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Abstract   22 

Inflammatory bowel diseases and inflammation-associated colorectal cancer are linked to blooms 23 

of adherent-invasive Escherichia coli (AIEC) in the intestinal microbiota. AIEC are functionally 24 

defined by their ability to adhere/invade epithelial cells and survive/replicate within 25 

macrophages. Changes in micronutrient availability can alter AIEC physiology and interactions 26 

with host cells. Thus, culturing AIEC for mechanistic investigations often involves precise 27 

nutrient formulation. We observed that the pro-inflammatory and pro-carcinogenic AIEC strain 28 

NC101 failed to grow in minimal media (MM). We hypothesized that NC101 was unable to 29 

synthesize a vital micronutrient normally found in the host gut. Through nutrient 30 

supplementation studies, we identified that NC101 is a nicotinic acid (NA) auxotroph. NA 31 

auxotrophy was not observed in the other non-toxigenic E. coli or AIEC strains we tested. 32 

Sequencing revealed NC101 has a missense mutation in nadA, a gene encoding quinolinate 33 

synthase A that is important for de novo NAD biosynthesis. Correcting the identified nadA point 34 

mutation restored NC101 prototrophy without impacting AIEC function, including motility and 35 

AIEC-defining survival in macrophages. Our findings, along with the generation of a 36 

prototrophic NC101 strain, will greatly enhance the ability to perform in vitro functional studies 37 

that are needed for mechanistic investigations on the role of intestinal E. coli in digestive disease.  38 

 39 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 13, 2021. ; https://doi.org/10.1101/2021.02.12.431052doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.12.431052


3 
 

Importance    40 

Inflammatory bowel diseases (IBD) and colorectal cancer (CRC) are significant global health 41 

concerns that are influenced by gut resident microbes, like adherent-invasive Escherichia coli 42 

(AIEC). Nutrient availability influences specialized metabolite production, AIEC-defining 43 

functional attributes, and AIEC:host interactions. NC101 is a pro-inflammatory and pro-44 

carcinogenic AIEC strain commonly used for studies on IBD and CRC. We identified that 45 

NC101 growth in vitro requires a micronutrient found in the host gut. By correcting an identified 46 

mutation, we generated an NC101 strain that no longer has micronutrient restrictions. Our 47 

findings will facilitate future research that necessitates precise nutrient manipulation, enhancing 48 

AIEC functional studies and investigations on other auxotrophic intestinal microbiota members. 49 

Broadly, this will improve the study of bacterial:host interactions impacting health and disease. 50 

 51 

Introduction 52 

Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are a major 53 

global health concern that affects over 3 million adults in the United States alone (1, 2). IBD is a 54 

chronic and multifactorial disease that is driven by aberrant immune responses to commensal 55 

microbes, genetic susceptibility, and environmental factors (3). IBD patients experience painful, 56 

chronic, and relapsing intestinal inflammation that can lead to life-threatening complications, 57 

including intestinal fibrosis and colorectal cancer (CRC) (4, 5). Experimental models have 58 

demonstrated that IBD and CRC can be driven by the intestinal microbiota and that specific 59 

microbes, such as Escherichia coli, are associated with human disease (6, 7). IBD and CRC have 60 
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no single etiology and no cure (8, 9). Therefore, understanding the function of disease-associated 61 

gut microbes may uncover novel therapeutic options for intestinal diseases, like IBD and CRC.  62 

Intestinal microbes influence the onset and progression of IBD and CRC via metabolite 63 

production and modulation of mucosal immunity (10–14). E. coli are common inhabitants of the 64 

intestinal microbiota (15, 16). Strain level differences can alter the pro-inflammatory or pro-65 

carcinogenic potential of E. coli, partly through changes in small molecule production (12–14, 66 

17, 18). A pathovar of E. coli, termed adherent-invasive E. coli (AIEC), are enriched in the gut 67 

microbiota of human IBD and CRC patients (19). AIEC exacerbate experimental colitis and 68 

promote CRC in a variety of murine models (17, 18, 20–24). There is no genetic definition for 69 

AIEC (14, 19, 25). Instead, AIEC are classically defined by their ability to adhere/invade 70 

epithelial cells and survive/replicate within macrophages (19, 26). Environmental conditions, 71 

including nutrient availability and intestinal inflammation, can alter AIEC behavior and impact 72 

intestinal colonization and disease (14, 17, 27–30). Therefore, the ability to precisely manipulate 73 

AIEC growth conditions is essential for in vitro studies investigating AIEC behavior and 74 

production of pro-inflammatory and pro-carcinogenic molecules.  75 

E. coli NC101 is a well-known AIEC strain utilized by numerous investigators to study how 76 

intestinal E. coli adapt to and influence the host during IBD and CRC (14, 17, 18, 24, 31–33). 77 

NC101 was originally isolated from a specific pathogen free wild-type mouse at North Carolina 78 

State University (34). Colonizing wild-type mice with NC101 does not induce intestinal 79 

pathology, even during monoassociation studies using gnotobiotic animals (17). However, 80 

despite a lack of traditional toxins and virulence factors, NC101 induces antigen-driven intestinal 81 

inflammation in genetically-susceptible IBD mouse models (e.g. interleukin 10 deficient mice) 82 

(34). Thus, NC101 is considered a pathobiont and a highly relevant model organism for defining 83 
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how susceptible individuals may mount inappropriate immune responses to seemingly innocuous 84 

intestinal E. coli.  85 

NC101 adapts to the inflamed intestinal milieu by modulating expression of its gene repertoire 86 

(35, 36). Nutrient availability alters AIEC physiology, persistence in the microbiota, and 87 

production of pro-inflammatory and pro-carcinogenic mediators (14, 17, 27–30). 88 

Monoassociation studies with gnotobiotic mice have led to the discovery of several AIEC-89 

derived host-influencing molecules (i.e. specialized metabolites) that drive inflammation and 90 

tumorigenesis, including yersiniabactin and colibactin (17–19). Like many specialized 91 

metabolites, yersiniabactin and colibactin are produced via biosynthetic gene clusters that can be 92 

activated by changes in micronutrient availability, notably iron (37, 38). The nature of AIEC-93 

derived specialized metabolites makes them difficult to isolate and study in functional assays. 94 

Therefore, the repertoire of AIEC-derived metabolites and their impact on the host has been 95 

largely unexplored. 96 

Variations in micronutrient availability can impact the virulence and physiology of AIEC (27, 97 

28, 39). Therefore, culturing AIEC for mechanistic studies necessitates using a simplified base 98 

media that allows for precise nutrient manipulation. During our studies, we observed that 99 

modified M9 minimal media (MM) does not sustain NC101 growth in vitro. We hypothesized 100 

that NC101 was an auxotroph. Through nutrient supplementation studies, we discovered that 101 

NC101 requires nicotinic acid (NA, niacin, Vitamin B3) for growth. NA auxotrophy was not 102 

observed in other non-toxigenic laboratory E. coli strains (K12 or 25922), AIEC, or non-AIEC 103 

human intestinal strains (40). Genetic evaluation revealed that NC101 has a missense mutation in 104 

the NAD biosynthesis gene (nadA) that encodes for quinolinate synthase A. Importantly, we 105 

generated a prototrophic NC101 revertant strain that eliminated E. coli micronutrient restraints. 106 
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Correcting NC101 auxotrophy had negligible impact on NC101 function, including motility and 107 

AIEC-defining survival in macrophages. 108 

NC101 micronutrient constraints have limited our ability to perform in vitro functional studies, 109 

which often require careful nutrient manipulation. Overall, our findings will enable precise 110 

nutrient manipulation for mechanistic studies on auxotrophic microbiota members, like AIEC, 111 

Shigella spp., or Uropathogenic E. coli (41–44). Importantly, our work will facilitate in vitro 112 

functional assays and small molecule purification efforts with the pro-inflammatory and pro-113 

carcinogenic AIEC strain NC101. Furthermore, these studies will broadly improve our 114 

understanding of the microbiota in intestinal diseases like IBD and CRC. 115 

 116 

Results 117 

The pro-carcinogenic adherent-invasive E. coli strain NC101 requires nicotinic acid to 118 

sustain growth 119 

During in vitro studies to evaluate AIEC function in long-term culture (24+ hr), we attempted to 120 

passage NC101 in modified M9 minimal media (MM) that includes glycerol and casamino acids. 121 

NC101 can successfully be subcultured from Luria-Bertani (LB) agar or broth, a rich medium, to 122 

MM (17, 28). However, NC101 failed to grow when subcultured from MM to MM (Fig. 1A-C). 123 

We hypothesized that NC101 was an auxotroph, unable to synthesize a key nutrient found in the 124 

murine gut. Shigella spp., a transient gut pathogen and close relative of E. coli, are generally 125 

nicotinic acid (NA, Niacin, Vitamin B3) auxotrophs (41, 43–45). Thus, we specifically tested 126 
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whether vitamin supplementation could restore NC101 growth in MM. Supplementing MM with 127 

a complex Vitamin Mix (VM) restored NC101 growth at 8hr and 24hr (Fig. 1A-B). 128 

To identify which vitamin(s) in the VM were essential for NC101 growth, we supplemented MM 129 

with individual or combinations of VM components and assessed NC101 growth. Tryptophan 130 

supplementation was also tested, as tryptophan metabolism can be influenced by host-microbe 131 

interactions in the gut (46). Only MM containing NA, alone or in combination, sustained NC101 132 

growth in MM at 8hr and 24hr (Fig. 1B). Further, NA alone restored normal NC101 growth 133 

kinetics in MM and significantly enhanced growth at 24hr (Fig. 1C). NC101 grew when 134 

subcultured from MM to LB, indicating NC101 does not have a global growth defect (Fig. 1A-135 

C). Together, these data suggest NC101 is an NA auxotroph. 136 

NA auxotrophy is not a defining feature of non-toxigenic E. coli 137 

Resident non-toxigenic E. coli are common among the intestinal microbiota and many are 138 

considered commensal strains (15, 16). Yet, other E. coli (e.g. AIEC) are associated with chronic 139 

intestinal inflammation and may be referred to as pathobionts (15, 19). We questioned whether 140 

NA auxotrophy was shared across clinically derived non-toxigenic E. coli. In addition to 141 

evaluating model E. coli strains (K12 and 25922), we evaluated clinical specimens isolated from 142 

the intestinal mucosa of IBD or non-IBD patients (E. coli LF82, 42ET-1, 568-3, HM670, 37RT-143 

2, 532-9, and 39ES-1) (40, 47, 48) (Table 1). These clinical isolates have been characterized in 144 

the lab from which they originated for AIEC status, and at least partial genome sequences are 145 

available for all strains (40). To determine the extent of NA-dependency among these strains, we 146 

passaged isolates in MM with and without NA and assessed growth by measuring optical density 147 

(OD600) at 2hr, 4hr, 8hr, and 24hr (Fig. 2A). We again observed that NC101 had a growth defect 148 
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in MM, detectable at 2hr and continuing through 24hr (Fig. 2A). However, all examined 149 

laboratory strains and clinical isolates grew in MM with and without NA. (Fig 2A). Therefore, 150 

NA auxotrophy does not appear to be a defining characteristic shared by non-toxigenic resident 151 

intestinal E. coli.  152 

LF82 is a well-known human-derived AIEC strain that can grow in MM without NA (48) (Fig. 153 

2A-B). We directly compared the growth kinetics of NC101 and LF82 in MM with and without 154 

NA (Fig. 2B). While early growth of LF82 in MM was minimally enhanced by NA, this 155 

difference was indistinguishable by 6hr (Fig. 2B). Thus, the prototypic AIEC strain LF82 does 156 

not exhibit NA auxotrophy. Combined with our findings in Fig. 2A, we conclude that NA 157 

auxotrophy is not an AIEC-defining feature.  158 

NC101 has a defect in the de novo NAD biosynthesis pathway 159 

NA is a precursor for NAD biosynthesis (41). NAD is an electron carrier and an essential 160 

cofactor for bacterial metabolism (41). In E. coli and related bacteria, NAD can be synthesized 161 

de novo from L-aspartate (L-asp) through the generation of quinolinic acid (quinolinate, Qa). In 162 

this process, Quinolinate synthase A and B (encoded by nadA and nadB, respectively) catalyze 163 

the oxidation of L-asp to iminoaspartate and condensation with dihydroxyacetone phosphate to 164 

generate quinolinate (41). Quinolinate is converted to nicotinic mononucleotide (NaMN) by a 165 

nadC encoded enzyme and ultimately NAD via enzymes encoded by nadD and nadE (41). NAD 166 

biosynthesis can also occur through salvage pathways that utilize vitamin precursors like NA or 167 

nicotinamide (Nm) (41, 43, 49) (Fig. 3A). 168 

Since NA restored the growth of NC101, we predicted that NC101 had a defect within the NAD 169 

biosynthesis pathway. To determine whether this was the case, we assessed NC101 growth in 170 
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MM supplemented with key NAD biosynthesis intermediates: L-asp, Qa, Nm, NA, and NAD. L-171 

asp failed to consistently sustain NC101 growth in MM. Conversely, Qa sustained NC101 172 

growth in MM and Nm, NA, and NAD significantly restored growth across all timepoints (Fig. 173 

3B). Growth curves revealed the kinetics of enhanced NC101 growth in the presence of the 174 

restorative NAD biosynthesis intermediates: Qa, Nm, Na, and NAD (Fig. 3C). When examining 175 

the NAD biosynthesis pathway, this indicated that NC101 likely had a defect in the NAD 176 

biosynthesis genes nadA or nadB (Fig. 3A)  177 

NA auxotrophy in NC101 is linked to a mutation in NAD biosynthesis gene nadA 178 

After our growth supplementation assays revealed a likely defect in nadA or nadB, we sought to 179 

identify the genetic factor(s) responsible for NA auxotrophy in NC101. We performed whole 180 

genome sequencing on wild-type (WT) NC101 and compared the sequence to prototrophic E. 181 

coli, LF82 and K12. Sequencing revealed that WT NC101 has a missense mutation in nadA 182 

(T263G) that was associated with auxotrophy (Fig. 4A).  183 

To further validate the genetic determinants of NC101 NA auxotrophy, we generated a 184 

prototrophic strain by passaging WT NC101 on MM agar plates in the absence of NA (42). 185 

Sequencing of a selected spontaneous prototrophic revertant, termed NADerivative or NAD NC101, 186 

revealed that NAD NC101 had a single nucleotide substitution in nadA (G263T, compared to 187 

WT) that matched the prototrophic E. coli strains LF82 and K12 (Fig. 4A). It is important to note 188 

that NAD NC101 also had a silent mutation in an intergenic region that was absent from WT 189 

NC101, but we predict this mutation had no impact on NAD NC101 prototrophy (Accession 190 

#SAMN16810912) (Table 2). To support that NA auxotrophy is due to the observed nadA 191 

mutation, our whole genome sequencing revealed that two other NC101 spontaneous 192 
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prototrophic revertants had missense mutations in nadA – one of which shared the same nadA 193 

(G263T, compared to WT) nucleotide substitution as NAD NC101 (Accession #SAMN16810913 194 

and #SAMN16810914) (Table 2).  195 

To confirm that the NAD revertant restored prototrophy, we grew WT NC101 and NAD in MM 196 

with and without NA. NAD grew significantly better in MM versus WT NC101 at 24hr (Fig. 197 

4B). Growth of NAD in the absence of NA was the equivalent to WT grown with added NA, as 198 

noted by overlapping growth curves (Fig. 4B). The addition of NA did not significantly enhance 199 

NAD growth in MM, suggesting NA auxotrophy was successfully eliminated in this strain (Fig. 200 

4B). These findings are consistent with the literature, which indicates NadA is important for 201 

NAD biosynthesis and mutations in nadA can drive NA auxotrophy in E. coli, Shigella spp., and 202 

Salmonella spp. (41, 43, 44, 50). Therefore, our data support that NC101 NA auxotrophy is due 203 

to a mutation in nadA.   204 

Correcting NA auxotrophy in NC101 has negligible impact on bacterial motility or AIEC-205 

associated survival in macrophages 206 

To determine if correcting NA auxotrophy impacted AIEC physiology and interactions with 207 

mammalian cells, we assessed WT and NAD NC101 for motility and survival in macrophages. 208 

Motility is not an AIEC-defining feature, but hypermotility has recently been linked to changes 209 

in AIEC:host interactions (19, 51). Due to the WT NA auxotrophy, motility was only assessed on 210 

MM agar plates supplemented with NA. There was no significant difference in motility between 211 

WT and NAD NC101 in the presence of NA (Fig. 5A). However, the motility of both WT and 212 

NAD NC101 differed significantly from the non-motile control mutant, NC101 ΔfliC (flagellar 213 

filament structural protein) (51) (Fig. 5A).  214 
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A key feature of AIEC is enhanced survival in macrophages, a characteristic linked to their pro-215 

inflammatory activities (26, 52). To evaluate whether the identified nadA mutation impacted 216 

AIEC-defining survival in macrophages, WT and NAD NC101 were subcultured in MM with and 217 

without NA and used to infect macrophage cell cultures, which were also maintained in the 218 

presence or absence of NA. Despite the expected differences in culture densities between WT 219 

and NAD strains upon subculturing in MM without NA (Fig. 1C), we could obtain a sufficient 220 

amount of WT NC101 to infect with an equivalent multiplicity of infection for all experiments. 221 

Baseline macrophage cell culture media contains an excess of NA, so as expected, there were not 222 

WT NC101 survival defects in the infection assay. Importantly, we found there were no 223 

significant differences in AIEC intramacrophage uptake (1hr) or survival (24hr) between WT 224 

and NAD NC101 in the presence or absence of NA supplementation (Fig 5B-D). Therefore, 225 

eliminating NA auxotrophy in NAD NC101 had negligible impact on these AIEC-associated 226 

functions.   227 

 228 

Discussion 229 

E. coli are common members of the mammalian microbiota (15, 16). Many E. coli isolates are 230 

prototrophic (41). However, a study identified that NA auxotrophy was common among the B2 231 

phylotype of E. coli strains that are usual intestinal inhabitants (41). Herein, we illustrate that the 232 

AIEC strain NC101 (phylotype B2) is an NA auxotroph due to a missense mutation in NAD 233 

biosynthesis gene nadA. These findings are significant, as NC101 is an established AIEC often 234 

used for studies on IBD and CRC; yet, NA auxotrophy in NC101 has not been defined (14, 17, 235 

18, 24, 31–33). 236 
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It is unclear why NC101 possesses NA auxotrophy versus the human-derived resident E. coli we 237 

examined (Fig. 2). Perhaps some feature of the murine intestinal environment promoted this 238 

NC101 characteristic. Genome reduction or loss-of-function mutations may facilitate adaptation 239 

to the intestinal microenvironment, as the decrease in biosynthetic cost of compounds likely 240 

provides an advantage when key nutrients are consistently present within an environment (53, 241 

54). It is possible that loss of NAD biosynthesis gene function represents a way in which AIEC 242 

NC101 adapted to survive within the murine host. For example, an abundance of NA in the 243 

murine diet may have permitted murine-adapted NC101 with a mutation in nadA to persist in the 244 

gut, despite NA auxotrophy. It is also possible that among the many stochastic mutations 245 

experienced by E. coli strains, this nadA mutation simply conferred no benefit or detriment, 246 

allowing it to persist as a resident microbe of the murine gastrointestinal tract.   247 

Besides reducing biosynthetic cost, Na/NAD play a key role in virulence and signaling across 248 

various microbial species, including E. coli, Shigella spp.,Candida glabrata, Bordetella 249 

pertussis, and Legionella pneumophila (41–44, 55–58) In E. coli, NA can regulate the 250 

EvgA/EvgS two-component regulatory system that drives multidrug resistance and acid 251 

tolerance (56, 59). While in Shigella spp., a pathogen but close relative of nonpathogenic E. coli, 252 

loss of functional NAD biosynthesis genes (often nadA and/or nadB) reduces Shigella virulence 253 

and alters interactions with host cells (44, 55). However, our results demonstrate that NA 254 

auxotrophy does not impact a pro-inflammatory and key defining feature of AIEC, survival in 255 

macrophages. 256 

The intestinal microbiota comprises a large/diverse collection of host-associated microbes, 257 

microbial genes, and products (6). Our lab and others have been interested in pro-inflammatory 258 

and pro-carcinogenic molecules derived from intestinal bacteria, namely yersiniabactin and 259 
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colibactin (17, 18). Many host-influencing microbial-derived molecules, often termed specialized 260 

metabolites, are produced by sophisticated multi-enzymatic machinery encoded by bacterial 261 

biosynthetic gene clusters. By nature, many of these specialized metabolites are difficult to 262 

isolate and purify in sufficient amounts for functional analysis. However, their production can 263 

often be activated by nutrient deficiency (12, 39, 60). Therefore, studies on specialized 264 

metabolites and their interactions with host cells often requires precise nutrient manipulation to 265 

study in vitro. To optimize the production of these unique bioactive molecules and reduce non-266 

essential media components that complicate purification, we have identified the minimal media 267 

components necessary to grow the model AIEC NC101 and generated an NC101 strain no longer 268 

restricted by NA auxotrophy. This strain, NC101 NAD, can easily be cultured in MM for 269 

functional studies or used to purify AIEC specialized metabolites. Ultimately this strain, NAD 270 

NC101, can now serve as a research tool to investigate how precise nutrient manipulation 271 

impacts AIEC behavior under minimal media conditions.    272 

In summary, our work in defining and correcting the NA auxotrophy in AIEC NC101 will 1) 273 

enable precise nutrient manipulation for in vitro studies on AIEC as they relate to IBD and CRC, 274 

2) inform culture-based methods to evaluate the function of other auxotrophic gut microbiota 275 

members and their metabolites, and 3) facilitate small molecule isolation and purification from 276 

the pro-inflammatory and pro-carcinogenic strain NC101. Long-term, we expect our findings 277 

will contribute to the identification of microbiota-derived prognostic and therapeutic targets for 278 

human digestive diseases. 279 

 280 

Materials and Methods 281 
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Bacterial strains: Descriptions of E. coli strains used in this study are listed in Table 1. NC101 282 

fliC was generated using the -red recombinase method, as previously described (17, 61). 283 

Primers used for ΔfliC generation are listed in Table 3.  284 

 285 

Media composition 286 

M9 minimal-defined media (MM) – 5X M9 salts: 64g Na2HPO4*7H2O, 15g anhydrous 287 

KH2PO4, 2.5g NaCl, and 5g NH4Cl brought to 1L in diH2O (62). Complete MM: 0.1mM 288 

CaCl2, 1X M9 salts, 2mM MgSO4, 0.4% glycerol, and 0.2% casamino acids (CAA, Sigma 289 

#2240) brought to 1L in diH2O. Where indicated, the following were added at these final 290 

concentrations: nicotinic acid (NA, Sigma #N4126), 50µg/L; L-aspartate (L-asp), 291 

200mg/L; nicotinamide (Nm), 50µg/L; and NAD, 1µg/L. 292 

  293 

Vitamin mix (VM), 100X stock: 2mg folic acid, 10mg pyridoxine hydrochloride, 5mg 294 

riboflavin, 2mg biotin, 5mg thiamine, 5mg nicotinic acid, 5mg calcium pantothenate, 295 

0.1mg vitamin B12, 5mg p-aminobenzoic acid, 5mg thioctic acid, and 900mg 296 

monopotassium phosphate brought to 1L in diH2O and aliquoted into 10mL stocks. One 297 

10mL stock was used per liter of media. Formulation is from ATCC and is based on 298 

Wolfe’s Vitamin solution (ATCC® MD-VS™).  299 

 300 

Overnight cultures: Bacterial strains were preserved at -80°C and grown overnight at 37°C on 301 

Luria Bertani (LB, Fisher Sc. #BP9722-2) agar plates. Isolated colonies were transferred to MM 302 

and grown overnight (>15hrs) at 37°C with shaking at 220 rpm. 303 

 304 
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Growth assays: Overnight cultures were centrifuged and washed three times with 1X phosphate 305 

buffered saline (PBS), to remove any trace compounds contained in the culture. Cells were re-306 

suspended and normalized by optical density (OD600) in test media. Cultures were grown at 37°C 307 

with shaking at 220 rpm. For passaging assays, OD600 was recorded at the indicated timepoints 308 

(2hr, 4hr, 8hr or 24hr). For growth curves, OD600 was recorded every 45min for 6hr and a final 309 

timepoint was recorded at 24hr.  310 

 311 

Spontaneous prototrophic revertant generation: WT NC101 was grown overnight in MM + 312 

NA, 5mL of the culture was centrifuged, and the supernatant discarded. The cell pellet was 313 

washed twice with 1X PBS and resuspended in 500µL 1X PBS. A 100 µl spot was spread onto 314 

each of five MM agar plates without NA. Plates were incubated at 37°C and monitored for 315 

growth of revertant colonies (42). Colonies were grown on MM without NA to confirm 316 

prototrophy and isolates were preserved at -80°C. Whole genome sequencing was performed to 317 

determine the location and nature of the mutation(s) leading to reversion. The revertant used in 318 

these studies was termed NC101 NADerivative (NAD). 319 

 320 

NC101 genome assembly: A complete NC101 genome was assembled from nanopore sequence 321 

using Minimap2 and Miniasm (63). The assembly was circularized and polished four times with 322 

Racon (64) followed by once with Medaka (Oxford Nanopore Technologies, 323 

https://github.com/nanoporetech/medaka). Matched Illumina sequence data was used to polish 324 

the resulting assembly using FMLRC (65) with parameters “-k 21 -K 30 -m 3 -f 0.05 -B 10”. The 325 

final polished genome was rotated and linearized such that it starts at the origin of replication. 326 

 327 
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Whole genome sequencing: Three spontaneous prototrophic revertants, including NAD, were 328 

sent for whole genome sequencing. Samples were sent to the Microbial 329 

Genome Sequencing Center (MiGS), formerly at the University of Pittsburgh, for genomic DNA 330 

extraction and Illumina 2x150 paired end sequencing on the NextSeq 550 331 

platform. Sequencing reads were mapped to our closed NC101 genome using CLC Genomic 332 

Workbench7.5.1 with average coverage of 85x for JA0257, 62x for JA0265, and 75x for 333 

JA0266. Sequences for LF82 (NC_011993.1) and K12 (NC_000913.3) were obtained from the 334 

National Center for Biotechnology Information (NCBI) and all alignments were analyzed via 335 

Geneious Prime version 2020.1.2. Assembled sequences from this study were deposited in NCBI 336 

and repository information is listed in Table 2. 337 

 338 

Motility: Isolates were grown overnight, as described above. A 1µL spot was used to inoculate 339 

the center of MM soft agar plates (MM + 0.25% agar) with NA. Plates were incubated at 37°C 340 

for 8hr and the diameters of motility swarms were measured.  341 

 342 

Macrophage survival assays: Bacterial intramacrophage survival was measured using the 343 

standard gentamicin protection assay for AIEC bacteria (26, 28). The J774A.1 murine 344 

macrophage-like cell line was used as a model and maintained according to ATCC standards in 345 

DMEM + 10% heat-inactivated FBS (DMEM, Gibco #11995-065). J774A.1 cells were seeded at 346 

2x105 cells/mL in 1mL media into 24-well plates (Falcon #353047) and grown overnight. The 347 

next day, bacterial overnight cultures were subcultured in MM with and without NA for 3hr. 348 

Before infection, J774A.1 monolayers were washed twice with 1X PBS. Then, subcultured 349 

bacteria were added at a multiplicity of infection (MOI) = 10 in cell culture media with and 350 
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without NA. Plates were spun at 180 × g for 5min. Prepared bacterial cultures were serial diluted 351 

and plated on LB agar plates to validate infection dose. 352 

 353 

After a 30min incubation at 37°C with 5% CO2, infected cultures were washed twice with 1X 354 

PBS and gentamicin-laden media was added (100µg/mL gentamicin for 1hr timepoint and 355 

20µg/mL for 24hr in DMEM + 10% FBS with and without NA). At 1hr and 24hr, cells were 356 

washed twice with 1X PBS and 500µL of 1% Triton X-100 in diH2O was added to each well for 357 

5min. Samples were mixed, serial diluted, and plated on LB agar plates to determine viable 358 

colony forming units (CFU). Percent intracellular bacteria = [(CFU/mL at 24hr)/(CFU/mL at 359 

1hr]×100.  360 

 361 

Statistics: Statistical analysis was performed using Prism version 9.0.0 (GraphPad software San 362 

Diego, CA). A Welch’s t test was used when two experimental groups were compared and a one-363 

way ANOVA with Dunnett’s T3 multiple comparisons test was used when 3 or more 364 

experimental groups were compared. Differences with a p-value less than 0.05 were considered 365 

significant. All experiments included at least 3 biological replicates with 1-2 technical replicates 366 

each, per timepoint. 367 

 368 

Data availability: Assembled sequences from our whole genome sequencing, above, were 369 

deposited in NCBI and repository information is listed in Table 2. 370 

 371 
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 576 

Figure legends 577 

Fig. 1. Nicotinic acid restores growth of E. coli NC101 in minimal media. (A) Wild-type 578 

NC101 was grown in Luria-Bertani (LB) broth, minimal media (MM), or MM + vitamin mix 579 
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(VM). Growth was measured at 8hr and 24hr by culture optical density, OD600. (B) NC101 was 580 

grown in LB, MM, MM + VM, or MM supplemented with individual or combinations of 581 

vitamins and tryptophan. OD600 was assessed at 8hr and 24hr. (C) Growth curve of NC101 in 582 

LB, MM, or MM + NA.  (A, B) Bars (n = 3) or (C) points (n = 4) depict mean +/- SEM. 583 

Significance (*) is shown compared to NC101 growth in MM at (A,B) each timepoint or (C) 584 

24hr and was determined at p < 0.05, using a one-way ANOVA with Dunnett’s T3 multiple 585 

comparisons test.  586 

 587 

Fig. 2. NA auxotrophy is not common among non-toxigenic E. coli strains, including 588 

prototypic AIEC LF82. (A) AIEC and non-AIEC E. coli isolates, were grown in minimal media 589 

(MM) with and without nicotinic acid (NA). Growth was evaluated at 2hr, 4hr, 8hr, and 24hr by 590 

OD600. (B) Growth curve of wild-type NC101 and LF82 (human-derived AIEC) in MM with and 591 

without NA. (A) Bars (n = 3-6) or (B) points (n = 3) depict mean +/- SEM. (A) Strains grown in 592 

MM were compared to NC101 grown in MM, and strains grown in MM + NA were compared to 593 

NC101 grown in MM + NA. Significance (*) is shown compared at (A) each timepoint or (B) 594 

24hr and was determined at p < 0.05, using a one-way ANOVA with Dunnett’s T3 multiple 595 

comparisons test. 596 

 597 

Fig. 3. NC101 has a defect in the de novo NAD biosynthesis pathway. (A) Illustration of NAD 598 

biosynthesis pathway in E. coli, including pathway intermediates and genes involved. 599 

Intermediates tested in E. coli growth assays are indicated by stars (blue restored growth, white 600 

did not). Bolded genes, nadA and nadB, are predicted to be responsible for NC101 auxotrophy. 601 

(B) Wild-type NC101 was grown in minimal media (MM), MM + vitamin mix (VM), or MM + 602 
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NAD biosynthesis pathway intermediates: L-aspartate (L-Asp), quinolinic acid (Qa), 603 

nicotinamide (Nm), nicotinic acid (NA), and NAD. Culture density was evaluated at 2hr, 4hr, 604 

8hr, or 24hr by OD600. (C) Growth curve of NC101 in MM with or without Qa, Nm, NA, or 605 

NAD. (B) Bars (n = 3-6) or (C) points (n = 3) depict mean +/- SEM. Significance (*) is shown 606 

compared to NC101 growth in MM at (B) each timepoint or (C) 24hr and was determined at p < 607 

0.05, using a one-way ANOVA with Dunnett’s T3 multiple comparisons test. 608 

 609 

Fig. 4. A missense mutation in NAD biosynthesis gene nadA confers NA auxotrophy in 610 

NC101. (A) Genetic alignment of partial nadA sequence from NA auxotrophic (Wild-type (WT) 611 

NC101) and prototrophic (NC101 NAD, LF82, and K12) E. coli. Nucleotide and amino acid 612 

sequences, noted by 1 letter abbreviations, are shown. The ruler displays nucleotide position of 613 

coding sequence. The identity bar displays regions of similarity (black) or dissimilarity (grey or 614 

blue). The highlighted amino acids show the region of noted dissimilarity (nadA G263T) 615 

between NA auxotrophic (grey) and prototrophic (blue) E. coli. (B) A growth curve of WT 616 

NC101 and prototrophic revertant NC101 strain (NAD) in minimal media (MM) with and 617 

without nicotinic acid (NA). Growth was measured by culture optical density, OD600. Points 618 

depict mean +/- SEM (n = 4). Significance (*) is shown compared to NC101 growth in MM at 619 

24hr and was determined at p < 0.05, using a one-way ANOVA with Dunnett’s T3 multiple 620 

comparisons test. 621 

 622 

Fig. 5. Correcting NA auxotrophy in NC101 has minimal impact on in vitro AIEC function. 623 

(A) Wild-type (WT) NC101, prototrophic NC101 NAD, and non-motile control NC101 ΔfliC 624 
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were grown on minimal media (MM) soft agar plates with nicotinic acid (NA). Diameter of 625 

motility swarm spots (mm) were measured at 8hr (n = 3-5). (B-D) J774A.1 murine macrophages 626 

were infected at a multiplicity of infection (MOI) = 10 with WT or NAD. Bacterial culture media 627 

before infection (“Bacteria”) or cell culture media during infection (“Macrophage”) were with or 628 

without NA supplementation. Number of bacteria are shown at (B) 1hr or (C) 24hr post-infection 629 

as Log10 colony forming units (CFU)/mL. (D) Percent survival = [(CFU/mL at 24hr)/(CFU/mL 630 

at 1hr]×100 (n = 3-4). Bars depict mean +/- SEM. Significance (*) is shown compared to WT 631 

NC101 and was determined at p < 0.05, using a (A) one-way ANOVA with Dunnett’s T3 632 

multiple comparisons test or (B-D) Welch’s t test.   633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 
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Figures     645 

 646 
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Tables 658 

Table 1 
    

Escherichia coli strains used in this study. 
    

Strain  Description of non-virulent 

E. coli strains 

Isolated 

from: 

Adherent-

invasive E. coli 

(AIEC) Status 

Reference 

or Source 

Wild-type 

(WT) NC101 

Streptomycin resistant (StrR) 

isolate of classical murine-

derived AIEC  

Laboratory 

E. coli isolate 

AIEC   (34), This 

study 

LF82 Classical human-adapted 

clinical AIEC isolate 

Crohn's 

disease 

patient 

AIEC   (48) 

42ET-1 Clinical AIEC isolate Non-IBDa 

patient 

AIEC   (40) 

568-3 Clinical AIEC isolate Crohn's 

disease 

patient 

AIEC   (40) 

K12 

(MG1655) 

Model E. coli strain Laboratory 

E. coli isolate 

Non-AIEC ATCC® 

700926TM 

25922 Model E. coli strain Patient Non-AIEC ATCC® 

25922TM 
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HM670 Clinical E. coli isolate  Crohn's 

disease 

patient 

Non-AIEC, but 

has enhanced 

survival in 

macrophages 

(47) 

37RT-2 Clinical E. coli isolate  Non-IBDa 

patient 

Non-AIEC (40) 

532-9 Clinical E. coli isolate  Crohn's 

disease 

patient 

Non-AIEC (40) 

39ES-1 Clinical E. coli isolate  Crohn's 

disease 

patient 

Non-AIEC (40) 

Nicotinic 

acid revertant 

(NAderivative 

or NAD) 

NC101 

Spontaneous prototrophic 

revertant of WT NC101 

(G263T mutation in nadA) 

Laboratory 

E. coli isolate 

N.D.b, but 

exhibits survival 

in macrophages 

This study  

NC101 ΔfliC Non-motile flagellin mutant 

derived from WT NC101 

Laboratory 

E. coli isolate 

N.D.b  This study  

aIBD = inflammatory bowel disease, bN.D. = not determined 
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Table 2 
      

 

Repository information for published genomic sequences. 
    

 

Accession Sample 

Name 

Strain Organ

ism 

Tax

ID 

BioProject Used 

in this 

study? 

URL 

SAMN16

810910 

JA0058 Original 

NC101 strain 

E. coli 562 PRJNA678

715 

No https://www.n

cbi.nlm.nih.go

v/biosample/S

AMN1681091

0/ 

SAMN16

810911 

JA0072 

(WT 

NC101) 

Streptomycin 

resistant 

(StrR) isolate 

of original 

NC101 

E. coli 562 PRJNA678

715 

Yes  https://www.n

cbi.nlm.nih.go

v/biosample/?

term=SAMN1

6810911 

SAMN16

810912 

JA0257 

(NAD 

NC101) 

Spontaneous 

prototrophic 

revertant of 

StrR NC101 

(G263T 

mutation in 

nadA) 

E. coli 562 PRJNA678

715 

Yes  https://www.n

cbi.nlm.nih.go

v/biosample/?

term=SAMN1

6810912 
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SAMN16

810913 

JA0265 Spontaneous 

prototrophic 

revertant of 

original 

NC101 

(G263T 

mutation in 

nadA) 

E. coli 562 PRJNA678

715 

No https://www.n

cbi.nlm.nih.go

v/biosample/?

term=SAMN1

6810913 

SAMN16

810914 

JA0266 Spontaneous 

prototrophic 

revertant of 

original 

NC101 

(T1014G 

mutation in 

nadA) 

E. coli 562 PRJNA678

715 

No https://www.n

cbi.nlm.nih.go

v/biosample/?

term=SAMN1

6810914 
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Table 3 
  

Primers used for strain construction. 
 

Primer Sequence (5'-3') Reference 

Knockout_fliC 

forward 

GGAAACCCAAAACGTAATCAACGACTTGCAATATAG

GATAACGAA TCATGATT CCGGGGATCCG TCGACC 

This study 
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Knockout_fliC 

reverse 

GTCAGTCTCAGTTAATCAGGTTACGACGATTAACCC

TGCAGCAGAGACAGTGTAGGCTGGAGCTGCTTCG 

This study 

fliC upstream GACGATAACAGGGTTGACGG This study 

fliC downstream ATTGCAATTCCCCTTGTAGG This study 
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