotonically as the focus of 47 

auditory spatial attention shifts in space.  48 

Notably, recent evidence suggests that the degree of spatial specificity reflected in 49 

the scalp distribution of alpha-band power also depends on the current task demands 50 

(Feldmann-Wüstefeld & Awh, 2019; Voytek et al., 2017). Specifically, two studies of visual 51 

anticipatory spatial attention, using multivariate inverted encoding models (IEM), 52 

demonstrated that the spatial selectivity of alpha activity increased when participants 53 

voluntarily focused on a narrow rather than a broad region of space (Feldmann-Wüstefeld & 54 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.02.12.430942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430942
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Awh, 2020) and scaled to the degree of certainty of a central cue that indicated the location 55 

of an upcoming target (Voytek et al. 2017).  56 

Consistently, in an auditory spatial attention study, focusing on post-stimulus 57 

attentional processing, we found that task-demands shape the reliance on alpha-band 58 

mediated post-stimulus processing. That is, auditory post-stimulus alpha lateralization was 59 

only present in a spatially specific sound localization task, whereas it was absent in a simple 60 

sound detection paradigm (Klatt et al. 2018b, see also Deng et al. 2019). In the present 61 

study, we set out to further investigate to what extent attentional modulations of post-62 

stimulus alpha power capture the spatial demands of a sound localization task on a more 63 

fine-grained scale. To this end, we varied both the perceptual load and the spatial demand of 64 

the task. That is, participants were asked to localize a target sound among a set of either two 65 

(low perceptual load) or four (high perceptual load) concurrently presented sounds in a 66 

lateralized sound array. In separate task bocks, they either indicated (a) whether the target 67 

was present on the left or the right side (i.e., two response options, low spatial demand) or 68 

(b) reported the exact target location (i.e., four response options, high spatial demand). On 69 

the behavioural level, we expected that high perceptual load (compared to low load) and 70 

high spatial demand (compared to low spatial demand) would present the more challenging 71 

listening situation, resulting in slower response times and lower sound localization accuracy. 72 

Beyond that, attempting to replicate previous results, we hypothesized that post-stimulus 73 

modulations of alpha-band power should index the attended target location, while the 74 

magnitude thereof should not be affected by perceptual load (Klatt et al., 2018b). This 75 

should be evident in a hemispheric lateralization of alpha-band power over parieto-occipital 76 

electrode sites in both low and high perceptual load trials.  77 

Further, the critical aim of this study was to assess whether the required degree of 78 

behavioural spatial specificity (low vs. high spatial demand) affects the spatial specificity of 79 

the alpha power signal. If this is the case, this should be either evident in a modulation of 80 

alpha lateralization magnitude and / or captured by the scalp distribution of alpha-band 81 

power. Hence, we applied both univariate as well as multivariate analysis techniques to 82 

evaluate alpha-band power modulations depending on the spatial (and perceptual) demands 83 

of the task. Finally, we assessed alpha lateralization onset latencies to explore whether the 84 

time course of alpha-band activity is likewise modulated by the required degree of spatial 85 

specificity or perceptual load. Specifically, if slower sound localization performance in high 86 
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spatial demand or high perceptual load conditions coincides with slower post-stimulus 87 

attentional processing, this should be reflected in delayed onset latencies of alpha 88 

lateralization. Such a time-resolved modulation of attentional alpha-band activity is, for 89 

instance, suggested by Foster and colleagues (Foster, Sutterer, Serences, Vogel, & Awh, 90 

2017), who showed that the onset latency of location-selective alpha-band channel tuning 91 

functions (reconstructed from the topographic distribution of alpha-band oscillatory power) 92 

occurred later in time for trials with slow compared to fast responses as well as for a hard 93 

compared to an easier search condition.  94 

 95 

2. Methods 96 

2.1 Ethics statement 97 

The study was approved by the Ethical Committee of the Leibniz Research Centre for 98 

Working Environment and Human Factors and conducted in accordance with the Declaration 99 

of Helsinki. All participants provided written informed consent prior to the beginning of the 100 

experimental procedure.  101 

 102 
2.2  Participants 103 

19 participants were recruited to take part in the study. Hearing acuity was assessed using a 104 

pure-tone audiometry (Oscilla USB 330; Inmedico, Lystrup, Denmark), presenting eleven 105 

pure-tone frequencies in-between 125 Hz and 8000 Hz. One participant had to be excluded 106 

due to a unilateral, mild to moderate hearing impairment in the right ear (hearing thresholds 107 

of up to 35 – 50 dB hearing level). All other participants showed no signs of hearing 108 

impairment (hearing thresholds ≤ 25 dB). Another participant did not correctly follow the 109 

task instructions and was also excluded. Thus, the final sample included 17 subjects (mean 110 

age 23.29 years, age range 19- 30, 9 female), all of which were right-handed as indicated by 111 

the Edinburgh Handedness Inventory (Oldfield, 1971). The sample size we aimed at was 112 

chosen to be comparable to previous publications from the lab that investigated similar 113 

electrophysiological measures (e.g., Klatt, Getzmann, Wascher, & Schneider, 2018b, 2018a). 114 

All participants had normal or corrected-to-normal vision, reported no history of or current 115 

neurological or psychiatric disorders and received course credit or financial compensation 116 

(10€/hour) for their participation.  117 

 118 
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2.2 Experimental setup and stimuli 119 

The experiment was conducted in a dimly illuminated, anechoic, and sound-attenuated 120 

room (5.0 × 3.3 × 2.4m³). Pyramid-shaped foam panels on ceiling and walls and a woolen 121 

carpet on the floor ensure a background noise level below 20dB(A). Participants were seated 122 

in a comfortable chair with their head position held constant by a chin rest. A semicircular 123 

array of nine loudspeakers (SC5.9; Visaton, Haan, Germany) was mounted in front of the 124 

subject at a distance of ~1.5 meters from the subject’s head and at a height of ~1.3 meters 125 

(approximately at ear level). Only five loudspeakers, located at azimuthal positions 126 

of -90°, -30°, 0°, 30°, and 90° respectively, were used for the present experimental setup. A 127 

red, light-emitting diode (diameter 3 mm) was attached right below the central loudspeaker. 128 

The diode remained turned off during the experiment, but served as a central fixation target.   129 

As sound stimuli, eight familiar animal vocalizations (‘birds chirping’, ‘dog barking’, 130 

frog croaking’, ‘sheep baaing’, ‘cat meowing’, ‘duck quacking’, ‘cow mooing’, ‘rooster 131 

crowing’) were chosen from an online sound archive (Marcell, Borella, Greene, Kerr, & 132 

Rogers, 2000). The original sounds were cut to a constant duration of 600 ms (10 ms on/off 133 

ramp), while leaving the spectro-temporal characteristics unchanged. The overall sound 134 

pressure level of the sound arrays, containing either two or four concurrently present 135 

sounds, was about 63 dB(A) and 66 dB(A), respectively. The target sounds, presented in 136 

isolation from a central position, had a sound pressure level of 60 dB(A).  137 

 138 

2.3 Procedure, task, and experimental design 139 

The experiment consisted of an auditory search paradigm implementing a sound localization 140 

task. The sequence of events in a given trial is depicted in Figure 1. Each trial began with a 141 

silent period of 500 ms. Then a sound stimulus (i.e., a target cue) was presented from a 142 

central position (0° azimuth angle) for 600 ms, indicating which animal vocalization will serve 143 

as a relevant target sound in a given trial. The latter was followed by a 1000 ms silent inter-144 

stimulus-interval and a sound array (600 ms). The sound array contained either two (i.e., low 145 

perceptual load, 50%) or four (i.e., high perceptual load, 50%) simultaneously present 146 

lateralized sound stimuli. Sound array presentation was followed by a 1600 ms response 147 

interval and a 300 ms silent interval. In total, each trial lasted for 4600 ms.  148 

In low perceptual load trials, the two sounds could occur at either of the four 149 

lateralized loudspeaker positions (-90°, -30°, 30°, 90° azimuth), with the restriction that the 150 
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two sounds (i.e., the target and a non-target sound) were always present in different hemi-151 

fields. Accordingly, in high perceptual load trials all four lateralized active loudspeakers (-90°, 152 

-30°, 30°, 90° azimuth) were used. Depending on the task condition, participants received 153 

slightly different task instructions: In the low spatial demand (lsd) condition, participants 154 

were instructed to indicate whether the target sound was present on the left versus right 155 

side (i.e., two response options: left vs. right) or to withhold their response if the target 156 

sound was not present (i.e., target-absent trials). In the high spatial demand (hsd) condition, 157 

participants were asked to indicate the exact target location (i.e., four response options: 158 

inner-left, outer-left, inner-right, outer-right) or to withhold their response if the target 159 

sound was not present. Target-absent trials were included to ensure that selectively listening 160 

to the input from only one side of the stimulus array (i.e., left or right) presented no viable 161 

strategy in low spatial demand task blocks. Specifically, if the sound array always contained a 162 

target sound in low spatial demand blocks, subjects could be inclined to simply infer that the 163 

target was located on the left side solely because they didn’t perceive it on the right side (or 164 

vice versa).165 

Figure 1. Schematic illustration of the experimental design. A centrally presented target cue indicated the 

relevant target in a given trial. Then, a sound array appeared, containing either two or four simultaneously present 

sounds from lateralized positions. In different task blocks, participants were asked to either indicate whether the 

target was presented on the left or the right side (low spatial demand) or to report the exact target location (high 

spatial demand). In both task blocks, it was also possible that the sound array did not contain the target (i.e., 

target-absent trial). In this case, participants withheld their response. ISI = inter-stimulus-interval. 
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Participants indicated their response by pressing one out of four buttons, arranged in a semi-166 

circular array on a response pad. In the high-spatial demand condition, each button 167 

corresponded to one of the loudspeaker positions, such that participants had to press the 168 

left-most button when the target was presented at the left-most loudspeaker and so on. In 169 

low spatial demand trials, participants only used the two inner response buttons (i.e., the 170 

left button for left-target responses, the right button for right-target responses). Participants 171 

were instructed to always respond as accurately and as fast as possible, using the index 172 

finger of their right hand. To minimize horizontal eye movements during the EEG-recording, 173 

participants were instructed to fixate a centrally positioned LED.  174 

Each of the spatial demand conditions (i.e., low vs. high spatial demand) consisted of 175 

672 trials, containing both low (50%) and high (50%) perceptual load trials in randomized 176 

order. Short, self-paced breaks after every 224 trials and in-between conditions were 177 

conducted to prevent fatigue. The order of conditions was counterbalanced across 178 

participants, such that n = 8 subjects first completed the low-spatial demand condition and n 179 

= 9 subjects first completed the high-spatial demand condition. Prior to the beginning of 180 

each condition participants completed 40 practice trials to familiarize with the task. All 181 

participants were presented with the same semi-randomized selection of trials. Critically, in 182 

both spatial demand conditions the same selection of 672 trials was presented, but in a 183 

different, randomized order. This assured that all differences between conditions could be 184 

ascribed to the task manipulations rather than differences in the stimulus materials. Each of 185 

the eight animal vocalizations served as the target equally often (i.e., 84 times per 186 

condition). In addition, the target sound appeared equally often at each of the four possible 187 

sound speaker locations (i.e., 56 times per location and perceptual load per condition). This 188 

also ensured that the number of left (1/3) vs. right (1/3) responses in low-spatial demand 189 

trials as well as the number of outer-left (1/5), inner-left (1/5), inner-right (1/5), and outer-190 

right (1/5) responses in high-spatial demand trials was counterbalanced across subjects. 191 

Target-absent trials constituted 1/3rd and 1/5th of all trials in low and high spatial demand 192 

task blocks, respectively. The timing of the stimuli was controlled by custom-written 193 

software. Participants did not receive feedback during the experiment.  194 

Taken together, the present study comprised a 2 x 2 repeated-measures design, 195 

including the within-subject factors spatial demand (low vs. high spatial demand) and 196 

perceptual load (low vs. high perceptual load). Note that there are different ways of defining 197 
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perceptual load (for a review see Murphy, Spence, & Dalton, 2017). Here, we refer to 198 

perceptual load as the number of items in the search display. 199 

 200 

2.4 EEG data acquisition  201 

The continuous EEG data were recorded from 58 Ag/AgCl passive scalp electrodes (ECI 202 

Electrocap, GVB-geliMED GmbH, Bad Segeberg, Germany) as well as from left and right 203 

mastoids. Electrode positions corresponded to the international 10-10 system. The 204 

electrooculogram (EOG) was simultaneously recorded from four additional electrodes, 205 

placed lateral to the outer canthus of each eye as well as below and above the right eye. The 206 

ground electrode was placed on the center of the forehead, right above the nasion. The 207 

average of all electrodes served as the online-reference. The data were recorded using a 208 

QuickAmp-72 amplifier (Brain products, Gilching, Germany) and digitized at a sampling rate 209 

of 1 kHz. During the preparation of the EEG cap, all electrode impedances were kept below 210 

10 kΩ.  211 

 212 

2.5 Data analysis  213 

If not stated otherwise, all data analyses were performed using custom MATLAB (R2018b) 214 

code and built-in functions from the Statistics and Machine Learning Toolbox. In a few 215 

specific cases, R (v3.6.1) and RStudio (v1.2.1335) were used (see references to specific R 216 

packages below). The significance of all tests was evaluated at an alpha level of .05. Because 217 

the F-distribution is always asymmetric, reported p-values associated with repeated-218 

measures analysis of variance (ANOVA) are directional (Winter, 2011). Partial Eta Squared 219 

(ηp²) and Hedges’ g (denotes as g, Hentschke & Stüttgen, 2011) are provided  220 

as standardized measures of effect size for ANOVAs and follow-up paired sample t-tests.  221 

 222 

2.5.1 Behavioral  223 

The behavioral parameters that were analyzed were response times (RT) and accuracy (i.e., 224 

percentage of correct responses). Only target-present trials were considered. For accuracy 225 

measures, this selection of trials was required because in target-absent trials a correct 226 

target-absent-categorization (i.e., a volitional omission of a key press) could not be reliably 227 

dissociated from an incorrect, missing response. Mean RTs and accuracy measures per 228 
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subject and condition were submitted to a repeated-measures ANOVA. Spatial demand and 229 

perceptual load served as within-subject factors.  230 

 

2.5.2 EEG 231 

All EEG data processing was performed using the open-source toolbox EEGLAB (v14.1.2; 232 

Delorme & Makeig, 2004) in combination with custom MATLAB (R2018b) code.  233 

 234 

Preprocessing. Initially, continuous segments of -1 to +1 seconds surrounding boundary 235 

events as well as the DC offset were removed from the data. Then, the continuous EEG data 236 

were band-pass filtered, using a non-causal, high-pass and a low-pass Hamming windowed 237 

sinc FIR filter (pop_eegfiltnew function). The lower edge of the frequency pass band was set 238 

to 0.1 Hz (filter order: 33000, transition band-width: 0.1 Hz, -6dB cutoff: 0.05 Hz) and the 239 

higher edge of the frequency pass band to 30 Hz (filter order: 440, transition band-width: 7.5 240 

Hz, -6dB cut-off: 33.75 Hz). Early-stage preprocessing was then performed using the PREP 241 

pipeline (Bigdely-Shamlo, Mullen, Kothe, Su, & Robbins, 2015), which essentially consists of 242 

three steps: it performs an initial clean-up, determines and removes a robust reference 243 

signal, and interpolates bad channels with a low signal to noise ratio. For an extensive 244 

documentation of the single steps, please see Bigdely-Shamlo et al. (2015). Only scalp EEG 245 

channels were used for evaluation of noisy channels and for computation of the robust 246 

reference, while all channels (including mastoids and EOG channels) were re-referenced. On 247 

average, 3.7 channels (SD = 2.2) were identified as bad and interpolated prior to subtracting 248 

the computed “true” reference. This includes a total of three channels (across two subjects) 249 

that were manually interpolated prior to running the PREP algorithm, because the latter did 250 

not identify the respective channels as flat channels. For channel interpolation, the PREP 251 

pipeline applies spherical spline interpolation as implemented in the eeg_interp() function 252 

(Perrin, Pernier, Bertrand, & Echallier, 1989). The same algorithm was used to manually 253 

interpolate the three channels that were not identified as flat channels by the PREP 254 

algorithm. A total of three channels (in two subjects) belonging to the posterior electrode 255 

cluster of interest that was used for statistical analysis (see section on Alpha Laterlization) 256 

were marked as bad and thus, interpolated during this procedure. 257 

For artifact rejection, an independent component analysis (ICA) was run on the 258 

dimensionality reduced data (using a basic PCA implementation). To speed up and improve 259 
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ICA decomposition, the continuous data were down-sampled to 200 Hz and high-pass 260 

filtered at 1 Hz (Winkler, Debener, Muller, & Tangermann, 2015), using a non-causal 261 

Hamming windowed sinc FIR filter (filter order: 3300, transition band-width: 1 Hz, -6dB 262 

cutoff: 0.5 Hz) prior to running the ICA algorithm. Then, data epochs were extracted, ranging 263 

from -1000 to 4500 ms relative to target cue onset. In addition, major artefacts and 264 

extremely large potential fluctuations were removed before running ICA, using the 265 

automatic trial-rejection procedure implemented in EEGLAB (i.e., function pop_autorej). The 266 

latter rejects data epochs, containing data values exceeding a given standard deviation 267 

threshold by means of an iterative procedure (probability threshold: 5 SD, maximum 268 

proportion of total trials rejection per iteration: 5%, threshold limit: 500 µV). Because 269 

interpolating channels prior to ICA introduces rank-deficiency, the number of to-be 270 

extracted ICs was manually reduced by the number of interpolated channels + 1 (to account 271 

for the dependency introduced by the average reference). The obtained ICA decomposition 272 

was back-projected onto the original, continuous dataset (band-pass filtered and re-273 

referenced) with a 1 kHz sampling rate. The latter was segmented into epochs ranging from -274 

1000 to 4500 ms relative to target cue onset and baseline-corrected, using the pre-stimulus 275 

period of -200 to 0. To identify artefactual independent components (ICs), the EEGLAB plug-276 

in ICLabel (v1.1, Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019), was applied. ICLabel 277 

assigns a label vector to each IC, indicating the probability that an IC belongs to any of seven 278 

possible categories: brain, muscle, eye, heart, line noise, channel noise, or other. All ICs that 279 

received a probability estimate below 50% for the brain category were considered 280 

“artefactual” and subsequently subtracted from the data. On average 34.82 ICs (SD = 4.26) 281 

were removed per participant (i.e., 59.67 %, SD = 7.85). Finally, the automatic trial rejection 282 

procedure implemented in EEGLAB was performed, setting the probability threshold to 5 SD, 283 

the maximum proportion of total trials to-be-rejected per iteration to 5 % and the threshold 284 

limit to 1000 µV. On average, 177 (lsd-low, SD = 23), 182 (lsd-high, SD = 20), 162 (hsd-low, SD 285 

= 19), and 166 (hsd-high, SD = 18) target-present-trials passed artefact correction per 286 

subject. Specifically, 174 (lsd-low, SD = 22), 160 (lsd-high, SD = 20), 156 (hsd-low, SD = 18), 287 

and 136 (hsd-high, SD = 19) of those target-present trials were correct trials, and thus 288 

entered the univariate EEG analysis. This corresponds to, on average, 87 (lsd-low, SD = 11), 289 

80 (lsd-high, SD = 10), 78 (hsd-low, SD = 9), and 68 (hsd-high, SD = 10) trials per target 290 

hemifield (left vs. right). 291 
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Time-frequency decomposition. The time-frequency decomposition of the processed EEG 292 

data was computed using Morlet wavelet convolution as implemented in the build-in 293 

EEGLAB STUDY functions (i.e., newtimef.m). Specifically, the segmented EEG signal was 294 

convolved with a series of complex Morlet wavelets. The frequencies of the wavelets ranged 295 

from 4 Hz to 30 Hz, increasing logarithmically in 52 steps. A complex Morlet wavelet is 296 

defined as a complex sine wave that is tapered by a Gaussian. The number of cycles, that 297 

defines the width of the tapering Gaussian, increased linearly as a function of frequency by a 298 

factor of 0.5. This procedure accounts for the trade-off between temporal and frequency 299 

precisions as a function of the frequency of the wavelet. The number of cycles at the lowest 300 

frequency was 3; the number of cycles at the highest frequency was 11.25. The time period 301 

in-between -400 and -100 ms relative to target cue onset served as a spectral baseline. 302 

 303 

Alpha power lateralization. Spatial shifts of attention following the onset of the sound array 304 

were quantified by assessing lateralized modulations of posterior alpha-band power (8-12 305 

Hz). Specifically, the difference between contralateral and ipsilateral alpha power at a cluster 306 

of posterior electrodes, comprising PO7/8, P7/8, P3/4, and PO3/4, was calculated separately 307 

for each condition and each subject. The selection of electrodes was based on previous 308 

studies of post-stimulus, posterior alpha lateralization (Klatt, Getzmann, Begau, & Schneider, 309 

2019; Schneider, Göddertz, Haase, Hickey, & Wascher, 2019), except that P5/P6 were not 310 

part of the present electrode setup and thus, electrodes P3/4 were included in the electrode 311 

cluster instead. Given that post-stimulus alpha power asymmetries have been shown to 312 

appear as a relatively long-lasting, sustained effect (Klatt et al., 2018a), the mean 313 

contralateral-minus-ipsilateral differences in power were extracted in a broad 400 ms-time 314 

window, ranging from 532 to 937 ms following sound array onset. The time window was set 315 

around the peak in the grand average contralateral minus ipsilateral difference waveform 316 

across all conditions and subjects. The peak was defined as the point in time at which the 317 

difference waveform (following sound array onset, 1600 ms – 3000 ms) reached its most 318 

negative amplitude value. The resulting analysis time window is consistent with our earlier 319 

work (Klatt et al., 2018a). Notably, although this approach to determine the analysis time 320 

window is data-driven, the comparisons between conditions remain unbiased (Luck & 321 

Gaspelin, 2017). The mean power values per subject and condition were then submitted to a 322 

repeated-measures ANOVA, including the within-subject factors spatial demand and 323 
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perceptual load to assess their effect on alpha lateralization magnitude.  324 

 325 

Alpha lateralization onset latencies. To quantify alpha lateralization onset latency, we used a 326 

combination of the fractional area technique (Kiesel, Miller, Jolicœur, & Brisson, 2008; Luck, 327 

2014) and a jackknife approach (Luck, 2014; Miller, Patterson, & Ulrich, 1998). That is, for 328 

each condition, n subaverage contralateral minus ipsilateral difference waveforms were 329 

created, using a subsample of n-1 waveforms (i.e., each participant was omitted once). In 330 

each of these subaverage waveforms, the point in time at which the negative area under the 331 

curve reached 20% and 50%, respectively (i.e., Fractional Area Latency, denoted as FAL) was 332 

measured, using the MATLAB function latency.m by Liesefeld (2018). Negative area was 333 

measured relative to zero and in-between a broad time window from 1600 to 3000 ms post-334 

cue-onset (i.e., 1600 ms corresponds to sound array onset). Note that reported mean 335 

latency differences (denoted as D) correspond to the differences in onset latency between 336 

conditions, measured in the condition-grand averages. According to Miller, Patterson, & 337 

Ulrich (1998), the jackknife-based SED was calculated as follows:  338 

 339 

𝑆𝐸𝐷 =  √𝑁−1
𝑁

 ∑ (𝐷−𝑖 − 𝐽 ̅)2𝑁
𝑖 =1 . 340 

 341 

𝐷−𝑖  (for I = 1, …, N, with N representing the sample size) denotes the latency difference for 342 

the subsample, including all subjects except for subject 𝑖. 𝐽 ̅is the mean difference across all 343 

subsamples (i.e., 𝐽̅ =  ∑ 𝐷−𝑖  /  𝑁 ).  344 

The 20%-FAL and 50%-FAL values were submitted to separate repeated-measures 345 

ANOVAs, including the within-subject factors spatial demand and perceptual load. Because 346 

the use of subsample average measures artificially reduces the error variance, the error 347 

terms in the respective ANOVA will be underestimated, while the F-values will be 348 

overestimated. To account for this bias, the F-correction according to Kiesel, Miller, Jolicœur, 349 

& Brisson (2008) was applied. Corrected F-values are denoted as Fcorr. The corresponding p-350 

value for the corrected F statistic was computed using the online calculator by Soper (2020).  351 

Please note that the main aim of the present analysis of onset latency measures was 352 

to assess differences in onset latency between the experimental conditions. However, the 353 

estimated onset latency measures should not be interpreted as reflecting the true onset 354 
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time of the underlying attentional process. This precaution applies for two reasons: First, the 355 

temporal resolution of event-related spectral perturbations is considerably lower compared 356 

to standard ERP analysis. Second, non-causal filters, as applied here to the continuous raw 357 

EEG data, have been shown to affect the onset latency of time-series data considerably 358 

(VanRullen, 2011, but see also Rousselet, 2012). Critically, as the filter should affect all 359 

conditions to the same extent, the differences between conditions can still be reliably 360 

interpreted.  361 

 362 

Brain-behavior correlations. To investigate to what extent the timing of alpha laterization 363 

was related to behavioral performance, we used a repeated-measures correlation approach 364 

and the R package rmcorr (Bakdash & Marusich, 2017). Rmcorr determines “the relationship 365 

between […] two continuous variables, while controlling for the […] between-participants 366 

variance” (Bakdash & Marusich, 2017, p. 3). We obtained FAL-measures from the single-367 

subject waveforms (i.e., contralateral minus ipsilateral alpha power) for each of the four 368 

conditions and correlated those with condition-specific mean response times. Here, the 369 

latter were estimated, including only the (correct) trials that remained after EEG-artefact 370 

rejection. Three subjects did not show an alpha lateralization effect (i.e., there was no 371 

negative area) and were thus, excluded from the correlation analysis. The repeated-372 

measures correlation coefficient rrm as well as a 95% confidence interval will be reported. 373 

The corresponding degrees of freedom are calculated as follows (Bakdash & Marusich, 374 

2017):  375 

 376 

𝑑𝑓𝑟𝑚𝑐𝑜𝑟𝑟 = 𝑁(𝑘 − 1) − 1,  377 

 378 

where k is the number of repeated measures per participant (i.e., 4) and N is the total 379 

number of participants (i.e., 14).  380 

 381 

Non-lateralized, posterior alpha power desynchronization. Event-related desynchronization 382 

of alpha-band activity resulting in low levels of alpha power has been linked with states of 383 

high excitability and thus, is thought to reflect functional engagement and information 384 

processing (see e.g., Fukuda, Mance, & Vogel, 2015; Krause et al., 2000; Hanslmayr, Spitzer, 385 

& Bäuml, 2009). Hence, in the present study, posterior alpha ERD served as a measure of 386 
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cognitive task demands. Mean alpha ERD amplitude per condition and subject was measured 387 

in-between 2144 and 2244 ms relative to target cue onset (i.e., 544 – 644 ms relative to 388 

sound array onset) at electrode Pz. The time window that served as the basis for the 389 

statistical analysis was determined using a collapsed localizer approach (Luck & Gaspelin, 390 

2017). That is, we assessed the negative peak in the grand average waveform across 391 

conditions in a broad time-window from 1600 ms to 3000 ms (relative to target cue onset; 392 

i.e., the same time window used to measure the area under the curve for fractional area 393 

latency measurement). A 100 ms time window (i.e., +/- 50 ms) around the resulting peak 394 

value of 2194 ms (i.e., 594 ms following sound array onset) constituted the measurement 395 

time window. Mean alpha power values were then submitted to a repeated-measures 396 

ANOVA, including the within-subject factors spatial demand (high vs. load) and perceptual 397 

load (high vs. low).  398 

 399 

Decoding analysis. We attempted to decode the exact location (i.e., outer-left, inner-left, 400 

inner-right, outer-right) of the target sound based on the scalp distribution of alpha-band 401 

EEG power. The decoding procedure was applied separately for the low vs. the high spatial 402 

demand condition to investigate whether the ‘amount’ of spatial information reflected in the 403 

scalp topography of alpha-band power is modulated by the spatial demands of the task. The 404 

factor perceptual load was not considered in the decoding analysis. The decoding analysis 405 

described below was adapted from the analysis code and method provided by Bae & Luck 406 

(2018). For the present decoding analysis, the preprocessing pipeline described above was 407 

modified as follows to retain a maximum number of trials and to prevent spurious decoding 408 

due to high-pass (van Driel, Olivers, & Fahrenfort, 2021) or low-pass (Grootswagers, Wardle, 409 

& Carlson, 2017) filtering. Specifically, the continuous data was high-pass filtered at 0.01 Hz 410 

(i.e., the cut-off that was deemed as acceptable by van Driel et al., 2021), while no low-pass 411 

filter was applied. Following ICA-based artefact correction, trials that still contained large 412 

voltage fluctuations of ± 200 µV (e.g., due to muscle activity that was not removed by ICA) 413 

were rejected using the pop_eegthresh() function. All other preprocessing steps were left 414 

unchanged. 415 

To improve the signal-to-noise ratio, after extracting alpha power from the signal, the 416 

data belonging to a given target location category were averaged across multiple trials. 417 

These averages (rather than single-trial data) served as the input for the to-be-trained 418 
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classifier. The classifier was trained to discriminate between each target location and all 419 

other possible locations. To compute decoding accuracy, the classifier was then applied to 420 

the average of a set of trials for each location that was not part of the training data. 421 

Decoding was considered correct if the classifier correctly determined which one of the four 422 

possible locations was the target location. Thus, chance level decoding accuracy was at 25%.  423 

 Specifically, analogous to Bae & Luck (2018), the following decoding procedure was 424 

applied: The segmented EEG at all scalp electrodes was bandpass filtered at 8 to 12 Hz, using 425 

EEGLAB’s eegfilt() function, which applies two-way least-squares finite impulse response 426 

(FIR) filtering. Then, we submitted the bandpass filtered EEG data to a Hilbert transform to 427 

obtain the magnitude of the complex analytic signal. The latter was squared to compute the 428 

total power in the alpha frequency band (i.e., 8-12 Hz) at each time point. Subsequently, to 429 

increase the efficiency of the analysis and decrease computation time, the data was 430 

subsampled, keeping only every 20th data point in-between -500 and 4500 ms relative to 431 

target sound onset (i.e., corresponding to a sampling rate of 50 Hz). This results in a 4-432 

dimensional data matrix for each participant, including the dimensions of time (250 time 433 

points), location (4 different categories), trial (varies depending on the subject, in-between 434 

64 and 110 trials for each location), and electrode site (the 57 scalp channels). To classify the 435 

location of the target sound based on the scalp topography of the alpha power signal over 436 

the 57 scalp electrodes (i.e., mastoids and EOG electrodes were excluded), we used a 437 

combination of a support vector machine (SVM) and error-correcting output codes (ECOC; 438 

Dietterich & Balkiri, 1995). The ECOC model, implemented using the MATLAB function 439 

fitcecoc(), combines the results from multiple binary classifiers and thus, solves multiclass 440 

categorization problems.  441 

Decoding was performed separately for each of the 250 time points in-between -500 442 

and 4500 ms relative to target sound onset. At each time point, separate trials were used to 443 

train and test classifier performance, respectively. Specifically, a threefold cross validation 444 

procedure was applied: First the data were sorted into four ‘location bins’, containing only 445 

trials with the same target location. In each location bin, the trials were divided into three 446 

equally sized sets of trials, each of which contained in-between 21 and 36 trials (depending 447 

on condition and subject, MDN [lsd] = 32, MDN [hsd] = 30). That is, to ensure that an equal 448 

number of trials was assigned to each of the three sets for each location bin, the minimum 449 

number of trials per subject for a given location bin was determined (denotes as n), and n / 3 450 
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trials were assigned to each set. In case the total trial number for a given location was not 451 

evenly divisible by three, excess trials were randomly omitted. The trials for a given location 452 

bin were averaged, resulting in a matrix of 3 (subsample averages) x 4 (location bins) x 57 453 

(electrodes) to be analyzed for each time point. Notably, two of the three subsample 454 

averages served as the training set, while the remaining group average served as a testing 455 

dataset. In the training phase, the data from the two (of the total three) subsample averages 456 

was simultaneously submitted to the ECOC model with known location labels to train four 457 

SVMs (one for each location). A one-versus-all approach was chosen such that each SVM was 458 

trained to perform a binary classification, that is, to discriminate one specific location from 459 

all other locations. Subsequently, in the test phase the unused data (i.e., the subsample 460 

average that were reserved for testing) was fed into the set of four trained SVMs to classify 461 

which of the 4 locations served as the target location in each of the subsample averages. 462 

Specifically, the MATLAB predict() function was used to classify the input data by minimizing 463 

the average binary loss across the four trained SVMs. Essentially, the output of the predict() 464 

function provides a location label for each of the two input subsample averages. By 465 

comparing the true location labels to the predicted location labels, decoding accuracy was 466 

computed.  467 

 This training-and-testing process was applied three times such that each subsample 468 

average served as the testing dataset once. Further, the entire procedure was iterated 10 469 

times. On each iteration, the trials in each location bin were randomly assigned to the five 470 

sets (i.e., to create new subsample averages). Finally, decoding accuracy was collapsed 471 

across the four locations, the three cycles of partitioning trials into sets, and the 10 472 

iterations, resulting in a decoding percentage for each time point. After obtaining a decoding 473 

percentage for all time points of interest, a five-point moving average was applied to smooth 474 

the averaged decoding accuracy values and to minimize noise.  475 

 476 

Statistical analysis of decoding accuracy. Although decoding was performed for all time 477 

points in-between -500 to 4500 ms relative to sound onset, the statistical analysis focused 478 

on the time interval following sound array presentation until the end of the maximal 479 

response interval (i.e., 1600 – 3800 ms relative to sound onset). We restricted the statistical 480 

analysis to this time interval because the goal was to test decoding accuracy during the post-481 

stimulus interval (i.e., when post-stimulus attentional processing takes place). In addition, 482 
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because participants did not have any knowledge about where the target is going to appear 483 

prior to sound array onset, there should be no location-specific information present in-484 

between target cue and sound array-onset. Briefly, the statistical analysis of decoding 485 

accuracy comprised two separate approaches: First, to confirm that the scalp topography of 486 

post-stimulus alpha-band power contains information about the target location, we 487 

compared decoding accuracy to chance level (i.e., 25% – because we used 4 locations) at 488 

each time point. This was done separately for the two spatial demand conditions. Second, 489 

we compared decoding accuracy in the low and high spatial demand condition to evaluate 490 

whether the amount of spatial information that is reflected in the scalp topography of alpha-491 

band power is sensitive to the spatial demands of the task. At both stages, we controlled for 492 

multiple comparisons (see below for details). 493 

 494 

Decoding accuracy within conditions. We used a non-parametric cluster-based permutation 495 

analysis to compare decoding accuracy to chance level (i.e., 25%) at each time point. Here, 496 

we adopted the corrected analysis code provided by Bae & Luck (2019), accounting for the 497 

presence of autocorrelated noise in the data. Using one-sided one sample t-tests, the 498 

average decoding accuracy across subjects was compared to chance level, separately for 499 

each time-point. Because SVM decoding does not produce meaningful below-chance 500 

decoding results, a one-sided t-test is justified. Then, clusters of at least two adjacent time 501 

points with a significant single-point t-test (i.e. p < .05) were identified. The t-values within a 502 

given cluster were summed, constituting the so-called cluster mass. To determine whether a 503 

given cluster mass is greater than what can be expected under the null hypothesis, we 504 

constructed a null distribution of cluster-level t-mass values using permutation tests. 505 

Critically, to reduce computation time, we randomly permuted the target labels at the stage 506 

of testing the decoding output, rather than prior to training the classifier. Specifically, from 507 

an array containing all possible target labels (1, 2, 3, 4), we randomly sampled an integer as 508 

the simulated response of the classifier for a given target location. If the response matched 509 

the true target value, the response was considered correct. This yields an estimate of the 510 

decoding accuracy values that would by obtained by chance if the decoder randomly 511 

guessed the target location. Critically, to reflect the temporal auto-correlation of the 512 

continuous EEG data, the same randomly sampled target position label was used for all time 513 

points in a given trial. Overall, this sampling procedure was repeated 120 times (4 locations x 514 
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3 cross-validations x 10 iterations) and for each time point of interest in-between 1600 ms to 515 

3800 ms. The 120 scores for each time point were averaged to obtain the mean simulated 516 

decoding accuracy, resulting in a time series of decoding accuracy values. Analogous to the 517 

procedure that was applied to the actual EEG data, the latter was smoothed using a five-518 

point running average filter. The procedure was repeated 17 times, to obtain a simulated 519 

decoding accuracy time series for each of our 17 participants. Then, using the simulated 520 

decoding accuracy time series, the maximum cluster mass was computed, using the 521 

procedure described above. That is, if there was more than one cluster of significant t-522 

values, the mass of the largest cluster was selected.  523 

Finally, this procedure (i.e., simulating decoding accuracy that would be obtained by 524 

chance) was iterated 10,000 times to produce a null distribution of cluster mass values. For 525 

each cluster in the decoding results, the obtained cluster t mass was compared to the 526 

distribution of cluster t mass values that was constructed under the assumption that the null 527 

hypothesis is true. If the observed cluster t mass value was in the top 95% of the null 528 

distribution (i.e. α = .05, one-tailed), the null hypothesis was rejected and decoding accuracy 529 

was considered above chance. Note that this procedure was separately applied to both the 530 

low spatial demand condition and the high spatial demand condition.  531 

To find the p-value associated with a specific cluster, we examined where within the 532 

null distribution does each observed cluster t mass value fall. That is, the p-value was based 533 

on the inverse percentile (computed using the invprctile() function) of the observed cluster-534 

level t mass within the null distribution. If the observed cluster-level t-mass value exceeded 535 

the maximum cluster-level t-mass of the simulated null distribution, the respective p-value is 536 

reported as p < 10-4. The latter corresponds to the resolution of the null distribution (i.e., 1 / 537 

number of permutations).  538 

 539 

Decoding Accuracy in low vs. high spatial demand blocks. To investigate, whether or not the 540 

amount of spatial information reflected by the scalp topography of alpha power differs 541 

depending on the spatial demands of the task, decoding accuracy in the two task conditions 542 

was compared, using a cluster-corrected sign-permutation test. To this end, the 543 

cluster_test() and cluster_test_helper() functions provided by Wolff, Jochim, Akyürek, & 544 

Stokes (2017) were applied. The sign-permutation test is a non-parametric test that makes 545 

no assumption of the distribution of the data. As input data, the same time window that was 546 
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also used for the statistical analysis of decoding accuracy within conditions was selected (i.e., 547 

1600 – 3800 ms). Specifically, the cluster_test_helper() function generates a null distribution 548 

by randomly flipping the sign of the input data of each participant with a probability of 50%. 549 

This procedure was repeated 10,000 times. The resulting distribution served as input to the 550 

cluster_test() function, identifying those clusters in the actual data that are greater than 551 

would we expected under the null hypothesis. The cluster-forming threshold as well as the 552 

cluster significance threshold were set to p < .05. Because we had a clear hypothesis 553 

regarding the direction of the effect (that is, decoding accuracy in the high spatial demand 554 

condition should be higher compared to the low spatial demand condition), the cluster-555 

corrected sign-permutation test was one-sided.  556 

In addition, to assess the overall difference in decoding ability within the post-557 

stimulus period, the decoding accuracy was averaged across time in the approximate time 558 

window that resulted in significant within-condition decoding results (i.e., 1940 – 3340 ms) 559 

and submitted to a one-sided permutation test. To this end, the GroupPermTest() function 560 

provided by Wolff et al. (2017) was applied (using nSims = 10,000 permutations). 561 

 562 

2.6 Data/code availability statement 563 

Stimuli and code for this study can be found at https://osf.io/a8f6y/. Data will be publicly 564 

stored in a Zenodo repository with restricted access. Access will be granted upon signing a 565 

data user agreement. 566 

 567 

3. Results 568 

3.1 Behavioral data 569 

Behavioral results are displayed in Figure 2. The analysis of response times revealed a main 570 

effect spatial demand, F(1,16) = 68.75, p < .001, ηp² = 0.81, with slower responses in high 571 

spatial demand blocks (M = 834.79 ms, SD = 92.89) compared to low spatial demand blocks 572 

(M = 713.61 ms, SD = 123.94). In addition, there was a significant main effect of perceptual 573 

load, F(1,16) = 161.57, p < .001, ηp² = 0.91, with slower responses in high-load trials (M = 574 

843.92 ms, SD = 116.19) compared to low-load trials (M = 704.48 ms , SD = 98.47). For 575 

response times, there was no significant interaction of spatial demand and perceptual load, 576 

F(1,16) = 2.59, p = .13, ηp² = 0.14. A nearly analogous pattern of results was revealed by the 577 

analysis of the percentage of correct responses. That is, participants responded more 578 
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accurately in low spatial demand blocks (M = 92.54 %, SD = 4.63) compared to high spatial 579 

demand blocks (M = 88.84 %, SD = 4.80), F(1,16) = 21.58, p < .001, ηp² =  0.57). In addition, 580 

the percentage of correct responses was higher in low-load trials (M = 96.57 %, SD = 2.72), 581 

compared to high-load trials (M = 84.81 %, SD = 7.32), F(1,16) = 53.70, p < .001, ηp² =  0.77. 582 

Further, a significant interaction of spatial demand and perceptual load, F(1,16) = 10.78, p = 583 

.005, ηp² = 40, complements the descriptive observation that the difference in accuracy 584 

between low and high perceptual load was slightly greater in high spatial demand blocks (M 585 

= 13.66 %, SD = 7.24) than in low spatial demand blocks (M = 9.87 %, SD = 6.82).  586 

 
Figure 2. Behavioral performance. Solid, horizontal lines indicate the mean percentage of correct responses (A) 
or mean response times (B) in a given condition. Colored dots correspond to individual response measures. Please 
note that the y-axis for the % of correct responses does not originate at 0. 

 

 

3.2 Alpha power lateralization 587 

Figure 3A illustrates the time course of the contralateral minus ipsilateral differences in 588 

alpha power at a cluster of posterior scalp electrodes. A repeated-measures analysis of the 589 

mean alpha power amplitudes in-between 532 to 937 ms post-sound array onset revealed 590 

no significant modulation by spatial demand, F(1,16) = 0.04, p = .842, ηp² =  0.003, neither by 591 

perceptual load, F(1,16) = 0.03, p = .862, ηp² = 0.002, nor an interaction between the two 592 

factors, F(1,16) = 0.03, p = 0.854, ηp² = 0.002. Time-frequency plots, illustrating contralateral, 593 

ipsilateral, as well as contralateral minus ipsilateral power for a broader frequency range (4 – 594 

30 Hz) are available in the supplementary material. Further, the supplementary material 595 

includes a post-hoc analysis, including the factor target eccentricity (inner vs. outer targets). 596 
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597 

 

3.3 Alpha lateralization onset latencies 598 

To investigate whether the time-course of alpha lateralization was affected by the task 599 

demands, we assessed alpha lateralization onset latencies. Figure 3B and C illustrate the 600 

points in time where the area under the condition-specific difference curves reaches 20% 601 

and 50%, respectively (i.e., the 20% FAL and the 50% FAL). The analysis of fractional area 602 

latency (FAL) measures revealed a significant main effect of perceptual load for the 20%-FAL, 603 

Fcorr(1,16) = 7.90, p = .013, and the 50%-FAL, Fcorr(1,16) = 11.39, p = .004.That is, alpha 604 

lateralization emerged earlier in low perceptual load compared to high perceptual load trials 605 

(D20% = 171 ms, SED-20% = 60.15, D50% = 163.5 ms, SED-50% = 48.78). A significant main effect of 606 

spatial demand was only evident for the 50%-FAL, Fcorr(1,16) = 4.82, p = .043, indicating 607 

earlier alpha lateralization onset latencies in low spatial demand blocks compared to high 608 

spatial demand blocks (D50% = 117.5 ms, SED-50% = 51.69). There were no significant 609 

interactions (all Fcorr < 0.27).  Alpha lateralization onset latency was not significantly related 610 

to response times, rrm-20%(41) = .139, p = .373, 95% CI [-0.18 0.43], rrm-50% (41) = .170, p = .277, 611 

95% CI [-0.15  0.453]. 612 

Figure 3. Alpha Power Lateralization. (A) Time course of contralateral minus ipsilateral differences in alpha power 
across a cluster of parieto-occipital scalp electrodes. The grey-filled rectangle highlights the time window used for 
statistical analysis of mean alpha lateralization magnitude. (B) A close-up view of the contralateral minus ipsilateral 
difference waveforms in-between 1800 and 2800 ms (i.e., 200 – 1200 ms relative to sound array onset). The x-axis 
denotes time (ms) relative to sound array onset. Circles mark the 50% (top) and 20% (bottom) fractional area latency 
(FAL) measures for each condition. (C) A line plot of the respective 50%-FAL (top) and 20%-FAL (bottom) values, 
depending on spatial demand and perceptual load. Y-axis values denote FAL relative to sound array onset. Error bars 
depict the standard error according to Miller et al., 1998 (formula 2) (D) Scalp topographies based on the contralateral 
minus ipsilateral differences in alpha power in-between 532 to 937 ms following sound array onset (i.e., the time 
window used for statistical analyses).  
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3.4 Non-lateralized, posterior alpha power desynchronization 613 

Figure 4 depicts the time-course of posterior alpha power at electrode Pz, separately for 614 

each of the four conditions. The analysis revealed a significant main effect of spatial 615 

demand, F(1,16) = 6.94, p = .018, ηp² = 0.30, reflecting greater alpha ERD (i.e., more negative 616 

power) in the high spatial demand condition (M = -3.74 dB, SD = 2.48) compared to the low 617 

spatial demand condition (M = -3.08 dB, SD = 2.14). While the main effect perceptual load 618 

was not significant, F(1,16) = 0.79, p = .388,  ηp² = .05, there was a significant interaction 619 

between spatial demand and perceptual load, F(1,16) = 5.49, p = .032, ηp² = 0.26. Follow-up 620 

paired sample t-tests revealed that the difference between low and high perceptual load 621 

trials fell short of significance in both the low spatial demand condition, t(16) = 1.74, p = 622 

.101, padj =  .304, g = 0.21, and the high spatial demand condition, t(16) = -0.74, p = .469, padj 623 

= .704, g = -0.05. 624 

 625 
Figure 4. Event-related desynchronization (ERD) of alpha power at Pz. The line plot illustrates the condition-626 
specific averages depending on spatial demand and perceptual load. lsd-low = low spatial demand / low 627 
perceptual load, lsd-high = low spatial demand / high perceptual load, hsd-low = high spatial demand / low 628 
perceptual load, hsd-high = high spatial demand / high perceptual load. The grey rectangle indicates the 629 
approximate time window used for statistical analysis (i.e., 2144 - 2244 ms relative to target cue onset or 544 - 644 630 
ms relative to sound array onset). Scalp topographies are based on the average alpha power in the respective 631 
analysis time window. 632 
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3.5 Decoding analysis 633 

We decoded the exact spatial location (i.e., outer-left, inner-left, inner-right, outer-right) of 634 

the target sound based on the scalp distribution of alpha-band EEG power. Figure 5 shows 635 

the grand average scalp topography for each target location, separately for the two spatial 636 

demand conditions (and averaged across the two perceptual load conditions). Figure 6A 637 

shows the time-course of decoding accuracy for the low vs. high spatial demand condition, 638 

as well as the difference in decoding accuracy between conditions. Decoding accuracy starts 639 

to rise above chance level (i.e., 25%) at around 1960 ms (i.e., 360 ms following sound array 640 

onset) and at first, increases continuously in both spatial demand conditions. In the low 641 

spatial demand condition, decoding accuracy reaches a peak at around 2200 ms (i.e., 600 ms 642 

post-sound onset) and then gradually decreases throughout the remainder of the response 643 

interval; in the high spatial demand condition, decoding accuracy continues to rise beyond 644 

the peak in the low spatial demand condition until around ~2360 ms (i.e., 760 ms post- 645 

sound onset). The decoding accuracy remains at this level for a couple hundred milliseconds 646 

and declines thereafter, although it remains on a higher level compared to the low spatial 647 

demand condition. Toward the end of the response interval (i.e., around 3800 ms), decoding 648 

accuracy approaches chance level in both conditions. The cluster mass test revealed that 649 

decoding was significantly greater than chance in both spatial demand conditions. We 650 

identified a significant cluster following sound array onset in each of the two conditions (all p 651 

< 10-4, see Figure 5A, solid green and yellow lines). In the high spatial demand condition, the 652 

cluster extends from around 1980 ms to ~3340 ms relative to cue onset (i.e., ~380 – 1740 653 

ms relative to sound array onset); in the low spatial demand condition, the cluster spans a 654 

comparable time period in-between ~1940 ms and 3340 ms relative to cue onset (i.e., ~340 655 

– 1740 ms relative to sound array onset). Note, however, that cluster-based permutation 656 

test results should not be used to derive conclusions about the specific onset or offset of a 657 

certain effect (Sassenhagen & Draschkow, 2019).  658 

The black, dashed line in Figure 6A illustrates the difference in decoding accuracy 659 

between the two spatial demand conditions. A cluster-corrected sign-permutation test 660 

indicated significant differences in decoding ability (p < .01, one-sided test, cluster extending 661 

from ~2340 – 2820 ms relative to cue onset, i.e., ~740 – 1220 ms relative to sound array 662 

onset), with higher decoding accuracy in the high spatial demand condition compared to the 663 

low spatial demand condition.  664 
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 665 
Figure 5. Scalp topographies of instantaneous alpha power for each of the target locations. Alpha power 666 
was averaged across a broad time interval following sound array onset (i.e., 340 – 1740 ms post sound array 667 
onset), averaged across subjects as well as across the two perceptual load conditions. The top row depicts the 668 
scalp topographies for the high spatial demand (HSD) condition, the bottom row shows the low spatial demand 669 
(LSD) condition.  670 

 671 

Figure 6. Location decoding based on the multivariate scalp distribution of alpha power. (A) Time-course of 
the average decoding accuracy results in the low (yellow) and high (green) spatial demand condition, respectively. 
The colored shading indicates ±1 SEM. Chance-level performance (i.e., 25%) is indicated by the grey dashed 
horizontal line. The yellow and green solid bars indicate significant decoding of the target location in the low and 
high spatial demand condition, respectively. The black solid bar denotes significant differences in decoding ability 
between the low and the high spatial demand condition. Note that only time-points in-between 1600 – 3800 ms 
were considered in the statistical analysis. (B) Boxplots refer to the average decoding accuracy in-between 1940 – 
3340 ms relative to cue-onset (i.e., 340 – 1740 ms following sound array onset). As per convention, boxplots 
illustrate the interquartile range and the median. Whiskers extent to the 1.5 times the interquartile range. The 
superimposed circles show the average decoding accuracy, while the corresponding error bars denote the 95% 
bootstrap confidence interval of the mean (number of bootstrap samples = 10000). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 10, 2021. ; https://doi.org/10.1101/2021.02.12.430942doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.430942
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Finally, we assessed the overall difference in decoding ability within the post-stimulus 672 

period (specifically, within the approximate time-window that resulted in above-chance 673 

decoding accuracy within both spatial demand conditions). A one-sided permutation test of 674 

the average decoding accuracy between 1940 – 3340 ms (i.e., 340 – 1740 ms relative to 675 

sound array onset) consistently revealed a significant difference in decoding accuracy 676 

between the spatial demand conditions (p = .002, Fig. 6B).  677 

Notably, an additional, exploratory decoding analysis based on alpha power at parieto-678 

occipital scalp sites (rather than the whole scalp), returned very comparable results (see 679 

supplementary material, S3). 680 

 681 

3.6 Confusion matrices  682 

To provide more detailed insights into the decoding results, here we show the confusion 683 

matrices for each combination of target location and classification response, separately for 684 

the high and low spatial demand condition. Figure 7 illustrates the probability of each 685 

classification response (i.e., predicted location) for a given stimulus category (i.e., true 686 

location), averaged over the time interval that resulted in significant within-condition 687 

decoding performance and over participants. In both conditions, the highest probability of 688 

classification response is evident at the true location. Interestingly, while neighboring 689 

positions receive the most classification errors, the least confusion occurs between a true 690 

location and the position that is in the opposite hemifield and of opposite eccentricity (e.g., 691 

left-out vs. right-in).  692 
 693 

 

Figure 7. Confusion matrices for the low (LSD) and high (HSD) spatial demand condition. Each cells shows the 
probability of a given classification response (y-axis) for each stimulus position (x-axis), averaged across subjects 
and across the entire time-period that resulted in significant within-condition decoding (i.e., 1940-3340 ms relative 
to cue onset or respectively, 340 -1740 ms relative to sound array onset). Location labels (1-4) correspond to 
stimulus locations in their order of occurrence from left to right (i.e., left-out, left-in, right-in, right-out).  
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3.7 Control analyses: eye movements  694 

The ERP signal at horizontal EOG electrodes (LO1, LO2), contralateral and ipsilateral relative 695 

to the target location, revealed asymmetric voltage differences, indicative of horizontal eye 696 

movements (see supplementary figure 3). That is, despite the instruction to fixate a central 697 

fixation point, on average, saccades toward the target sound were present. Notably, 698 

saccades appeared to occur more frequently or more strongly in the high spatial demand 699 

condition. To verify that eye movements (and the differences in eye movement between 700 

conditions) did not impact the univariate alpha lateralization or the multivariate decoding 701 

results, we performed a series of post-hoc control analyses. We briefly summarize the main 702 

results here. For details, please see the supplementary material. 703 

 First, to rule out that the overall presence of alpha lateralization was affected by the 704 

occurrence of horizontal eye movement, we performed an analysis of covariance (ANCOVA), 705 

including alpha lateralization magnitude as the dependent variable. The average hEOG 706 

asymmetry (contra minus ipsi) served as a covariate, spatial demand (high vs. low), 707 

perceptual load (high vs. low) and asymmetry (contra vs. ipsi) as within-subject factors. 708 

While we obtained a non-significant interaction of hEOG asymmetry and alpha asymmetry, 709 

F(1,15) = 0.67, p = .425, the main effect of alpha asymmetry remained significant, F(1,15) = 710 

12.39, p = .003, after controlling for the effect of saccades.  711 

Further, we assessed the potential impact of horizontal eye movements on the decoding 712 

results. An exploratory decoding analysis, using the ERP at horizontal EOG channels as input, 713 

revealed significant above-chance decoding of target location in both the low and the high 714 

spatial demand condition (see supplementary figure 4). However, the difference in decoding 715 

accuracy between the high versus low spatial demand condition did not reproduce. Further, 716 

overall decoding accuracy was lower for hEOG-based decoding compared to alpha power-717 

based decoding. As an additional control analysis, to clarify whether the apparent 718 

differences in hEOG asymmetry between conditions systematically covary with the effect of 719 

spatial demand on alpha-power-based decoding accuracy, we performed a post-hoc 720 

ANCOVA. The average decoding accuracy in-between 1940 – 3340 ms served as the 721 

dependent variable, spatial demand (low vs. high) served as the within-subject factor, and 722 

the difference in hEOG lateralization between the spatial demand conditions (hsd minus lsd) 723 

was included as a covariate. The covariate was not significantly related to decoding accuracy, 724 

F(1,15) = 0.52, p = .481. Critically, the main effect of spatial demand was still significant after 725 
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controlling for the effect of saccades, F(1,15) = 7.14, p = .017. The interaction between 726 

saccades and spatial demand was not significant, F(1,15) = 0.03, p = 0.855. Overall, this 727 

suggests that the higher decoding accuracy in high spatial demand conditions is not caused 728 

by a potential impact of horizontal eye movements. 729 

 

4. Discussion 730 

Sensory stimuli and behavioral demands are constantly subject to change, requiring the 731 

attentive brain to adapt its response to accommodate to those changes. In this study, we 732 

investigated the effects of varying perceptual load and spatial demand in a sound 733 

localization task on post-stimulus alpha-band oscillations. The notion that alpha-band 734 

oscillations track the currently attended location in a spatially fine-tuned manner is relatively 735 

undisputed. However, what remains more elusive is to what degree this spatial specificity 736 

depends on the current task demands. Here, we demonstrate that the amount of spatial 737 

information reflected in the multivariate scalp distribution of alpha power increases when 738 

the task requires a precise sound localization (i.e., indicating the exact stimulus location) 739 

compared to when a rather coarse localization judgment is required (i.e., indicating the 740 

hemifield). In contrast, these task demand-dependent modulations were not captured by 741 

the magnitude of univariate parieto-occipital alpha lateralization. Rather, the time course of 742 

alpha power lateralization varied with the task demands. 743 

Behaviorally, the pattern of results was consistent with the well-established observation 744 

that the detection of a target sound in a cocktail-party scenario suffers from additional 745 

concurrent stimuli in the auditory scene (Brungart & Simpson, 2007; Brungart, Simpson, 746 

Ericson, & Scott, 2001; Ericson, Brungart, & Simpson, 2004; Klatt et al., 2018b). Accordingly, 747 

in the present study, participants’ responses were slower and less accurate when the sound 748 

array contained four (high perceptual load) instead of just two sounds (low perceptual load). 749 

In terms of sound localization accuracy, this difference was even more pronounced when 750 

they were asked to report the exact target location (high spatial demand) rather than the 751 

target hemifield (low spatial demand). Certainly, the present set size effect cannot be 752 

completely disentangled from the effects of energetic masking due to the acoustic overlap 753 

between the competing sound sources (cf. Murphy, Spence, & Dalton, 2017). However, most 754 

critical for the intended EEG analysis was the manipulation of spatial demand. As expected, 755 

indicating the exact sound location was more challenging (i.e., slower and less accurate) than 756 
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simply determining whether the target was present in the left or right hemispace. 757 

Nevertheless, subjects still managed to perform clearly above chance level (i.e., on average > 758 

80% correct). 759 

 760 

4.1 Decoding of auditory covert attention based on alpha power modulations 761 

The main question of the present study was: Is the difference in spatial task demands 762 

also reflected in the neural signal? Strikingly, while the classifier could reliably decode the 763 

precise target location in both spatial demand conditions, the amount of spatial information 764 

reflected in the scalp distribution of alpha-band power was higher under high spatial 765 

demand. It should be emphasized that in both spatial demand conditions, participants were 766 

presented with the exact same trials (although in randomly shuffled order). This rules out 767 

that differences between conditions were caused by bottom-up perceptual factors. Further, 768 

the confusion matrices show most classification errors for neighboring positions and the 769 

least confusion between the true target location and the location that is both within the 770 

other hemifield and on the opposite side (e.g., left-out vs. right-in). This supports the 771 

assumption that in auditory scene analysis the relative location between sounds is coded on 772 

a neural level, rather than the mere stimulus position (cf. Shiell et al., 2018).  773 

The present results extend previous work, using an analogous auditory search task 774 

design, where we demonstrated that the presence of auditory post-stimulus alpha 775 

lateralization was dependent on the task-relevance of spatial information. Specifically, Klatt 776 

et al. (2018b) showed that alpha lateralization was absent in a simple sound detection task 777 

(i.e., when spatial location was completely irrelevant to the task), whereas it reliably 778 

indicated the attended location when participants were asked to localize the target. Here, 779 

we show that post-stimulus alpha oscillations are not only sensitive to such coarse 780 

manipulations of spatial relevance, but rather – when considering the multivariate activity 781 

patterns – also capture fine-grained adaptions to the required degree of spatial specificity. 782 

However, the curves reflecting decoding accuracy in the low and high spatial demand 783 

conditions do not diverge until about 600 ms following sound array onset; in addition, 784 

statistically significant differences in decoding accuracy were limited to a relatively late 785 

time-window (i.e., > 700 ms following sound array onset; cf. Figure 5A). In contrast, general 786 

decodability of spatial location increases above chance level shortly after sound array onset 787 

and persists well into the response interval. This suggests that, even though the spatial 788 
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demand conditions were blocked (i.e., participants knew beforehand which spatial specificity 789 

would be required), it took several hundred milliseconds to evoke changes in spatial 790 

specificity of the underlying alpha power signal. Such long latencies have also been reported 791 

with respect to voluntary adaptions of the alpha-power signal in a visual spatial cueing study 792 

paradigm, requiring participants to adopt either a narrow or a broad focus of attention in 793 

anticipation of an upcoming search array (Feldmann-Wüstefeld & Awh, 2019). In the latter 794 

study, Feldmann-Wüstefeld & Awh (2019) computed spatially selective channel tuning 795 

functions (CTF) based on the topography distribution of alpha power and assessed their 796 

slope as a measure of spatial selectivity. Notably, differences in the CTF slopes between the 797 

narrow-focus cue and the broad-focus cue only emerged at timepoints > 500 ms following 798 

cue onset. A previous study by Voytek and colleagues (Voytek et al., 2017) similarly 799 

manipulated the breadth of the attentional focus using a central cue, pointing to either the 800 

exact location the target will appear in or to an approximate region of varying size. 801 

Consistent with Feldmann-Wüstefeld & Awh (2019), an inverted encoding modeling analysis 802 

revealed that the spatial selectivity of anticipatory alpha-band activity decreased with 803 

greater uncertainty about the upcoming target’s location.  804 

Critically, the present results add to these previous findings in several ways: First, we 805 

demonstrate that just like preparatory attention is finely tuned and spatially sharpened 806 

depending on the task demands (Feldmann-Wüstefeld & Awh, 2019; Voytek et al., 2017), the 807 

ongoing attentional processing following search array onset is dynamically modulated 808 

depending on the required spatial specificity of the task. Further, the present findings 809 

complement a growing body of evidence, supporting the assumption that modulations of 810 

alpha oscillations represent a ubiquitous top-down controlled mechanism of spatial 811 

attention that plays a role across different attentional domains as well as across sensory 812 

modalities. Notably, the pattern that decoding accuracy increases if a more precise spatial 813 

judgment is required did fully reproduce when using only parieto-occipital channels as 814 

classifier input (cf. supplementary material). This suggests that most information that 815 

contributes to classification performance, and critically, to the difference in decoding 816 

accuracy between conditions, is present at posterior electrode sites. Overall, this is in line 817 

with the notion that parieto-occipital cortex subserves a supramodal neural circuit for spatial 818 

attention (Popov, Gips, Weisz, & Jensen, 2021).  819 
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In principle, the notion that attention can improve the information content of a neural 820 

code is not novel. In fact, it is well-established that attending to a spatial position or a 821 

relevant feature increases single-neuron firing rates in primary and extrastriate visual areas 822 

and can result in changes in the size and position of spatial receptive fields (reviewed by 823 

(Sprague, Saproo, & Serences, 2015). In the auditory domain, physiological recordings in cats 824 

(Lee & Middlebrooks, 2011) revealed similar sharpening of spatial tuning in auditory cortex 825 

(i.e., A1) when the animal engaged in a spatial task compared to an off-task “Idle” condition 826 

and a non-spatial periodicity detection task (for similar findings in human A1 see van der 827 

Heijden, Rauschecker, Formisano, Valente, & de Gelder, 2018). Hence, along with previous 828 

studies in the visual modality (Feldmann-Wüstefeld & Awh, 2019; Voytek et al., 2017), the 829 

present results extend these findings, showing that such “sharpening” of neural activity 830 

occurs not only in tuning functions of single neurons, but is also evident in the adaption of 831 

population-level activity patterns. 832 

 833 

4.2 Alpha power lateralization as a temporally resolved signature of target processing 834 

In addition to the multivariate decoding analysis, we also analyzed alpha lateralization 835 

following sound array onset as a ‘classical’ univariate measure of attentional orienting (e.g., 836 

Ikkai, Dandekar, & Curtis, 2016). In the present study, alpha lateralization magnitude did 837 

neither vary with perceptual load or spatial demand. The former observation replicates 838 

results of a previous study (Klatt et al., 2018b), finding no evidence for differences in alpha 839 

lateralization magnitude between a low-load (i.e., two-sound array) and a high-load (i.e., 840 

four-sound array) auditory search condition. In contrast, Bacigalupo and Luck (2019) 841 

reported that target-elicited alpha lateralization in a visual search paradigm tended to 842 

increase with greater task difficulty. Thus, the authors speculate that alpha lateralization 843 

might reflect effort rather than target selection. The present findings do not seem to bolster 844 

this claim: Both the behavioral data as well as the complementary analysis of non-lateralized 845 

posterior alpha power indicate that task difficulty and required cognitive resources increased 846 

with greater spatial demand. Yet, alpha lateralization magnitude was unaffected by the 847 

experimental manipulation. An additional study by Wang, Megla, and Woodman (2021) 848 

corroborates the present results, showing that the magnitude of stimulus-induced alpha 849 

lateralization remains unaffected by an increase in the difficulty of attentional selection (e.g., 850 

through higher distractor numerosity), while global, non-lateralized posterior alpha power 851 
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suppression did increase with distractor set size (experiment 1 and 2) and with greater 852 

distance between the items (experiment 3).   853 

Nonetheless, the present findings do substantiate the notion that post-stimulus (or 854 

target-elicited) alpha lateralization presents an active signature of target processing in both 855 

visual (Bacigalupo & Luck, 2019) as well as auditory search (Klatt et al., 2018b). Bacigalupo 856 

and Luck (2019) further disscociate alpha lateralization from a well known ERP-signature of 857 

target individuation (i.e., the N2pc), suggesting that alpha lateralization reflects a long-858 

lasting and ongoing attentional processing of the target. Although we do not investigate ERP 859 

correlates in the present study, a closer look at the time-course of alpha lateralization 860 

supports this assumption: on average, alpha lateralization persist beyond and in fact peaks 861 

around the time participants make their response. Different temporal characteristics of N2ac 862 

(an auditory analogue of the visual N2pc commponent Gamble & Luck, 2011) and alpha 863 

lateralization have recently also been observed in response to shifts of auditory attention 864 

between relevant talkers in a simulated cocktailparty scenario (Getzmann, Klatt, Schneider, 865 

Begau, & Wascher, 2020), corroborating the notion that the EEG measures reflect different 866 

attentional processes (see also Klatt et al., 2018b). 867 

Contrary to alpha lateralization magnitude, alpha lateralization onset latency was 868 

linked to task demands. Specifically, alpha laterization emerged around 165 ms earlier in the 869 

less demanding low perceptual load condition relative to the high perceptual load condition 870 

and ~115 ms earlier (50%-FAL) in the low spatial demand condition relative to the high 871 

spatial demand condition. Overall, the observed modulations of alpha lateralization onset 872 

latency are in line with a previous visual search study (Foster et al., 2017), showing that the 873 

onset of alpha-based CTFs varied with reaction times as well as search difficulty. That the 874 

latency differences reported by Foster et al. (2017) were much larger (i.e., differences of up 875 

to 440 ms) could be attributed to the fact that their search conditions differed more strongly 876 

(e.g., distractors were all identical vs. heterogenous). In sum, the present findings 877 

corroborate the claim that attentional modulations of alpha power not only track the 878 

location of covert spatial attention, but also the time-course (i.e., the latency) of post-879 

stimulus attentional processing.  880 

Finally, the clear-cut difference between univariate and multivariate measures of 881 

alpha power highlights the potential of multivariate decoding for the study of neurocognitive 882 

mechanisms. Similarly, when performing a univariate analysis of alpha power, Voytek et al. 883 
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(2017) did not capture the fine-grained differences in the allocation of attention (depending 884 

on the spatial certainty of a cue) that were evident in the multivariate topography of alpha 885 

power. Taken together, this illustrates the increased sensitivity of multivariate decoding 886 

techniques to reveal complex dynamics that are present in the combined signal across the 887 

scalp (Hebart & Baker, 2017). 888 

 889 

5. Conclusion 890 

In conclusion, our results show that the spatial specificity of post-stimulus alpha-band 891 

oscillations can be finely adapted depending on the spatial demands of the task. Notably, 892 

this task-dependent adaptation was only evident in the multivariate distribution of the 893 

alpha-band signal, whereas the magnitude of univariate parieto-occipital alpha lateralization 894 

did not capture those variations in perceptual load and spatial demand. Rather, alpha 895 

lateralization onset latency varied with the difficulty of the task, suggesting that the time-896 

resolved modulation of post-stimulus alpha lateralization captures differences in the 897 

efficiency of post-attentional processing. These findings improve our understanding of the 898 

functional role of alpha oscillations for the ongoing attentional processing of complex 899 

auditory scenes and provide new insights into the attentional mechanisms underlying top-900 

down adaptions to changing task demands. 901 
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SUPPLEMENTARY MATERIALS FOR 

Attentional Modulations of Alpha Power Are Sensitive to the Task-relevance of 
Auditory Spatial Information 

Laura-Isabelle Klatt, Stephan Getzmann, Daniel Schneider 

Leibniz Research Centre for Working Environment and Human Factors 

 

S1. Time-Frequency Plots  1 

Supplementary figure 1 illustrates contralateral, ipsilateral, as well as contralateral minus 2 

ipsilateral power at a cluster of posterior electrodes (PO7/8, P7/8, P3/4, or PO3/4) for a 3 

frequency range of 4 to 30 Hz separately for each condition. The figure confirms that 4 

lateralization effects are mostly limited to the alpha frequency range. 5 

 
Figure 1. Time-frequency plots. Power is depicted for a frequency range of 4 to 30 Hz at electrodes contralateral 6 
(left column) and ipsilateral (middle column) to the target location as well as for the contralateral minus ipsilateral 7 
(right column) differences. The conditions are abbreviated as follows: lsd-low = low spatial demand / low 8 
perceptual load, lsd-high = low spatial demand / high perceptual load, hsd-low = high spatial demand / low 9 
perceptual load, hsd-high = high spatial demand / high perceptual load. 10 
 11 
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S2. Alpha lateralization magnitude and target eccentricity 12 

Deng, Choi, and Shinn-Cunningham (2020) have previously reported that alpha lateralization 13 

is greater when attention was directed to locations further away from the central position. In 14 

the present study, targets could be likewise presented in rather close proximity to central 15 

fixation (± 30°) or at a greater distance (± 90°). We computed alpha lateralization magnitude 16 

separately for inner (± 30°) and outer (± 90°) targets. Then, we performed post-hoc paired-17 

sample t-tests to contrast the difference in alpha lateralization magnitude between inner 18 

minus outer targets for the LSD versus HSD condition (separately for the low and high 19 

perceptual load condition). Neither in the low perceptual load condition t(16) = 0.64, p = 20 

.531, padj = .797, nor in the high perceptual load condition, t(16) = -1.05, p = .310, padj = .797, 21 

did we find that the difference in alpha lateralization magnitude between inner vs. outer 22 

targets differed between the low and the high spatial demand condition. 23 

 24 

S3. Decoding based on alpha power at parieto-occipital scalp sites 25 

In previous studies that applied alpha-band decoding, results have been shown to be virtually 26 

identically for analyses including all vs. only posterior electrodes (e.g., van Moorselaar et al., 27 

2018), suggesting that most (or even all) relevant information that contributes to decoding 28 

performance is represented in posterior electrode sites. Hence, we performed an additional, 29 

exploratory decoding analysis, using only parieto-occipital scalp sites as input to the 30 

classifier. Otherwise, all parameters in the decoding analysis were used, as described in the 31 

main analysis. Specifically, alpha power at electrodes P7, P3, P1, Pz, P2, P4, P8, PO7, PO3, POz, 32 

PO4, PO8, O1, Oz, O2, PO9, and PO10 was used as input to the classifier. Figure S3A shows 33 

the resulting time-course of decoding accuracy as well as the difference between the low and 34 

high spatial demand condition. In addition, panel B illustrates the average decoding accuracy 35 

per condition.  36 
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 37 

Figure 2. Location decoding based on the scalp distribution of alpha power at posterior electrode sites. (A) 38 
Time-course of the average decoding accuracy results in the low (yellow) and high (green) spatial demand 39 
condition, respectively. The colored shading indicates ±1 SEM. Chance-level performance (i.e., 25%) is indicated by 40 
the grey dashed horizontal line. The yellow and green solid bars indicate significant cluster of decoding accuracy 41 
in the low and high spatial demand condition, respectively (cluster-based permutation, all p < .017). The black 42 
solid bar denotes significant differences (cluster-corrected sign-permutation test, one-sided, p = .002) in decoding 43 
ability between the low and the high spatial demand condition. Note that only time-points in-between 1600 – 44 
3800 ms were considered in the statistical analysis. (B) Boxplots refer to the average decoding accuracy in-45 
between 2000 - 3240 ms relative to cue-onset (i.e., 400 – 1640 ms following sound array onset). The latter time 46 
window includes the approximate time interval that resulted in significant within-condition decoding for both 47 
conditions. As per convention, boxplots illustrate the interquartile range and the median. Whiskers extent to the 48 
1.5 times the interquartile range. The superimposed circles show the average decoding accuracy, while the 49 
corresponding error bars denote the 95% bootstrap confidence interval of the mean (number of bootstrap 50 
samples = 10000). A one-sided permutation test revealed a significant difference in the overall decoding ability 51 
between the low and high spatial demand condition, p = .012. 52 

 53 

S4. Control analyses: eye movements 54 

We evaluated the epoched data at horizontal EOG (hEOG) electrodes. To obtain ERPs, the 55 

continuous EEG data was segmented into epochs, ranging from -1000 to 4500 ms relative to 56 

sound cue onset. For baseline correction, the 200 ms time interval prior to sound cue onset 57 

was used (i.e., -200 to 0 ms). Trials classified as premature responses (i.e., with response times 58 

< 200 ms) were removed. Otherwise, no preprocessing was performed. 59 

Supplementary figure 3 depicts the contralateral versus ipsilateral voltages at hEOG 60 

electrodes LO1/LO2 relative to the target position. The ERP at horizontal EOG electrodes 61 

clearly indicates typical lateralized voltage differences, depending on the target position. 62 

Thus, despite the instruction to fixate the central LED, on at least a subset of trials, saccades 63 

toward the target sounds were present. Figure 3 also shows that saccades were more 64 

pronounced in the high spatial demand condition. 65 
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 66 
Figure 3. Contralateral versus ipsilateral voltages at lateral EOG electrodes LO1 and LO2 relative to the 67 
target position for each of the four conditions.  68 

 69 

To assess the potential impact of horizontal eye movements on alpha lateralization 70 

magnitude, we conducted an analysis of covariance, including spatial demand (high vs. low), 71 

perceptual load (high vs. low), and asymmetry (contra vs. ipsi) as within-subject factors and 72 

the average lateralized hEOG as a covariate. Specifically, to obtain the average lateralized 73 

hEOG voltages, the contralateral minus ipsilateral waveforms for each subject were averaged 74 

across all conditions. In the resulting average waveforms, mean amplitude was measured in-75 

between 2000 – 3000 ms post cue onset (i.e., 400 – 1600 ms post-sound array).  Alpha 76 

lateralization magnitude (using the same time window as reported in the main manuscript) 77 

served as the dependent variable. We found that the covariate (i.e., saccades) was not 78 

significantly related to the magnitude of alpha-band lateralization, as indicated a non-79 

significant interaction of the factor saccades and asymmetry, F(1,15) = 0.67, p = .425. 80 

Importantly, the main effect of asymmetry remained significant, F(1,15) = 12.39, p = .003, 81 

after controlling for the effect of saccades. This suggests that the overall presence of alpha 82 
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lateralization is not affected by the occurrence of horizontal eye movements. Further, none of 83 

the interactions, involving the factor saccades turned out to be significant, all p > .19. 84 

 85 

Further, to assess the potential impact of eye movements on our decoding results, we 86 

performed an exploratory decoding analysis, using the horizontal (LO1/LO2) and vertical 87 

(IO1/IO2) EOG channels as input. The decoding analysis was performed as described in the 88 

main manuscript, with the following exception: Given that all trials (except for individual 89 

premature responses, target-absent trials and incorrectly answered trials) served as input to 90 

the decoding analysis, a five-fold (rather than a three-fold) cross validation was performed. 91 

Supplementary figure 4 illustrates the time-course of decoding accuracy for the low and high 92 

spatial demand condition, respectively. In both conditions, it was possible to decode target 93 

location based on hEOG input (all p < .011). However, in contrast to the main decoding 94 

analysis based on the whole-scalp topography of alpha power, we did not find a significant 95 

difference in decoding accuracy between the high vs. low spatial demand condition (cluster-96 

corrected sign-permutation test, p = 1). In addition, overall, decoding accuracy was lower for 97 

hEOG based decoding compared to alpha power decoding, which matches an observation 98 

also made by Popov, Gips, Weisz, & Jensen (2021). Thus, even though it appears that 99 

saccades are more pronounced in the high spatial demand condition, this does not account 100 

for the higher decoding accuracy in the high spatial demand condition that becomes 101 

apparent in the alpha-based decoding. 102 

 103 
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 104 

Finally, to follow up more closely on whether the apparent differences in hEOG asymmetry 105 

between conditions (and between subjects) systematically covary with the effect of spatial 106 

demand on alpha-based decoding accuracy, we performed a post-hoc ANCOVA: The average 107 

decoding accuracy in-between 1940 – 3340 ms (i.e., approximate time window that resulted 108 

in significant within-condition decoding) served as a dependent variable, spatial demand (low 109 

vs. high) served as a within-subject factor, and the difference in hEOG lateralization (2000 – 110 

3000 ms post cue onset) between the spatial demand conditions (hsd – lsd) was included as a 111 

covariate (referred to as factor ‘saccades’). The covariate was not significantly related to 112 

decoding accuracy, F(1,15) = 0.52 p = .481. Critically, the main effect of spatial demand was 113 

still significant after controlling for effect of saccades, F(1,15) = 7.14, p = .017. The interaction 114 

between saccades and spatial demand was not significant, F(1,15) = 0.03, p = 0.855.  115 

 116 

Taken together, the above presented control analyses reassure that the most critical finding – 117 

namely, the greater decoding accuracy for the high spatial demand condition – is not based 118 

on systematic difference in eye movements. Although we cannot be perfectly sure that the 119 

Figure 4. Location decoding based on the ERP signal at horizontal and vertical EOG electrodes. (A) 
Time-course of the average decoding accuracy results in the low (yellow) and high (green) spatial demand 
condition, respectively. The colored shading indicates ±1 SEM. Chance-level performance (i.e., 25%) is 
indicated by the grey dashed horizontal line. The yellow and green solid bars indicate significant decoding of 
the target location in the low and high spatial demand condition, respectively. The black solid bar denotes 
significant differences in decoding ability between the low and the high spatial demand condition. Note that 
only time-points in-between 1600 – 3800 ms were considered in the statistical analysis. (B) Boxplots refer to 
the average decoding accuracy in-between 1960 – 3500 ms relative to cue-onset (i.e., 300 – 1900 ms following 
sound array onset). As per convention, boxplots illustrate the interquartile range and the median. Whiskers 
extent to the 1.5 times the interquartile range. The superimposed circles show the average decoding accuracy, 
while the corresponding error bars denote the 95% bootstrap confidence interval of the mean (number of 
bootstrap samples = 10000). 
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within-condition decoding of target location has somewhat picked up on saccade-related 120 

contributions in the signal, we don’t think such a contribution should be regarded as merely 121 

artefactual. Rather, it highlights the multimodal functional relevance of auditory alpha 122 

oscillatory activity and the naturally occurring interaction between audition and vision. In line 123 

with that, using a forward encoding procedure, Popov et al., (2021) nicely illustrate that in a 124 

purely auditory task, spatial tuning based on the hEOG signal is positively related to alpha 125 

tuning responses. Specifically, they argue that “auditory attention is linked to the visual 126 

system, at least in part, through pro-active orientation towards the relevant sound origin via 127 

saccades in the direction consistent with the sound origin” (Popov et al 2021, p.18).  128 

 

S5. Decoding analysis based on minimally preprocessed data 129 

Artifact correction has been proposed to be less critical in decoding analysis, given that 130 

classifiers can – in principle – learn to ignore bad channels or suppress noise during training 131 

(Grootswagers, Wardle, & Carlson, 2017). Moreover, minimal preprocessing prevents 132 

unwanted artefacts and spurious decoding due to high-pass (van Driel, Olivers, & Fahrenfort, 133 

2021) or low-pass (Grootswagers et al., 2017) filtering. Hence, the original decoding analysis 134 

was performed using only minimally preprocessed data. Following reviewer concerns, that 135 

artefacts might influence decoding performance, we modified the preprocessing pipeline for 136 

decoding to include artefact correction. The latter is now presented in the main manuscript. 137 

For reasons of transparency, here, we report the decoding results based on minimally 138 

preprocessed data. The latter yielded very comparable results.  139 

The continuous data was epoched to create single-trial segments, ranging from -1000 140 

to 4500 ms relative to cue onset, and baseline corrected (i.e., using the 200 ms time-period 141 

prior to cue onset as a baseline). Further, target-absent trials, incorrectly answered trials as 142 

well as trials with a response time < 200 (i.e., premature responses) were excluded. No 143 

filtering, trial rejection or ICA-based artefact correction was applied. The decoding analysis 144 

was performed as described in the main manuscript, except that five rather than three cross-145 

validations were performed (accounting for the higher number of trials because no further 146 

trial rejection procedure was applied). 147 

 148 

 149 
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 150 

Figure 5A shows the time-course of decoding accuracy for the low vs. high spatial demand 151 

condition, when decoding the exact target sound location based on the topography of alpha-152 

band activity, as well as the difference in decoding accuracy between conditions. Decoding 153 

accuracy starts to rise above chance level (i.e., 25%) at around 1800 ms (i.e., 200 ms following 154 

sound array onset) and at first, increases continuously in both spatial demand conditions. In 155 

the high spatial demand condition, decoding accuracy reaches a peak at around 2180 ms (i.e., 156 

580 ms post-sound onset), remains at this level for a couple hundred milliseconds and then 157 

gradually decreases throughout the remainder of the response interval; in the low spatial 158 

demand condition, decoding accuracy continues to rise beyond the peak in the high spatial 159 

demand condition until around ~2440 ms (i.e., 840 ms post-sound onset), and declines quite 160 

immediately thereafter, although it remains on a higher level compared to the low spatial 161 

demand condition. Toward the end of the response interval (i.e., around 3800 ms), decoding 162 

accuracy returns to chance level in both conditions. The cluster mass test revealed that 163 

decoding was significantly greater than chance in both spatial demand conditions. We 164 

identified a significant cluster following sound array onset in each of the two conditions (p < 165 

Figure 5. Location decoding based on the multivariate scalp distribution of alpha power (minimally 
preprocessed data. (A) Time-course of the average decoding accuracy results in the low (yellow) and high 
(green) spatial demand condition, respectively. The colored shading indicates ±1 SEM. Chance-level 
performance (i.e., 25%) is indicated by the grey dashed horizontal line. The yellow and green solid bars indicate 
significant decoding of the target location in the low and high spatial demand condition, respectively. The 
black solid bar denotes significant differences in decoding ability between the low and the high spatial demand 
condition. Note that only time-points in-between 1600 – 3800 ms were considered in the statistical analysis. (B) 
Boxplots refer to the average decoding accuracy in-between 1800 – 3200 ms relative to cue-onset (i.e., 200 – 
1600 ms following sound array onset). As per convention, boxplots illustrate the interquartile range and the 
median. Whiskers extent to the 1.5 times the interquartile range. The superimposed circles show the average 
decoding accuracy, while the corresponding error bars denote the 95% bootstrap confidence interval of the 
mean (number of bootstrap samples = 10000). 

A B 
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10-4, see Figure 5A, solid green and yellow lines). In the high spatial demand condition, the 166 

cluster extends from around 1800 ms to ~3200 ms; in the low spatial demand condition, the 167 

cluster spans a time period in-between ~1900 ms and 2880 ms relative to sound array onset. 168 

Note, however, that cluster-based permutation test results should not be used to derive 169 

conclusions about the specific onset or offset of a certain effect (Sassenhagen & Draschkow, 170 

2019).  171 

The black, dashed line in Figure 5A illustrates the difference in decoding accuracy 172 

between the two spatial demand conditions. A cluster-corrected sign-permutation test 173 

indicated significant differences in decoding ability (p < .01, one-sided test, cluster extending 174 

from ~2440 – 3000 ms), with higher decoding accuracy in the high spatial demand condition 175 

compared to the low spatial demand condition. 176 

Finally, we assessed the overall difference in decoding ability within the post-stimulus 177 

period (specifically, within the approximate time-window that resulted in above-chance 178 

decoding accuracy within both spatial demand conditions). A one-sided permutation test of 179 

the average decoding accuracy between 1800 – 3200 ms consistently revealed a significant 180 

difference in decoding accuracy between the spatial demand conditions (p = .001). 181 
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