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Abstract

Annotation of a biological sequence is usually performed by aligning that
sequence to a database of known sequence elements. When that database
contains elements that are highly similar to each other, the proper annotation
may be ambiguous, because several entries in the database produce high-scoring
alignments. Typical annotation methods work by assigning a label based on the
candidate annotation with the highest alignment score; this can overstate
annotation certainty, mislabel boundaries, and fails to identify large scale
rearrangements or insertions within the annotated sequence. Here, we present a
new software tool, PolyA, that adjudicates between competing alignment-based
annotations by computing estimates of annotation confidence, identifying a trace
with maximal confidence, and recursively splicing/stitching inserted elements.
PolyA communicates annotation certainty, identifies large scale rearrangements,
and detects boundaries between neighboring elements.

Keywords: annotation; adjudication; transposable element; homologous
recombination; gene conversion

Introduction
Biological sequence annotation is the process of assigning labels to a sequence of

nucleotides or amino acids, and is typically based on comparison (alignment) of such

sequences to a database of known sequence elements. When the database contains

elements that are similar to each other, many related elements may align with a

high score to the same region of the target sequence being annotated, sometimes

overlapping in non-trivial ways. In the face of competing annotations, software

must ‘decide’ which is the true annotation at that location; we call this process

adjudication. Current methods typically adjudicate the target as belonging to the

element with the highest alignment score. This winner-takes-all approach overstates

annotation certainty, struggles to determine the boundaries between neighboring

partial element matches, and provides no basis for recognizing element nesting or

rearrangements.

The existence of multiple related elements is common, even in databases de-

signed to accumulate sequence instances into families. For example, in the Dfam [1]

database of transposable element families, some abundant families are divided into

highly similar subfamilies in order to represent family history or improve annota-

tion sensitivity. Similarly, the Pfam [2] database of protein domains groups similar

families into ’clans’, as does the Rfam [3] database of non-coding RNA families; in
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both cases, clan competition selects the longest and highest scoring hit when mul-

tiple clan members match the annotated sequence. For the purposes of exploring

the value of confidence-based annotation adjudication, we focus on annotation of

transposable elements (TEs) with RepeatMasker [4] and Repbase [5], a consensus

sequence database of TE families with subfamily relationships similar to those of

Dfam. To our knowledge, RepeatMasker (specifically its ProcessRepeats function)

represents the most complex adjudication engine in use today, with expert knowl-

edge built into the software to select between overlapping competing annotations,

and even control the order of candidate alignments (when known) in order to re-

cursively splice out inserted elements. In addition, RepeatMasker identifies cases in

which multiple candidate annotations have nearly-identical scores, and reduces an-

notation specificity in some cases of ambiguity (e.g. labeling a sequence simply ‘Alu’

when several competing Alu subfamilies all share near-identical scores). Our goal

in developing the software described here has been to replace this domain-specific

framework with one that works with generic alignment tools and scoring matrices,

requiring no expert knowledge of the underlying family structure, and improves

representations of confidence, overlap, recombination, and insertions/stitching.

We have previously [6] described a simple method for computing confidence in

(sub)family membership in the face of competing sequence alignments, making it

possible to report confidence values for sequence labels, rather than simply reporting

a single ‘winner’ from all possible matches. Here we extend this confidence scoring

method to compute position-specific annotation based on the ensemble of compet-

ing alignments, assigning labels (with annotation confidence) to each position of

the target sequence. Though our method is intended to be generally applicable to

amino acid and nucleotide annotation, we present it in the context of the challeng-

ing domain of transposable element annotation adjudication. We call our software

PolyA, short for ‘AAAAAAAAAAAAAAAA: Automatically Adjudicate Any And

All Arbitrary Annotations, Astutely Adjoin Abutting Alignments, And Also Am-

putate Anything Amiss’. To our knowledge, PolyA is the first tool that computes

a measure of annotation confidence in the face of competing alignments, and the

first to establish a general framework for selecting the boundary cutoffs between

overlapping annotations.

Our analysis focuses on transposable elements because these present all of the

annotation challenges that PolyA is intended to resolve. Some families of TEs are

represented by multiple closely-related subfamilies, which typically represent the

family’s replication history (though are occasionally designed simply to improve

annotation coverage). High levels of sequence similarity between subfamilies can

cause several database sequences to align well to a specific genomic sequence, ne-

cessitating adjudication between competing annotations. An addition, integration of

one element into another is a hallmark of TE activity, so that split sequences and un-

clear boundaries are very common. Furthermore, due to sequence similarity between

elements, rearrangements and gene conversion are common in TEs. Current TE an-

notation is often performed using a tool called RepeatMasker (RM) [4], which uses

the alignment score winner-takes-all approach when annotating fragments, then em-

ploys a complex expert system to stitch together the elements fragmented by other

TE insertions.
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In the following sections, we introduce PolyA, and demonstrate that it (i)

reports a meaningful measure of annotation certainty, (ii) recognizes many in-

stances of homologous recombination, (iii) effectively stitches sequence element

segments resulting from nested insertions, (iv) accurately locates boundaries be-

tween overlapping candidate annotations, and (v) yields adjudicated annotation

results that agree with those of RepeatMasker without resorting to complex and

domain-specific expert system logic. We follow with a complete description of

the methods supporting the observed results. PolyA is available for download at

https://github.com/TravisWheelerLab/PolyA.

Results
To annotate with PolyA, the target (to-be-annotated) sequence should be aligned

to all the sequences in the annotation database. Alignment may be performed with

any sequence-to-sequence alignment tool that depends on a scoring matrix (e.g.

blast [7] or cross match [8]). For the results presented here, this alignment is per-

formed with cross match, since this is the most sensitive alignment method used in

RepeatMasker for consensus sequences; the annotation database is the Repbase Re-

peatMasker Edition library (a future version of PolyA will accept alignments with

profile hidden Markov model databases such as Dfam and Pfam; see Discussion).

PolyA takes as input (i) the collection of alignments between the target sequences

and the database, and (ii) a reference to the scoring matrix and gap parameters

used to produce each alignment. PolyA computes a measure of the confidence with

which each position of the target can be assigned to each competing annotation can-

didate (see Methods). These position-specific confidence estimates for all competing

annotations support identification of transition points generated by forces such as

recombination and transposable element integration, and enable boundary detec-

tion between adjacent elements with overlapping competing annotations. A simple

dynamic programming approach identifies a highest-confidence path through com-

peting annotations, assigning labels to each position of the target sequence. This

is followed by a stage that iteratively identifies insertion events and stitches the

segments that were split by such insertions. The result is an annotation adjudica-

tion that correctly addresses events that typically cause incorrect labeling, and also

discloses a measure of annotation certainty. See Methods for details.

To evaluate the efficacy of PolyA, we constructed a variety of artificial sequences

with known origin, insertion activity, and recombination breakpoints. In each case,

artificial sequences were constructed by mutating consensus sequences from Rep-

base, according to average substitution, insertion, and deletion rates acquired from

the RepeatMasker hg38.fa.out annotation file [4], then inserting, trimming, and re-

combining as appropriate for the specific scenario being assessed. To explore anno-

tation of true genomic sequence, we also compared PolyA-adjudicated annotation

of the human genome with the annotation produced by RepeatMasker, through

both summary statistics and manual examination of numerous complex genomics

regions.

Annotation Confidence

In [6] we introduced a simple mechanism for computing annotation confidence when

several competing candidates produce alignments to a sequence window (see Meth-
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ods). This confidence measure decreases as mutational load of an annotated se-

quence increases. To demonstrate this, we selected the AluY subfamily consensus

sequence, and for each integer value in the range p ∈ [1..50], generated 100 mu-

tated copies of AluY in which p percent of nucleotides were randomly selected, and

modified (uniformly) to a different nucleotide. Each mutated instance was aligned

to all Repbase Alu subfamily consensus sequences using cross match, and Eq 2 was

applied to compute the confidence with which the instance was assigned an an-

notation of AluY. Fig 1 provides the average confidence for each bin of 100 (dark

line), along with a shaded region indicating an interval of 1 standard deviation. This

plot provides a sense of the decay in confidence expected as sequence divergence

increases; specific confidence details for a particular (sub)family will depend on the

number and relationship of similar subfamilies.

Selecting Change-point for Overlapping Annotation Candidates

When faced with competing, overlapping annotation candidates, PolyA infers a

precise intermediate boundary between overlapping annotation candidates by com-

puting per-position confidence values and identifying a highest-confidence trace.

This approach is effective for recombinations and insertions as described below, as

well as for overlapping neighbors as demonstrated in Fig 2, in which the tail of

an L1M1 orf2 candidate overlaps with several competing Alu alignments. The bot-

tom of Fig 2 represents the position-specific confidence values as a heatmap, with

green representing high confidence and purple representing low confidence (Note:

the Alu shows long stretches of low confidence because that region of the genome is

equally-well explained by several other Alu subfamilies - all of them share equally-

low confidence over that region).

Recombination

The presence of many highly-similar TE instances in a genome leads to common

occurrence of non-allelic homologous recombination [9, 10], in which the initial

sequence a is replaced in part by a subsequence of some homolog b. If a and b

belong to different subfamilies A and B, respectively, then the sequence alignment

step of annotation is likely to find near-full-length alignments of the sequence to

database representatives of both A and B; the alignment to the A representative

will be relatively poor in the region that was replaced by a stretch of sequence b, and

vice versa. Using the standard adjudication process, the alignment with the higher

score will be selected, and the existence of recombination will not be annotated.

PolyA computes position-specific annotation confidence estimates, and uses them

to infer the presence, location, and identity of such recombinations. Fig 3 shows an

example of an apparent recombination that is missed by the standard best-score-

wins approach, but is detected by PolyA.

Identification of homologous recombination is sure to be imperfect: (1) recom-

bination events with highly similar donor and acceptor sequences, or with short

donor segments, are relatively unlikely to be recognized, and (2) non-recombined

sequence elements that are highly diverged from their appropriate consensus se-

quence are at increased risk of recombination false positive (due to reduced con-

fidence as in Fig 1). We aimed to quantify sensitivity and false annotation by
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generating a large number of simulated sequences. In the following sections we

describe the creation of these simulated benchmarks, and accompanying assess-

ment. For all benchmarks based on simulated sequences, alignments were performed

using cross match, with fixed parameters consisting of the 25p41g matrix (avail-

able at https://github.com/Dfam-consortium/RepeatModeler), gap init=-25,

and gap ext=-5.

False Positive Recombination

We first sought to test the frequency with which PolyA incorrectly identifies a se-

quence as being the result of a recombination, specifically: how often does PolyA

claim that a sequence element is derived from two subfamilies, even though the

actual sequence is derived from a single subfamily. We began with Alu sequences:

randomly selecting one Alu type (AluS, AluJ, AluY), then one subfamily within

the selected type, among those found in Repbase. The consensus sequence corre-

sponding to the selected subfamily was mutated with subfamily-specific rates of

substitution, insertion, and deletion. Substitution rates were approximated from

existing repeatmasker (RM) annotations, modeling transitions as twice as likely as

transversions. Indel rates and lengths were also chosen based on RM annotations: an

overall length distribution of insertions and deletions (capped at length 7) was com-

puted from all RM alignments, and used as the basis for randomly selecting indel

lengths; for each benchmark instance, such indels were accumulated until reaching

family-specific indel averages determined from RM annotations. This was repeated

10,000 times, yielding 10,000 sequences that contain no recombination and should

be identified as such. These sequences were aligned to all Alu subfamily consensus

sequences using cross match, and adjudicated using PolyA. Of these Alu sequences,

99.8% were correctly identified as being derived from a single subfamily. The same

procedure was performed to produce 10,000 L1 instances, randomly selecting among

all Repbase L1 subfamilies. Of these, 97.8% were correctly identified as having a

single source.

True Positive Recombination

To assess PolyA’s sensitivity in detecting the aftermath of recombination, we per-

formed experiments similar to those above, but now with recombination. Beginning

with Alu, we: (i) selected a pair of distinct Alu subfamily consensus sequences

a and b, with uniform probability as described above, (ii) aligned a and b using

cross match, and (iii) identified the middle position i of the alignment. If in the

resulting sequence halves, either was shorter than 50 nucleotides, the simulation for

this pair was aborted. With surviving simulations, (iv) both a and b were mutated

as above, then (v) a recombinant sequence was created, made up of the prefix of

a up to the nucleotide corresponding to position i of the alignment and the suffix

of b beginning just after the ith position. This was repeated until 10,000 sequences

were successfully generated, producing 10,000 simulated recombined sequences. We

call these simulated sequences, with one end from a and one end from b, ‘single-

recombinations’. Each resulting sequence was aligned to all Repbase Alu consensus

sequences with cross match, residue-specific confidence estimates were computed,

and these were used to label the entire sequence allowing for recombination.
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From these simulated Alu single recombinants 55.1% were correctly identified as

recombinants. Among these, 65.2% were assigned to the correct subfamily on both

ends of the recombination, while 96.9% were correctly assigned on at least one half.

A similar procedure was followed to produce L1 single-recombinations. Because

Repbase L1 sequences are fragments of a full L1 (corresponding to 3’ end, 5’

end, and internal ORF region), many pairs do not meaningfully overlap. Further-

more, highly-divergent sequences are unlikely to produce homologous recombina-

tion. We performed an all-vs-all alignment of Repbase L1 consensus sequences,

and identified 1553 alignment regions with length ≥ 100 bp on both sequences

and ≥ 90% identity. With a given sequence-pair, we selected a random break-

point and produced a recombinant as above, repeating 7 times for each pair,

yielding a total of 10,871 L1 single-recombinations. These were each aligned us-

ing cross match to the full contingent of Repbase L1 consensus sequences, with

resulting alignments input to PolyA. Because PolyA adjudicates between anno-

tation candidates produced by the alignment tool, it will fail to assign a correct

family to a region if the input from the precursor alignment software does not in-

clude the correct family. This occurred in 5 L1 inputs. These have no possibility

of being correctly adjudicated and were removed from the analysis. Of the remain-

ing inputs, 94.8% of simulated L1 recombinants were correctly identified as recom-

binants. Among these, 93.6% were assigned to the correct subfamily on both ends

of the recombination, while 99.8% were correctly assigned on at least one half.

We repeated the above experiment for sequences simulating gene conversion, in

which an internal segment of the original sequence is replaced by sequence from a

related subfamily. Specifically, we identified two subfamilies and aligned their con-

sensus sequences a and b as before, then two recombination points i and j were

identified at positions 1/3 and 2/3 into the alignment, aborting construction of

sequences where all segments are not atleast 50 nucleotides in length. For the re-

maining simulations both sequences were mutated, and the segment from sequence a

corresponding to alignment positions i through j was replaced with the correspond-

ing segment from sequence b. As before, 10,000 simulated sequences were produced

from the Alu family, and for the L1 family 1228 alignment regions ≥ 90% identity

and that fulfill the length requirement were identified. Repeating the gene conver-

sion sequence construction described above 9 times for each pair we produced 11052

sequences. For these ‘internal recombinations’, 4 L1s were thrown out because in-

put alignments from cross match did not include the correct subfamily alignments.

Among surviving instances, only 2.7% of simulated Alus were correctly identified

as containing an internal recombination, while 18.1% were correctly identified as

resulting from some recombination (i.e. were annotated as a single-recombinant).

For L1 simulations, 56.5% were correctly identified as being the result of internal

recombination, while 63.3% were correctly identified is being the result of some

recombination(s) (i.e. at least one part of the recombination was recognized).

In both experiments, the low recombination sensitivity in Alus is not particularly

surprising, since the nucleotides typically used to discriminate one of the subfamilies

may not even have made it into the final recombinant sequence. Particularly for in-

ternal recombinations, the component sequences are all typically short enough that

discriminating nucleotides are likely to be missing, leading to annotation ambiguity.
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Stitching Annotations Fragmented by Nested Insertions

It is common to find a single instance of a younger TE (sub)family inserted inside an

instance of an older TE (sub)family. A goal of PolyA is to support the automatic

stitching of the segments separated by such (possibly-nested) insertions. This is

achieved by repeatedly identifying an inserted element, splicing it from between the

sequence fragments that it separated, then repeating the labeling process on the

resulting stitched sequences. This procedure is repeated until no apparent insertions

are observed (see Methods for details). Fig 4 shows a genomic region with nested

inserted elements. PolyA first identified a series of confidently-annotated segments,

then spliced the inner-most element (AluJr4), stitching the remaining sequence

around the excision. The resulting full-length MSTA1 was then spliced, so that the

surrounding LTR40a instance could be stitched, and identified in full.

To assess the efficacy of PolyA’s annotation stitching mechanism, we simulated

3 classes of nested architectures, which we represent here as short strings: ABA

(a single fragment of family B inserted into an instance of family A), ABACA

(distinct fragments from families B and C,each inserted into an different location

in an instance of family A), and ABCBA (a nested insertion, in which a fragment

of family C is inserted into a fragment of family B, which itself is inserted into an

instance of family A).

ABA sequences were simulated by creating 1,000 each of Alu1-Alu2-Alu1 (with

Alu2 being a younger subfamily than Alu1), MER-Alu-MER, and MIR-MER-MIR

amalgams. These are not meant to be exhaustive, but are representative of the

kinds of insertions seen in the human genome. Alu families were selected as above,

and others were selected randomly. In each case, the inner sequence was trimmed

to retain the middle 2/3 of its length, and inserted into the middle of the outer

sequence, splitting the outer sequence, but not replacing it. Trimming of the inner

sequence was performed in order to replicate the common situation in TE annotation

in which the boundary between inserted and surrounding sequence is unclear; this

is a decidedly artificial arrangement, but it replicates the challenge faced during

adjudication. Each of these 3,000 were aligned against the entire Repbase database,

with results fed to PolyA. Of these, 182 sequences were filtered because the correct

families were not among the cross match results.

ABACA sequences were simulated by creating 1,000 each of LTR-L11-LTR-L12-

LTR (in which L11 and L12 are two distinct L1 subfamilies), HAL1-Alu1-HAL1-

Alu2-HAL1 (with distinct subfamilies Alu1 and Alu2), and L2-MER1-L2-MER2-L2

(with distinct subfamilies MER1 and MER2). In all other ways, these are produced

as with the ABA format. Of these, 172 were filtered because the correct families

were not among the cross match results.

ABCBA sequences were simulated by creating 1,000 each of HAL1-MER-Alu-

MER-HAL1, L4-MST-Alu-MST-L4, and L2-LTR-MST-LTR-L2. Of these, 122 were

filtered due to failed cross match results.

Table 1 shows that the correct nesting architecture was usually identified, as were

the correct subfamilies.

Accurate Boundary Locations

To evaluate the accuracy of boundary point detection in PolyA, we computed the

distance between estimated and true boundaries for all artificial sequences described
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in the experiments above (distance = |actual - detected|). The mean and median

boundary detection error produced by PolyA is 5 and 9 nucleotides, respectively.

Fig 5 shows the distribution of boundary detection error. Precise accuracy statistics

depend on specifics of benchmark creation, alignment software choice, and aligner

parameterization, but these results suggest that PolyA is effective at identifying

cross-point boundaries.

Short tandem repeats

When annotating genomic sequences, it is common to mask short tandem re-

peats (STRs) prior to alignment-based annotation, either hard-masking (changing

a masked region to a sequence of Ns so that alignment software assigns no score to

alignments to the masked region) or soft-masking (marking a region such that that

it will not serve as the seed of an alignment, but can be used in scoring after seed-

ing is complete). PolyA accepts scored STR annotations from ULTRA [11] among

candidate annotations. The left side of Fig 6 demonstrates how this may effectively

allow an STR to out-compete a potential fragmentary family annotation (replac-

ing a weak L1MC4 fragment annotation seen on UCSC based on RepeatMasker’s

default adjudication) with the more appropriate STR call. The right side of Fig 6

shows an example of an STR candidate that is out-competed by the A-rich 3’ tail

of an AluSz annotation.

In practice, it is likely still useful to soft-mask a genome prior to annotation, in

order to limit excessive run time caused by evaluating alignments seeded in STR

regions. Even so, by enabling direct competition between annotations from a library

(by sequence alignment) or of STRs (as by ULTRA), PolyA provides substantially

better fine-grained resolution of annotation near repetitive regions.

Discussion
PolyA produces annotation confidence estimates for biological sequences based on

an input of candidate sequence alignments and underlying scoring matrices. These

confidence estimates are computed on a per-position basis, and used to infer tran-

sitions between overlapping annotations, including those caused by recombination

and (possibly-nested) insertion of one element into another. We have demonstrated

the efficacy of PolyA on multiple simulated scenarios, and shown that it produces

reasonable results on the human genome. We are currently working to incorporate

PolyA into the RepeatMasker software package for transposable element annota-

tion.

PolyA often fails to identify recombination among instances of highly similar Alu

elements - this is not surprising because (i) genomic Alu fragments are often short

(e.g. less than 50 nucleotides), and thus unable to accumulate enough support to

overcome transition penalties, and (ii) Alu subfamily sequences are highly similar,

often differing by only a few nucleotides. We view this as a feature, not a failure.

Importantly, PolyA produces confidence values for all annotations, and is therefore

able to communicate the diminished confidence resulting from alignments to mul-

tiple highly-similar sequence elements, as with highly similar Alu subfamilies. We

expect both the annotation tracing and confidence measures to contribute to future

improvements in genome browser presentation of annotations.
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In the current release, PolyA adjudicates annotations based on only nucleotide

sequence-to-sequence alignments using scoring matrices, supplemented with tandem

repeat annotations from ULTRA [11]. In a future release, PolyA will accept (i)

annotations of protein sequences, and (ii) alignments made with profile hidden

Markov models, which are the basis of sequence-family databases such as Dfam [1]

and Pfam [2].

In its current form, PolyA naively adjudicates between candidate annotations

without regard for additional information that expert systems currently use to im-

prove annotation quality. In the future, we will explore approaches such as (i) ad-

justing transition penalties to prefer full length insertions when supported (akin to

preferring global alignment [12]), and (ii) adjusting transition penalties based on

relative apparent divergence of a sequence window to its candidate annotation.

Methods

Computing confidence in annotation of a full sequence

We can compute a measure of confidence that an annotated sequence belongs to a

subfamily i by leveraging the probabilistic underpinnings of alignment scores. We

have described these calculations in [6], but reproduce them here for completeness.

Given Q = q1, q2, ..., qn competing subfamily annotations of genomic sequence

t, we compute the confidence that qi is the correct label by normalizing over the

probabilities of all competing labels:

Conf(qi|t) =
P (qi|t)∑
j P (qj |t)

(1)

Assuming a uniform distribution over Q, P (qi|t) ∝ P (t|qi), so that

Conf(qi|t) =
P (t|qi)∑
j P (t|qj)

(2)

In scoring matrices used for sequence alignments, the score for aligning a pair

of letters is a log odds ratio [13], typically scaled by factor λ then rounded to

the nearest integer value. Under the simplifying assumption that gap costs map

to probabilities [14], the overall alignment score corresponds to a scaled log of the

ratio of the probability of observing t if it is homologous to qi vs the probability of

observing t under a random (non-homology) model:

score(t, qi) = λ · lg P (t|qi)
P (t|R)

(3)

After straightforward algebraic manipulation

P (t|qi) = P (t|R) · 2score(t,qi)/λ (4)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.430877doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.430877
http://creativecommons.org/licenses/by-nd/4.0/


Carey et al. Page 10 of 16

and following substitution into equation 2

Conf(qi|t) =
2score(t,qi)/λ∑
j 2score(t,qi)/λ

(5)

This derivation depends on the assumption that all competing family annotations

are equally likely; in the case of non-uniform priors, with P (qk) defined as the prior

probability of annotation qk, the computation may be adjusted as:

Conf(qi|t) =
P (qi) · 2score(t,qi)/λ∑
j P (qj) · 2score(t,qi)/λ

(6)

Position-specific confidence, tracing through competing annotations

A natural mechanism for sub-family annotation would be to develop a jumping

profile hidden Markov model (jpHMM) [15], representing the full contingent of

candidate families, then to align genomic sequence to such a jpHMM. Posterior

probabilities calculated on a nucleotide-resolution basis could work in lieu of the

above calculations, and could also identify recombinations and boundary transitions

between adjacent overlapping alignments. Unfortunately, such a model would be

prohibitively computationally expensive. Here, we describe an efficient method for

computing annotation confidence at position-level resolution, followed by a dynamic

programming algorithm that traces a maximum confidence labeling of the annotated

genome sequence.

To compute position-specific estimates of annotation confidence, we first modify

the above full-sequence confidence calculations to compute confidence across length-

w windows. For each position j in the annotated sequence of length L, we consider

a window centered on j (trimmed at the ends) as follows: let s = max(1, j−bw/2c)
and e = min(L, j+bw/2c), and compute the windowed confidence Conf i,j as above,

considering only the scores of sub-alignments that cover sequence positions in the

window (s..e). By computing confidence within windows, our tool can account for

the fact that one region of sequence is better explained by one candidate annotation,

while another region is best explained by an alternate annotation.

The choice of window length is arbitrary - it should be long enough to smooth

out the influence of individual mutations, but short enough to capture annotation

transition points; PolyA sets the window length to w = 31 by default. In order to

produce a more precise picture of annotation confidence, PolyA computes position-

specific estimates for each position j by capturing an unweighted average of the

confidence calculations of all windows that include position j:

Conf avgi,j =

∑e
k=s Confi,k

w
(7)

Based on these per-position confidence values, PolyA computes a maximum con-

fidence trace through candidate annotations across the length of the annotated se-

quence, using the dynamic programming (DP) recurrence shown in Fig 7, in which

each row is a candidate annotation i, and each column is a sequence position j.
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Two additional candidate annotations are considered, beyond those provided in

the form of sequence alignments. (1) Candidate short tandem repeats (STRs) are

identified using the tool ULTRA [11], which provides per-position log-odds ratio

scores that fit naturally into the PolyA confidence calculations; these are simply

treated as an additional candidate annotation. (2) In some cases, a single low-

quality annotation may extend slightly beyond a clearly-preferred annotation; if

PolyA is forced to choose among available annotations, a small clip of this low-

quality annotation will be selected. PolyA avoids this outcome by including what

we call a skip state; when the annotation trace is in a skip state, the corresponding

sequence is assigned no annotation. Skip states are given a special default score

(such that they will out-compete low-quality candidate annotations).

To encourage annotation continuity, transitioning from one annotation candidate

to a different annotation is heavily penalized. The penalty for transitioning to/from

the skip state is reduced. Because an annotated sequence may exceed the length of

any single candidate annotation, the Conf avgi,j matrix is sparse; the DP imple-

mentation performs correspondingly sparse calculations to avoid excessive time and

space resource use.

A maximal trace through the sparse DP matrix described in Fig 7 yields an

ordered series of labeled regions over the target sequence. These regions may identify

transitions between adjacent elements and recombination or insertion events.

Recursive splicing of insertions, and stitching of surrounding sequences

In the case that an annotated sequence contains an instance B of one family in-

serted into the middle of an instance A of another family, the above DP mechanism

will annotate the sequence in a form A1BA2. PolyA takes steps to identify the

relationship between A1 and A2 as ordered fragments of A (see Fig 8). To achieve

this, a graph is created in which each labeled sequence block is represented as a

vertex, and a directed edge is established between the vertices corresponding to

adjacent segments. Additional edges are added to the graph for each pair of ver-

tices corresponding to segments might share to the same family, specifically: (i) the

alignments supporting the two segments are relatively co-linear in the label’s con-

sensus sequence, and (ii) the label with highest confidence on one of the segments

has some non-negligible (default ≥ 1%) confidence on the other segment (tested in

both directions). In such a graph, an unbroken inserted element will appear as a

vertex with in-degree and out-degree of 1. PolyA removes all such vertices from the

graph, splices the corresponding positions from the confidence-based DP matrix,

and repeats the DP trace. With the inserted sequence removed, the adjusted tran-

sition opportunities enable stitching of previously-separated segments. This process

is iterated until no inserted sequences remain.
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Tables

Table 1 Accuracy results when annotating nested sequences.

correct nesting architecture correct families
ABA 93.3% 83.4%

ABACA 77.8% 92.4%
ABCBA 68.1% 92.2%
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Figure 1 Confidence as a function of sequence divergence. Beginning with the Repbase
consensus sequence for the AluJr subfamily, mutated instances were created with a range of
percent substitutions, with 100 copies for each percentage bin. Each mutated instance was aligned
to all Alu subfamilies using cross match (25p41g matrix, gap init=-25, and gap ext=-5). For each
sequence, the confidence in AluJr as the correct annotation was captured. The dark blue line
shows the average AluJr confidence per bin, and the shaded region shows the range of a single
standard deviation.

Figure 2 Detecting the change-point between overlapping elements; demonstration of
confidence heatmap. This region of the human genome (hg38, chr10:58800-59500) contains a
fragment of an L1M1 element, overlapping the tail of an AluSx1 candidate annotation.
The heatmap on the bottom represents the position-specific confidence computed in PolyA, with
dark green = high confidence, dark purple = low confidence, and moderate confidence
represented by lighter colors and white. To limit visual clutter, this heatmap shows only the
confidence heatmaps for the two ’winning’ annotations; others are hidden from view.
The top half of the figure shows the final PolyA adjudication, in which the region in which the
competing annotations overlap is assigned to the higher-confidence L1M1 annotation.
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Figure 3 Recombination example. The top panel shows the RepeatMasker-adjudicated

annotation of human (hg38) chr19:15304678-15304839 as a full-length MIRb element.
The bottom panel presents a heatmap of the windowed average confidence that serves as the
basis of PolyA adjudication, which highlights that in the 3’ end of the region, MIRc is the
preferred annotation with high confidence. The middle panel shows that PolyA recognizes a
recombination between MIR and MIRc at roughly the midpoint of the sequence window. The
standard RepeatMasker preference for MIRb is due to the fact that it has the largest score of all
candidates (MIRb=349, MIR=280, MIRc=290, MIR3=196). In the 3’ half of the annotated
region beginning at position 15304742, MIRb’s score is 269, while MIRc’s score is 290.

High confidence 
that 3’end is a MIRc
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Figure 4 Example of nested insertions. This region of the human genome (hg38,
chr11:11990878..11991874) exemplifies nested transposable element insertions. Here, an instance
of AluJr was inserted within an instance of MSTB1, which itself was inserted into an instance of
LTR40b. The confidence heatmap is included for reference, and demonstrates a change-point
decision in the context of nested annotations; heatmaps for competing annotations are not shown,
in order to reduce visual clutter. PolyA automates the splicing of inserted elements and stitching
of the surrounding split segments.

Figure 5 Boundary accuracy. To evaluate the accuracy of boundary point detection in PolyA, we
computed the distance between estimated and true boundaries for all artificial sequences described
above. All 24,961 sequences with correctly-labeled recombinations or nestings were used. The
boundary error for each annotation was assigned to a bin of size 2. In 90% of all such annotations,
the predicted boundary was within 20 nucleotides of the true boundary.
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Figure 6 Adjudicating short tandem repeats. The top section shows the annotation of hg38,
chr1:14632106..146333918 as presented on the UCSC genome browser, which is derived from the
standard adjudication results in RepeatMasker, using ProcessRepeats. This process aligns the
library against genomic sequence that has first been masked for tandem repeats using TRF; it
reports a short L1MC4 fragment of dubious accuracy (left), and a reasonable full-length AluSg
annotation (right). The middle section shows the annotation produced when candidate
annotations from RepeatMasker (TEs) and ULTRA (tandem repeats) are adjudicated using
PolyA; it identifies the dubious L1MC4 fragment instead as a tandem repeat (left), and agrees on
the Alu designation on the right (though subtle confidence differences lead to an AluSz
assignment). The bottom section presents a confidence heatmap over the region. Of particular
interest is the poly-A region on the far right of the plot; ULTRA correctly identifies this region as
repetitive, but continuity with the preceding Alu annotation causes the region to be correctly
labeled as part of the Alu.

High confidence TR call leads to correct label
(instead of spurious L1MC4 call on UCSC Browser)
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High confidence TR call 
does not override poly-A tail of Alu

Figure 7 Dynamic programming recurrence. In the implicit dynamic-programming matrix, each
column represents a position in the genome, and each row represents a candidate annotation
family. In this figure, a gray bar corresponds to an alignment of the sequence for family i over a
range of genome positions. Cells covered by a gray bar represent positions covered by an
alignment - confidence (Conf avgi,j) and score (Si,j) values are computed only these positions;
other cells have an implicit value of zero. Because this describes a very sparse matrix, values are
stored as a sparse set of (i,j,conf avg) tuples. Transition probabilities are: ts (‘stay in the same
row’), tm (‘move to a new non-skip-state row’), tms (‘move between the skip-state row and a
non-skip-state row’), and tss (‘stay in the skip-state row’). Default values are: tm = 1e− 55,
tms =

√
tm, ts = 1− tm − tms, tss = 1− tms.

Skip State (𝑖 = 0)

𝑖

𝑗

𝑆!,# = 𝐶𝑜𝑛𝑓_𝑎𝑣𝑔!,# ∗ 𝑚𝑎𝑥 .
𝑆!!,#$% ∗ 𝑡&&, 𝑖 = 𝑖' 𝑎𝑛𝑑 𝑖 = 0
𝑆!!,#$% ∗ 𝑡(&, 𝑖 ≠ 𝑖' 𝑎𝑛𝑑 𝑖 = 0 𝑜𝑟 𝑖' = 0

𝑆!,# = 𝐶𝑜𝑛𝑓_𝑎𝑣𝑔!,# ∗ 𝑚𝑎𝑥
𝑆!!,#$% ∗ 𝑡(&, 𝑖 ≠ 𝑖' 𝑎𝑛𝑑 𝑖 = 0 𝑜𝑟 𝑖' = 0
𝑆!!,#$% ∗ 𝑡&, 𝑖 = 𝑖' 𝑎𝑛𝑑 𝑖 ≠ 0
𝑆!!,#$% ∗ 𝑡(, 𝑖 ≠ 𝑖' 𝑎𝑛𝑑 𝑖 ≠ 0 𝑎𝑛𝑑 𝑖' ≠ 0

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.430877doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.430877
http://creativecommons.org/licenses/by-nd/4.0/


Carey et al. Page 16 of 16

Figure 8 Splicing insertions. These images describe the simple graph algorithm used to identify
inserted elements, splice them out, and stitch segments of the remaining sequence back together
to be considered in another round of dynamic programming.

1. Make graph of all sequences labeled in dynamic 
programming. Each labeled segment becomes a node

2. Add edges between nodes based on edge creation rule 3. Remove nodes with single in edge and single out edge

4. Concatenate confidence columns corresponding to remaining nodes

Edge Creation Rule:
Create edge if the destination’s best label has a 
confidence > 0.03 in the source (see text for more 
details)
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