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ABSTRACT

Primates explore their visual environment by making frequent saccades, discrete 
and ballistic eye movements that direct the fovea to specific regions of interest. 
Saccades produce large and rapid changes in input. The magnitude of these changes 
and the limited signaling range of visual neurons means that effective encoding requires 
rapid adaptation. Here, we explore how cone photoreceptors maintain sensitivity under 
these conditions. Adaptation makes cone responses to naturalistic stimuli highly 
nonlinear and dependent on stimulus history. Such responses cannot be explained by 
linear or linear-nonlinear models but are well explained by a biophysical model of 
phototransduction with fast and slow adaptational mechanisms. The resulting model can 
predict cone responses to a broad range of stimuli and enables the design of stimuli that 
elicit specific (e.g. linear) cone photocurrents. These advances will provide a foundation 
for investigating the contributions of cones and post-cone processing to visual function.

INTRODUCTION

Everyday visual activities, like reading or identifying familiar faces in a crowd, rely 
on signaling in the fovea, a small and specialized region of the retina where cone 
photoreceptor density and perceptual spatial acuity are highest (reviewed by (Rodieck, 
1973)). Most visual information is encoded during fixations, periods of time where gaze 
is relatively stationary on the visual scene. Visual cues detected in the periphery, where 
spatial acuity and cone density are lower, cause ballistic eye movements, or saccades, 
that direct the fovea to the region of interest. Humans typically make multiple saccades 
every second, and each saccade can span several degrees of visual angle (Harris, 
Hainline, Abramov, Lemerise, & Camenzuli, 1988). On the spatial scale of saccades, 
natural scenes can exhibit large differences in local intensity and local spatial contrast 
— i.e. the fluctuations in intensity about the mean in small image patches (Frazor & 
Geisler, 2006).

 Several issues make reliably encoding the visual inputs encountered during eye 
movements challenging. First, given that the dynamic range of neural signals is small 
compared to the range of inputs encountered during different fixations, the visual 
system must adaptively adjust sensitivity to match the prevailing inputs. Such 
adaptation must occur locally in the retina, given the large differences in inputs in 
different regions of a scene. Second, given that fixations only last 200–600 ms, 
adaptational mechanisms must operate quickly so as to match neural sensitivity to the 
inputs encountered within a fixation rather than those encountered over previous 
fixations.

The need to adapt to an ever-changing environment is ubiquitous across sensory 
systems. For example, adaptation allows bacteria to follow molecular gradients across a 
> 10,000-fold range of concentrations (Bialek & Setayeshgar, 2005; Neumann et al., 
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2014), and the kinetics of adaptation govern the ability to follow these gradients (Block, 
Segall, & Berg, 1983). Similar challenges arise in the tracking of odor plumes in insects, 
where turbulent flow creates enormous variations in odorant concentrations (Carde & 
Willis, 2008), and in the auditory system, where behaviorally-relevant sounds span 
intensities that can differ by at least nine orders of magnitude (Viemeister & Bacon, 
1988). In olfaction and audition, adaptation at the primary receptors (odorant receptor 
neurons and hair cells) is essential to maintain sensitivity (Kelliher, Ziesmann, Munger, 
Reed, & Zufall, 2003; Fettiplace & Ricci, 2003; Gorur-Shandilya, Demir, Long, Clark, & 
Emonet, 2017).

The primary visual receptors - rod and cone photoreceptors - also adapt strongly 
(reviewed by (Fain, 2001; Burns & Baylor, 2001)). Adaptation in photoreceptors affects 
both the gain and kinetics with which light inputs are converted to electrical signals. For 
typical daytime light levels, adaptation in the retinal output to changes in mean intensity 
is dominated by adaptation in the cones themselves (Dunn, Lankheet, & Rieke, 2007). 
We have a good understanding of how photoreceptor adaptation contributes to 
maintaining visual sensitivity to slowly changing inputs—e.g. the rising or setting sun—
and of the mechanistic basis of photoreceptor adaptation, particularly in rods (reviewed 
by (Fain, 2001; Burns & Baylor, 2001)). We know much less about how photoreceptor 
adaptation contributes to reliable encoding of the large and rapid changes encountered 
as gaze shifts within a visual scene. Our focus here is on understanding the encoding of 
such naturalistic inputs by peripheral primate cones and using this understanding to 
construct models that allow us to predict and manipulate cone responses to a wide 
range of inputs. The ability to manipulate cone responses provides a needed tool to 
probe the causal role of cone signaling properties on responses in subsequent visual 
neurons and on behavior.

RESULTS

The results are divided into four sections. First, we show that time-dependent 
adaptation strongly shapes the responses of peripheral primate cones to stimuli with 
large and rapid changes in intensity like those encountered during eye movements. 
Second, we characterize the kinetics of adaptation for a diverse set of stimuli. Third, we 
incorporate these measurements into a biophysical model able to account for cone 
responses across these stimuli. Fourth, we show two examples of how the model can 
be used to explore the role of cones in coding by downstream neurons.

Primate cone responses to naturalistic stimuli are highly nonlinear
We start by describing responses to stimuli that approximate the intensity 

changes encountered by single cones during natural vision (Figure 1A). We ignored 
fixational eye movements (i.e. microsaccades, tremor and drift) and focused on 
saccades and fixations. We modeled the duration of fixations as an exponential 
distribution with a minimum interval between saccades (Harris et al., 1988) and a time 
constant that produced ~3 saccades every second. The light intensity during each 
simulated fixation was determined by randomly sampling from an intensity distribution 
taken from natural images (van Hateren & Snippe, 2007). The intensity changed linearly 
from the value at one fixation to that at the next fixation over 15 ms (see Methods for 

2

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431101
http://creativecommons.org/licenses/by-nc/4.0/


details). The resulting stimuli capture the large and rapid changes in light intensity 
characteristic of the inputs that cones encounter during natural vision (Figure 1B, top). 

Figure 1. Responses of 
primate cones to naturalistic 
stimuli are not well captured 
by linear or linear-nonlinear 
(LN) models.  A. Schematic of 
eye movements (blue lines) 
and fixations (blue circles) 
during free-viewing of a natural 
scene.  B. (top) Stimulus 
emulating the large and 
frequent changes in mean light 
intensity experienced by a 
single cone during free-viewing. 
(bottom) Cone responses to 
this stimulus are highly 
nonlinear. For example, the 
difference between the 
responses marked by the filled 
black arrows is similar to the 
difference in responses marked 
by the open white arrows even 
though the corresponding 
stimulus intensities differ 10-
fold.
C. History dependence 
exemplified by two responses 
to the same light intensity but 
proceeded by different light 
intensities (asterisks in B).  D.  
Linear model (green trace) 
scaled to match the final 
current at the highest light 
intensity. The model fails to 
accurately predict responses to 
most intensities and does not 
capture the response dynamics 
following a change in light 
intensity. E. Estimated single-
photon response for cone in B. 
The fit to the response (see 
Methods) was used as a filter to 

construct a linear estimate of the 
response in D. F. A linear—nonlinear (or LN) model (magenta trace) captures the currents at the end of 
fixations but still fails to capture the dynamics of the response. G. The LN model was built using a non-
adaptive nonlinearity constructed by fitting the relation between the measured currents (after baseline 
subtraction) at the end of fixations (y-axis) and the linear model (x-axis). 

We delivered these naturalistic stimuli while recording current responses of voltage-
clamped cones. These currents are dominated by phototransduction in the outer 
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segment of the recorded cone and contain negligible contributions from electrically 
coupled cones or from horizontal-cell feedback (Dunn et al., 2007; Angueyra & Rieke, 
2013). Cone current responses exhibited at least three signs of nonlinearity (Figure 1B, 
bottom). First, responses following increases or decreases in light intensity were not 
equal and opposite as would be expected for a linear system. In particular, increases in 
intensity elicited more pronounced current transients than decreases (e.g. the 
responses to the increase and the decrease in intensity between 5.5 and 6 s in Figure 
1B). Second, gain was not constant. Instead, high intensities produced considerable 
response compression; for example, the difference in the responses produced by the 
two highest intensities in Figure 1B (filled arrows) were similar in magnitude to the 
difference in the responses produced by much smaller intensity changes when overall 
intensity was lower (open arrows). Third, the responses showed history dependence, 
such that responses to particular light intensities depended on the previous intensities. 
For example, steps to a common intensity from different starting intensities elicited 
responses that differed in both peak amplitude and kinetics (Figure 1B, asterisks and 
Figure 1C); such differences in kinetics would not be expected if responses were linear. 

Not surprisingly, the nonlinear properties of the cone responses illustrated in 
Figure 1 could not be captured by linear models (Figure 1D and E) or by models that 
incorporate a non-adaptive (i.e. static/time-independent) nonlinearity (Figure 1F and G). 
Models for ganglion-cell responses often implicitly assume that early retinal processing, 
including the cone responses, are near-linear and that the dominant nonlinearities in the 
ganglion-cell responses originate in post-cone retinal circuits (this includes linear-
nonlinear, stacked linear-nonlinear and generalized-linear models) (Chichilnisky, 2001; 
Pillow et al., 2008). Such models may benefit from incorporating time-dependent 
nonlinearities in the cones given the large impact of these nonlinearities on responses 
to the large and rapid changes encountered under natural conditions. 

Kinetics of adaptation
Time-dependent nonlinearities are pronounced in cones from many species 

(Soo, Detwiler, & Rieke, 2008; Korenbrot, 2012; Schnapf, Nunn, Meister, & Baylor, 
1990; Schneeweis & Schnapf, 2000; Angueyra & Rieke, 2013; Cao, Luo, & Yau, 2014). 
Such nonlinearities are likely to be strongly engaged by naturalistic inputs, but their 
kinetics have not been well characterized for primate cones. The experiments described 
below characterize the time course of cone light adaptation using several types of 
stimuli. These results provide an important constraint for models of the cone response.

Primate cones exhibit fast and slow light adaptation
To determine the time course of adaptation, we probed how gain changes as a 

function of time following an abrupt increase or decrease in mean light level. We 
delivered brief flashes with variable delays relative to the onset and offset of a light step, 
and isolated the flash responses by subtracting the response to the step alone (Figure 
2A-C). Flashes delivered prior to step onset or well after step offset elicited unadapted 
flash responses. A flash delivered near the end of the step elicited a completely light-
adapted response. Flashes delivered at times near step onset or offset probed the 
transition between unadapted and adapted responses (Figure 2C).
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Figure 2. Gain changes during light-adaptation are fast and well-tuned to the duration of fixations
A. Stimulus used to probe the kinetics of gain changes during light adaptation. Five flashes (black trace) 
were superimposed on an adapting step (gray trace); the first, third and fifth flashes were fixed in time 
(black), while the second and fourth were delivered with variable delays (Δt) from step onset and offset. 
Flashes during the step were 2-fold brighter to partially counteract light adaptation. For this example 
trace, Δt = 40 ms. B. Average responses to the adapting step alone (gray trace) or in combination with 
the five flashes (black trace) for Δt = 40 ms. C. Flash responses isolated by subtracting the response to 
the step alone. The first and fifth flash produced unadapted responses, while the smaller and faster 
response to the third flash (near the end of the step) reflected adaptation. The flashes following step 
onset and offset elicited responses in transition between the two states. D. Gain changes rapidly at step 
onset. Gain measurements obtained by dividing the response by the flash strength and normalizing to the 
gain in darkness; black traces correspond to gain in darkness (leftmost trace) and to steady-state adapted 
gain (rightmost trace). Colored traces correspond to flashes with a variable delay (Δt) from the step onset. 
The speed of the gain changes was tracked by identifying the peaks and approximating their time course 
with an exponential function. The time constant of the best fit exponential was τOn = 14 ms (black smooth 
line). E. Gain changes more slowly at step offset. Black traces correspond to steady-state adapted gain 
(leftmost trace) and gain in darkness (rightmost trace). Colored traces correspond to flashes with a 
variable delay from the step offset (same delays as in D). The time constant of the best fit exponential 
was τOff = 86 ms (black smooth line). For D and E, the response to the step without flashes has been 
displaced and rescaled to compare kinetics (gray traces). F. Collected time constants for gain changes at 
step onset and offset. Mean and SEM are shown as black circle and error bars, individual cells are shown 
as gray open circles (n = 15) and the example cell in (A-D) is shown as the black open circle. All cells lie 
above the unity line (black dashed line). The time constants for the biophysical model (see text and Figure 
6) are shown by the red triangle.

The response gain was estimated by dividing the isolated flash responses by the 
flash strength. Changes in gain following both step onset and offset were largely 
complete within 200 ms — i.e. within the duration of a typical fixation between 
saccades; however, gain changes following step onset were faster than those following 
step offset (Figure 2D and E). Approximate time constants were extracted by fitting the 
gain changes with single exponential functions (black lines in Figure 2D and E). Across 
recorded cells (n = 15) and step intensities (1,500 - 100,000 R*/s), the extracted time 
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constants of the gain changes were 3 to 4 times faster at step onset than at step offset 
(Figure 2F; mean ± SEM: τonset = 23 ± 2 ms; τoffset = 94 ± 5 ms; p < 10-8 for τoffset > τonset). 
Adaptation following step onset sped with increasing light level, while that following step 
offset did not change significantly (Figure 2 - Figure Supplement 1). 

The response to the step itself took ~40 ms to reach peak and then decayed 
slowly to a maintained level (grey trace in Figure 2B). Most of the changes in flash-
response gain occurred during the rising phase of the step response (grey trace in 
Figure 2D). A small increase in gain during the slow decay in the step response likely 
originated from the slow increase in circulating current (compare the amplitudes of the 
blue and purple flash responses to the response to the step itself in grey in Figure 2D). 
The current response to step offset exhibited two phases: an initial rapid recovery that 
overshot the baseline current, followed by a gradual return to baseline.  Changes in gain 
persisted well beyond the rapid recovery phase and more closely followed the slow 
return to baseline (Figure 2B and E).

Kinetics of onset and offset of Weber adaptation
Adaptation in cones closely follows Weber’s law — i.e. across a broad range of 

light levels, gain is inversely related to mean light level (Burkhardt, 1994; Schneeweis & 
Schnapf, 2000; Dunn et al., 2007; Angueyra & Rieke, 2013). Weber’s law predicts that 
responses to stimuli with fixed contrast will be independent of mean light level. The 
experiments of Figure 2 suggest that adaptation occurs rapidly following a change in 
mean light level, and hence that Weber’s law should hold shortly after a change in light 
level. To test this prediction directly, we replaced the light flashes in Figure 2 with 
sinusoids of fixed contrast and explored steps from or to a common mean light level. 
These experiments required long-lasting and stable recordings; hence we used 
perforated-patch recordings to avoid the washout of internal components that occurs 
during tight-seal whole-cell recordings; to avoid voltage-clamp errors associated with 
the higher access resistance in perforated-patch recordings, we measured 
photovoltages rather than photocurrents.

The onset of Weber adaptation was probed by recording responses to steps from 
low to high mean light levels with sinusoidal stimuli superimposed. Figure 3A shows an 
experiment in which we stepped from a single low light level to two different high light 
levels. We isolated responses to the sinusoidal stimuli by subtracting responses to the 
steps delivered alone (Figure 3B). If the cone response followed the stimulus veridically, 
responses to the sinusoidal stimuli should differ almost 2-fold at the two mean light 
levels. Instead, sinusoidal responses at the two different light steps were similar even 
shortly after the light step, indicating that contrast invariance was achieved quickly 
(Figure 3C and D). Indeed, responses exhibited contrast-invariance by the time at which 
the response to the light step reached its peak and well before the voltage sagged to 
reach its final steady-steady level (Figure 3C).  

Figure 3E-H show a complementary experiment in which steps were made from 
two low light levels to a single common high light level. Low light levels were chosen to 
be below the range where Weber adaptation operates (Angueyra & Rieke, 2013), so 
that sinusoidal responses at the low light levels would differ more than 2-fold (see 
Figure 4B). The response to the light step exhibited a dependence on the initial light 
level, but the sinusoidal response at the high light level did not. Responses that obey 
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Weber’s law were achieved quickly (< 60 ms), well before the response to the step itself 
had stopped changing and lost its history dependence (~250 ms). Thus, the onset of 
Weber adaptation is rapid compared to the step response and to the typical duration of 
a fixation between saccades; this is consistent with the rapid adaptation observed in 
Figure 2 for steps and flashes.

Figure 3. Kinetics of onset of Weber adaptation. A. Changes in cone voltage elicited by steps from a 
common low light intensity to two different high intensities.  Superimposed sinusoids probed gain over 
time following the step in mean intensity.  B. Voltage responses to the light step alone (top) and to the 
sinusoidal stimulus (with step response subtracted, bottom).  C. Difference in step (top) and sine (bottom) 
responses at the two light intensities. D. Mean (± SEM) differences for four cones. E-H. As in A-D, but for 
a light step from two different starting intensities to a common final intensity.

We used a similar approach to probe the kinetics of the offset of Weber 
adaptation — now measuring responses to steps to different low light levels from a 
common high light level (Figure 4A) or to a common low light level from different high
light levels (Figure 4E). As above, low light levels were chosen to be below the range in 
which Weber adaptation generates contrast invariance, so that the offset of adaptation 
caused responses to equal contrast to depend on the mean light level (Angueyra & 
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Rieke, 2013). Isolated responses to the sinusoidal stimuli differed almost immediately 
following a decrease in mean light level (Figure 4C and D), indicating rapid adaptation 

Figure 4. Kinetics of offset of Weber adaptation.  A.  Changes in cone voltage elicited by steps from a 
common high light intensity to two different low intensities. Superimposed sinusoids probed gain over time 
following the step in mean intensity.  B. Voltage responses to the light step alone (top) and to the 
sinusoidal stimulus (with step response subtracted, bottom).  C. Difference in step (top) and sine (bottom) 
responses at the two light intensities. D. Mean (± SEM) differences for four cones. E-H. As in A-D, but for 
a light step from two different starting intensities to a common final intensity.

to the new mean light level. Similarly, sinusoidal responses measured at a common low 
light level rapidly lost any dependence on the initial high light level (Figure 4G and H). 
The sinusoidal responses grew in amplitude for 100-200 ms following the decrease in 
mean light level, consistent with the kinetics of the recovery of gain for the steps and 
flashes protocol (Figure 4B and F; compare to Figure 2E and F). The history 
dependence of the step responses similarly persisted for 100-200 ms. 

Figures 2-4 show that the onset of adaptation in responses to both flashes and 
sinusoidal stimuli is more rapid than the offset and that both are completed within the 
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~300-500 ms duration of a single fixation. Further, the time course of the gain changes 
does not always follow that of the response to the change in mean light level, 
particularly following increases in light intensity.

Figure 5. Asymmetric responses 
to light increments and 
decrements. A. Average cone 
photocurrents elicited by light 
increments and decrements at 
background light intensities of 
17,000 R*/s (top) and 60,000 R*/s 
(bottom). Decrements produced 
larger responses than symmetric 
increments for Weber contrasts 
above 25% (10 traces averaged at 
each contrast). The asymmetry 
was larger as background light 
intensity increased. B. Ratio of 
mean negative to mean positive 
response to 100% contrast steps 
as a function of mean light 
intensity. Red line shows prediction 
of biophysical cone model. C. 
Photocurrents elicited by a binary 
noise stimulus (100% contrast) at 
three mean light intensities. D. 
Ratio of mean negative to mean 
positive response to binary noise 
as a function of mean light 
intensity. Red line shows prediction 
of biophysical cone model. E. 
Photocurrents elicited by 
sinusoidal stimuli (temporal 
frequency 2.5 Hz, 100% contrast) 
at 4 mean light intensities. F.  Ratio 
of peak negative to peak positive 
response as a function of mean 
light intensity.  Red line is 
prediction from biophysical cone 
model.

Responses to light increments and decrements are asymmetric
The asymmetry in the kinetics of adaptation following increases and decreases in 

mean light level suggested that responses to light increments and decrements might 
also be asymmetric, as observed in amphibian and fish cones (Baylor & Hodgkin, 1974; 
Endeman & Kamermans, 2010). This is an important issue because increment/
decrement asymmetries observed in downstream cells are often attributed to differential 
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processing in ON and OFF circuits rather than asymmetric cone signals (see 
Discussion).

To test for increment/decrement asymmetries in primate cones, we delivered 
positive and negative steps of equal contrast relative to the background intensity while 
recording cone photocurrent or photovoltage (Figure 5A and B). Responses to steps 
with a contrast < 25% were near-symmetric, but responses to higher contrast 
decrements exceeded responses to increments. This increment/decrement asymmetry 
was also apparent in the cone voltage responses and the cone synaptic output as 
measured in recordings from horizontal cells (Figure 5 - Figure Supplement 1). We 
quantified the increment/decrement asymmetry from the ratio of the mean currents at 
the end of the 100% contrast steps. The ratio of decrement to increment responses 
exceeded one across all light levels probed (Figure 5B). The asymmetry was stronger 
with increasing background intensity (compare Figure 5A top and bottom; p < 0.001 for 
ratio of asymmetries for step responses from intensities < 6000 R*/s and > 6000 R*/s).

As an additional test of increment/decrement asymmetries, we stimulated cones 
with high-contrast binary noise while recording photocurrents. As expected, these 
stimuli also elicited asymmetric responses, with larger current changes upon decreases 
in light (Figure 5C). We again quantified the asymmetry as the ratio of mean currents 
elicited by decrement to increment stimulation; this analysis further confirmed that the 
asymmetry is stronger as background intensity increases (Figure 5D). Finally, the 
asymmetry between increment and decrement responses is also clear in responses to 
high-contrast sinusoidal stimuli (Figure 5E); as for steps, the asymmetry in responses to 
sinusoidal stimuli increased systematically with increasing mean light level (Figure 5F; p 
< 1e-4 for sinusoidal stimuli for intensities < 6000 R*/s and > 6000 R*/s).

A biophysical model of cone responses
The results described above show that primate cones, not unlike cones from 

other species, have complex responses that cannot be predicted easily from common 
empirical models. The complexity of these responses originates at least in part from 
adaptational mechanisms that quickly and strongly adjust cone responses to the 
prevailing inputs. Below, we test the ability of a biophysical model of cone 
phototransduction to account for the cone responses illustrated in Figures 1 - 5. In 
addition to testing the completeness of current understanding of cone 
phototransduction, our goal was to develop a model that permitted prediction and 
manipulation of cone responses to a wide range of stimuli.

Two types of models have been used to capture photoreceptor responses. 
Empirical models aim to succinctly capture the dynamics of phototransduction without a 
tight correspondence with the underlying mechanisms (Clark, Benichou, Meister, & 
Azeredo da Silveira, 2013; De Palo et al., 2013). Rapid adaptation emerges in these 
models from feedback or feedforward mechanisms. Biophysical models are based 
directly on the biochemical reactions that comprise the phototransduction process 
(Younger, McCarthy, & Owen, 1996; Nikonov, Lamb, & Pugh, 2000; Rieke & Baylor, 
1998; Korenbrot, 2012; Endeman & Kamermans, 2010; van Hateren, 2005). Rapid 
adaptation in these models emerges from changes in the rate of cGMP turnover 
produced by light-dependent changes in phosphodiesterase activity and by calcium 
feedback to the rate of cGMP production (van Hateren, 2005; Nikonov et al., 2000). We 

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431101
http://creativecommons.org/licenses/by-nc/4.0/


focus here on biophysical models as they captured cone responses at least as well as 
empirical models.

We represent the enzymatic reactions of the phototransduction cascade as a set 
of six differential equations. We implement slow adaptation with a slow calcium-
dependent feedback that regulates the activity of cGMP channels (Korenbrot, 2012; 
Rebrik, Botchkina, Arshavsky, Craft, & Korenbrot, 2012; Korenbrot, Mehta, 
Tserentsoodol, Postlethwait, & Rebrik, 2013) (Figure 6A; see Discussion), but this 
mechanistic instantiation is not unique. This model has a total of 15 parameters 
corresponding to time constants, affinities, cooperativities and concentrations of the 
different components of the phototransduction cascade (see Methods and (Rieke & 
Baylor, 1998)). Three of these parameters could be expressed in terms of others using 
steady-state conditions. Six other parameters were measured  directly or fixed based on 
published values, leaving a model with six free parameters that we fit numerically to 
measured responses to a variety of stimuli (Table 1; see Methods for details). 

Because of the limited duration of our recordings, we could not measure all the 
responses used in fitting from the same cone. Using responses from several cones 
simultaneously in model fitting required accounting for differences in sensitivity and dark 
current between cones. Dark current and sensitivity are set by the dark cGMP 
concentration and the gain of photopigment activation (the ‘opsin gain’). Hence, we 
tested the ability of the model to generalize across cones and stimuli by allowing these 
two parameters to vary, while keeping the remaining parameters fixed. This procedure 
means that the parameters determining the kinetics of the model responses are 
consistent across all fitted cones. Several approaches to fitting model parameters 
provided very similar results (see Methods for details).

Figure 6B compares measured and model responses to the naturalistic stimulus 
from Figure 1. The model successfully captures the dynamic changes in current and the 
final current at the end of each fixation (Figure 6B). The contribution of slow adaptation 
was relatively minor, but it did help capture responses to long light steps, including the 
fixations in Figure 1 (compare to Figure 6 - Figure Supplement 1). Empirical models with 
a comparable number of free parameters could also capture responses of individual 
cones to naturalistic stimuli (Figure 6 - Figure Supplement 2-3).

The model was also able to fit responses to other stimuli after adjustments to 
dark current and sensitivity to account for differences between cones. First, the model 
correctly predicted the amplitude and kinetics of the single-photon response (Figure 
6C). Second, the model captured both the slow dynamics of responses to light steps 
and the fast changes in the amplitude and kinetics of flash responses superimposed on 
these steps (Figure 6D). As for real cones, the offset of adaptation in the model was 
slower than the onset (Figure 6E, and red triangle in Figure 2F). Third, the model 
captured changes in cone steady-state current and sensitivity across a wide range of 
light levels, with model responses showing Weber adaptation close to that measured 
(Figure 6G-H) (Dunn et al., 2007; Angueyra & Rieke, 2013; Cao et al., 2014). Fourth, 
the model exhibited asymmetric responses to light increments and decrements that fall 
within the range of the data (Figure 5B, D and F, red lines). Empirical models did not 
generalize as well; in particular, these models struggled to capture the changes in 
steady-state current and the dependence of response gain on background (Figure 6 - 
Figure Supplement 2-5; see Discussion). These models lack an intrinsic baseline or
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Figure 6. A biophysical model of phototransduction captures a wide range of the cone responses 
A. Schematic of phototransduction cascade and corresponding components of the biophysical model: 
cyclic-GMP (cGMP) is constantly synthesized by guanylate cyclase (GC), opening cGMP-gated channels 
in the membrane. Light-activated opsin (Opsin*) leads to channel closure by activating the G-protein 
transducin (Gt*) which activates phosphodiesterase (PDE*) and decreases the cGMP concentration. 
Calcium ions (Ca2+) flow into the cone outer segment through the cGMP-gated channels and are extruded 
through Na+/K+/Ca2+ exchangers in the membrane. Two distinct feedback mechanisms were implemented 
as calcium-dependent processes that affect the rate of cGMP-synthesis (blue line) and the activity of the 
cGMP-gated channels (red line). B. Fit to the measured cone response to the naturalistic stimulus shown 
in Figure 1. The model is able to capture both the currents at the end of fixations and the response 
transients following rapid changes in the stimulus. See Table 1 for fit parameters. C. The model accurately 
predicts the amplitude and kinetics of the single-photon response. D-F. Model fit to step and flashes 
responses from Figure 2. The model exhibits fast changes in gain at step onset (τOn-Model = 13.6 ms) and a 
slower recovery of gain at step offset (τOff-Model = 180 ms). These time constants are compared to 
experimental data in Figure 2F. G. Model responses to steps of increasing intensity. H. Dependence of 
model’s steady-state current on background light intensity (colored dots). This relation was fit with a Hill 
equation (Dunn et al., 2007) with a half-maximal background, I½ = 43,500 R*/s and a Hill exponent, n = 
0.77. The fit obtained by Dunn et. al., 2007 (I½ = 45,000 R*/s and n = 0.7) has been replicated for 
comparison (gray line). I. Estimated single-photon responses of the model, normalized by the response in 
darkness, at increasing background light intensities. J. Relation of the model’s peak sensitivity, 
normalized to the peak sensitivity in darkness, across background light-intensity (colored dots). The half-
desensitizing background (I0) for the model is 3297 R*/s. The fits obtained in Angueyra and Rieke, 2013 
(I0 = 2250 R*/s, after correcting a calibration error in the original article) and in Cao et al., 2014, (I0 = 3330 
R*/s, assuming a collecting area of 0.37 μm2 for transversally illuminated cones) have been replicated for 
comparison (gray lines).
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“dark” activity that controls the onset of adaptation. Hence adaptation operates at all 
light levels, and this causes a failure to generalize to responses to stimuli for which 
adaptation contributes little - such as flashes delivered in darkness.

The biophysical model described above, while not perfect, captures cone 
responses to a broad range of stimuli. The success of the model indicates that the 
known operation of cone phototransduction can explain cone responses to the highly 
dynamic inputs encountered during natural vision. The model allows us (1) to predict 
how signals in the cone array encode a variety of inputs and (2) to manipulate cone 
responses, e.g. to remove the effects of adaptation. Below we provide examples of 
each of these applications of the model.

Applications of biophysical model to neural coding

Local vs global adaptation
Most existing models for ganglion-cell responses share a common architecture in 

which retinal inputs are first processed linearly over space and time, followed by a 
nonlinear processing step associated with bipolar synapses or spike generation in 
ganglion cells (Ozuysal & Baccus, 2012; Pillow et al., 2008; Cui, Wang, Park, Demb, & 
Butts, 2016). For these models to be effective, they must either be restricted to stimuli 
for which the cones do not adapt, or adaptation in the cones must be accounted for by 
the late nonlinear steps in the model. But adaptation operates independently within 
each cone and hence is spatially local, unlike post-cone circuit mechanisms that likely 
have access only to signals pooled across multiple cones due to convergence of cone 
signals in retinal circuits. The cone model described above provides an opportunity to 
identify visual inputs for which the spatial locality of adaptation may have an important 
role in shaping retinal signals.

To identify such input stimuli, we compared a model in which adaptation occurred 
prior to pooling of signals across cones (‘cone-adaptation model’), with a model in which 
adaptation operated only on the pooled cone signal (‘post-cone-adaptation model’, 
Figure 7A). We presented each model with flashed patches of natural images and 
compared the predicted responses (Figure 7B). When all the cones encounter similar 
changes in input (i.e. spatially homogeneous bright or dark image patches such as 
those encountered in a patch of sky or a tree trunk), the location of adaptation did not 
matter (Figure 7B, bottom left and middle). This is expected intuitively since in these 
cases integration of cone signals does not involve averaging heterogeneous cone 
signals, and hence the pooled cone signal is very similar to the signal present at each 
cone. Hence adaptation is consistent across cones in the cone-adaptation model, and 
can be closely replicated by adaptation mechanism in the post-cone-adaptation model. 
Spatially-structured patches (e.g. patches with tree branches or leaves), however, led to 
considerable differences in the models with cone and post-cone adaptation (Figure 7B, 
bottom right). These differences originate because adaptation causes cone responses 
to equal and opposite light increments and decrements to differ both in steady-state 
levels and in the kinetics with which they reach that level. Thus, when responses of a 
cone exposed to a light increment and a cone exposed to an equal and opposite 
decrement are summed, the steady-state responses partially cancel but the time 
required for each cone to reach steady state differs due to the different kinetics of 
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adaptation. These effects are created by differences in the inputs to individual cones, 
and hence cannot be captured by adaptation occurring after integration of cone signals. 
Capturing such local adaptation will likely be an important aspect of creating predictive 
models for natural inputs (see Discussion).

Figure 7: Local cone adaptation shapes 
integrated responses to spatially structured 
inputs.  A. (top) Examples of predicted responses 
of two cones to a flashed natural image. Left 
panels show predicted responses from the 
biophysical model, while right panels shows 
predicted responses for a linear cone model.  
(bottom) Sum of the responses across a 
collection of cones to illustrate the impact of 
signal integration - e.g. integration within the 
receptive field of a downstream neuron.  Cones 
were weighted with a gaussian spatial profile 
resembling the receptive field of a primate 
Parasol retinal ganglion cell. The gaussian SD 
was 10 cone spacings, meaning that receptive 
field encompassed several hundred cones. 
Adaptation in the ‘post-cone-adaptation’ model 
operated on the integrated signal, and responses 
of individual cones depended linearly on light 
input. B. Predictions of integrated responses for 
several image patches. The top panel shows the  
locations of the illustrated patches. The bottom 
panel shows the integrated responses for 
adapting (blue) and non-adapting (black) cones.  

Manipulating cone responses
In addition to predicting the contribution of cones to responses of downstream 

neurons, the model described in Figure 6 provides a tool to manipulate specific aspects 
(e.g. nonlinearities or kinetics) of the cone responses. This will, for example, provide a 
tool to test the impact of local cone adaptation (as in Figure 7), and more generally to 
isolate the impact of post-cone circuit nonlinearities on retinal responses.
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Figure 8 shows how the cone model can be used to manipulate light stimuli to 
compensate for adaptation and create linear responses - a procedure we refer to as 
‘light-adaptation clamp.’ To accomplish this, we compare the outputs of two cone 
models: a linear model with the original stimulus as input, and the full model with a 
transformed version of the original stimulus as input (Figure 8A). The linear cone model
is determined by the responses of the full model to a brief low-contrast flash (i.e. the 
linear range impulse response of the full model; see Methods). The output of the linear 
model provides the desired response. We then adjust the transformation of the stimulus 
to minimize the difference between the two models - i.e. to cause the output of the full 
model to the transformed stimulus to match the output of the linear model to the original 
stimulus. Figure 8 - Figure Supplement 1 shows an example of several steps in this 
adjustment process.

Figure 8: Light-adaptation clamp. 
A. (left) Illustration of procedure.  The 
stimulus to the full cone model is 
tuned until the output of this model 
matches the “target” output of a linear 
(non-adapting) cone model. (right) 
Example of application to sinusoidal 
stimuli. The original stimulus and 
response are shown in black, and the 
modified stimulus and response in 
red.  Dashed lines show best fit 
sinusoids. B. Application to a step 
and flash stimulus. Left shows an 
example cell, right collects data 
across several cells, plotting the ratio 
of the amplitude of the responses to 
flashes before and on top of the step 
for transformed stimuli (y-axis) and 
original stimuli (x-axis). The discrete 
nature of the stimuli originates 
because these stimuli were delivered 
using a computer monitor with a 60 
Hz frame rate.

The light-adaptation clamp procedure is particularly simple for sinusoidal stimuli. Cone 
responses to high-contrast sinusoids are far from sinusoidal due to rapid adaptation 
(see Figure 5E and Figure 8A, right). For sinusoidal stimuli, the output of the linear 
model is also a sinusoid and hence the light-adaptation clamp procedure identifies a 
stimulus that makes the output of the full cone model sinusoidal. Measured responses 
to sinusoidal stimuli differ from a sinusoid in two ways, which are clear when comparing 
the measured response to a sinusoidal fit (solid and dashed lines in Figure 8A, right): 
(1) responses to decrements are larger than increments (closed arrow in Figure 8A, 
right; see also Figure 5E), and (2) the response to the dark-to-light transition is more 
rapid than expected from a sinusoid (open arrow in Figure 8A, right). These effects are 
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relatively subtle for the light level used in Figure 8, and testing whether we can indeed 
effectively minimize them is a strong test of the light-adaptation clamp procedure. As 
expected from the small deviations of the responses from linearity, the predicted 
transformation to produce linear responses is also subtle (red and black traces at top of 
Figure 8A, right).  Nonetheless, measured cone responses to the  transformed stimulus 
are considerably closer to a sinusoid then responses of the same cones to the original 
stimulus (black traces and fit in Figure 8A).

This approach is not limited to subtle manipulations of cone signals. Figure 8B 
tests the ability of the light-adaptation clamp to identify stimuli that minimize adaptation 
in a steps and flashes protocol similar to the one used in Figure 2 to characterize cone 
adaptation. As in Figure 2, adaptation considerably reduces the gain of responses to 
flashes delivered on top of a step compared to those delivered prior to the step. The 
cone model predicts that a sizable transformation of the original stimulus is needed to 
minimize this effect of adaptation and obtain the same flash response before and during 
the step (red and black traces at top of Figure 8b, left). Measured responses to the 
original and transformed stimuli show that adaptation is indeed largely eliminated by the 
transformed stimuli, a finding that holds across cones (Figure 8B, right).

It is important to note that this procedure directly tests the model’s ability to 
generalize across stimuli and across cones, as the stimulus manipulations were 
predicted from the model fits shown in Figure 6 and subsequently tested in “naive” 
cones. If the model predictions inaccurately captured responses of the measured cones, 
the procedure should fail to identify manipulations that achieve the desired 
transformation of the cone signals (linearization in the examples here). The examples 
above show that we can make predictable manipulations of both subtle and non-subtle 
aspects of the cone signals and verify that those manipulations indeed work as 
predicted in cones that did not contribute to the model parameters. These stimulus 
manipulations provide a tool to manipulate cone signals and establish a causal 
relationship between their properties and those of responses in downstream neurons 
(see Discussion).

Discussion

All sensory systems share a need to adapt to the statistics of the natural 
environment. Vision is no exception, as we are able to see across ambient light levels 
differing by more than a factor of one trillion. Visual adaptational mechanisms span a 
wide range of temporal and spatial scales. Some mechanisms tune circuits and control 
sensitivity over the course of minutes or hours (e.g. circadian regulation of retinal gap 
junctions (Bloomfield & Volgyi, 2009; Ribelayga, Cao, & Mangel, 2008) or of opsin 
expression (von Schantz, Lucas, & Foster, 1999; Li et al., 2005)). More rapid 
mechanisms operate in less than one second and permit effective encoding of the large 
and rapid changes in input experienced during free viewing of natural scenes. These 
mechanisms must balance the need for high sensitivity with the risk of saturation 
(Abrams, Hillis, & Brainard, 2007; Wark, Fairhall, & Rieke, 2009). The magnitude of this 
challenge is obvious when trying to take pictures with a digital camera: no single 
exposure setting can capture the range of inputs encountered in typical visual scenes. 
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The visual system deals with a significant fraction of these challenges upfront, by 
imposing fast and local adaptation at every “pixel” or photoreceptor.

Predictive model for cone signals
Evaluating the contributions of cones to visual function requires developing 

models that can predict responses to a wide range of stimuli. Functional models for 
ganglion cell responses often use linear or linear-nonlinear models for cones (Burton, 
1973; MacLeod, Williams, & Makous, 1992; Stockman, Petrova, & Henning, 2014; 
Pillow et al., 2008; Ozuysal & Baccus, 2012); such models do not accurately capture 
cone responses, particularly the dynamics of responses following large changes in 
input, such as those occurring following saccades.

Alternatives to linear or linear-nonlinear models include models that incorporate 
feedback or parallel feedforward signals that can capture history-dependent effects 
such as adaptation. These models can capture many nonlinearities in cone responses 
well (Clark et al., 2013). Another approach is to construct mechanistically-based models 
that reflect the underlying biochemistry of phototransduction. This is the approach we 
follow here, in part because such models generalized across stimuli better than 
empirical models (Figure 6), and in part because they permitted a direct test of how well 
current understanding of phototransduction accounts for responses to a wide range of 
stimuli.

Several limitations of our model are important to emphasize. First, our model 
omits several known mechanistic features for simplicity, notably feedback to the opsin 
and photopigment bleaching. These mechanisms are important at higher light levels 
and have been included in other biophysical models (Lamb & Pugh, 2004; van Hateren 
& Snippe, 2007). Second, we chose a set of model parameters that provided a good fit 
to our measured responses. However, some parameters in the model can trade against 
each other, meaning that more than one combination of parameters can provide a good 
fit. As a consequence, model parameters should not be interpreted as unique estimates 
of actual biochemical rate constants.

The biophysical model presented here captures cone responses to a broad 
range of stimuli within the range of mean intensities we tested (up to ~100,000 R*/s for 
short periods of time). This spans the range of light levels explored in most physiological 
and psychophysical studies of cone vision. As a result, the model can be used to 
explore the impact of cone signaling on downstream visual responses, as described 
below.

Separation of cone and post-cone processing to visual function
The model we develop provides a needed tool to evaluate the contributions of 

the cones and post-cone processing to shaping of responses in subsequent visual 
neurons in the retina or cortex. Asymmetric sensitivities to contrast increments and 
decrements provide one example. These asymmetries are a common feature of 
responses of retinal ganglion cells and V1 cortical neurons and of behavior. Such 
asymmetries are often attributed to the circuits that read out the cone responses, with 
the implicit assumption that the cones provide symmetrical input to ON and OFF 
circuits. In some cases this is almost certainly accurate. For example, psychophysical 
thresholds for detecting rapid contrast decrements (stimuli designed to isolate the OFF 
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pathway) are lower than those for detecting rapid contrast increments (designed to 
isolate the ON pathway) (Bowen, Pokorny, & Smith, 1989). Because detection of these 
stimuli requires just a few percent contrast (where cone responses are near linear), the 
difference in sensitivity almost certainly arises in the post-cone circuitry. At higher 
contrasts, decrements elicit larger V1 responses than increments in humans and 
monkeys (Kremkow et al., 2014), and detection of 100% contrast decrements 
embedded in binary noise is more reliable than detection of 100% contrast increments 
(Komban et al., 2014). These high-contrast stimuli will elicit asymmetric responses in 
the cones themselves, and cone nonlinearities likely contribute substantially to 
downstream signaling.

The cone light-adaptation clamp procedure we introduce here could help reveal 
the contribution of the cones to these (and other) downstream signals. As illustrated in 
Figure 8, this approach permits identification of stimuli that generate desired cone 
responses — e.g. symmetrical responses to increments and decrements. The use of 
such stimuli while recording responses of downstream visual neurons or while 
monitoring perception should help separate the contributions of cones from those of 
post-cone circuits. Indeed, we have used the light-adaptation clamp approach to show 
an unexpected role of cone adaptation in how some ganglion cell types respond to 
spatial structure in natural inputs (Z. Yu, M. Turner, F. Rieke, unpublished).

Importance of cone adaptation for models of signaling in retinal ganglion cells
The past 20 years has seen a dramatic advance in our understanding of what 

information retinal ganglion cells provide to central targets. As a result, ganglion cells 
serve as a leading example of how connectivity and signaling mechanisms shape the 
outputs of a neural circuit in a behaviorally-important manner (reviewed by (Field & 
Chichilnisky, 2007; Sanes & Masland, 2015)). Nonetheless, current models for ganglion-
cell feature selectivity generalize poorly to novel stimuli, particularly naturalistic ones 
(Heitman et al., 2016; McIntosh, Maheswaranathan, Nayebi, Ganguli, & Baccus, 2016). 
This failure to generalize may occur at least in part because current models lack 
adaptation in individual cones, instead assuming that the cones respond linearly across 
stimuli. Yet, as we show here, naturalistic stimuli strongly engage adaptation in the 
cones (Figure 1). These considerations suggest that cone adaptation, and its natural 
operation on a small spatial scale, will be a key factor shaping retinal output signals. For 
example, our cone model predicts that patches of natural images with high spatial 
structure will produce transient responses when signals from multiple cones are 
integrated (Figure 7).

Better models for ganglion-cell function are needed for improved retinal 
prosthetics and to determine how key steps in visual processing are distributed between 
retinal and cortical mechanisms. A potential limitation of current models is that they do 
not reflect the functional architecture of the underlying circuits - particularly with respect 
to the location of key circuit nonlinearities. Local adaptation is just one example in which 
getting the order of linear and nonlinear steps correct matters for predicting output 
responses. Incorporating the model that we develop here for nonlinear, adaptive cone 
signaling into models for downstream visual neurons could be an important step 
towards models that generalize across stimuli.
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Methods

Animals, tissue and solutions
We made electrophysiological recordings from primate retinas (Macaca 

fascicularis, nemestrina and mulatta of either sex, ages 3 – 19 yrs) in accordance with 
the Institutional Animal Care and Use Committee at the University of Washington. We 
obtained retina through the Tissue Distribution Program of the Regional Primate 
Research Center. Most enucleations were performed under pentobarbital anesthesia; a 
few were performed with halothane anesthesia. After enucleation, we rapidly (< 3 min) 
separated the retina-pigment epithelium-sclera complex from the anterior segment, 
removed the vitreous humor, and dark-adapted the retina for 1h in warm (32o C) Ames 
medium bubbled with a mixture of 95% CO2 and 5% O2. In some young animals, we 
removed the vitreous after incubation in plasmin (~50 μg/mL in ~10mL of solution for 
~20 min at room temperature). We performed all subsequent procedures under infrared 
illumination (> 900 nm). For recording, we separated a small piece of retina (~4 mm2) 
from the pigment epithelium and mounted it, photoreceptor-side up, on a poly-lysine 
coated coverslip (BD Biosciences) that formed the floor of a recording chamber. We 
continually superfused retinas with warm (~31°-33° C) oxygenated Ames medium. 
Treatment with DNase I (Sigma-Aldrich) (30 units in ~250 μL of Ames for 4 min) 
facilitated access to the photoreceptor inner segments. For horizontal-cell recordings, 
we obtained thin vibratome slices (~200 μm) using chilled Ames-medium. Subsequently, 
individual slices were transferred to warm bicarbonate-buffered Ames-medium for 
storage until recording. All the recordings presented here were made in peripheral retina 
(>20° eccentricity).

Recordings, light-stimulation and analysis
For whole-cell voltage-clamp recordings of cone photoreceptors (junction-

corrected holding potential –70 mV) we measured signals with an internal solution 
containing (in mM): 133 potassium aspartate, 10 KCl, 10 HEPES, 1 MgCl2, 4 Mg-ATP, 
0.5 Tris-GTP; pH was adjusted to 7.2 with NMG-OH and osmolarity was 280 ± 2 
mOSM. The internal solution did not contain any calcium buffer (or calcium), as even 
low concentrations of calcium buffer caused the cone light response to become 
increasingly biphasic during the course of a recording. For perforated-patch current-
clamp recordings (without current-injection), we used an internal solution containing (in 
mM): 125 potassium aspartate, 10 KCl, 10 HEPES, 5 EGTA, 1 MgCl2, 0.5 CaCl2, 4 Mg-
ATP, 0.5 Tris-GTP, and 30 µg/mL gramicidin; pH was adjusted to 7.2 with NMG-OH and 
osmolarity was 280 ± 2 mOSM. We included EGTA in the internal so that inadvertent 
whole-cell access caused responses to rapidly become biphasic; any such recordings 
were terminated. For whole-cell recordings from horizontal cells we used the same 
internal solution used for the perforated-patch recordings, but omitted gramicidin. 
Access resistance was ~10-14 MΩ and was compensated 50% (prediction and 
compensation settings on Multiclamp 700B Amplifier).

Light stimuli from blue, green and red LEDs (peak wavelengths 405, 510 and 640 
nm) permitted quick identification of cone types. The stimuli illuminated a ~150 μm 
diameter area centered and focused on the recorded cone through the condenser of an 
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upright microscope. We converted photon densities (photons/μm2) to R*/photoreceptor 
using a collecting area of 0.6 μm2 (Schneeweis & Schnapf, 1999), previously measured 
cone spectral sensitivities (Baylor, Nunn, & Schnapf, 1984) and measured LED spectra. 
For horizontal-cell recordings, the stimuli illuminated a ~500 μm diameter area, and we 
assumed a collecting area of 0.37 μm2 (Schnapf et al., 1990), as illumination was 
incident directly on the outer segments instead of funneled through the inner segments. 
We calibrated stimuli using M-cones as reference. The M-cone:L-cone:S-cone:rod 
sensitivity ratio for the blue LED used during the horizontal-cell recordings is 
1:0.48:1.37:3.25. Horizontal cells were adapted for at least 2 minutes to a background 
350 R*/M-cone/s before data collection (equivalent to ~1100 R*/rod/s or ~175 R*/L-
Cone/s).

We acquired data using Multiclamp 700B amplifiers. We low-pass filtered 
recorded currents at 3 kHz and digitized the data at 20 kHz. After analysis, we digitally 
low-pass filtered the data in Figures 3 and 4 at 200 Hz for ease of viewing. We analyzed 
recorded data through custom routines in Matlab (The Mathworks). We excluded data 
from cells that showed unusually rapid run-down of light responses, low sensitivity or 
from short-lived recordings. All cones presented here were either L or M cones.

Model of fixation duration and saccades
The model to generate naturalistic stimuli was based on a statistical 

approximation from measurements of eye movements made in humans (Harris et al., 
1988). Fixation times in this model follow an exponential distribution with a refractory 
period, such that the probability of two saccades following each other is given by:

    (1)

with α, the refractory period, of 100 ms (Harris et al., 1988); a value of β, the time 
constant of the exponential distribution, of 200 ms was selected to generate on average 
3 saccades every second (range of 2 to 5 saccades/s). This model did not include any 
fixational eye movements. Saccades were inserted between fixations, with a duration 
(DS), proportional to a random amplitude (As), and dictated by:

 (2)

where the velocity, vs, was drawn from a uniform distribution between 0.4 and 0.6°/ms, 
as = 10° and ds = 40 ms (Rucci, Edelman, & Wray, 2000). This generated saccades that 
lasted ~15 ms. At each fixation the intensity was drawn from distributions constructed 
from individual natural images taken from the van Hateren database (van Hateren & 
Snippe, 2007). During saccades, transitions between intensities were linear.
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Linear and linear-nonlinear model
Linear filters corresponded to estimates of the single-photon response, obtained 

by recording cone responses to dim flashes in darkness and dividing them by the 
strength of the flash. For dim flashes in darkness we chose flash intensities between 
100 and 200 R*/flash; the flash intensity for the cell in Figure 1 was 177 R*/flash. The 
single-photon responses were then fitted with the following equation (Angueyra & Rieke, 
2013; Baylor, Nunn, & Schnapf, 1987):

    (3)

The parameters for the example cell in Figure 1c were: α = 631, τrise = 28.1 ms, τdecay = 
24.3 ms, τosc = 2x103 s and ω = 89.97°. This cell did not show a significant oscillation in 
its response and hence the cosine term in the fit was not needed; others cells did show 
small undershoots that were better fit when we included the cosine term (see also 
(Angueyra & Rieke, 2013)).

The linear filter was convolved directly with the light stimulus to obtain a linear 
estimate of the responses. Given that the linear filter was obtained in darkness, where 
gain is maximal, we allowed rescaling of the linear model by a single factor. The 
rescaling factor was chosen to match the current at the end of the highest fixation, and 
had a value of 0.01 for the example cone presented in Figure 1.

After baseline subtraction, the relationship between the real and linear model 
currents (mean current during the final 50 ms of each fixation) was fitted with the 
following function:

     (4)

where C[ ] is the cumulative density of a normal function with zero mean and standard 
deviation of 1 (Chichilnisky, 2001). The parameters for the fit shown in Figure 1D were a 
= 305.4, b = 0.039, d = 1.00 and e = -262.9.

Biophysical model of cone phototransduction
The biophysical model of the phototransduction cascade briefly presented here 

(Figure 6) is a modification of a model of phototransduction for toad rods (Rieke & 
Baylor, 1996; Rieke & Baylor, 1998). The original rod model is largely equivalent to 
other biophysical models successfully used in the past in rods and cones from other 
species (Pugh & Lamb, 1993; Nikonov, Engheta, & Pugh, 1998; Endeman & 
Kamermans, 2010), and as the first component of a primate horizontal-cell model (van 
Hateren, 2005). In the model, adaptation emerges through activity-dependent changes 
in the cGMP turnover, produced by a light-induced increase in PDE activity and the 
calcium dependence of the rate of cGMP turnover (see below); the time scale of 
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adaptation depends largely on the kinetics of this process. The modified cone model 
below adds a second feedback mechanism (and therefore a second time scale for 
adaptation), implemented as a calcium-dependent feedback to the cGMP-gated 
channels; this modification improved fits to long light steps.

In the first step of the model, the stimulus (Stim) activates opsin molecules 
(denoted as R for Receptor, R* when active), which decay with a rate constant σ:

(5)

Here, γ is a scaling factor (or “opsin gain” factor) that controls the overall sensitivity of 
the model to light inputs.

Active opsin molecules then activate phosphodiesterase (PDE) molecules 
through transducin (a delay we assume is negligible) (Pugh & Lamb, 1993), so that the 
activity of PDE (P) follows:

     (6)

where φ is the decay rate constant of PDE and η is the PDE activity in darkness.
The concentration of cGMP in the outer segment (G) depends on the PDE-

mediated hydrolysis and the rate of synthesis (S) by the guanylate cyclase (GC) :

   (7)

The outer segment current carried by the cGMP-gated channels depends on G and has 
been approximated as:

(8)

This approximation is valid for current values that are well below the maximal current 
(Rieke & Baylor, 1996). In this equation h denotes the apparent cooperativity and kCa is 
a constant that depends of the maximal current and the affinity of the channel for cGMP. 
Additionally, we have made this constant calcium-dependent (see below), as a means 
to introduce feedback to the cGMP-gated channels (Korenbrot, 2012).

A fraction (q) of the outer segment current (I) is carried by calcium, so that upon 
exposure to light the calcium concentration (Ca) decreases. Calcium extrusion in the 
outer segment is mainly mediated through the Na+/K+, Ca2+ exchanger. We simplify this 
process in the model as a single exponential process with time constant β:

(9)
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The calcium concentration regulates S (the rate of cGMP synthesis) following a Hill 
curve, such that:

(10)

where Smax is the maximum synthesis rate, and KGC and m are the affinity and 
cooperativity constants respectively.

We also modeled the second feedback as a single-exponential process that is 
calcium dependent and has a slower decay time constant (βslow): 

                                (11)

This process determines the value of kCa (Korenbrot, 2012) such that:

(12)

For model fitting, we fixed k (0.02 pA.μM-3), h (3), m (4),  and Cdark (1 μM) 
(Robson & Frishman, 1996; Rieke & Baylor, 1996). We then calculated the 
concentration of cGMP in darkness (Gdark) using the measured holding current in 
darkness (Idark) and equation (8), and the values of q and Smax derived from steady-state 
conditions (e.g. in the dark, dCa/dt = 0). We further simplified our model by making σ 
and φ have equal value, as preliminary fitting showed little advantage to making them 
differ. We subsequently used a combination of manual trial-and-error and automatic 
fitting routines in Matlab (fmincon, lsqcurvefit and nlinfit) to find values for the remaining 
6 model parameters (σ, η, KGC, β, βslow and γ) that would provide a good fit to the 
response to naturalistic stimuli (Figure 1B) and at the same time accurately predict the 
single photon-response (Figure 1C). Table 1 shows a summary of model parameters 
across cones and stimuli. 

We evaluated the quality of model fits using the ratio between the sum of 
absolute errors of the model to the data and the sum of absolute errors of the model to 
the mean response (i.e. the fraction of variance explained). Model fits were relatively 
insensitive to modest (~5%) changes in parameters and were robust to initial conditions 
for the parameter search. Varying individual parameters by 5% changed the error in the 
prediction by <10%, with the largest changes associated with manipulations of φ or η.

To assess the ability of the model to generalize across cones and stimuli, we 
allowed Gdark (to match each cell’s Idark) and γ (to account for differences in absolute 
sensitivity between recorded cones) to vary while holding other parameters fixed. 
Simultaneously fitting responses to a variety of stimuli (naturalistic stimuli (Figure 1B), 
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the single photon response (Figure 1C), steps and flashes (Figure 2B) binary noise and 
sinusoids (Figure 5C)) or subsets of these stimuli produced model parameters that 
differed by less than 5% from those fit to the naturalistic stimuli and the single photon 
response. Including the naturalistic stimuli in the fitting procedure was particularly 
effective in producing models that generalized to other stimuli. The fraction of variance 
explained for these different fitting approaches varied minimally (< 5%).

Alternative models of cone phototransduction
As a first alternative to our phototransduction model, we fit the same dataset to a 

model that did not include the slower calcium-feedback to the cGMP-gated channel. 
This model follows our phototransduction model from equations (5) to (10) and removes 
the parameter βslow. We followed the same fitting strategy as for the full model. In 
general, this model behaved well, with similar adaptation values and kinetics, but fits to 
the naturalistic stimuli or to bright steps suffered because of mismatches in the final 
currents at the end of fixations (Figure 6 — Supplement 1). As we have shown, we 
consider this is an important aspect of cone responses, leading us to focus on the 
biophysical model with two feedback processes.

As a second alternative to our model, we explored an empirical model that is able 
to capture the responses of turtle cones to a variety of stimuli (Clark et al., 2013). In this 
model, the light stimulus provides the input to two separate pathways. In the first 
pathway, the stimulus is directly convolved with a linear filter (Ky) before passing 
through a dynamic low-pass filter that dictates the response of the model. In the second 
pathway, the stimulus is directly convolved with a slower and delayed linear filter (Kz) 
that dictates the amplitude and time constant of the low-pass filter, providing a way to 
directly modulate the model’s output (Figure 6 — Supplement 2A). This feedforward 
implementation of adaptation imparts the model with a mechanism that controls both 
gain and kinetics in a history-dependent manner. The linear filters are determined by:

(13)

and,

(14)

   
where τy and τz determine the time-scale of the filters and ηy and ηz determine their rise 
behavior (Clark et al., 2013). The final output of the model, r, is determined by:

    (15)

where α, β, and τr are constants and 
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(16)

(17) 

To find fits for this model, we first found a fit to the estimated single-photon response 
while eliminating adaptation (forcing β = 0), allowing us to find values for τy, ηy and τr 
that matched the kinetics of dim-flash responses. After fixing these three values, we fit 
the response to the naturalistic stimulus to determine values for the other five 
parameters, namely τy, ηy, γ, α and β (Figure 6 — Supplement 2B). The fit deviates 
from the data in two important aspects. First, during transitions from a high to a low light 
level, the cone response dips below baseline but the model does not. Second, the 
degree of adaptation required to fit the response to the naturalistic stimulus changes the 
overall gain of the model such that the model’s single-photon response is ~10-fold 
smaller than measured (Figure 6 — Supplement 2C). To test for generalization of this 
model we fixed the parameters that dictate the kinetics of the model from the fit to the 
naturalistic stimulus, and let the parameters that dictate gain, sensitivity and strength of 
feedback (α, β and γ) to vary while fitting the other data sets. The model is capable of 
replicating the responses to steps and flashes, with adequate degree and kinetics of 
gain changes, especially for adaptation onset. These model fits were unable to capture 
the changes of steady-state current and the dependence of gain on background, 
requiring ~300-fold higher light levels for half-adaptation than real cones (Figure 6 — 
Supplement 2G-J). Model parameters that bridged this discrepancy greatly distorted fits 
to the other datasets and were not pursued further.

We additionally explored a modification of the empirical model, in which we 
added a second adaptation mechanism with a longer timescale (Figure 6 - Supplement 
3A), such that equation 14 is replaced by:

(18)

adding three new parameters (γz2, τz2 and ηz2). We followed the same fitting strategy as 
for the previous empirical model and found that fits improved just slightly and limitations 
persisted, in particular the inability to capture the dependence of steady state-current 
and gain on background and the dips of current below baseline after transitions from 
high to low light levels (Figure 6 -Supplement 3B-J). Preliminary attempts to fix these 
issues by adding some intrinsic activity to the model (akin to a cone’s dark current) 
seemed promising but required adding more parameters to the existing eleven, 
approaching the number of free parameters of our biophysical model.
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As a final benchmark, we fit all models to example cone responses to the high-contrast 
binary noise and sinusoidal stimuli presented in Figure 5. All models were able to 
adequately capture responses to the both stimuli when directly fit to example traces 
(Figure 6 - Supplement4A and Supplement5A), and displayed acceptable asymmetric 
responses when compared to population data (Figure 6 - Supplement4B and 
Supplement5B). As expected from fits to other datasets, the empirical models recover 
from adaptation faster than real cones, producing deviations in transitions from high to 
low light levels, and struggle to capture the responses to sinusoids at the lowest light 
levels. The phototransduction models fail to capture responses to these stimuli at the 
highest light levels (near and above 100,000 R*/s), emphasizing that other adaptation 
mechanisms not included in our model most likely shape responses at high light levels.

Light-adaptation clamp
Figure 8 uses the biophysical cone model to design stimuli that minimize nonlinearities 
in the cone responses. We used two models of the cone responses to identify these 
stimuli: (1) the full biophysical model; (2) a linear model.  The linear model was 
determined by the response of the full model to a brief, low contrast flash (i.e. a flash 
within the linear range of the full model behavior). The stimulus for the full model was a 
transformed version of the original stimulus, while the original stimulus (untransformed) 
provided input to the linear model. We then sought a stimulus transformation that 
minimized the difference between the outputs of the two models. For sinusoidal stimuli, 
such as those in Figure 8A, this is particularly simple: the response of the linear model 
to these stimuli is also sinusoidal, and hence our procedure identifies a stimulus to the 
full model that creates a sinusoidal output. We refer to this as a “light-adaptation clamp” 
because the procedure aims to “clamp” cone responses to track a desired response (in 
this case one that lacks adaptation).

We identified the appropriate stimulus transformation using a gradient-descent 
approach. We discretized the stimulus into time bins and then perturbed the stimulus at 
these discrete times. We retained perturbations that decreased the mean-squared 
difference between the two models’ responses (see Figure 8-Figure Supplement 1 for 
an example) using Matlab’s fminsearch algorithm. We iterated this process while 
decreasing the size of the time bins until achieving a stable minimum of the mean-
square difference.
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Table 1. Parameters and best fit values for cone-phototransduction biophysical 
model

30

Fit values

Parameter Symbol Units Type

RECOMMENDED VALUES
Fig 6G-H,
Fig5B,D,F

and Fig6SI4B-5B

Fig 6B-C
Fig 6D-F
and 3F

Fig 6SI4A Fig 6SI5A

Opsin gain � � Free 10.0 3.0 7.9 1.3 15.0

Opsin decay rate constant � s�1
Locked 22 22 22 22 22

PDE decay rate constant � s�1
Constrained (�=�) 22 22 22 22 22

PDE dark activation rate ⌘ s�1
Locked 2,000 2,000 2,000 2,000 2,000

cGMP-to-current constant k pA.µM�3
Fixed 0.02 0.02 0.02 0.02 0.02

cGMP channel cooperativity h � Fixed 3 3 3 3 3

Ca2+ extrusion rate constant � s�1
Locked 9 9 9 9 9

Fraction of current carried by calcium q � Derived 0.1125 0.031 0.012 0.0833 0.078

Maximal cGMP synthesis rate by GC Smax s�1
Derived 30,909 36,890 30,909 34,161 34,884

Ca2+ GC-a�nity KGC µM Locked 0.5 0.5 0.5 0.5 0.5

Ca2+ GC-cooperativity m � Fixed 4 4 4 4 4

Channel-feedback decay rate constant �Slow s�1
Locked 0.4 2 2 2 2

Ca2+ concentration in darkness Cadark µM Fixed 1 1 1 1 1

cGMP concentration in darkness cGMPdark µM Derived 20 30.73 20 22.1 22.57

Dark current Idark pA Measured -80 -136 -290 -108 -115
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Figure 2 - Figure Supplement 1: Dependence of adaptation kinetics on light intensity.  A. Time constant 
for onset of adaptation plotted against mean light intensity.  B.  Time constant of offset of adaptation 
plotted against mean light intensity.  Bold point is example cell from Figure 2.
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Figure 5 - Figure Supplement 1: Cone voltages and synaptic output exhibit asymmetric responses 
to light increments and decrements.  A. Cone voltage responses (current-clamp recording) elicited by a 
family of light increments and decrements.  B.  Horizontal voltage responses elicited by increments and 
decrements. 
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Figure 6 - Figure Supplement 1: A biophysical model of phototransduction with a single 
adaptation mechanism performs well but does not capture responses to long steps A. Schematic 
of phototransduction cascade and corresponding components of the biophysical model: cyclic-GMP 
(cGMP) is constantly synthesized by guanylate cyclase (GC), opening cGMP-gated channels in the 
membrane. Light-activated opsin (Opsin*) leads to channel closure by activating the G-protein transducin 
(Gt*) which activates phosphodiesterase (PDE*) and decreases the cGMP concentration. Calcium ions 
(Ca2+) flow into the cone outer segment through the cGMP-gated channels and are extruded through 
Na+/K+/Ca2+ exchangers in the membrane. Only one feedback mechanism was implemented as a 
calcium-dependent processes that affect the rate of cGMP-synthesis. B. Fit to cone response to the 
naturalistic stimulus shown in Figure 1. The model is able to capture the response transients following 
rapid changes in the stimulus but slightly misses the currents at the end of fixations. See Table 1 - 
Supplement 1 for fit parameters. C. This model also accurately predicts the amplitude and kinetics of the 
single-photon response. D-F. Model fit to step and flashes responses from Figure 2. The model exhibits 
fast changes in gain at step onset (τOn-Model = 22.3 ms) and a slower recovery of gain at step offset 
(τOff-Model = 122.1 ms). G. Model responses to steps of increasing light intensity. H. Dependence of 
model’s steady-state current on background light intensity (colored dots). This relation was fit with a Hill 
equation with a half-maximal background, I½ = 38,785 R*/s and a Hill exponent, n = 1.07. I. Estimated 
single-photon responses of the model, normalized by the response in darkness, at increasing background 
light intensities. J. Relation of the model’s peak sensitivity, normalized to the peak sensitivity in darkness, 
across background light-intensity (colored dots). The half-desensitizing background (I0) for the model is 
4,198 R*/s.

33

100
80
60
40
20

0

x 
10

3  R
*/s

-140

-130

-120

-110

-100

-90

-80

-70

i (
pA

)

86420

Time (s)

-300

-250

-200

-150

-100

-50

i (
pA

)

2.52.01.51.00.50.0

Time (s)
250

200

150

100

50

0

i (
pA

)

2.52.01.51.00.50.0

Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

No
rm

. G
ai

n

1.00.80.60.40.20.0

Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

No
rm

. G
ai

n

1.00.80.60.40.20.0

Time (s)

-120
-100

-80
-60
-40
-20

0

i (
pA

)

43210-1

Time (s)

-80

-60

-40

-20

0

St
ea

dy
-s

ta
te

 c
ur

re
nt

 (p
A)

100 101 102 103 104 105 106

Background (R*/s)

1.0
0.8
0.6
0.4
0.2
0.0

No
rm

. g
ai

n

0.50.40.30.20.10.0

Time (s)

1.0

0.8

0.6

0.4

0.2

0.0

No
rm

. g
ai

n

100 101 102 103 104 105 106

Background (R*/s)

A B

D GE

C

H

JIF
 Angueyra and Rieke, 2013
 Cao et. al, 2014

50 ms

0.
04

 p
A

Darkness

1 000 000 R*/s
100 000 R*/s

10 000 R*/s
1 000 R*/s

100 R*/s
10 R*/s

1 R*/s

Background:

 80 ms
 160 ms

 10 ms
 20 ms
 40 ms

Δt:

Opsin*

Opsin

Gt*

Gt

PDE*

PDE

cGMP

5'GMP

GTP

GC

Light

Ca2+

cGMP-gated
channel

Ca2+

Ca2+

Na+/K+/Ca2+
exchanger

 Single-photon response
 Cone model (prediction)

 Fit to cone model
 Dunn et. al, 2007

 Fit to cone model

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431101
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6 - Figure Supplement 2: An empirical model of cone responses with a single adaptation 
mechanism fails to generalize well across cells. A. Schematic of empirical model (Clark et al, 2013) 
where the stimulus is convolved with a linear filter (Ky) and a dynamic low-pass filter. The time course and 
amplitude of the low-pass filter are determined by the convolution of the stimulus with a slower linear filter 
(Kz), which acts as a feed-forward mechanism that dynamically modulates the model's response. B. Fit to 
cone response (after baseline subtraction) to the naturalistic stimulus shown in Figure 1. The model is 
able to capture the response transients following rapid changes in the stimulus but is unable to capture 
current undershoot in light to dark transitions. See Table 1 - Supplement 2 for fit parameters. C. This 
model also underestimates the amplitude of the single-photon response by ~10-fold. D-F. Model fit to step 
and flashes responses from Figure 2. The model exhibits fast changes in gain both at step onset (τOn-
Model = 12.96 ms) and at step offset (τOff-Model = 45.20 ms). G. Model responses to steps of increasing 
light intensity. H. Dependence of model’s steady-state current on background light intensity (colored dots). 
This relation was fit with a Hill equation with a half-maximal background, I½ = 1,613,990 R*/s and a Hill 
exponent, n = 1. I. Estimated single-photon responses of the model, normalized by the response in 
darkness, at increasing background light intensities. J. Relation of the model’s peak sensitivity, 
normalized to the peak sensitivity in darkness, across background light-intensity (colored dots). The half-
desensitizing background (I0) for the model is 1,111,790 R*/s.
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Figure 6 - Figure Supplement 3: An empirical model of cone responses with a double adaptation 
mechanism also fails to generalize across cells. A. Schematic of empirical model where the stimulus 
is convolved with a linear filter (Ky) and a dynamic low-pass filter. The time course and amplitude of the 
low-pass filter are determined by the successive convolution of the stimulus with two linear filters (Kz and 
Kzslow), providing a feed-forward mechanism that dynamically modulates the model's response with two 
different time scales. B. Fit to cone response (after baseline subtraction) to the naturalistic stimulus shown 
in Figure 1. The model is able to capture the response transients following rapid changes in the stimulus 
but is still unable to capture current undershoot in light to dark transitions. See Table 1 - Supplement 2 for 
fit parameters. C. This model also underestimates the amplitude of the single-photon response by ~10-
fold. D-F. Model fit to step and flashes responses from Figure 2. The model exhibits fast changes in gain 
both at step onset (τOn-Model = 13.38 ms) and at step offset (τOff-Model = 34.75 ms). G. Model 
responses to steps of increasing light intensity. H. Dependence of model’s steady-state current on 
background light intensity (colored dots). This relation was fit with a Hill equation with a half-maximal 
background, I½ = 1,428,240 R*/s and a Hill exponent, n = 1. I. Estimated single-photon responses of the 
model, normalized by the response in darkness, at increasing background light intensities. J. Relation of 
the model’s peak sensitivity, normalized to the peak sensitivity in darkness, across background light-
intensity (colored dots). The half-desensitizing background (I0) for the model is 1,052,580 R*/s.
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Figure 6 - Figure Supplement 4: Model responses to binary noise stimuli. A: 100% contrast binary 
noise stimulus (top trace) and cone photocurrent  response (bottom traces), as shown in Figure 5, 
overlaid with direct fits of each model. B. Ratio of mean negative to mean positive response to binary 
noise for each model as a function of mean light intensity, derived from fits to example cell in A (top panel) 
or from fits to naturalistic stimulus, as shown in Figure 1. All models are able to adequately capture the 
asymmetric responses to this stimulus.
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Figure 6 - Figure Supplement 5: Model responses to sinusoidal stimuli. A: 100% contrast sinusoidal 
stimulus (top traces) and cone photocurrent response (bottom traces), as shown in Figure 5, overlaid with 
direct fits of each model. B. Ratio of peak negative to peak positive response to the sinusoidal stimulus 
for each model as a function of mean light intensity, derived from fits to the example cell in A (top panel) 
or from fits to naturalistic stimulus, as shown in Figure 1. All models are able to capture the asymmetric 
responses to this stimulus.

37

A

B

Empirical model
(double linear filter)

Empirical model
(single linear filter)

Phototransduction model
(fast adaptation only)

Phototransduction model
(fast and slow adaptation)

Fits to sinusoidal stimulus Fits to naturalistic stimulus3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
sp

on
se

 R
at

io
 (O

FF
 / 

O
N)

102 103 104 105

Background (R*/s)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Re
sp

on
se

 R
at

io
 (O

FF
 / 

O
N)

102 103 104 105

Background (R*/s)

Sinusoid (100% contrast)

0.5 s

40
 p

A

40 000 R*/s

12 000 R*/s

4 000 R*/s

1 200 R*/s

0.5 s

40
 p

A

40 000 R*/s

12 000 R*/s

4 000 R*/s

1 200 R*/s

0.5 s

40
 p

A

40 000 R*/s

12 000 R*/s

4 000 R*/s

1 200 R*/s

0.5 s

40
 p

A

40 000 R*/s

12 000 R*/s

4 000 R*/s

1 200 R*/s

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.13.431101doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.13.431101
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7 - Figure Supplement 1: Example of cone light-adaptation clamp procedure.  The top panel 
illustrates the approach. The stimulus to the linear cone model is held fixed, while the stimulus to the full 
cone model is adjusted until the two models produce similar outputs.  The bottom panels show this 
process for a step and flashes stimulus.  Initially (far left) the two stimuli are identical and the two models 
produce very different outputs, due to adaptation in the full model. Moving rightwards, each panel shows 
a step in the transformation process, with the final result in the far right.   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Supplement Table 1. Parameters and best fit values for cone-phototransduction biophysical model with 
fast adaptation only

Supplement Table 2. Parameters and best fit values for empirical model with a single linear filter

Supplement Table 3. Parameters and best fit values for empirical model with a double linear filter
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Fit values

Parameter Symbol Units Type Fig 6SI1G-H

and Fig6SI4B-5B

Fig 6SI1B-C Fig 6SI1D-F Fig 6SI4A Fig 6SI5A

Opsin gain � � Free 10.0 3.0 8.92 1.4 18.0

Opsin decay rate constant � s�1
Locked 23.5 23.5 23.5 23.5 23.5

PDE decay rate constant � s�1
Constrained (�=�) 23.5 23.5 23.5 23.5 23.5

PDE dark activation rate ⌘ s�1
Locked 2,395 2,395 2,395 2,395 2,395

cGMP-to-current constant k pA.µM�3
Fixed 0.02 0.02 0.02 0.02 0.02

cGMP channel cooperativity h � Fixed 3 3 3 3 3

Ca2+ extrusion rate constant � s�1
Locked 9 9 9 9 9

Fraction of current carried by calcium q � Derived 0.1125 0.0662 0.031 0.0556 0.078

Maximal cGMP synthesis rate by GC Smax s�1
Derived 22,752 27,154 34,950 28,784 25,677

Ca2+ GC-a�nity KGC µM Locked 0.526 0.5 0.5 0.5 0.5

Ca2+ GC-cooperativity m � Fixed 4 4 4 4 4

Ca2+ concentration in darkness Cadark µM Fixed 1 1 1 1 1

cGMP concentration in darkness cGMPdark µM Derived 15.87 18.95 24.39 20.08 17.92

Dark current Idark pA Measured -80 -136 -290 -105 -115

1

Fit values

Parameter Symbol Units Type Fig 6SI2B-C,G-H

and Fig6SI4B-5B

Fig 6SI2D-F Fig 6SI4A Fig 6SI5A

alpha ↵ � Free 19.40 1320 70 350
beta � � Free 0.36 8.29 0.79 0.45
gamma � � Free 0.448 0.745 1.370 0.600
Ky filter time constant ⌧y ms Locked 4.48 4.48 4.48 4.48
Ky filter rise constant ⌘y � Locked 4.33 4.33 4.33 4.33
Kz filter time constant ⌧z ms Locked 166 166 166 166
Kz filter rise constant ⌘z � Locked 1.00 1.00 1.00 1.00
Response time constant ⌧r ms Locked 4.78 4.78 4.78 4.78

1

Fit values

Parameter Symbol Units Type Fig 6SI3B-C,G-H

and Fig6SI4B-5B

Fig 6SI3D-F Fig 6SI4A Fig 6SI5A

alpha ↵ � Free 20.50 1248 880 600
beta � � Free 0.312 6.51 17.0 8.00
gamma � � Free 0.5 0.896 0.721 0.591
Ky filter time constant ⌧y ms Locked 4.48 4.48 4.48 4.48
Ky filter rise constant ⌘y � Locked 4.33 4.33 4.33 4.33
Kz filter time constant ⌧z ms Locked 35 35 35 35
Kz filter rise constant ⌘z � Locked 2.84 2.84 2.84 2.84
gamma2 �2 � Free 0.146 0.114 0.06 0.01
Kz2 filter time constant ⌧z2 ms Locked 184.0 184.0 184.0 184.0
Kz2 filter rise constant ⌘z2 � Locked 2.32 2.32 2.32 2.32
Response time constant ⌧r ms Locked 4.78 4.78 4.78 4.78

1
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