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Abstract. Cancer is a global health issue that places enormous demands on healthcare
systems. Basic research, the development of targeted treatments, and the utility of DNA
sequencing in clinical settings, have been significantly improved with the introduction of
whole genome sequencing. However the broad applications of this technology come
with complications. To date there has been very little standardisation in how data quality
is assessed, leading to inconsistencies in analyses and disparate conclusions. Manual
checking and complex consensus calling strategies often do not scale to large sample
numbers, which leads to procedural bottlenecks. To address this issue, we present a
quality control method that integrates somatic point mutations, allele-specific copy
numbers, and tumour purity into a single quantitative score. We demonstrate its power
via simulations, and on whole-genomes from PCAWG, on𝑛 = 2778 𝑛 = 10
multi-region whole-genomes of two colorectal cancers and on whole-exomes𝑛 = 48
from TCGA. Our approach significantly improves the generation of cancer mutation
data, providing visualisations for cross-referencing with other analyses. The method is
fully automated and designed to be compatible with any bioinformatic pipeline, and can
automatise tool parameterization paving the way for fast computational assessment of
data quality in the era of whole genome sequencing.

Introduction
Cancer remains an unsolved problem, and a key factor is that tumours develop as
heterogeneous cellular populations (Greaves and Maley 2012; McGranahan and
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Swanton 2017, 2015). Cancer genomes can harbour multiple types of mutations
compared to healthy cells (Macintyre et al. 2018; Martincorena et al. 2018, 2015;
Nik-Zainal et al. 2012), and many of these events contribute to the pathogenesis of the
disease, and therapeutic resistance. A popular design of studies intending to
understand tumour development involves collecting tumour and matched-normal
biopsies, and generating so-called “bulk” DNA sequencing data to identify both germline
and tumour somatic mutations (Barnell et al. 2019). Using bioinformatic tools to cross
reference the normal genome against a paired aberrant one, the mutations and
heterogeneity thereof found in the tumour sample can be derived and used in other
analyses. These analyses include, but are not limited to, driver mutation identification
(Bailey et al. 2018; Gonzalez-Perez et al. 2013), which aims to discern the key
aberrations that cause a tumour to grow, patient clustering, which aims to identify
treatment groups with similar biological characteristics, and evolutionary inference (Ding
et al. 2012; Landau et al. 2013; Caravagna et al. 2016; Jamal-Hanjani et al. 2017;
Turajlic et al. 2018; Caravagna et al. 2018; Roth et al. 2014; Miller et al. 2014; Cross et
al. 2018; Gerstung et al. 2020; Deshwar et al. 2015; Strino et al. 2013), which unravels
how a particular tumour developed from normal cells.

There are several types of mutations that we can retrieve from DNA sequencing
(ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 2020). Broadly
these can be categorized as single nucleotide variants (SNVs), copy number alterations
(CNAs) and other more complex changes such as structural variants (Li et al. 2020;
Zack et al. 2013). All types of mutations can drive tumour progression, and are therefore
important entities to study (Kent and Green 2017; Levine, Jenkins, and Copeland 2019).
Luckily, the steady drop in sequencing costs is fueling the creation of large datasets for
researchers to access through public databases. Notably, we are entering the era of
high-resolution whole-genome sequencing (WGS), a technology that can read out the
majority of a tumour genome, providing significant improvements over whole-exome or
targeted counterparts. Generating some of these data, however, poses challenges.
While SNVs are the simplest type of mutations to detect using bioinformatic analysis
and perhaps have the most well established supporting tools (Li et al. 2020), CNAs are
particularly difficult to call since the baseline ploidy of the tumour (i.e., the number of
chromosome copies) is usually unknown and has to be inferred (Van Loo et al. 2010;
Favero et al. 2015; Boeva et al. 2011; Poell et al. 2019; Cun et al. 2018; Fischer et al.
2014). CNAs are important types of cancer mutations; large-scale gain and loss of
chromosome arms or sections of arms can confer tumour cells with large-scale
phenotypic changes, and are often important clinical targets (Gerstung et al. 2020;
Watkins et al. 2020).
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SNVs and CNAs are intertwined mutation groups. They can overlap within a tumour
cell’s genome, meaning the number of copies of an SNV can be amplified or indeed
reduced by CNAs. This depends on the ploidy of the genome regions overlapping with
the variants. For instance, for a clonal - meaning present in every cell of the tumour
sample - heterozygous SNV in a diploid tumour genome the expected variant allele
frequency (VAF) is 50% (i.e., half of the reads from tumour cells will harbour the SNV).
Alternatively, if each chromosome is present in three copies (triploid), the expected VAF
is 33%, for SNVs occurring after amplification (or on the non-amplified chromosome), or
66%, for SNVs on the amplified chromosome. The theoretical frequencies are observed
with a Binomial noise model that depends on sequencing depth and VAF (Nik-Zainal et
al. 2012; Caravagna, Heide, et al. 2020; Roth et al. 2014; Miller et al. 2014; Strino et al.
2013; Tarabichi et al. 2021; Yuan et al. 2018). We note that these VAFs hold for pure
bulk tumour samples (100% tumour cells). Realistically, most bulk samples contain
normal cells, the percentage of which shifts these theoretical frequencies towards lower
values. These ideas are leveraged by methods that seek to compute the Cancer Cell
Fractions (CCFs) of the tumour, i.e., a normalisation of the observed tumour VAF for the
CNA, the number of copies of a mutation (mutation multiplicity) and tumour purity
(Dentro, Wedge, and Van Loo 2017).

Many bioinformatics pipelines are designed to start from a BAM formatted input file and,
following variant calling, extract the VAF of mutations while calling CNAs (Boeva et al.
2011; Cmero et al. 2020; Zaccaria and Raphael 2020; Van Loo et al. 2010; Fischer et al.
2014; Carter et al. 2012). These analyses are nearly always decoupled, and can return
inconsistent variant calls; i.e., CNAs and purity that mismatch the empirical VAF from
the BAMs. Since CNAs and purity are inferred through various measurements that are
subject to noise - i.e., tumour-normal depth ratios and B-allele frequencies are prime
examples - they are the most likely cause of error. While in some cases these errors
can be spotted and fixed by manual intervention, this process is also subject to
inconsistencies in the absence of a proper statistical framework, and does not scale in
studies seeking to generate very large datasets (ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium 2020; Priestley et al. 2019; Turnbull et al. 2018). The
intrinsic performance of a variant caller and sequencing noise therefore massively
impacts CNA calling and purity inferences, propagating errors in downstream analysis
that eventually lead to incorrect biological conclusions, becoming a crucial
computational bottleneck in the era of high-resolution whole-genome sequencing.

To solve these problems we developed CNAqc, a computational framework with a de
novo statistical model to assess the conformance of SNVs, CNAs, and purity estimates.
We strived to make the tool as simple as possible, maximising compatibility across
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differing pipelines. CNAqc computes a quantitative quality control (QC) score for the
overall agreement of the calls, which can be used to tune the parameters of callers
(e.g., decrease or increase purity), or select among multiple profiles (e.g., tetraploid
versus diploid tumours) until a good fit is achieved. In CNAqc we also integrate these
measures to determine Cancer Cell Fractions (CCF) after phasing mutation multiplicity
from VAFs (Dentro, Wedge, and Van Loo 2017).

CNAqc is implemented as a highly optimised R package which can be used between
somatic calling and downstream analyses (Figure 1a). CNAqc has a small
computational overhead compared to typical downstream analyses, e.g., subclonal
deconvolution, which are much more complicated because they interpret the clonal and
subclonal VAF spectrum (Gerstung et al. 2020; Nik-Zainal et al. 2012; Caravagna,
Heide, et al. 2020; Roth et al. 2014; Miller et al. 2014; Jamal-Hanjani et al. 2017). The
tool can process both WGS and WES data, and can automatically compute a QC score
in a matter of seconds, making it extremely useful for large-scale genomics consortia or
retrospective analyses of public datasets. To demonstrate the tool we analysed

high-quality whole-genomes from the Pan Cancer Analysis of Whole𝑛 = 2723
Genomes (PCAWG) cohort (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes
Consortium 2020), high-resolution bulk whole-genomes datasets from two𝑛 = 10
multi-region colorectal cancers, and whole-exomes from The Cancer Genome𝑛 = 48
Atlas (TCGA) cohort (Cancer Genome Atlas Research Network 2014).

Results

The CNAqc framework

CNAqc integrates clonal CNAs, tumour purity and somatic mutation calls obtained from
bulk sequencing (Figure 1). The tool is intended to be used after variant calling, and
before downstream analysis (Figure 1a), to compute a quality control score for
allele-specific CNAs and purity based on mutation VAFs, determining a PASS or FAIL
status for each segment type and the overall sample. CNAqc can also be used to select
among alternative genome segmentations and purity/ploidy estimates available from a
caller (e.g., a 100% pure diploid tumour versus a 50% pure tetraploid). The score also
suggests corrections for tumour purity to fine-tune tools that use Bayesian priors or
point parameters. Lastly, CNAqc can determine Cancer Cell Fractions (CCFs) for input
mutations, together with PASS or FAIL status; mathematical details are available in the
Online Methods.
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Figure 1. a. CNAqc integrates somatic mutations, allele-specific copy number segments and tumour purity estimates
to determine a sample-level PASS or FAIL status that reflects the consistency between the inputs. The status
depends on a quantitative score assigned to the calls, and a used-defined error tolerance. When a sample passes
quality control, the calls can be safely used for downstream analysis (e.g., subclonal deconvolution, etc.). Otherwise,
CNAqc suggests adjustments to the current purity estimates, which can be used to re-parametrise the copy number
caller. CNAqc can also be used to select among multiple fits to the input data that can be returned by a caller (e.g., a
diploid solution with twice the purity of an equivalent tetraploid). b. CNAqc supports copy states 1:0 (LOH), 1:1
(heterozygous diploid), 2:0 (copy neutral LOH), 2:1 (triploid) and 2:2 (tetraploid). These span ~93% of bases
sequenced and ~80% of the 600,000 segments available in PCAWG whole-genome samples. c.𝑛 = 2778
Theoretical VAF histogram for diploid 1:1 mutations in a tumour. A clonal heterozygous mutation has 50% VAF; all
mutations are observed with Binomial sequencing noise. The clonal mutations form a peak at 100% CCF, plus other
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features that characterise the tumour clonal composition (e.g., subclonal mutations, which are not required to quality
control clonal CNAs). d. The analogous case of a 2:1 tumour genome segment, where we expect 2 peaks in the VAF
originating from mutations present in one or two copies. The multiplicity of a mutation can phase whether it happened
before or after the CNA. For 2:1 we expect peaks at 66% and 33% VAF: both represent clonal mutations with 100%
CCF. e. Heatmap expressing equation (1), the relationship between allele-specific copy number segments, mutation
multiplicity and sample purity. The color reflects the expected VAF for the corresponding clonal mutations - i.e., if
CNAs and purity are correct, we expect a peak of clonal mutations at the corresponding matrix value. The distance
between the expected VAF and the empirical peaks in the VAF data gives the score metric used to quality control a
sample. f. Example quality control for SNVs mapping in triploid 2:1 heterozygous segments with 2 copies of the major
allele, and 1 copy of the minor allele, in a WGS assay reporting ~90% purity. The horizontal dashed lines are the
expected VAF peaks and determined from the table in panel (e) for the mutations in single or double copy. The𝑣

1
𝑣

2
,

black dots on the data are the peaks estimated by CNAqc, which determines that 2:1 segments and tumour purity
match the VAF data distribution since peaks fall within the area shaded around and . The PASS status of the𝑣

1
𝑣

2

sample is reflected by the green bar.

In what follows, we will refer explicitly to SNVs as the main type of mutation used by
CNAqc, but in principle other types of substitutions such as insertions or deletions also
apply. The method supports clonal heterozygous normal states (1:1 chromosome
complement), loss of heterozygosity (LOH) in monosomy (1:0) and copy-neutral (2:0)
form, trisomy (2:1) or tetrasomy (2:2) gains. According to data (Figure 1b) available in

PCAWG samples (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes𝑛 = 2778
Consortium 2020), the most common segments among human cancers are supported
by CNAqc (>80% of ~600.000 total PCAWG segments, 93% of sequenced bases, much
more prevalent than subclonal CNAs, Supplementary Figure S1). Therefore, besides
rare exceptions, CNAqc can analyse any cancer sample.

Many output metrics are derived from the link between “copy states” (i.e., the copies of
the major and minor alleles, which sum up to the ploidy of a segment) and allele
frequencies that we find in mutation calls. Combinatorial equations inspired from ASCAT
(Van Loo et al. 2010) are used to determine if CNAs and purity are consistent with
observed VAFs (Online methods). The key equation links our belief about the expected
VAF of a clonal mutation (i.e., the clonal VAF peak), if the input CNA segment and
tumour purity were correct (Figure 1c, 1d). We consider a tumour sample with purity

, and all CNA segments with allele-specific copy numbers and for theπ ∈ [0, 1] 𝑛
𝐴

𝑛
𝐵

major and minor alleles. If we consider mutations with multiplicity and mapping to any𝑚
of the segments with copy state (e.g., all 1:1, diploid heterozygous segments), we𝑛

𝐴
: 𝑛

𝐵

expect a VAF peak (Figure 1e) at

(1) .
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Notation explicits that the expected VAF, which is observed with Binomial noise,𝑣
𝑚

depends on the multiplicity of the mutation (Dentro, Wedge, and Van Loo 2017). For
copy states 2:0 ( , ), 2:1 and 2:2, phases mutations acquired before or𝑛

𝐴
= 2 𝑛

𝐵
= 0 𝑚

after the copy number event (Figure 1d). CNAqc supports simple copy states (1:0, 1:1,
2:0, 2:1, 2:2) and restricts , assuming the CNAs are acquired directly from𝑚 ∈ {1, 2}
diploid heterozygous normal states (1:1).

For each copy state, VAF peaks are detected via fast heuristics based on kernel density
estimation and maximum likelihood Binomial mixtures (Supplementary Figure S2). An
optimal peak is then selected and matched to , measuring the VAF distance between𝑣

𝑚

which is then converted into units of purity (Online Methods). The CNAqc sample score
(e.g., , ) is based on a linear combination of the distances,λ ∈ ℜ + 3% − 7%

representing an error that approaches 0 for perfect calls, reflecting corrections to the
input . The cut to determine PASS or FAIL is the error we can tolerate in the π ϵ > 0
purity estimate: e.g., for heterozygous diploid mutations with (2.5% maximumϵ = 0. 025
error) and real purity , CNAqc will PASS a tumour purity estimate in ,60% [55; 65%]
corresponding to VAF range . To normalise this error against aneuploidy[27. 50%; 32. 5]
and contamination, is adjusted for copy state, multiplicity and tumour purity (Onlineϵ
methods, Figure 1f).

CNAqc can also determine and score CCFs which are used for downstream subclonal
deconvolution (Van Loo et al. 2010; Nik-Zainal et al. 2012). Assuming input CNAs and
purity are validated by peak detection, CNAqc normalises the VAF of a mutation thatπ 𝑣
sits on segment in a tumour with the formula𝑛

𝐴
: 𝑛

𝐵

(2)

This equation applies to clonal and subclonal mutations, and the main difficulty in
obtaining the correct value for is determining if the mutation is in single or double copy𝑐

(multiplicity or ); we term this phasing from the VAF spectrum.𝑚 = 1 𝑚 = 2 𝑚

CNAqc uses a heuristic based on a two-component Binomial mixture to compute
multiplicities by clustering. The default method identifies a VAF range at the crossing of
the mixture components, where cannot be unequivocally phased. The phasing𝑚
uncertainty is estimated from the entropy of the mixture latent variables . For𝐻(𝑧) 𝑧
every copy state, depending on the maximum proportion of unassigned mutations that
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we decide to tolerate (e.g., 10% of total), a CCFs PASS or FAIL status is determined. An
alternative method is available, which can force a value to through a hard split on the𝑚
VAF, regardless of entropy values (Online Methods).

Figure 2. a. CNAqc visualisation of PCAWG sample ca5ded1c-c622-11e3-bf01-24c6515278c0 (DCC project code
LIRI-JP, hepatocellular carcinoma). Genome-wide allele-specific consensus CNAs (ploidy 2, purity ~85%). The
bottom plot reports the copies of the major and minor alleles in each segment, highlighting segments supported by
CNAqc. PCAWG reported two driver SNVs hitting genes CTNNB1 and ALB, which appear annotated in diploid
heterozygous segments (1:1). The top plot shows genome-wide somatic mutations with their depth of sequencing.
b,c,d. Read count data for the input SNVs: Variant allele frequencies (VAFs), depth of sequencing (DP) and number
of reads supporting the variant allele (NV). e. Cancer Cell Fractions (CCF) obtained from CNAqc for this sample show
that the two CTNNB1 and ALB drivers are clonal.

CNAqc provides several functions to visualise segments and read count data (Figure 2),
peak detection and CCFs (Figure 3), and utilities to smooth segments and detect
patterns of over-fragmentation (Online Methods). This information can be used to
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augment and prioritise downstream analysis that seeks to determine patterns of
chromothripsis, kataegis or chromoplexy from mutation and copy number data (Zack et
al. 2013; Gerstung et al. 2020).

Figure 3. a. Peak detection analysis assessing the quality of CNA segments and tumour purity, split by copy state
(see Figure 1f). Note that for copy states with total copy number >2 (2:1 and 2:0 here), multiple peaks are checked
independently; the quality control status of a copy state depends on the number of mutations assignable to each
peak, and whether the peak is matched or not. The sample-level status is a linear combination of results from each
copy state (PASS here, surrounding green rectangle). b. Cancer Cell Fractions (CCF) estimation for mutations
mapping to triploid (2:1) segments, obtained using the entropy-based method. The panels show CCFs and VAFs,
coloured by phased mutation multiplicity (single or double copy). The entropy profile is the dashed line above VAF;
areas in gray are crossings of Binomial densities where CNAqc cannot assign phaset multiplicity confidently from
VAF (19% of mutations). The CCFs for this copy state are PASS when we accept 20% of maximum unknown
multiplicities. c. Alternative CCF values computed by the CNAqc method that hard splits density peaks, and phases
mutations regardless of uncertainty. In this case the split is at the mid point where we expect.

Simulations

We tested CNAqc on ~20,000 synthetic VAF distributions obtained for different values of
coverage (30x, 60x, 90x, 120x) and purity (0.4, 0.6, 0.8, 0.95). For each dataset, we run
CNAqc with the input purity corrupted by a variable error factor , and scan multipleϵ

𝑒𝑟𝑟

levels of tolerance to match peaks.ϵ

We observed that the proportion of rejected samples approaches 100% when the purity
error exceeds tolerance ( ), suggesting that the model in CNAqc works asϵ

𝑒𝑟𝑟
> ϵ
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expected, i.e., we detect errors as big as tolerance. From simulations, we could observe
that VAF quality impacts performance, and that low coverage or purity make peak
detection harder (Supplementary Figure S3).

For the same batch of tumours we computed CCFs to measure their uncertainty - i.e.,
the number of mutations that CNAqc cannot phase from VAFs. Low coverage and low
purity generate VAF peaks that overlap, where exact multiplicity phasing becomes
unachievable. The performance gradient highlights the importance of data quality to
assess reliable CCFs (Supplementary Figures S4).

Large-scale pan cancer PCAWG calls

We have run CNAqc on the full PCAWG cohort, for which we gathered consensus calls
from SNVs, allele-specific CNAs and purity ( samples, 40 tumour types).𝑛 = 2778
Excluding samples with unsuitable data, we ran cases on a single multi-core𝑛 = 2723
machine in <1 hour (Figure 4).

Median depth of sequencing and purity are 45x and ~65% (Caravagna, Heide, et al.
2020), therefore the PCAWG resolution is comparable to the mid and low range of
parameters adopted in our simulations (Supplementary Figure S3). As expected, peak
detection passed samples using error purity tolerance, confirming2425/2723 ϵ = 0. 03 
that PCAWG consensus calls are top quality (Figure 4a). As in our simulations, the
acceptance rate was determined by tumour purity and coverage (Figure 4b), with purity
adjustments distributed around 0 for PASS samples, spreading towards left or right for
FAIL cases (Figure 4c).

Manual inspections of some samples presented some interesting cases. For instance,
tumours with low burden but high quality calls still yielded a useful report
(Supplementary Figure S6). Tumours with estimates of 100% purity which are at odds
with VAF peaks might suggest purity over-estimation (Supplementary Figure S7), while
other cases  did possess genuinely very high purity (>95%, Supplementary Figure S8).
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Figure 4. a. Peak detection quality control for WGS samples available in PCAWG. The plot shows the𝑛 = 2723
percentage of cases with PASS status, split by copy state, multiplicity and tumour type. The dots annotated report the
number of cases, the barplot the tumour types sorted by percentage of sample-level FAIL cases and the coloured
heatmap the sample classification (primary, metastatic etc.). b. Proportion of PASS cases split by purity (low, ,< 40%
high, , and mid-level) and median depth of sequencing (DP), after removing two samples with DP > 150. c.> 70%
Histogram of peak distances (expected versus observed) for clonal CNA segments in the 4 tumour subtypes with
most samples. The reported values are split by CNAqc PASS or FAIL status. d. Regression of tumour sample purity
against the proportion of CCF values that cannot be confidently assessed by CNAqc, split by copy state.

CCFs were computed for the whole PCAWG cohort. Consistently with simulated data,
the percentage of mutations for which CCF cannot be computed negatively correlated
with sample purity (Figure 4d and Supplementary Figure S4). We found the CCFs
produced by CNAqc (Supplementary Figure S9) are comparable to those computed by
Ccube (Yuan et al. 2018) across the whole cohort, but also found cases where CNAqc
helped to detect spurious subclonal clusters, which we could explain by miscalled
mutation multiplicities (Supplementary Figure S10).

Summarising, while peaks could be determined for almost all PCAWG samples,
mutation multiplicity assessment would have required higher coverage and purity. Our
analyses reveal that every type of computation - peak detection or CCF - has different
data quality requirements, and should therefore be quality controlled with specific
methods like the ones available in CNAqc.

Multi-region colorectal cancer data

We have run CNAqc on previously published WGS multi-region data (Cross et al. 2018;
Caravagna, Heide, et al. 2020), which was collected from multiple regions of primary
colorectal adenocarcinomas (10 samples, 2 patients, median coverage ~80x, purity
~80%, Figure 5). We augmented somatic mutations called by Platypus (Cross et al.
2018) with allele-specific CNAs and purity from Sequenza (Favero et al. 2015), and
used CNAqc to rank segments and purity obtained by multiple parameterizations of the
tool, which were defined considering also the alternative fitting solutions proposed
during the fit.

Sequenza was first run with the default range proposals for purity and ploidy, which we
then improved in a final run following CNAqc. From the default Sequenza runs, we
collected the proposed alternative solution, which was tetraploid 2:2 with halved purity.
We used these parameters to compute a de novo Sequenza fit with ploidy ranging
3.8-4.2, together with a run constrained with low purity. Runs for sample Set7_57
(patient Set7) highlighted that both Sequenza (not shown) and CNAqc are strongly
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confident about the diploid solution with the correct purity (Figure 5a). The peak
detection scores produced by CNAqc invariably fail both the tetraploid and low purity
solutions, passing the others; the little adjustment suggested to the default parameters
slightly improves the purity, but the overall quality is high even with default parameters
(Figure 5b) and the final segments for Set7_57 show mild aneuploidy (Figure 5c).

Figure 5. a. Circos plot for four possible whole-genome CNA segmentations determined by Sequenza with WGS
data (~80x median coverage, purity 87%). The input sample is Set7_57, one of four multi-region biopsies for
colorectal cancer patient Set7. The first run is with default Sequenza parameters. With CNAqc, we slightly adjust
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purity estimation and obtain a final run of the tool. Following Sequenza alternative solutions, we also fit a tetraploidy
solution to data, and one with maximum tumour purity 60%. b. Purity and ploidy estimation for the four Sequenza
runs. Arrows show the adjustment proposed by CNAqc, the default and final runs are the only ones to pass quality
control. c. Final run with Set7_57: allele-specific copy number segments and depth of coverage per mutation. d,e.
Miscalled tetraploid and triploid segments in the tetraploid and low purity Sequenza solutions, identified by CNAqc. e.
CNA calling with CNAqc and Sequenza for 4 WGS biopsies of the primary colorectal cancer Set7.

This case is instructive of how CNAqc can be used to assess miscalled CNA segments
ahead of the VAF data, for both tetraploid and low purity solutions (Figure 5d,e). With
CNAqc we obtained, in an completely automated manner, good mutations, copy
numbers and purity for all samples in patient Set_7 (Figure 5f and Supplementary
Figure S11), profiling a tumour consistent with a microsatellite stable colorectal cancer
(Cross et al. 2018). An equivalent result is also obtained for 6 WGS samples of patient
Set_6 (Supplementary Figure S12).

Whole exome data
CNAqc is conceptualised and designed to exploit properties of the VAF distribution in
high-resolution whole genomes. Lower-resolution whole-exomes can be analysed if the
reduced mutational burden does not compromise VAF quality, peak detection or
multiplicity estimation.

We tested CNAqc with WES from TCGA (Cancer Genome Atlas Research𝑛 = 48
Network 2014) lung adenocarcinomas samples available in the LUAD cohort (Online
Methods), selecting the lowest-purity and highest-purity cases to capture different levels
of data quality, which we could analyse successfully in most cases (Supplementary
Figure S13). Interestingly and in line with the multi-region colorectal cohort (Figure 5),
CNAqc could rank calls generated by multiple callers even with WES data. For instance,
for sample TCGA-53-7624-01A (Supplementary Figure S14), the TCGA consensus
measurement of purity estimations (CPE) obtained by running ESTIMATE (Yoshihara et
al. 2013), IHC, LUMP (Aran, Sirota, and Butte 2016) and ABSOLUTE (Carter et al.
2012) is ~80%. CNAqc showed that the CPE consensus is likely wrong, and that the
correct purity was estimated only by ABSOLUTE  (69%).

Discussion
WGS is a powerful approach to detect extensive mutations that drive human cancers.
Many large-scale initiatives such as PCAWG (ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium 2020), the Hartwig Medical Foundation (Priestley et al.
2019) and Genomics England (Turnbull et al. 2018) have already generated WGS data
for thousands of cancer patients, with many cancer institutes converging towards these
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efforts. Calling mutations from WGS data requires complex bioinformatics pipelines
(Barnell et al. 2019; Cmero et al. 2020; Li et al. 2020) and any downstream analysis
relies upon these calls, putting the quality of the generated data under the spotlight.

CNAqc leverages on statistical properties of VAF distributions from WGS, offering the
first principle framework to quality control the tumour mutation calls, allele-specific
clonal copy number segments and tumour purity. The tool can analyse SNVs and more
general types of nucleotide substitutions; SNVs are more reliable and depend less on
alignment quality, and should be checked first. CNAqc uses a peak detection analysis to
validate segments and purity, exploiting a combinatorial model for somatic alleles
applied to the most frequent CNAs found across human cancers. Within the same
framework, CNAqc also computes CCF values, highlighting mutations whose multiplicity
cannot be phased and are therefore uncertain. This can help to interpret subclonal
clusters found by downstream deconvolution tools. We have also shown that CNAqc
can process both whole-genome and whole-exome data, across data from different
callers. CNAqc features can be used to clean up data, automatising parameter choice
for any caller, prioritizing good calls and selecting information for downstream analyses.

The CNAqc framework leverages the relationship between tumour VAF and ploidy. The
quality of the control process itself depends on the ability to process the VAF spectrum
and detect peaks. Therefore, if the VAF quality is very low because, for example, the
sample has low purity or coverage, the overall quality of the check decreases, making it
more difficult to completely automate quality checking. However, for the large majority of
samples, CNAqc provides a very effective and efficient way to integrate quality metrics
in standard pipelines. We note that CNAqc is much faster than quality control by using
standard deconvolution tools (Supplementary Figure S15).

Generating high quality calls is a forerunner to more complex analyses that interpret
cancer genotypes and their history, with and without therapy (Ding et al. 2012; Landau
et al. 2013; Caravagna et al. 2016; Jamal-Hanjani et al. 2017; Turajlic et al. 2018;
Caravagna et al. 2018; Roth et al. 2014; Miller et al. 2014; Cross et al. 2018; Gerstung
et al. 2020; Deshwar et al. 2015; Strino et al. 2013). CNAqc can pass a sample at an
early stage, leaving the possibility of assessing, at a later stage, whether the quality of
the data is high enough to approach specific research questions. With the ongoing
implementation of large-scale WGS sequencing efforts, and the great amount of WES
data already available, CNAqc provides a good solution for modular pipelines that
self-tune parameters based on quality scores. To our knowledge, this is the first
stand-alone tool which leverages the power of combining the most common types of
cancer mutations - SNVs and CNAs - to automatically control the quality of cancer
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sequencing assays. We believe CNAqc can help reduce the burden of manual quality
checking and parameter tuning. In the future, this tool could be extended to consider
other types of CNAs (e.g., extrachromosomal DNA, ecDNA, or subclonal CNAs).
ecDNA fragments usually span small genomic regions (Zeng, Wan, and Wu 2020;
Verhaak, Bafna, and Mischel 2019) and involve copy states that are not yet supported
by CNAqc. Nevertheless, their specific role in amplifying oncogenes and driving tumour
evolution and drug resistance (Wu et al. 2019; Kim et al. 2020; Turner et al. 2017) is
becoming increasingly important. Adjusting for subclonal CNAs could improve the QC
especially at the local level and for those tumors characterized by a strong karyotypic
heterogeneity (Ha et al. 2014).

Data Availability

Multiregion colorectal cancer data is deposited in EGA under accession number
EGAS00001003066. PCAWG calls are publicly available at (https://dcc.icgc.org/), the
ICGC Data Portal. TCGA calls are publicly available at (https://portal.gdc.cancer.gov),
the GDC Data Portal.

Software Availability

CNAqc is implemented as an open source R package that is hosted at

https://caravagnalab.github.io/CNAqc/.

The tool webpage contains RMarkdown vignettes to run analyses, visualisation inputs
and outputs, and parametrise the tool. All analyses presented in this paper can be
replicated following those vignettes; multiregion colorectal cancer data to replicate our
analysis is hosted in the GitHub repository.

https://github.com/caravagnalab/CNAqc_datasets.
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Online methods
CNAqc supports the most frequent allele-specific clonal copy number profiles found in
human cancers (Supplementary Figure S1):

● heterozygous diploid states (1:1) ;1

● loss of heterozygosity (LOH) in monosomy (1:0) and copy-neutral (2:0) states;
triploid (AAB or 2:1) or tetraploid (AABB or 2:2) states.

Data supports this design choice. In the PCAWG cohort 36% of allele-specific CNA
segments are 1:1, 15% are 2:1, 11% are 1:0, 8% are 2:2 and 8% are 2:0. These are
>75% of the whole set of calls (>600,000 segments). Moreover, these segments span
93% of all CNA-covered bases in the whole PCAWG cohort. Moreover, in the same
cohort, clonal copy numbers are much more frequent, and span significantly larger
portions of the tumour genome, than subclonal counterparts obtained by the Battenberg
caller. In ~95% of PCAWG samples, >50% of the genome is covered by clonal CNAs.

1 The notation 1:1 is sometimes analogously expressed as genotype AB, 1:0 as A, 2:1 as AAB and 2:2 as AABB.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.02.13.429885doi: bioRxiv preprint 

http://paperpile.com/b/rqVmzs/NCPJ
http://paperpile.com/b/rqVmzs/NCPJ
http://paperpile.com/b/rqVmzs/NCPJ
http://dx.doi.org/10.1038/s41586-020-2698-6
http://paperpile.com/b/rqVmzs/NCPJ
http://paperpile.com/b/rqVmzs/xuhk
http://paperpile.com/b/rqVmzs/xuhk
http://paperpile.com/b/rqVmzs/xuhk
http://paperpile.com/b/rqVmzs/xuhk
http://dx.doi.org/10.1038/s41586-019-1763-5
http://paperpile.com/b/rqVmzs/xuhk
http://paperpile.com/b/rqVmzs/SbaF
http://paperpile.com/b/rqVmzs/SbaF
http://paperpile.com/b/rqVmzs/SbaF
http://paperpile.com/b/rqVmzs/SbaF
http://dx.doi.org/10.1038/ncomms3612
http://paperpile.com/b/rqVmzs/SbaF
http://paperpile.com/b/rqVmzs/S5zx
http://paperpile.com/b/rqVmzs/S5zx
http://paperpile.com/b/rqVmzs/S5zx
http://dx.doi.org/10.1101/484402
http://paperpile.com/b/rqVmzs/S5zx
http://paperpile.com/b/rqVmzs/rmmC
http://paperpile.com/b/rqVmzs/rmmC
http://paperpile.com/b/rqVmzs/rmmC
http://dx.doi.org/10.1038/s41467-020-17967-y
http://paperpile.com/b/rqVmzs/rmmC
http://paperpile.com/b/rqVmzs/r2oO
http://paperpile.com/b/rqVmzs/r2oO
http://paperpile.com/b/rqVmzs/r2oO
http://dx.doi.org/10.1038/ng.2760
http://paperpile.com/b/rqVmzs/r2oO
http://paperpile.com/b/rqVmzs/IzNo
http://paperpile.com/b/rqVmzs/IzNo
http://paperpile.com/b/rqVmzs/IzNo
http://dx.doi.org/10.1038/s41392-020-00403-4
http://paperpile.com/b/rqVmzs/IzNo
https://doi.org/10.1101/2021.02.13.429885
http://creativecommons.org/licenses/by-nc-nd/4.0/


Limiting CNAqc to support simple clonal CNAs comes with the advantage that mutation
multiplicities are easier to manage, at least from a computational perspective.

CNAqc supports two human reference genome assemblies (GRCh38 and hg19) and
makes the simplifying assumption that CNAs are acquired in a single step from an
heterozygous germline diploid state. For this reason, for tetraploid segments we only
consider the copy state 2:2, instead of 3:1 or 4:0.

CNAqc is conceptualised to work with high-resolution - i.e., high purity and coverage -
whole-genome sequencing (WGS) data, but can also be applied to whole-exome (WES)
data. The main challenge with WES or low coverage/purity WGS data is the reduced
mutational burden and noise in the VAF, which decreases the signal strength. The key
determinant to detect VAF peaks is the number of mutations per copy state, with the
idea that thousands from a high-quality WGS assay, are certainly better than hundreds
from WES or from low-quality WGS. For tumours which are genomically unstable, or
exposed to endogenous mutant factors such as smoking or UV-light, or with high
mutation rate like microsatellite unstables, the observable mutational burden in exomes
might be suitable for CNAqc analysis. A general main disadvantage of low-quality data
is that the automation process available via CNAqc might be more difficult, reporting
false positives or negatives. In those cases we suggest performing a manual inspection
of the proposed scores to optimise the tool, and check consistency against our intuition.

Expected clonal VAF peaks given CNAs and purity

A bulk is a mixture of tumour and normal cells present in proportion and ,π > 0 (1 − π)
respectively. We derive a simple equation describing our belief about the position of the
clonal VAF peak in the data, assuming the input clonal segments and purity are correct.
This equation is segment-specific, and links all segments with the same allele-specific
copy number profile. In this manuscript, we denote as allele-specific segments𝑛

𝐴
: 𝑛

𝐵

with copies of major allele and and of the minor allele. For instance, with 1:0 we𝑛
𝐴

𝑛
𝐵

denote , with 1:1 we denote , etc.𝑛
𝐴

= 𝑛
𝐵

= 1 𝑛
𝐴

= 1,  𝑛
𝐵

= 0

We introduce the multiplicity (or copies) of a clonal mutation mapping on top of𝑚 ≥ 1
the considered segments. As in ASCAT (Van Loo et al. 2010), the expected proportion
of reads that can be attributed to a mutation with multiplicity is . The difference𝑚 𝑚π
between ASCAT and CNAqc is that the former considers germline single-nucleotide
polymorphisms, while the latter considers somatic mutations (i.e., germline is removed);
besides this difference, the conceptualisation is similar. For segments , the𝑛

𝐴
: 𝑛

𝐵
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proportion of all reads from the tumour is . Here we term the ploidyπ(𝑛
𝐴

+ 𝑛
𝐵

) 𝑛
𝐴

+ 𝑛
𝐵

of the segments, remarking that is not the overall tumour ploidy. Similarly,𝑛
𝐴

: 𝑛
𝐵

assuming a healthy diploid normal, the proportion of reads that come from normal cells
is When we consider clonal mutations with multiplicity sitting on2(1 − π). 𝑚 𝑛

𝐴
: 𝑛

𝐵

segments, we would expect them to peak in the VAF distribution at value

(3)

This formula describes our belief about the position of the clonal VAF peak in the data,
assuming the input segments (determined by segments with and alleles) and𝑛

𝐴
𝑛

𝐵

purity is correct.π

The formula is intuitive and gives the expected results. Consider and1 = 𝑛
𝐴

= 𝑛
𝐵

π = 1

, i.e., heterozygous diploid segments in a pure tumour, since clonal mutations have
the clonal VAF should be ~50%, and in fact . Instead, for tetraploid𝑚 = 1 𝑣

𝑚
= 0. 5

segments obtained after whole-genome duplication, where we have and2 = 𝑛
𝐴

= 𝑛
𝐵

, under the simplifying assumption of CNAqc, clonal mutations could be present inπ = 1
single ( ) or double ( ) copy. Evaluating equation (1) we obtain for𝑚 = 1 𝑚 = 2 𝑣

1
= 0. 25

mutations in a single copy (25%, post-aneuploidy), and (50% VAF,𝑣
𝑚=2

= 0. 5

pre-aneuploidy).

Transforming VAFs to CCFs

There are several methods to compute CCFs from VAFs, allele-specific copy number
and purity. The equation used by CNAqc is inspired by seminal works (Van Loo et al.
2010; Dentro, Wedge, and Van Loo 2017), and converts the observed VAF of a𝑣 > 0
mutation with multiplicity into the CCF𝑚 𝑐

(4)

Note that all the parameters are as in eq. (1). Given input VAFs, CNAs andπ, 𝑛
𝐴

, 𝑛
𝐵

purity, the only quantity to be estimated to compute is , the multiplicity.𝑐 𝑚
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CCFs are proportional to VAFs, as we expect. Consider a heterozygous clonal diploid
mutation ( so ). Its expected VAF is 50% and1 = 𝑛

𝐴
= 𝑛

𝐵
= 𝑚 = π 𝑝 = 2 𝑐 = 1

reporting a correct 100% of cells with the mutation, which is clonal. The same formula
works for subclonal mutations. As another example, if a single-copy clonal mutation (

) sits in an amplified triploid state ( and ) and has a VAF of𝑚 = 1 2 = 𝑛
𝐴

1 = 𝑛
𝐵

= π

33% - 1 out of 3 copies - we have . The other type of clonal mutation that we can𝑐 = 1
observe in those types of segments has VAF of 66%, with 2 out of 3 copies and then its
CCF is again using equation (2).𝑐 = 1

Peak detection quality control for allele-specific CNAs and purity

Data peaks can be used to quality control (QC) both tumour purity and CNA segments,
following the intuition of equation (1). The procedure is summarised in pseudocode in
Supplementary Figure S2, and works by partitioning mutations by the copy states of the
segments (after mutation mapping on CNAs), and analysing them independently to
determine a PASS or FAIL status per mutation multiplicity. A sample-level PASS or FAIL
score is then computed by aggregating all statuses in a majority-based system, where
each copy state weights proportionally to the number of mutations it harbours (i.e., the
evidence from the data).

In CNAqc there are therefore three levels of PASS or FAIL status: i) for each VAF peak
in a given copy state, ii) overall for a copy state and iii) for the whole sample. This
allows subsetting of calls according to a fine-grained set of metrics, for instance passing
only some variants even if the overall sample fails.

The peak detection strategy take as input , the upper bound on the error that weϵ > 0
can tolerate on purity. For example, if , we can accept a 5% error on the purity;ϵ = 0. 05
if the true purity was 60% and the caller reported a value in range [55%, 65%], CNAqc
would pass the sample. The range associated to is adjusted to account for ploidy andϵ
mutation multiplicity, providing a conversion between errors measures in VAF and purity
units. The formula that we introduce is presented below.

Peak matching strategies. For every copy state, CNAqc matches either 1 or 2 peaks,
depending on the ploidy of the involved segments and multiplicity: one peak is matched
for 1:0 and 1:1, two for all others. Here we discuss the strategy to detect a generic peak,
assuming to work with copy state as in equation (1).𝑛

𝐴
: 𝑛

𝐵
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The tool implements methods (described below) to detect peaks in the VAF𝑛 𝑑
1
,..., 𝑑

𝑛

distribution, and match them against , the expected clonal VAF for a peak with𝑣
𝑚

multiplicity . The matching of , determines the PASS or FAIL status for the𝑚 𝑣
𝑚

associated multiplicity. To compute the match we select one among that is𝑑
*

𝑑
1
,..., 𝑑

𝑛

close enough to , where the choice of can be done in two ways:𝑣
𝑚

𝑑
*

● by closest hit match, where is the data peak that is closest to , i.e.𝑑
*

𝑣
𝑚

, where ranges ..𝑖 1,..., 𝑛
● by rightmost hit match: where is taken from the subset of peaks𝑑

*

on the right of the expected peak, and is the largest𝐷 = {𝑑
𝑖

> 𝑣
𝑚

| 𝑖 = 1,.., 𝑛} 𝑑
*

possible value (most right apart).

The CNAqc default strategy is the first, which selects as the peak closest to . The𝑑
*

𝑣
𝑚

second strategy is more stringent, but can help identify miscalled segments. Consider
for instance a diploid 1:1 copy state, if in the pool of putative diploid mutations some
should have been associated to LOH segments (miscalled), an extra VAF peak is
expected on the right of the clonal cluster. The rightmost hit match strategy will
associate the theoretical peak to the LOH one, flagging the diploid segment as FAIL𝑣

𝑚

because the LOH peak will be far off the clonal peak.

When we match the peaks, the desired purity error gets rescaled depending on theε
copy state , following this general equation𝑛

𝐴
: 𝑛

𝐵

(5)

This means that, in order to match a purity error , we create a range of acceptanceε
based on , as we discuss below. In this equation we interpret the VAF as a function ofϵ

𝑚

tumour purity and, assuming to be small, we truncate the Taylor expansion of ( + )ϵ  ν
𝑚

π ϵ

at the first order.

Notice that the error on the VAF depends in general on purity and multiplicity. Consider,
for instance, a segment with copy state 2:1 for a tumour with purity 90%, (5%)ε = 0. 05
corresponds to an error in the VAF of approximately 1% and 2% for the VAF peaks with
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multiplicity respectively. Inverting equation (3), one can express the purity as𝑚 = {1, 2}
a function of the VAF, ploidy and multiplicity and derive the error propagation formula
from the VAF space to the purity space used in CNAqc. Using the same approach of
equation (5), we treat the purity as a function the VAF, shift the VAF by a small error  ϵ

𝑚

and truncate the Taylor expansion at the first order to get

(6) ,

(7) .

Peaks are matched by including a VAF tolerance , which helps ameliorate theϵ
𝑉𝐴𝐹

> 0

fact that we do not explicitly model noise affecting peak detection. The intervals

(8) and𝐼
𝑚
𝑉𝐴𝐹  = [𝑑

*
− ϵ

𝑉𝐴𝐹
;  𝑑

*
+ ϵ

𝑉𝐴𝐹
] 𝐼

𝑚
= [𝑣

𝑚
− ϵ

𝑚
, 𝑣

𝑚
+ ϵ

𝑚
]

are created with centre at , the matched peak in the VAF, with size , and tested𝑑
*

2ϵ
𝑉𝐴𝐹

for overlap with the interval If overlaps with , i.e., , the𝐼
𝑚

. 𝐼
𝑚
𝑉𝐴𝐹 𝐼

𝑚
|𝐼

𝑚
𝑉𝐴𝐹 ∩ 𝐼

𝑚
| > 0

clonal peak for multiplicity is matched by , and therefore receives a PASS status.𝑚 𝑑
*

Otherwise it receives a FAIL status.

The PASS or FAIL status per copy state with two possible multiplicity values is defined
by taking the status of the peak associated with the largest number of mutations .𝑛

𝑚

The value of is determined by binning the VAF distribution with 100 bins (from 0 to 1,𝑛
𝑚

with size 0.01), and counting the number of mutations that associate to the bin of the
matched peak. In this way, we PASS a copy state if the tallest of its peaks is a PASS,
and is associated with more mutations than any FAIL peak.

The sample-level QC status is based on an error metric that uses the actual distance
between the centres of the intervals, and , which is given by .𝑑

*
𝑣

𝑚
𝑑

*
− 𝑣

𝑚
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CNAqc sample-level error metric. An error metric is assembled across copy states to
determine a sample-level PASS or FAIL status. Consider as the normalised number𝑤

𝑘

of mutations mapped to copy state , which we further rescale by 2 if the copy state is𝑘
supposed to have two peaks. For every copy state and every mutation multiplicity, we
have a PASS or FAIL from peak detection.

We split PASS ( ) from FAIL ( ) peaks, and define two scores per copy state by linear𝑃
𝑘

𝐹
𝑘

combination

(7) λ
𝑘,
𝑃𝐴𝑆𝑆 =

𝑑
*

𝑚 ∈𝑃
𝑘

∑ 𝑤
𝑘

(𝑑
*

𝑚  − 𝑣
𝑚

𝑘
)

(8) λ
𝑘,
𝐹𝐴𝐼𝐿 =

𝑑
*

𝑚 ∈𝐹
𝑘

∑ 𝑤
𝑘

(𝑑
*

𝑚  − 𝑣
𝑚

𝑘
)

where the subscript denotes the copy state (i.e., 1:0), and denotes the peak𝑘 𝑑
*
𝑘

matched for multiplicity in copy state . We define the overall sample score𝑚 𝑘 λ

(9) λ =
𝑘∈𝐾
∑ (λ

𝑘
𝑃𝐴𝑆𝑆 + λ

𝑘
𝐹𝐴𝐼𝐿)

where is the set of copy states 1:0, 1:1, 2:0, 2:1 and 2:2 supported by CNAqc.𝐾
Equation (9) is the linear combination whose terms can be either positive or negative,
depending on whether the matched peaks are on the right or left of the expected peaks.

The sample score is a weighted mean since by construction all the sum to one.λ 𝑤
𝑘

The overall status on the sample is taken by comparing and and selectingλ
𝑘,
𝑃𝐴𝑆𝑆 λ

𝑘,
𝐹𝐴𝐼𝐿

the status corresponding to the largest of the two.

Computing peaks from VAF. CNAqc implements a joint strategy to detect peaks𝑛
in the VAF distribution:𝑑

1
,..., 𝑑

𝑛

1. Kernel-based: via kernel density estimation with default adjustment 1 and fixed
bandwidth, a smoothed VAF profile is obtained. Peaks are then estimated from
the discretized smooth, using specialised R packages for peak detection and
removing peaks with density below 1/20 (empirical cut) of the maximum peak.
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2. Mixture-based: via Binomial mixture from the BMix (Caravagna, Heide, et al.
2020) package (https://caravagn.github.io/BMix/), a peak is associated with each
Binomial probability, for all mixture components.

The latter strategy is inspired by subclonal deconvolution methods, and computes the
model density for clusters (default ), with model-selection to optimise using𝑤 𝑤 < 5 𝑤
the Integrated Classification Likelihood score (Caravagna, Heide, et al. 2020); the
likelihood is

(10)

where are the mixing proportions of the mixture, not to be confused with sampleπ
𝑖

purity. Here we use a Binomial likelihood for successes determined as the number of𝑟
𝑥

reads with the mutant covering mutation , is the total trials given by the sequencing𝑥 𝑛
𝑥

depth at the locus, and the Binomial success probability Assuming that calls have𝑝
𝑖

passed the quality metrics for CNAqc, then is defined as the expected theoretical VAF𝑝
𝑖

from equation (1), so it is known. A key advantage of BMix over other deconvolution
tools is the fast maximum likelihood implementation, with full access to the model
parameters (e.g., latent variables).

CCF estimation

A lot of tools for downstream subclonal deconvolution compute CCFs to normalise
mutations, CNAs and purity, and cluster mutations. Some popular tools - e.g, PyClone
(Roth et al. 2014) - focus on cluster-level rather than per-mutation CCFs. For this
reason, not all deconvolution tools offer the same information accessible from CNAqc,
with Bayesian deconvolution algorithms in PyClone or DPclust being computationally
much more demanding than CNAqc (Nik-Zainal et al. 2012; Roth et al. 2014).

CNAqc offers a way to estimate CCFs and a PASS or FAIL status which can be used to
assess the quality of the estimates.

CCF computation. CNAqc offers two distinct approaches to compute CCFs:
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- Entropy-based computation: in which a Binomial mixture like in equation (10) is
peaked at the VAFs values from equation (1), and input mutations are phased𝑣

𝑚

to their multiplicity only if the mixture’s latent variables are well separated.
- Rough computation: in which a Binomial mixture is used and mutations are

phased regardless of the latent variables of the mixture

The entropy-based model can fail to compute the multiplicity of a mutation, and return
CCF values with NA associated; this is how uncertainty is reported in CNAqc. The latter
method, by design, will always assign a multiplicity .𝑚 ∈ {1, 2}

The final PASS or FAIL status of a copy state is determined from the proportion of
mutations with available CCF. Therefore, while the rough computation will always PASS
a copy state, this is not the case for the entropy-based method. By default, if more than
10% of the mutations per copy state have no available CCF, a FAIL is raised; the
percentage parameter can be set to arbitrary values.

We first detail the rough approach. We describe the case of copy states 2:0, 2:1 and
2:2, the others being trivial. To initialise a mixture analogous to equation (10):

1. we build two Binomial densities from the theoretical expectations of the VAF
peaks, i.e., and , depending on the copy state, as defined in equation (1).𝑣

1
𝑣

2

This will create, for instance, one Binomial with parameter and one with𝑝 = 0. 33
for a pure ( ) tumour and 2:1 copy state.𝑝 = 0. 66 π = 1

2. We fix - in equation (10) - the number of Binomial trials to the median coverage
of the considered mutations, and compute the 1% and 99% quantiles of the data
distributions to obtain a VAF range around each peak.

3. Finally, we count mutations that, according to VAF, map to either one or the other
computed range. The number of mutations and , associated to multiplicity𝑛

1
𝑛

2

and , is then used to obtain the normalised mixing proportions𝑚 = 1 𝑚 = 2 π
1

and to complete the model in equation (10).π
2

Densities are computed at steps 1 and 2, while mixing proportions are computed at step
3; with these parameters we can compute the mixture likelihood. Akin to mixtures, we
introduce the notion of latent variables as a matrix of mutations by clusters, for which𝑧
we define, the probability of assigning read counts data for mutation to component𝑛

With these latents, every row of matrix is a categorical random variable𝑖 ∈ {1, 2}. 𝑧
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reporting the probability of assigning or to a mutation, for which we can𝑚 = 1 𝑚 = 2
define the entropy in the standard way.

(10) .𝐻(𝑧
𝑛
) = − 𝑧

𝑛,1
𝑙𝑜𝑔(𝑧

𝑛,1
) − 𝑧

𝑛,2
𝑙𝑜𝑔(𝑧

𝑛,2
)

The entropy is maximal if , and the mutations are equally likely in single and𝑧
𝑛,1

= 𝑧
𝑛,2

double copies. It is minimal if and , or vice versa. If the entropy is low,𝑧
𝑛,1

= 1 𝑧
𝑛,2

= 0

the mutation is often difficult to phase to single or double copy mutations. The shape of
the entropy resembles - by construction - a growing curve with a central spike, which we
use to create a simple criterion to discriminate high from low entropy. The geometric
intuition of this criterion is extremely simple: at the crossing of Binomial densities
peaked at and at if the entropy is high we cannot confidently phase mutations to𝑚

1
𝑚

2

multiplicities. The amount of Binomial overlap depends on coverage and purity - this is
the technical reason CCF is more uncertain for low resolution data.

CNAqc inspects the entropy profile to determine peaks around the spike, using{ℎ
1
, ℎ

2
}

the same peak detection tool used for quality control. Every mutation in the range

(11) 𝐼
𝑁𝐴

= [ℎ
1
, ℎ

2
]

cannot be unequivocally assigned multiplicity values, and are therefore undetermined
using the entropy-based method.

The rough approach determines the midpoint between the two𝑜 = 𝑣
1

+  (𝑣
2

− 𝑣
1
)π

1

expected theoretical VAF peaks and , given the mixing proportion of the first𝑣
1

𝑣
2

π
1

mixture component. The midpoint is computed by weighting each of the two peaks
proportionally to the number of mutations that appear underneath each peak, which we
compute like with the entropy method. The midpoint is a cut: are phased to a𝑥 < 𝑜
single copy, values above to two copies. This procedure requires data with good
general quality because it assumes that all mutations can be phased correctly by a hard
VAF split, a fact that depends largely on coverage and purity.

When multiplicities have been determined, CCFs are computed with equation (2).

Genome fragmentation
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Some recently identified patterns of somatic CNAs can be attributed to the presence of
highly fragmented tumour genomes, termed chromothripsis and chromoplexy, or
localised hypermutation patterns, termed  kataegis (Cortés-Ciriano et al. 2020).

While these can be identified using dedicated tools, CNAqc offers a simple statistical
test to detect the presence of potential over-fragmentation in a chromosome arm, a
prerequisite that could point to the presence of such patterns. CNAqc analysis does not
substitute dedicated tools, but provides preliminary information to determine what parts
of the genome might be run with ad hoc methods.

The test works at the level of each chromosome arm (1p, 1q, 2p, 2q, etc.), and uses the
length of each input CNA segment to assign a “long segment” or “short segment” status.
This is determined by a cut parameter that is set, by default, to 20% (i.e., ).µ µ = 0. 2
Recent evidence from large pan-cancer studies can be used to calibrate this parameter
to cancer-specific values (Zack et al. 2013).

Then, a null hypothesis is used to compute a p-value using a Binomial test based on ,𝑘
the number of trials given by the total segments in the arm, and the observed number of
short segments . The Binomial distribution for is defined by , and the null is the𝑠 𝐻

0
µ

probability of observing at least short segments, and therefore we defined a one-tailed𝑠
test for whether the observations are biased towards short segments. The p-value is
adjusted for family-wise error rate by Bonferroni, dividing the desired -value by theα
number of tests.

This test is applied to a subset of chromosome arms with a minimum number of
segments, and that “jump” in ploidy by a minimum amount (empirical default values
estimated from trial data). The arm-level jump is determined as the sum of the
difference between the ploidy of two consecutive DNA segments. These covariates are
similar to those used to infer CNA signatures from single-cell low-pass WGS (Macintyre
et al. 2018).

Other features

CNAqc contains multiple functions to subset the data (i.e., select mutations that map
only to certain copy states, subset CNAs with a total ploidy, etc.), visualise the data (i.e.,
plot mutational burden by tumour genome) or smooth the input CNA segments.

Smoothing is an operation that can be carried out before testing for over-fragmentation.
In CNAqc, by smoothing we merge two contiguous segments if they have exactly the
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same allele-specific profile (i.e. same numbers for the major and minor alleles), and if
they are a maximum distance apart (e.g. 1 megabase by default). This operation does
not affect the ploidy profile of the calls, but reduces the amount of breakpoints that
would inflate the p-value of the Binomial over-fragmentation test.

Peak detection simulations

We tested CNAqc on a synthetic dataset of ~20.000 tumours, generated to mimic data
that we observed in real patient tumours.

We first simulated synthetic VAFs from clonal CNA segments generated with
breakpoints distributions following Poissons (6 segments per chromosome, on average.
We used a Dirichlet copy state concentration 1 for 1:0, 1 for 2:0, 6 for 1:1, 2 for 2:1 and
1 for 2:2). Then we simulated Poisson-distributed coverage with median depth 30x, 60x,
90x and 120x, and set purity to 0.4, 0.6, 0.8 or 0.95. The idea of this test was to
simulate a tumour with purity and run CNAqc with an input purity that contained aπ

positive or negative error , i.e., we imputed CNAqc purity . Then, forε
𝑒𝑟𝑟

π + ε
𝑒𝑟𝑟

different values of the input tolerance , i.e., the maximum purity error we want toϵ
tolerate in CNAqc, we run the tool with default peak-matching parameters and perform
quality control. Ideally, when the input error is lower than tolerance , ,ε

𝑒𝑟𝑟
ϵ ε

𝑒𝑟𝑟
< ϵ

CNAqc should pass the sample.

We performed the quality check applying an error on the purity varying in range [0; 0.2]
with intervals of length 0.02, setting a tolerance on the purity error ranging in [0.01; 0.05]
with intervals of length 0.004. We tested CNAqc on 100 simulated tumours for any
combination of all the considered parameters. We consistently observed that, as the
purity error exceeds tolerance , the proportion of failures approaches 100%ε

𝑒𝑟𝑟
ϵ

(Supplementary Figure S4). For instance, setting a tolerance parameter of 2%, we can
accept a purity error of 5% at most. Over this threshold the proportion of FAIL samples
increases reaching maximum at ~7%. One can check this behaviour for the samples of
purity 0.95 and coverage 90x: for a tolerance of ~2%, the proportion of rejected samples
is close to 0% when the purity error is smaller than 5%, it increases to 70-75% for a
purity error of ~5/6%, while for a purity error of ~10% the fail proportion is 100%. From
the test we also observed that the ability of CNAqc to detect samples with incorrect
purity improves consistently as we increase coverage, with this effect more evident for
samples with high purity.
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For the same tumours we also computed CCFs and the proportion of mutations for
which CNAqc could not phase multiplicity (only for copy states 2:0, 2:1, 2:2 since 1:0
and 1:1 have single multiplicity). We plot the percentage of unassignable mutations as a
function of purity in Supplementary Figure S5. We can see that the proportion
decreases as we increase coverage and purity, meaning that the computation of reliable
CCFs can depend largely on data quality. The observed trend was expected, since at
low coverage and purity we have the overlaps between clonal clusters which makes it
harder to phase multiplicity from VAFs.

Comparison to deconvolution methods

Some of the functioning of CNAqc is inspired by the design of subclonal deconvolution
methods (Roth et al. 2014; Nik-Zainal et al. 2012; Dentro, Wedge, and Van Loo 2017;
Jamal-Hanjani et al. 2017; Gerstung et al. 2020; Jiang et al. 2016; Caravagna, Heide, et
al. 2020; Caravagna, Sanguinetti, et al. 2020). Therefore, we sought to compare CCFs
by CNAqc with the one obtained by Ccube (default parameters), a CCF-computation
method developed by the PCAWG Evolution and Heterogeneity Working Group (Yuan
et al. 2018).

In Supplementary Figure S9 (panel a) we show the correlation among the CCF values
computed by Ccube and CNAqc (entropy method) in PCAWG. In the plot we annotate
the proportion of cases, split by copy state and mutation multiplicity, where the
estimates are different after rounding to the second digit. We observe that the tools
report the same CCF for ~99% of the analysed mutations, whenever CNAqc identifies a
reliable CCF value. We remark that a feature of CNAqc is reporting the percentage of
mutations where the CCF cannot be unequivocally determined. In the above statistics,
the CCF values are therefore computed only for mutations where the uncertainty is not
present in CNAqc. The information regarding uncertainty is however very helpful to
integrate CNAqc with other tools for CCF computations, as we show with two examples
from our test.

In Supplementary Figure S9 (panels b-g) we report an example PCAWG case where
the CCFs are in perfect agreement (1 out of 307 mutations in 2:2 segments with
different CCF). In Supplementary Figure S10, instead, we show a case where CNAqc
detects uncertainty in 14% of input triploid mutations, informing of potential challenges
in using CCFs for those mutations. In that case the uncertainty is explained by the
intermixing between two clonal picks in triploid 2:1 segments. Ccube assigns multiplicity
2 to a group of clonal SNVs at the right tail of the lowest clonal pick. The consequent
CCF distribution breaks the expected clonal peak around ~1, alluding to the presence of
two close CCF clusters. This is due to Ccube assigning some single-copy mutations
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, and vice versa. The entropy-based method by CNAqc highlights 14% of 2:1𝑚 = 2
mutations as uncertain, including the ones mistaken by Ccube. In turn, CNAqc assigns
a FAIL status to these mutations with default values (cutoff >10%). Notably, the CCF
distribution returned by CNAqc, which uses 86% of total mutations once the 14%
non-assignable are removed, is correctly peaked at ~1.

Errors in CCFs can affect downstream subclonal deconvolution, which in turn inflates
evolutionary statistics (e.g., number of subclonal clusters, clonal complexity). In this
example, miscalled multiplicities generate a spurious cluster in the CCF distribution fit
by Ccube, which leads to subclonal cluster 2 (panel g, Supplementary Figure S10).
Even after removal of 14% CCFs flagged as uncertain by CNAqc, Ccube still assigns
the wrong mutation multiplicity to a significant number of variants and infers the
spurious CCF cluster (panel h, Supplementary Figure S10). For this reason, reporting a
FAIL status in CNAqc informs that multiplicity computation in this sample is highly
confounded by intermixing of VAFs, cautioning the interpretation of downstream
deconvolution analyses.

Whole-exome sequencing data

There is an obvious difference between the richness of information that is available in a
whole-genome assay, compared to a whole-exome one. Similarly, there is a difference
between samples with high purity and coverage for current standards (e.g., WGS >60x
with 70% purity), and those with lower parameters.

We collected whole-exome data from lung adenocarcinoma samples available𝑛 = 48
in TCGA LUAD (Cancer Genome Atlas Research Network 2014), selecting the 24 ones
with top and bottom purity values, as of the consensus purity estimated by TCGA (CPE
score). We report example cases in Supplementary Figure 13, where PASS and FAIL
values are obtained by using somatic SNVs, CPE purity estimates and default CNAqc
parameters.

The case in panel (a), sample TCGA-53-7624-01A, is 84% pure and the inferred ploidy
is correct, but purity is slightly overestimated. The case in panel (b) is 82% pure, but
with a similar error pattern. The case in panel (c) is PASS with 30% purity; in this case it
is difficult to assess if the small peak matched by CNAqc is a noise artifact. This is an
example of a VAF distribution that is low resolution. The case in panel (d) is 83% pure
tumour, with good calls. The case in panel (e) is 32% pure and passed because most of
the tetraploid mutations seem legit, but it contains a poorly-peaked VAF distribution in
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triploid states (2:1, 47% of the overall mutational burden). In this case CNAqc struggles
to detect peaks from VAF; this is another example of low resolution VAF distribution.

CNAqc can also be used to select among multiple purity estimates provided by different
CNA callers, even with WES data. We focus on case (a) from Supplementary Figure
S13. In TCGA, we obtain purity estimates from CPE, which is the consensus among
ABSOLUTE, ESTIMATE, IHC and LUMP. We used CNAqc to assess the quality of the
estimates for the LUAD sample TCGA-53-7624-01A. For this sample, ESTIMATE, IHC
and LUMP agree and determine the value for CPE. We found that only ABSOLUTE
detected the true tumour ploidy (69%, Supplementary Figure S14), according to CNAqc.
This shows that CNAqc can be used to select among multiple purity estimates the value
that best integrates mutations and copy number data, even from WES assays, avoiding
in principle the need of consensus calling.

From these tests we conclude that CNAqc can also be used on WES data like the data
available in TCGA, possibly coupled with manual revision of critical cases.

Wall-time performance

The analysis of PCAWG showed that CNAqc is fast; in order to generalise that
assessment and understand how performance scales with sample size, we compared
the wall-clock time of CNAqc against common deconvolution tools.

We chose Sciclone (Miller et al. 2014), Ccube (Yuan et al. 2018) and Pyclone-vi (Gillis
and Roth 2020) to represent a diverse set of popular algorithms for deconvolution. To
build the dataset we subsetted all the mutations in diploid regions from a melanoma
sample of the PCAWG cohort (  DO220877) leading to a total of 207508 mutations. This
is the PCAWG sample with highest mutational burden in the cohort. Then, from those
207508 SNVs we sampled N={500,1000,25000,5000,1000,25000,50000} mutations;
this process was repeated 10 times to have 10 replicates for each N. The CNaqc
analysis for peak detection was run with default parameters. Similarly, default
parameters were also used for Sciclone (default one-dimensional deconvolution) and
Ccube (but with numOfRepeat=1); Pyclone-vi was run with beta binomial likelihood,
number of clusters from 1-10 and 30 repetitions (Supplementary Figure S15).

CNAqc turned out to be the fastest tool, capable of processing up to 500,000 mutations
in under one minute. Immediately after, tools based on variational inference were about
an order of magnitude slower. The latter two algorithms range from being 4 to 16 times
slower than CNAqc for our range of tests (consider the log-scale in the plot y-axis), and
the performance gap increased with larger N. Notably, Sciclone took an average of two
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hours to process 50,000 mutations, which is 128 times slower than CNAqc as
suggested by a log-difference of 5. In all tests, CNAqc, Ccube and Pyclone-vi scaled
approximately exponentially, while Sciclone showed a jump from 25,000 to 50,000
mutations. All simulations were performed on a machine with 36 Intel(R) Xeon(R) Gold
6140 CPUs @ 2.30GHz and 220 GB of RAM (Ubuntu 20.04 LTS, Python 3.8.2 and R
4.1.0).

Main Figures
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Supplementary Figures

Supplementary Figure S1. a. Proportion of PCAWG CNA segments split by copy state, obtained by
consensus calling across multiple callers with WGS samples of primary tumours. The matrix𝑛 = 2778
reports major and minor alleles, the colour and number reflects the proportion of CNA segments with that
copy state across total (e.g., 36% of segments are diploid heterozygous, 1:1). CNA segments used by
CNAqc are coloured in purple; in total, 78% of the overall set of segments (>600,000) can be processed
by our method (36% of segments are 1:1, 15% are 2:1, 11% are 1:0, 8% are 2:2 and 8% are 2:0). b.
Number of bases covered, and proportions relative to the total genome spanned by all the PCAWG

segments in panel (a). Diploid heterozygous segments cover over a thousand billion bases ),(> 1012

accounting for 58% of the genome covered by these segments. The segments supported by CNAqc are
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the top-5 most common segments reported across all PCAWG, covering 93% of all bases sequenced in
this cohort. c. Battemberg clonal and subclonal CNAs available in PCAWG. To simplify the visualisation
we remove outliers exceeding the 99-th quantile of the data distribution. Every dot is the percentage of
the tumour genome spanned by clonal segments, coloured by the number of segments per sample. So if
a sample has >50% of clonal segments it is above the horizontal dashed line. d. We rank by sorting the
percentages shown in panel (c) to note that only PCAWG samples (vertical dashed red line)𝑛 = 124
have more subclonal than clonal CNAs.

Supplementary Figure S2. Pseudocode of the peak detection algorithm and quality control strategy in
CNAqc, described in Online Methods.
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Supplementary Figure S4. CNAqc tests on synthetic tumours generated with different coverage and
purity. We report the proportion of rejected samples running the tools with an error on the simulated purity
(y-axis), and a tolerance to match peaks (x-axis).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.02.13.429885doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.429885
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure S5. a. For the simulated tumours in Supplementary Figure S4, we report the
proportion of mutations for which CNAqc does assign a CCF (uncertain in phasing multiplicities), as a
function of purity at fixed coverage values. The dashed line at 10% is the default parameter value to
determine the final PASS or FAIL status per copy state. b. As in panel (a), but fixing purity.
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Supplementary Figure S6. Example PCAWG medulloblastoma sample with low-mutational burden,
which passes data QC with CNAqc. a. Data for the sample (genome-wide CNA segments, CCF and read
counts distribution). Note that this sample has only 76 SNVs in diploid tumour regions, like we observe in
whole-exome assays. b,c. Peak analysis and CCF computation for diploid SNVs.
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Supplementary Figure S7. Example PCAWG sample with purity of 100%. a. Data for the sample
(genome-wide CNA segments, CCF and read counts distribution). b. This sample has 75% of its SNVs in
diploid tumour regions, where a small peak is detectable at the expected purity. The VAF clearly peaks at
~10%, possibly suggesting a purity of 20% or lower, rather than 100%. Further doubts about the current
purity come from non-diploid regions, where all peaks are mismatched; for this sample CNAs called with a
low-purity solution should be compared to the 100% purity solution. c. CCF computation for the sample.
Notice that in triploid and tetraploid tumour genomes we do not find mutations present in 2 copies. Was
this true then the tumour did not acquire any SNV right before the CNA. Also, here we are not
cross-checking QC results from peak detection; for instance we could decide to use only mutations that
map to PASS states (1:1, 2:2), and reject all others.
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Supplementary Figure S8. Example PCAWG pancreatic adenocarcinoma with 99% purity (and 3
possible driver SNVs, 2 of them involving tumour suppressor genes in LOH regions). a. Data for the
sample (genome-wide CNA segments, CCF and read counts distribution). b. This sample has 90% of its
SNVs in diploid tumour regions, and the others in a variety of distinct CNA segments. From a peak
analysis point of view, all the calls are validated. c. CCF values for this sample are also good.
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Supplementary Figure S9. a. CCF calculated by CNAqc using the “entropy” method against CCF
inferred by Ccube on 2396 samples from the PCAWG cohort. Results are divided by karyotype and
mutation multiplicity (taking as a reference the one inferred by CNAqc), mutations off the diagonal are
discordant between the two methods. On the bottom left, the percentage of those discordant mutations
over the total. b. CCF calculated by CNAqc using the “rough” method which assigns the multiplicity by
splitting the clonal clusters at VAF level. c. CCF inferred by Ccube. d. Multiplicity assigned by CNAqc, the
dashed black line depicts the splitting point to determine multiplicity. e. Multiplicity assigned by Ccube. f.
VAF split by Ccube for multiplicity assignment. g. CCF values between Ccube and CNAqc are in almost
perfect agreement (just one sample has different multiplicity). Point color is based on the multiplicity
estimated by Ccube.
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Supplementary Figure S10. a. CCF calculated by CNAqc using the “entropy” method which discards
mutations with high multiplicity uncertainty. b. CCF inferred by Ccube. The main difference between this
profile and the one inferred by CNAqc is a bump around CCF 0.6 c. Multiplicity assigned by CNAqc, in
grey the mutations with non-estimable multiplicity. d. Multiplicity assigned by Ccube, it can be noted how
Ccube always assigns a definite multiplicity value to each mutation. e. VAF split by Ccube for multiplicity
assignment. f. High-entropy mutations discarded by CNAqc in the Ccube CCF profile. We clearly see the
extra spike in CCF which could confound subclonal deconvolution, splitting the clonal cluster in multiple
clones. g. Ccube recognizes the spurious peak as a subclonal cluster, as it is not able to accomodate for
the overdispersion derived by the errors in multiplicity assignments with just one cluster. h. Even after
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removing the mutations with high entropy from the dataset and rerunning Ccube, we can still see a peak
caused by some mutations wrongly assigned to multiplicity 2. This is consistent with the choice of CNAqc
to FAIL the available CCFs for this karyotype.

Supplementary Figure S11 (multiple pages). Colorectal multi-region samples (one per page): Set7_55,
Set7_57, Set7_59 and Set7_62 for patient Set7. a. Allele-specific CNAs, and read data distribution
(bottom row). b,c. Peak analysis and CCF computation for the sample.
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Supplementary Figure S11 ends here.
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Supplementary Figure S12. a,b,c,d,e. Peak detection quality control with CNAqc, run with default
parameters on colorectal multi-region samples available for patient Set_6. All calls are passed
(surrounding green rectangles).
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Supplementary Figure S13. a-d. CNAqc quality control via peak detection on TCGA whole-exome
sequencing data of 5 lung adenocarcinomas (LUAD) with different purity values, selected from a cohort of
48 cases available online.
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Supplementary Figure S14. a-e. CNAqc quality control via peak detection for LUAD sample
TCGA-53-7624-01A - panel (a) of Supplementary Figure S13 - using purity estimates from CPE
(consensus), ABSOLUTE, ESTIMATE, IHC and LUMP. CNAqc determines that, among all callers, only
ABSOLUTE detected the true tumour ploidy (69%).
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Supplementary Figure S15. Wall-clock time of CNAqc, compared with common subclonal deconvolution
tools (Ccube, Pyclone-VI and Sciclone) on datasets with 500, 1000, 2500, 5000, 10000, 25000 rr 50000
mutations. The CNAqc peak detection algorithm is extremely fast and preprocesses even 50000
mutations in less than a minute (~47 seconds). The fastest deconvolution tools are Pyclone-VI and
Ccube, both implemented using Variational Inference; Sciclone drops rapidly in performance as the
number of SNVs increases. Time is reported in log2(seconds).
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