Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Non-invasive sex genotyping of paiche Arapaima gigas by qPCR: An applied bioinformatic approach to identify sex differences

Edgar A. López-Landavery, Guillermo A. Corona-Herrera, Luis E. Santos-Rojas, Nadhia M. Herrera-Castillo, Tomás H. Delgadin, Sandra Tapia-Morales, Sophia González-Martinez, Lorenzo E. Reyes-Flores, Alan Marín, Carmen G. Yzásiga-Barrera, View ORCID ProfileJuan I. Fernandino, Eliana Zelada-Mázmela
doi: https://doi.org/10.1101/2021.02.12.430980
Edgar A. López-Landavery
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guillermo A. Corona-Herrera
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Luis E. Santos-Rojas
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadhia M. Herrera-Castillo
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Tomás H. Delgadin
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sandra Tapia-Morales
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sophia González-Martinez
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lorenzo E. Reyes-Flores
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alan Marín
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carmen G. Yzásiga-Barrera
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juan I. Fernandino
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
2Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Juan I. Fernandino
  • For correspondence: ezelada@uns.edu.pe fernandino@intech.gov.ar
Eliana Zelada-Mázmela
1Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Chimbote, Perú
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ezelada@uns.edu.pe fernandino@intech.gov.ar
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Arapaima gigas, one of the largest freshwater fish in the world, is suffering from high fishing pressure and habitat loss, which threaten the conservation status of its natural populations. Of great cultural importance to Amazonian people, the paiche or pirarucu A. gigas is in high demand for its meat, ornamental uses and other byproducts such as scales. Aquaculture is a feasible solution to this dilemma. However, the fact that A. gigas presents no sexual dimorphism until it is 5 years old and its long period to sexual maturity are major obstacles for brood-stock management and fingerling production. Thus, the aim of this study was to develop a molecular tool for non-invasive genotypic sexing of paiche throughout its life cycle. We collected samples from gonads, fins and gill mucus of juvenile specimens from local facilities for histological and molecular analysis. Based on the recently available genome sequence of the paiche and making use of current NGS method, we implemented a novel approach, called Genome Differences by Unmapped Reads, to identify DNA sex markers. We found a Male-Specific Region (MSR), identified as MSR_3728, to be present only in males. Next, we designed two specific sets of primers on this region to identify genotypic sex by qPCR assays. Both primer sets, MSR_107 and MSR_129, detected males with 100% accuracy. Then we developed a duplex qPCR reaction for each primer set along a reference gene, analyzed the melting curves and detected males by observing two distinct peaks, one for MSR_107 or MSR_129 and one for the reference, while females only presented the reference peak. The same results were obtained for gonads, fins and interestingly, a non-invasive source from gill mucus samples. Finally, the gonads were evaluated histologically in a double-blind test, showing 100% accuracy with qPCR assay for identifying males and females. Data clearly demonstrated a novel pipeline approach for identifying DNA sex markers, followed by a quick, non-invasive, cost-effective duplex qPCR method for sexing A. gigas. These results may be valuable to efficient paiche aquaculture and conservation studies, helping to reduce the fishing pressure on its natural populations.

Highlights of the manuscript

  • – Implementation of a novel approach, called Genome Differences by Unmapped Reads, to identify DNA sex markers.

  • – Finding of a Male-Specific Region (MSR), present only in males.

  • – Development of a duplex qPCR to identify genotypic sex through non-invasive sampling.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted February 13, 2021.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Non-invasive sex genotyping of paiche Arapaima gigas by qPCR: An applied bioinformatic approach to identify sex differences
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Non-invasive sex genotyping of paiche Arapaima gigas by qPCR: An applied bioinformatic approach to identify sex differences
Edgar A. López-Landavery, Guillermo A. Corona-Herrera, Luis E. Santos-Rojas, Nadhia M. Herrera-Castillo, Tomás H. Delgadin, Sandra Tapia-Morales, Sophia González-Martinez, Lorenzo E. Reyes-Flores, Alan Marín, Carmen G. Yzásiga-Barrera, Juan I. Fernandino, Eliana Zelada-Mázmela
bioRxiv 2021.02.12.430980; doi: https://doi.org/10.1101/2021.02.12.430980
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Non-invasive sex genotyping of paiche Arapaima gigas by qPCR: An applied bioinformatic approach to identify sex differences
Edgar A. López-Landavery, Guillermo A. Corona-Herrera, Luis E. Santos-Rojas, Nadhia M. Herrera-Castillo, Tomás H. Delgadin, Sandra Tapia-Morales, Sophia González-Martinez, Lorenzo E. Reyes-Flores, Alan Marín, Carmen G. Yzásiga-Barrera, Juan I. Fernandino, Eliana Zelada-Mázmela
bioRxiv 2021.02.12.430980; doi: https://doi.org/10.1101/2021.02.12.430980

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genomics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4838)
  • Biochemistry (10749)
  • Bioengineering (8020)
  • Bioinformatics (27205)
  • Biophysics (13945)
  • Cancer Biology (11088)
  • Cell Biology (16001)
  • Clinical Trials (138)
  • Developmental Biology (8760)
  • Ecology (13249)
  • Epidemiology (2067)
  • Evolutionary Biology (17324)
  • Genetics (11667)
  • Genomics (15888)
  • Immunology (10998)
  • Microbiology (26006)
  • Molecular Biology (10612)
  • Neuroscience (56376)
  • Paleontology (417)
  • Pathology (1729)
  • Pharmacology and Toxicology (2999)
  • Physiology (4530)
  • Plant Biology (9593)
  • Scientific Communication and Education (1610)
  • Synthetic Biology (2674)
  • Systems Biology (6961)
  • Zoology (1508)