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Abstract  

Large datasets of hundreds to thousands of individuals measuring RNA-seq in observational 

studies are becoming available. Many popular software packages for analysis of RNA-seq data 

were constructed to study differences in expression signatures in an experimental design with 

well-defined conditions (exposures). In contrast, observational studies may have varying levels 

of confounding of the transcript-exposure associations; further, exposure measures may vary 

from discrete (exposed, yes/no) to continuous (levels of exposure), with non-normal distributions 

of exposure. We compare popular software for gene expression - DESeq2, edgeR, and limma 

- as well as linear regression-based analyses for studying the association of continuous exposures 

with RNA-seq. We developed a computation pipeline that includes transformation, filtering, and 

generation of empirical null distribution of association p-values, and we apply the pipeline to 

compute empirical p-values with multiple testing correction. We employ a resampling approach 

that allows for assessment of false positive detection across methods, power comparison, and the 

computation of quantile empirical p-values.  The results suggest that linear regression methods 

are substantially faster with better control of false detections than other methods, even with the 

resampling method to compute empirical p-values. We provide the proposed pipeline with fast 

algorithms in R.  

 

 

 

Introduction 
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Many studies of phenotypes associated with gene expression from RNA-seq consist of small 

sample sizes (tens of subjects) and are focused on comparisons of transcriptional expression 

patterns between well-delineated states, such as different experimental conditions, tumor versus 

non-tumor cells (1; 2), and disease vs non-disease groups (3). Some studies are designed to 

identify differential expression across hidden, discrete conditions (4). Epidemiological cohorts 

have recently utilized stored samples to facilitate the use of RNA-seq data in studies of 

association with subclinical phenotypes such as blood biomarkers, imaging, and other 

physiological measures, with often continuous measures being used in statistical analyses.  

 

High throughput RNA sequencing enables broad assaying of a sample’s transcriptome (5) and 

has been in increasing use for over a decade (6). A large variety of analytic and statistical 

approaches have been developed to address scientific questions such as alternative splicing, 

differential expression, and more (4; 7-11), often building on methods developed for analyses of 

expression microarrays (12-14); comprehensive reviews are available (15-19).  In this work, we 

are specifically interested in differential expression analysis with continuous exposures, and we 

assume that count data are already prepared and available to the analyst. Popular software 

packages for differential expression analysis include the DESeq2 R package (9), which models 

the expression counts as following a negative binomial distribution, with shrinkage imposed on 

both the mean and the dispersion parameters, based on estimates from the entire transcriptome, 

or user-supplied values. EdgeR (7) uses a negative binomial model similar to the DESeq2 

model for transcript counts, in combination with overdispersion moderation. EdgeR was 

primarily designed for differential expression analysis between two groups when at least one of 

the groups has replicated measurements (20). Limma (21) uses linear models, which are very 
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flexible and can effectively accommodate many study designs and hypotheses. Similar to the 

DESeq2 and edgeR packages, Limma also uses an empirical Bayes method to borrow 

information across transcripts to estimate a global variance parameter that is applied for the 

computation of variance parameters of each single transcript. It uses log transformation and 

weighting, known as the “voom” transformation, in the final linear model that is used for 

differential expression analysis. We refer to it henceforth as the limma-voom. Prior to 

differential expression analysis, library normalization is performed (22). Popular approaches are 

the TMM (trimmed-means of M-values) normalization (23), implemented in edgeR, and the 

size factors normalization (24), implemented in DESeq2.  

 

Sleep disordered breathing phenotypes, such as the Apnea-Hypopnea Index (AHI), the number 

of apnea and hypopnea events per hour of sleep, provides a quantitative assessment of the 

severity of the disorder, with no clear threshold above which different biological processes occur 

(although thresholds are used for clinical decision making and health insurance reimbursement). 

Association analysis with continuous exposures provides different challenges than those 

traditionally encountered. The distribution of such exposures may have strong effects on the 

association analysis results, regardless of the underlying associations, due to the combination of 

skewed exposure distributions and the distribution of RNA-seq read count data, that are 

generally over-dispersed with occasional extreme values. As observational study data analyses 

may include covariates, statistical methods from experimental studies (e.g., exact tests) cannot be 

applied.  
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In this manuscript, we compare the DESeq2, edgeR, and limma-voom analysis approaches 

for differential expression analysis, with linear regression–based approaches that do not use the 

empirical Bayes approach for estimating variance parameter across the transcriptome. We study 

the computation of p-values using resampling of phenotype residuals, while preserving the 

structure of the data. This addresses the limitation of permutation noted by others in the context 

of differential expression analysis of RNA-seq (21), where permutation may not be tuned to test 

a specific null hypothesis because in its standard form it “breaks” all relationships between the 

permuted variable and the rest of the dataset. Finally, we study the use of empirical p-values that 

tune the original p-values based on the residual resampling scheme. Throughout, we use a dataset 

with sleep disordered breathing phenotypes and RNA-seq from the Multi-Ethnic Study of 

Atherosclerosis as a case study. We demonstrate the statistical implications of performing 

association analysis of RNA-seq with continuous, non-normal exposures, compare analysis 

methods, and develop recommendations. 

 

 

Methods 

The Multi-Ethnic Study of Atherosclerosis (MESA) 

MESA is a longitudinal cohort study, established in 2000, that prospectively collected risk 

factors for development of subclinical and clinical cardiovascular disease among participants in 

six field centers across the United States (Baltimore City and Baltimore County, MD; Chicago, 

IL; Forsyth County, NC; Los Angeles County, CA; Northern Manhattan and the Bronx, NY; and 

St. Paul, MN). The cohort has been studied every few years. The present analysis considers N = 

462 individuals who participated in a sleep ancillary study performed shortly following the 
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participants Exam 5 during 2010-2013  (25; 26), with RNA-seq measured via the Trans-Omics in 

Precision Medicine (TOPMed) program. Here, we used RNA-seq data with RNA extracted from 

whole blood drawn in Exam 5 (2010-2012). Sleep data were collected using standardized full in-

home level-2 polysomnography (Compumedics Somte Systems, Abbotsville, Australia, AU0), as 

described before (26). Of the 462 participants in the current analysis, there were 196 African-

Americans (AA), 259 European-Americans (EA) and 125 Hispanic-Europeans (HA). RNA 

sequencing in MESA is briefly described in the Supplementary Materials. 

 

Sleep disordered breathing measures 

As examples for continuous exposures from population-based studies, we took three sleep 

disordered breathing measures: (1) the Apnea-Hypopnea Index (AHI), defined as the number of 

apnea (breathing cessation) and hypopnea (at least 30% reduction of breath volume, 

accompanied by 3% or higher reduction of oxyhemoglobin saturation compared to the baseline 

saturation) per 1 hour or sleep; (2) minimum oxyhemoglobin saturation during sleep (MinO2), 

and (3) average oxyhemoglobin saturation during sleep (AvgO2). We chose these traits because 

they are clinically relevant, often used in sleep research studies, and represent exposures that 

may alter gene expression (via hypoxemia and sympathetic activation). The AHI had the least 

skewed distribution of the considered phenotypes, and AvgO2 had the longest “tail” of small 

values in the residual distribution. Residuals were obtained by regression the sleep measures on 

age, sex, body mass index (BMI), study center, and self-reported race/ethnic group.   

 

 

Compared tests of associations between exposure and transcripts 
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We compared the standard packages DESeq2, edgeR, limma, and linear regression-based 

approaches, in which we always applied log transformation on the transcript counts, and then 

applied linear regression. Because some of the observed transcript count values are zero, which 

cannot be log transformed, we compared a few approaches for replacing zero values. For a given 

transcript �, denote the minimum observed transcript level that is higher than zero by m� �

min ����, … , ���: ��� � 0 for � � 1, … , ��. We compare the following approaches, applied on each 

transcript �, � �  1, … , � separately: 

A1. SubHalfMin: Replace zero values with 
��

�
. 

A2. AddHalfMin: Replace all values ���  by ��� �
��

�
. 

A3. AddHalf: Replace all values ���  by ��� �
�

�
. 

 

Conceptual framework for studying analysis approaches 

To study performance of various analysis approaches, we performed simulation studies. 

Simulation study 1 was used to assess type 1 error across methods when using output p-values, 

and when using “empirical p-values”, which are p-values that account for true distribution of the 

p-values under the null and are described later. Simulation study 2 was used to assess power in 

transcriptome-wide analysis settings, when using methods that control the type 1 error according 

to simulation study 1. In addition, we performed a simulation study (Supplementary Materials) to 

assess power for testing of individual transcript according to various distributional characteristics 

of transcript counts. The goal was to identify approaches for filtering transcripts for association 

analysis that will optimize power.  All simulations used a “residual permutation” (below). The 

reported criteria for declaring differentially expressed transcripts were False Discovery Rate 

(FDR) controlling p-values <0.05 based on the Benjamini-Hochberg (BH) procedure, and based 
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on the local FDR procedure implemented in the qvalue R package, Family-Wise Error Rate 

(FWER) controlling p-values <0.05 based on the Holms procedure, and an arbitrary threshold of 

p-value<10-5.  

 

Residual permutation approach for simulations and for empirical p-value computation 

To generate realistic simulation studies in which: (a) the data structure, including the exposure, 

covariates, and outcome distributions; and (b) their relationships, aside from the exposure-

outcome association, are the same as in the real data, we used a residual permutation approach. 

We regressed each sleep exposure of interest � on the covariates � and estimated their effect �. 

We then obtained residuals, defined as:  

� � � � ���.    

To study type 1 error, we permuted these residuals at random to obtain ��� !�", and generated 

a sleep exposure unassociated with any of the RNA-seq measures by:  

����� � ��� �  ��� !�". 

We repeated this procedure 1000 times for evaluating type 1 error control. We generated 

simulated data under four power simulations in a similar approach, with the difference that we 

forced a specific correlation value between the simulated sleep exposure and a specific transcript. 

To this end, for a given transcript � measured on individuals � � 1, … , �, we computed the rank 

of each individual: ��!���", … , ��!���". To set a correlation $ between the simulated �	 and 

transcript � we sampled $ % � (rounded) indices from 1, … , �, corresponding to $ % � individuals 

for which we forced their ranks in the permuted residual values, now denoted by ��� !�"	, to 

be the same as their ranks in the transcript values (note that the transcript values are never 

changed). For the rest of the individuals, the permuted residuals are completely random. When 
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multiple individuals have the same transcript counts (i.e., their ranks are tied), we randomly 

assign their ranks. For example, if 100 people have zero counts for a given transcript, each of 

these individuals will be equally likely to have the rank of 1, 2, …, or 100.  The code for 

generating this residual permutation approach is provided in the Supplementary Information and 

in a dedicated GitHub repository https://github.com/nkurniansyah/RNA-

Seq_continuous_exposure.  

 

Empirical p-values to account for the null distribution of p-values 

We used the residual permutation approach, under the null hypothesis, to generate a null 

distribution of p-values and to compute empirical p-values. When the distribution of p-values 

under the null hypothesis is unknown, and specifically when it is not uniform, their values are 

not reliable for hypothesis testing. Alternative approaches compute “empirical p-values” with the 

goal of generating an appropriate p-value distribution, i.e., in which an empirical p-value �
 

satisfies Pr!�
 ' 0.05|*�" � 0.05 (Supplementary Materials).  

 

For computing empirical p-values, we use a relatively small number of residual permutations (in 

comparison to the number of permutations used for computing permutation p-values) followed 

by transcriptome-wide association studies. We use the results of these transcriptome-wide tests 

under permutation to compute the null distribution of p-values, which is then used to compute 

the empirical p-values. We compare two types of empirical p-values: quantile empirical p-values, 

and Storey empirical p-values implemented in the qvalue R package (27). The quantile 

empirical p-value approach is inspired by previously proposed procedures based on permutation 

(28) of phenotypes (rather than residuals). It estimates the null distribution of p-values non-
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parametrically, and the quantile empirical p-value is the quantile of the raw p-value in this 

distribution. The Storey empirical p-values uses the null distribution of the test statistics to 

identify whether a transcript is likely sampled from the null or a non-null distribution. Both 

implementations assume that the empirical null distribution is the same for all transcripts. We 

used 100 residual permutations to compute test statistics and p-values under the null and 

compared the empirical p-values to standard permutation p-values.  

 

Resampling approach for binary exposure phenotypes 

We compared the analysis of a continuous exposure to that of a dichotomized variable. Instead of 

a sleep measure, we used body mass index (BMI), because it is known to have large impact of 

gene expression and is therefore a powerful phenotype for such a comparison. BMI was 

dichotomized to “obese” if BMI + 30kg/m2 and non-obese otherwise. Because obesity is binary 

and, therefore, the residual permutation approach is not appropriate as proposed for continuous 

variables, we generated a binomial obesity variable based on BMI probability given covariates. 

Given a logistic model -./��0�!123� � 1"4 � 5�
�6, we estimated the covariates’ association 

parameters 67 and obtained estimated probabilities for obesity for each person � � 1, … , � by  

�̂!123� � 1" � �9���!5�
�67". Based on these estimated outcome probabilities, we sampled 

random obesity status as binomial variables.  

 

 

Results 

MESA participant characteristics are provided in the Supplementary Material, Table S1. The 

distribution of the raw phenotypes AHI, MinO2, and AvgO2, and their residuals after regression 

on covariates is provided in Figure 1, demonstrating the high non-normality. Simulations were 
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performed after normalizing the data so that each library has the same size (prior to filtering), 

which we set to the median observed value (i.e., median normalization) in the raw reads, or 

23,210,672.  Results for some of the settings in simulation study 1 under TMM and size factor 

normalizations are provided in the Supplementary Materials.  

 

Simulation study 1: type 1 error analysis 

After normalization, we applied filters to remove lowly expressed transcripts. There were 58,311 

transcripts. After applying filters requiring that the (a) maximum read count is >10 and that (b) 

the proportion of individuals with zero counts for a transcript across the sample is not higher than 

0.75 (see Supplementary Materials for more information on filters), 23,004 transcripts were 

available for the simulation study.  We used residual permutation to generate simulated SDB 

phenotypes that are not associated with the transcripts, but maintain the same correlation 

structure with the transcript and covariates. We generated 100 datasets with simulated SDB 

phenotypes, and performed analyses. Complete results showing the average number of false 

positive detection based on the existing packages limma, edgeR, and DESeq2, as well as the 

three linear regression analyses described here, are provided in Supplementary Figures S3-S5. 

These results include comparisons of raw p-values, the proposed quantile empirical p-values, and 

the empirical p-values provided in the qvalue R package (27), and for the three SDB 

phenotypes.  

 

We found that the number of false positives vary with the exposure phenotypes, with analyses of 

MinO2 (Figure 2) generally resulting in more false positive detections than analyses of the AHI, 

with intermediate numbers for AvgO2 (Figures S3-S5 in the Supplementary Materials).  Figure 2 

compares the average number of falsely discovered transcript associations when using simulated 
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sleep phenotypes mimicking MinO2 using the residual permutation approach by focusing on 

limma, edgeR, DESeq2, and linear regression applied on log2 of expression counts with 

SubHalfMin. For each method, type I error was determined using raw p-values and Storey 

empirical p-values, with significance thresholds based on Benjamini-Hochberg (BH) FDR, local 

FDR (qvalue package), and Holms Family-Wise Error Rate (FWER). Empirical p-values 

usually reduced the number of false detections, with the method in the qvalue package being 

usually more conservative than the quantile-based empirical p-values method. Compared to 

linear regression-based approaches, DESeq2, edgeR and limma-voom had many false 

detections when using the raw p-values, even after applying multiple testing corrections. The 

three linear regression-based methods described here were quite similar, with the AddHalf 

approach often resulting in slightly more false detections. Based on these results, we chose to 

move forward for the next set of simulations with linear regression with SubHalfMin for 

handling of zero counts.  

 

Simulation study 2: power analysis 

We performed simulations that mimic transcriptome-wide analysis to assess power. Based on 

simulations comparing power by transcript distributional characteristics (see Supplementary 

Materials), we only considered 19,742 transcripts for which no more than 50% of the sample had 

zero counts. We chose two transcripts, and for each of these and each of the sleep phenotypes, 

we performed 100 simulations in which we used the residual permutation approach to generate 

association between the sleep phenotype and the transcript with correlation $ � 0.3. We 

performed transcriptome-wide association analysis using DESeq2, edgeR, and linear regression 

with SubHalfMin transformation (limma-voom was not used, given its high rate of false 
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positive detections in some of the settings in simulation study 1). For power, we always used 

empirical p-values (both types) and determined whether the specific transcript of interest passed 

the significance threshold based on FDR-adjusted (29) empirical p-value < 0.05. Power was 

defined as the proportion of the simulations in which the associations was significant, and was 

consistently higher for the linear regression-based approach compared to DESeq2 or edgeR. 

For linear regression, the quantile empirical p-values performed essentially the same as Storey’s 

empirical p-values, while Storey’s empirical p-values resulted in substantially higher statistical 

power when using DESeq2 and edgeR. We illustrate power comparisons in Figure 3 using 

Storey’s empirical p-values. Power comparisons using quantile empirical p-values are provided 

in the Supplementary Materials Figure S8.   

 

Proposed analysis approach  

Based on the above simulation studies, we developed an analytic pipeline as depicted in Figure 

4: (a) the raw read count are normalized; (b) filters are applied to remove lowly expressed 

transcripts and those for which the statistical power is low, as determined by simulations, (c) 

AddHalfMin transformation is applied for each individual separately, then log transformation is 

applied on all transcripts, (d) association analyses is performed using linear regression to 

compute effect sizes and p-values, (e) permutations are computed 100 times on exposure 

residuals after regressing on covariates, to generate simulated traits that maintain the data 

structure, (f) each of 100 vectors of simulated traits are analyzed using the same approach as the 

raw trait, generating p-values, (g) p-values from the analysis of the 100 simulated traits are 

combined to generate an empirical null distribution of p-values, that are used to generate 
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empirical p-values for the raw trait using the qvalue package, and (h) multiple testing 

correction is applied on the empirical p-values.  

 

Comparison of analysis of continuous BMI with analysis of dichotomous obesity status 

We compared the differential expression of transcripts in analysis of BMI and obesity. Residual 

permutation procedure was used and quantile-empirical p-values generated for both analyses. A 

total of 925 MESA individuals had BMI measure available and, for analysis, at least 50% non-

zero transcripts were required.  For obesity, several non-zero transcript thresholds were 

examined: 50%, 40%, and 30%. The results were similar for all thresholds, resulting in many 

more identified transcript associations (446 vs. 251) with continuous BMI compared to using a 

dichotomous trait (Supplementary Information Figure S9).  

 

Computing time comparison 

The compute time for transcriptome-wide association study was obtained for analyses using 

DESeq2, edgeR, and our linear regression implementation. Using our linear regression 

implementation on a single core, a single transcriptome-wide association study applied on ~19K 

transcripts and N=462 individuals took less than a minute; when 100 transcriptome-wide 

association studies applied to residual permutations were included to compute empirical p-

values, the time reached 7 minutes, and the maximum memory used was 1.3GB. In comparison, 

DESeq2 took 53.5 minutes and edgeR took 18.8 minutes for a single transcriptome-wide 

association study. The maximum memory used for DESeq2 and edgeR was similar at 3.1GB.  

 

R package 
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Code for implementing the proposed procedure and for a shiny app is provided in the GitHub 

repository https://github.com/nkurniansyah/Olivia.  The code also provides test of multiple 

exposure variable at the same time, which applies the multivariate-Wald test, and an efficient 

implementation of a permutation test when considering a single transcript, rather than a 

transcriptome-wide analysis. The repository also includes code used for simulations.  

 

Data availability 

MESA data are available through application to dbGaP. Phenotypes are available in MESA study 

accession phs000209.v13.p3, and  RNA-seq data has been deposited and will become available 

through the TOPMed-MESA study accession phs001416.v2.p1. 

 

Discussion 

We systematically assessed the approaches for studying the association of gene expression, 

estimated using RNA sequencing, with continuous and non-normally distributed exposure 

phenotypes. We found that linear regression-based analysis performs well for continuous 

phenotype associations, and is computationally highly efficient. We used a residual permutation 

approach to study the distribution of p-values under the null of no association between the 

phenotypes and RNA-seq, and used this approach to further study power, and to compute 

empirical p-values. Notably, the residual permutation approach allows for the dataset to have the 

same correlation structures and associations between the phenotypes and the transcripts and 

covariates, while eliminating the transcript-phenotype associations. We implemented this 

approach in an R package and developed an R shiny app, to make our pipeline easily accessible 

to the research community.  
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Recently, van Rooij et al (30) also performed a benchmarking study comparing analysis 

approaches for transcriptome-wide analysis of RNA-seq in population-based studies, including 

when using continuous phenotypes in association testing. While we used similar statistical 

methods to theirs, we took a different analytical approach. Van Rooij et al. used multiple datasets 

to apply association analysis between a phenotype and transcripts, and assessed replication 

between analyses. We, on the other hand, leveraged simulations to generate data under a known 

association structure. In addition, we were motivated by a specific problem: highly non-normal 

sleep exposure measures, often leading to suboptimal control of Type 1 error. Thus, it was 

critical to assess control of false discovery under the null hypothesis. Notably, sleep phenotypes 

are less often available and there are no other large observational studies data sets to our 

knowledge with both RNA-seq measures and similar SDB phenotypes. Some of our findings are 

similar to those of van Rooij et al.: they also recommend using linear regression analysis, and 

they also found that using a continuous phenotype is generally more powerful than 

dichotomizing it (in agreement with what is known from statistical literature). Similarly, they 

found that normalization method had very little effect on the results. However, they recommend 

testing all genes, while we recommend filtering transcripts with at least 50% zero counts, based 

on our power simulations. Additional future work is needed to evaluate various filtering criteria, 

and to develop methods that allow for flexible, non-linear modeling of the association between 

phenotype and gene expression while remaining computationally efficient to allow for 

permutation analysis. 

 

We propose to compute p-values under the null hypothesis of no association between the 

transcript and the exposure phenotype by permuting residuals of the exposure phenotype after 
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regressing on covariates, and re-structuring the exposure by summing the permuted residuals 

with the estimated mean, and thus maintain the overall data structure except for the exposure-

outcome association of interest. Outside the gene expression literature, others have proposed to 

permute residuals rather than the outcome. For example, previous permutation methods proposed 

to permute residuals of the outcome after regressing on covariates (31), or to permute the 

residuals of the exposure phenotypes without constructing a new exposure phenotype by 

summing the permuted residuals with the estimated mean (32). It will be interesting to perform a 

more comprehensive study of statistical permutation approaches for RNA-seq association 

analyses, as well as studying them in the context of mixed models.  

 

We recommend using empirical p-values, which require 100 residual permutation, and therefore, 

performing 101 transcriptome-wide association analyses instead of one. Considering Figures S3-

S5 in the Supplementary Information, one can see that in most settings, linear regression 

methods do not have many false positive detections even when raw p-values are used. However, 

we chose to be more conservative by strongly protecting the analysis from false positive 

detections. Importantly, the linear regression analysis with empirical p-values had higher power 

than the other common approaches (DESeq2, edgeR), indicating simultaneous improvement in 

controlling false positives and increasing power. Unfortunately, we cannot effectively estimate 

the FDR in these simulations. FDR is defined as the proportion of false discoveries out of all 

discovered (significant) associations. In simulation study 1, none of the transcripts were 

associated with the outcomes, so that any estimated FDR would be 100%. Under the alternative, 

one can suggest to use the number of wrongly discovered associations to estimate the FDR. 

However, many transcripts are highly correlated with the one simulated to be associated with the 
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exposures, and are therefore associated with the exposure by design, and thus the number of 

transcripts falsely detected as associated with the exposure cannot be easily determined. 

 

The empirical p-values procedure uses p-values from the entire tested transcriptome to compute 

the empirical null distribution. This encapsulates the assumption that the null distribution of p-

values is the same for all transcripts, which is generally a limitation, but has been shown to be 

often acceptable since it will lead to less power, rather than increasing the number of false 

detections (33; 34). An approach that does not require this assumption estimates the null 

distribution for p-value for each transcript separately, which is a standard permutation approach. 

We investigated this issue by comparing the quantile empirical p-values with the permutation p-

values that use 100,000 residual permutations to estimate the null distribution of the p-value of 

each transcript separately (Figure S2 in the Supplementary Materials). The two p-value 

distributions are very similar. Therefore, a computationally expensive permutation approach, as 

well as other approaches proposed by investigators, such as estimating null distributions across 

sets of transcripts with similar properties (33; 35), are likely unnecessary and not superior to the 

computationally efficient empirical p-values method. Another approach for estimating the null 

distribution of p-values uses the primary results, without any permutation (36; 37). These 

approaches also use the assumption that the null p-value distribution is the same across 

transcripts (i.e. a shared null distribution exists). Given the computationally fast implementation 

of the transcriptome-wide association study, we believe that using residual permutation is 

beneficial because it allows for a more precise quantification of the null p-value distribution.  
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Batch effects are important to account for in studies of RNA-seq. Here, we did not study their 

effect because it was beyond the scope of our investigation. van Rooij et al (30) in their 

benchmarking study focusing on replication across cohorts, compared a few approaches for 

adjusting for technical covariates, including estimating and adjusting for latent confounders (38). 

They concluded that inclusion of more technical adjusting covariates, including hidden 

confounders, increases the rate of replication between studies.  

 

To summarize, we highlighted the problem of high false positive findings in  RNA-seq data 

when studying the association of continuous exposure phenotypes that are highly non-normal. 

We developed a computationally efficient pipeline to address the false positive detection 

problem, and studied strategies to optimize statistical power. Our approach will be particularly 

useful for epidemiological studies with RNA-seq data that were not designed as disease-focused 

case-control studies.  
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Figure legends 

Figure 1: Distributions of the three sleep-disordered breathing exposure phenotypes used as case 

studies in this manuscript. The left column provides the empirical density functions of the raw 

phenotypes, the right column provides the empirical density function of their residuals after 

regressing on age, sex, BMI, self-reported race/ethnic group, and study center. AvgO2: average 

oxyhemoglobin saturation during sleep. MinO2: minimum oxyhemoglobin saturation during 

sleep. AHI: Apnea Hypopnea Index.  
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Figure 2: Average number of false positive transcript associations detected by various methods 

used in simulation study 1 and computed over 100 repetitions. We used the residual 

permutation approach to mimic the MESA data set with the sleep phenotype MinO2. The 

methods reported here are linear regression (applied on log2-transformed transcript counts, 

with zero values replaced with SubHalfMin); DESeq2, edgeR, and limma-voom. The left 

column provides results when using raw p-values, the middle corresponds to use of quantile-

empirical p-values, and the right corresponds to Storey empirical p-values. We report false 

positive detections as those with Benjamini-Hochberg (BH) False Discovery Rate adjusted (FDR) 

adjusted p-value < 0.05, Local FDR <0.05 (qvalue package) and with Holms Family-Wise Error 

Rate (FWER) adjusted p-values < 0.05. Error bars reflect the mean ; standard error.  In 

Supplementary Figures S3-S5, we provide complete results, including for additional sleep 

phenotypes: AHI and AvgO2. 
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Figure 3: Estimated power for detecting a transcript simulated as associated with the three sleep traits 

when using Storey empirical p-values, and association is determined significant if its BH FDR-adjusted p-

value is <0.05. The transcripts were randomly selected out of available transcripts (after filtering of 

transcripts with 50% or higher zero counts across the sample). We compared linear regression, DESeq2, 

and edgeR in transcriptome-wide association analysis for each of the sleep phenotypes. For each 

transcript used in simulations, we show both power and the box plot of its distribution in the sample after 

Median normalization. 
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Figure 4: Analysis pipeline for association transcriptome-wide association analysis of continuous

exposure phenotypes. The raw data is normalized using library-size normalization, followed by 

filtering of transcripts, transformation of transcript expression values, then single-transcript 

testing to obtain raw p-values. In parallel, residual permutation is applied under the null 100 

times, and p-values are used to construct an empirical p-value distribution under the null, and 

to compute empirical p-values. Finally, the quantile empirical p-values are corrected for 

multiple testing.  
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