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ABSTRACT 17 

Antisense oligonucleotides (ASOs) are emerging as a promising class of therapeutics for neurological 18 

diseases. When injected directly into the cerebrospinal fluid, ASOs distribute broadly across brain 19 

regions and exert long-lasting therapeutic effects. However, many phosphorothioate (PS)-modified 20 

gapmer ASOs show transient motor phenotypes when injected into the cerebrospinal fluid, ranging from 21 

reduced motor activity to ataxia or acute seizure-like phenotypes. The effect of sugar and phosphate 22 

modifications on these phenotypes has not previously been systematically studied.  Using a behavioral 23 

scoring assay customized to reflect the timing and nature of these effects, we show that both sugar and 24 

phosphate modifications influence acute motor phenotypes. Among sugar analogues, PS-DNA induces 25 

the strongest motor phenotype while 2’-substituted RNA modifications improve the tolerability of PS-26 

ASOs. This helps explain why gapmer ASOs have been more challenging to develop clinically relative to 27 

steric blocker ASOs, which have a reduced tendency to induce these effects. Reducing the PS content of 28 

gapmer ASOs, which contain a stretch of PS-DNA, improves their toxicity profile, but in some cases also 29 

reduces their efficacy or duration of effect. Reducing PS content improved the acute tolerability of ASOs 30 

in both mice and sheep. We show that this acute toxicity is not mediated by the major nucleic acid 31 
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sensing innate immune pathways. Formulating ASOs with calcium ions before injecting into the CNS 32 

further improved their tolerability, but through a mechanism at least partially distinct from the 33 

reduction of PS content. Overall, our work identifies and quantifies an understudied aspect of 34 

oligonucleotide toxicology in the CNS, explores its mechanism, and presents platform-level medicinal 35 

chemistry approaches that improve tolerability of this class of compounds. 36 

 37 

INTRODUCTION 38 

Antisense oligonucleotides (ASOs) are emerging as a promising class of therapeutics for neurological 39 

diseases.1-4   The groundbreaking ASO nusinersen was approved by the FDA in 2016 to treat spinal 40 

muscular atrophy.5-12  Nusinersen operates through a splice-switching mechanism and is fully modified 41 

with 2’-O-methoxyethyl sugars and phosphorothioate linkages.  Nusinersen showed an excellent safety 42 

and efficacy profile in clinical trials.  Another class of ASOs is designed to recruit RNase H to cleave target 43 

RNA and thus silence gene expression.  These so-called gapmer ASOs require a stretch (“gap”) of 8-10 44 

non-sugar-modified DNA nucleotides in the middle to enable RNase H recruitment.  In contrast to 45 

nusinersen, early clinical evaluation of gapmer ASOs in the CNS faced dose-limiting toxicity resulting in 46 

failed clinical trials.  Nevertheless, after these false starts, a more advanced generation of gapmer ASOs 47 

are in clinical development for neurological diseases including Huntington’s disease,13-15 Alzheimer’s 48 

disease,16 Parkinson’s disease,17 and amyotrophic lateral sclerosis (ALS).4, 18-20  These compounds show 49 

promising biomarker efficacy with reasonable toxicity profiles.  50 

Looking at the chemical modification patterns used in early clinical trials vs RNase H-active compounds 51 

currently in the clinic, a major difference is the number of PS backbone modifications. In early trials, 52 

gapmer ASOs were fully PS modified (similar to nusinersen), while current variants of the compounds 53 

use a mixed backbone where up to six linkages are substituted back to phosphodiester. In parallel in our 54 

own work, during the development of gapmer ASOs for C9ORF72-driven ALS,21 we observed a range of 55 

transient motor phenotypes most severe within the first 1-3 hours after intracerebroventricular 56 

administration of the ASOs to mice. We were able to reduce these effects by reducing the backbone PS 57 

content. We carried out the current study to explore the generality of this phenomenon, explore its 58 

mechanism, and understand how it is affected by chemical modifications to both phosphates and 59 

sugars. 60 
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Using a quantitative scoring assay for ASO-induced motor phenotypes, we now show that the acute 61 

motor phenotypes produced by PS-modified gapmer ASOs in the brain can be minimized by using ASOs 62 

containing a combination of phosphorothioate (PS) and unmodified phosphodiester (PO) linkages. 63 

Interestingly, the ASO-induced motor phenotypes are profoundly affected by the sugar modifications 64 

used: PS-DNA ASOs were the most toxic, while ASOs composed entirely of 2’-O-substituted RNA (2’-O-65 

methoxyethyl or 2’-O-methyl RNA) were less toxic.  66 

We also now present experimental results that shed light on the mechanism underlying the observed 67 

motor phenotypes. We show that they are not mediated by the major nucleic acid sensing innate 68 

immune pathways, do not produce long-term toxicity and are observed in both small (mouse) and large 69 

(sheep) brains. The toxicity profile of both fully PS and mixed-backbone (PO/PS) ASOs can be improved 70 

by exposing ASOs to calcium-containing buffers before injection, indicating that PS-modified 71 

oligonucleotides induce a local CSF disbalance in divalent ion composition. Finally, we show that mixed 72 

(PO/PS) backbone ASOs with in vivo gene silencing efficacy comparable with full PS ASOs can be 73 

engineered, defining the clear steps towards development of highly active and safe ASOs for other 74 

neurodegenerative disorders. 75 

Progress in chemical modification of oligonucleotides has been profoundly important in enabling clinical 76 

success.22-24 Further improvements in modification and formulation of ASOs, as well as increased 77 

mechanistic understanding of the factors defining efficacy and toxicity, is essential to expand the 78 

therapeutic use of gapmer ASOs in the CNS.  79 

RESULTS 80 

EvADINT scoring assay for acute behavioral toxicity 81 

After administration of ASOs into the CNS, we observed dose-dependent acute behavioral toxicity that 82 

varied from lethargy, lack of responsiveness and ataxia to hyperactivity, seizures, and, in extreme cases, 83 

death.  This behavioral neurotoxicity was most striking in the first 1-3 hours after administration.  Even 84 

severely affected mice, unless they died, recovered fully by 24h and showed no further adverse effects. 85 

To describe our studies of acute toxicity in a robust way, we needed a way to quantify this acute toxicity.   86 

Various protocols have been used to quantitate behavioral toxicity under the umbrella of a “Functional 87 

Observational Battery” (FOB), with variations for both acute and longitudinal neurotoxicity (reviewed in 88 

ref 25.  Regulatory documents such as the OECD guideline for neurotoxicity testing in rodents26 do not 89 
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provide assay details that are well aligned with the transient toxicity seen after ASO administration to 90 

mice. 91 

We therefore developed a scoring assay optimized to quantify the transient motor phenotypes induced 92 

after intracerebral oligonucleotide injection.  We call this assay EvADINT (Evaluation of Acute Drug-93 

Induced NeuroToxicity). In this assay, we monitored mice at multiple time points over 24 hours after 94 

injection, assigning a score for various parameters as described in Table 1. If a mouse died, it was given a 95 

score of 75.  Seizures, hyperactivity and other atypical motor behavior were scored depending on their 96 

severity. The rest of the score was allotted based on how much time elapsed before the animal was able 97 

to resume various aspects of normal mouse behavior.  We weighted the observed phenotypes according 98 

to their apparent severity.  For example, sternal posture was weighted more heavily than normal 99 

grooming since mice must be able to right themselves to carry out most other aspects of normal mouse 100 

behavior, and because maintenance of sternal posture is simpler than eating, walking or grooming. For 101 

similar intuitive reasons, seizures and death were weighted more heavily than the other factors such as 102 

latency to resume normal mouse behavior(s).  We varied the relative weightings of different factors in 103 

our assay – death, seizures, and the various other behavioral observations – and observed that the 104 

relative scores of different ASOs were very similar in all cases.  Thus, the EvADINT scoring assay is robust 105 

to variation in the precise weights assigned to each factor.   106 

Behavioral element / 
observation 

     

Death 75 

 Severe Moderate Mild Absent 

Seizurea 20 15 10 0 

Hyperactivity or other atypical 
motor behaviorb 

15 10 5 0 

Time required for: 0.5 h 1 h 2 h 4 h ≥24 h 

Maintenance of sternal posture 0 4 8 12 20 

Unstimulated movement 0 3 6 9 15 

Movement without ataxia 0 2 4 6 10 

Normal grooming/eating/nesting 0 1 2 3 5 
 107 
Table 1.  Breakdown of scoring for the EvADINT system for quantification of acute motor phenotypes. Examples of observed 108 
phenotypes (movies and corresponding scores), and all actual mouse scores for all figures are given in the supporting 109 
information. Personnel were blinded to ASO group during the scoring.  aSeverity of seizures was ranked as follows:  A severe 110 
seizure had a duration of >30min and/or with constant or high intensity muscle contractions.  A moderate seizure had a 10-30 111 
min duration and moderate intensity muscle contractions or rapid and repetitive synchronous twitching, accompanied by 112 
apparent short-term loss of consciousness. A mild seizure lasted <10min and featured low intensity muscle contractions or 113 
short & infrequent bursts.   bSeverity of hyperactivity or other atypical motor behavior was ranked as follows.  Severe: >30min 114 
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duration, popcorning/jumping, constant.  Moderate: 10-30min duration, slight hopping, other atypical motor behavior.  Mild: 115 
<10min duration, uncoordinated movements, twitching.   116 

 117 

Reduced phosphorothioate content and formulation with Ca2+ reduces acute toxicity  118 

In our parallel work on the development of ASOs that target the sense and antisense transcripts from 119 

the ALS/FTD gene C9ORF72, we found that reducing the number of phosphorothioate-modified linkages 120 

between pairs of 2’-O-methoxyethyl (MOE)-modified ribonucleotides improved tolerability without loss 121 

of efficacy or duration of effect.21 A similar mixed backbone design is now in clinical development.15  122 

Thus our lead backbone design, and the mixed backbone design that we focus on exclusively in this 123 

study, contains a single PS linkage at each end of the ASO, followed by three PO linkages and then PS 124 

linkages throughout the remaining (central) portion of the ASO (sequences and modification patterns 125 

are shown in Table 2).  With the EvADINT scoring system established, we set out to quantify this 126 

observation and explore its generality and mechanism.  We first established that our previous result was 127 

reproducible under quantitative, blinded conditions.  Thus, reducing the phosphorothioate content of a 128 

C9ORF72-targeted ASO led to increased tolerability in the CNS (Figure 1A).   129 

Phosphorothioate groups are more acidic than phosphates, and thus more anionic at physiological pH, 130 

and a greater share of the negative charge is concentrated on the sulfur atom.  We wondered whether 131 

the more anionic character of phosphorothioate-modified ASOs was increasing their tendency to chelate 132 

divalent cations from CSF.  During ICV injections, to keep volumes small, the ASO concentration is high 133 

(typically 1-4 mM). This is comparable to or higher than the concentration of Ca2+ in CSF, which is 1.3–134 

1.4 mM27 – and moreover, each polyanionic ASO could potentially chelate multiple Ca2+ ions.  We 135 

wondered whether reducing the PS content of our ASOs was reducing toxicity simply by reducing their 136 

tendency to chelate Ca2+ ions.   137 

To explore whether the neurotoxicity we observed could be explained by Ca2+ chelation, we tested ASOs 138 

that had been pre-saturated with Ca2+ before injection.  We chose this pre-saturation approach because 139 

we did not know exactly how much Ca2+ each ASO would chelate from the solution. We were concerned 140 

that if we simply suspended our ASOs in buffer containing a physiological concentration of Ca2+, it might 141 

be insufficient to compensate for the chelation abilities of ASOs at these high concentrations.  And on 142 

the other hand, we were concerned that injecting ASOs in buffer containing higher-than-physiological 143 

concentrations of Ca2+ might lead to hypercalcemia-mediated toxicity. Thus, after HPLC purification of 144 
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ASOs, we transferred each ASO to a 3kDa-cutoff Amicon ultrafiltration cartridge, and washed with a 145 

solution containing 20 mM Ca2+, twice with water, and once with PBS.28 We then resuspended the ASO 146 

in PBS and proceeded to injection.  The intervening water washes are important to prevent the 147 

irreversible precipitation of calcium phosphate resulting from excess Ca2+ in the presence of phosphate 148 

buffer.  149 

For this study, we chose a moderately high dose of 35 nmol ASO per mouse (equivalent to about 150 

10mg/kg), somewhat higher than the dose typically required for effective gene silencing. Under these 151 

conditions, for our C9ORF72-targeted ASO, we observed that pre-saturation with Ca2+ led to a robust 152 

improvement in acute tolerability in the CNS (Figure 1A).  Interestingly, the improvement in tolerability 153 

occurred for both the full PS and the mixed backbone ASOs.  Thus, the best-tolerated ASO was the 154 

compound with reduced PS content and which had also been pre-saturated with Ca2+. 155 

These C9ORF72 ASOs targeted the human transcript; the acute motor phenotypes were observed 156 

whether the ASOs had a target (as in the transgenic C9ORF72 mouse models we used in the parallel 157 

work on therapeutic development for C9ORF72)21 or not (as in the wild type mice used here).   158 

To test whether these principles applied to other targeting and non-targeting sequences, we synthesized 159 

ASOs targeting the noncoding RNA Malat1 and the Huntingtin (Htt) mRNA (Sequences 6–9, Table 2).  We 160 

synthesized versions of these sequences in both full PS and mixed backbone formats, and in all cases 161 

compared simple formulation in PBS with formulation in PBS after calcium pre-saturation.  We injected 162 

these compounds into mice (ICV) and observed motor phenotypes using the EvADINT assay (Figure 1B-163 

C).  For the Malat1-targeting ASO (Figure 1B), we saw the same pattern as for the C9ORF72-targeted 164 

ASO – namely, there was a substantial improvement in tolerability upon reducing the PS content, and 165 

both the full PS and mixed backbone ASOs showed further improvement upon formulation with Ca2+.   166 

For the Htt-targeted ASO, we saw higher toxicity and broader variability in tolerability across the groups 167 

(Figure 1C).  The improvement in tolerability of this mixed-backbone design was less clear than for the 168 

other sequences.  However, the improvement in tolerability from Ca2+ formulation was robust in the 169 

context of both backbone variants. Thus, there may be a sequence-dependence to optimal backbone 170 

design, and it is clear that reducing the PS content in this way does not reduce the need to select good 171 

sequences. 172 

Finally, we synthesized non-targeting control ASOs (Sequences 10 and 11, Table 2) and formulated them 173 

in the same way as the first three sequences. We injected these ASOs into mice and scored neurotoxicity 174 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 15, 2021. ; https://doi.org/10.1101/2021.02.14.431096doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431096
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

using the EvADINT assay (Figure 1D).  The patterns observed for this sequence are slightly different – in 175 

this case, calcium formulation had little or no effect on toxicity, while the reduction of PS content 176 

showed a dramatic improvement in toxicity.   177 

Thus, each of the four sequences we tested showed a robust improvement in toxicity following a 178 

modest reduction in PS content, Ca2+ formulation, or both.  The ASO-induced motor phenotypes were 179 

dose dependent across multiple sequences and design patterns (Supporting Figure S1).  It is interesting 180 

that across all sequences, higher toxicity was often accompanied with higher inter-animal variability. 181 

That is, there appear to be important animal-to-animal variations in the actualization of this toxicity. 182 

 183 

 184 

Seq # Name Sequence and modification pattern Mass 
calculated 

Mass 
observed 

1 C9ORF72-full PS GsCsCsCsCsTsAsGsCsGsCsGsCsGsAsCsTsC  6560.6 6560.0 

2 C9ORF72-PS/PO GsCoCoCoCsTsAsGsCsGsCsGsCsGoAoCoTsC  6465.6 6465.2 

3 C9ORF72-DNA+PS GsCsCsCsCsTsAsGsCsGsCsGsCsGsAsCsTsC  5820.8 5820.6 

4 C9ORF72-MOE+PS GsCsCsCsCsTsAsGsCsGsCsGsCsGsAsCsTsC  7153.3 7154.3 

5 C9ORF72-OMe+PS GsCsCsCsCsTsAsGsCsGsCsGsCsGsAsCsTsC  6332.0 6332.8 

6 MALAT1-full PS GsGsGsTsCsAsGsCsTsGsCsCsAsAsTsGsCsTsAsG 7232.1 7231.9 

7 MALAT1-PS/PO GsGoGoToCsAsGsCsTsGsCsCsAsAsTsGoCoToAsG 7136.3 7135.2 

8 HTT-full PS CsTsCsGsAsCsTsAsAsAsGsCsAsGsGsAsTsTsTsC 7217.1 7216.8 

9 HTT-PS/PO CsToCoGoAsCsTsAsAsAsGsCsAsGsGsAoToToTsC 7120.7  7120.0 

10 NTC-full PS CsCsTsAsTsAsGsGsAsCsTsAsTsCsCsAsGsGsAsA 7184.1 7184.0 

11 NTC-PS/PO CsCoToAoTsAsGsGsAsCsTsAsTsCsCsAoGoGoAsA 7088.1 7087.1 

Table 2. Sequences used in this study. Bold blue: MOE.  Bold green: 2’-OMe.  Black: DNA.  Lower case 185 

letters s and o refer to phosphorothioate and phosphodiester linkages, respectively.  NTC: non-target 186 

control ASO. 187 

 188 
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 189 

Figure 1.  The tolerability of ASOs administered into the CNS is improved by modestly reducing the backbone PS 190 

content and by formulating with Ca2+ ions before injecting.  Mice were injected ICV with 35 nmol of each ASO in 10 191 

L PBS (or with 10 L PBS as control) and behavior was scored by a blinded investigator over the following 24h 192 

using the EvADINT rubric.  Sequences targeting (A) C9ORF72, (B) Malat1, or (C) Htt, or (D) a non-targeting control 193 

ASO, showed improvements in acute tolerability upon reducing the PS content, formulating with Ca2+ ions, or both.   194 

Each data point represents the EvADINT score from one mouse; n = 6–8; error bars represent SEM. P-values are 195 

calculated using one-way ANOVA within GraphPad Prism software and represent per-comparison error rates. Full 196 

sequences and modification patterns are given in Table 2. 197 

 198 
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Sugar 2’-modifications reduce acute motor phenotypes 199 

Nusinersen, approved to treat spinal muscular atrophy,9-12 contains a fully phosphorothioate backbone.  200 

Yet it is well tolerated in the CNS8 and has received FDA approval.5, 6  This compound is modified at each 201 

nucleotide with MOE; it is not a gapmer and does not require a stretch of DNA because it functions to 202 

redirect splicing rather than recruiting RNase H.  We therefore wondered whether fully-203 

phosphorothioate-modified ASOs containing different sugar modifications might show acute motor 204 

phenotypes to a different extent. 205 

To study this question, we synthesized fully-phosphorothioate ASOs modified at every nucleotide with 206 

DNA, 2’-O-methyl RNA, or MOE, respectively (in contrast to the gapmer designs used in Figure 1).  We 207 

suspended these in PBS, injected them ICV at 35 nmol/mouse and scored acute motor phenotypes using 208 

the EvADINT assay.  The fully DNA oligonucleotide 3 was dramatically more toxic than the two 209 

oligonucleotides containing 2’-modifications at every nucleotide (4 and 5; Figure 2). The two 2’-modified 210 

versions showed a dramatic reduction in motor phenotypes.  We also carried out the comparison of full 211 

MOE with full DNA for a sequence targeting Malat1 and saw the same dramatic difference in toxicity 212 

(data not shown: the Malat1 experiment was carried out before we had established the quantitative 213 

EvADINT assay, but the clear difference we observed strongly suggests that the impact of sugar 214 

modification on toxicity is not sequence specific.)  215 

 216 

 217 

Figure 2.  Fully PS ASOs containing 2’-modifications at each position are less toxic than those containing DNA at 218 

each position.  We injected 35 nmol of each ASO in PBS to the right lateral ventricle of mice, and recorded 219 

behavioral outcomes according to the EvADINT rubric. Each data point represents the EvADINT score from one 220 
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mouse; n = 8; error bars represent SEM.  P-values are calculated using one-way ANOVA within GraphPad Prism 221 

software and represent per-comparison error rates. Full sequences and modification patterns are given in Table 2. 222 

 223 

PS-ASO-induced acute neurotoxicity is not mediated by the major nucleic acid sensing innate immune 224 

pathways 225 

The acute toxicity we observe is most intense in the first hour after injection of mice. This timing 226 

suggested to us that the acute toxicity is not mediated by the innate immune system, since innate 227 

immune responses to nucleic acid stimuli typically do not peak until several hours after stimulation.29, 30  228 

To confirm in a more direct way whether innate immune responses could play a role, we directly 229 

evaluated whether there was any contribution to this neurotoxicity from signaling through Toll-like 230 

receptors (TLRs) 3, 7, or 9, or the CGAS-STING pathway.  First, we evaluated mouse behavior after 231 

injecting a 50 g dose of poly(I:C), a compound and dose known to induce potent innate immune 232 

stimulation through TLR3 or MDA-5.29,31  Mice treated with poly(I:C) showed no evidence of the acute 233 

motor phenotypes seen with PS-modified ASOs, with EvADINT scores comparable to the buffer-only 234 

control mice (Figure 3A).  235 

We also evaluated the role of other endosomal receptors TLRs 7 and 9 as well as the cytosolic DNA 236 

sensing cGAS-STING pathway by obtaining mice lacking both MyD88 and STING (Myd88-/- STING-/- double 237 

knockout mouse). This strain lacks signaling components for both endosomal as well as cytosolic nucleic 238 

acid sensing pathways.  TLRs 7 and 9 signal through MyD88, whereas STING functions downstream of 239 

cGAS following cytosolic DNA sensing.  Injection of a PS-DNA ASO into these double knockout mice 240 

showed an identical response relative to a background-matched control mouse, confirming that the 241 

toxicity is not mediated by any of these nucleic acid sensors (Figure 3B).  242 

Taken together, these experiments provide evidence that the acute toxicity which is the focus of this 243 

work is not mediated by the major nucleic acid sensing innate immune pathways.  Of course, this finding 244 

does not preclude a role for other oligonucleotide-induced innate immune responses in the brain at 245 

longer timepoints, as described by other authors.32 246 

 247 
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 248 

Figure 3.  The acute neurotoxicity we observe is not mediated by toll-like receptors 3, 7, or 9, by MDA-5, or by the 249 

cGAS-STING pathway.  (A) The highly immunogenic compound poly(I:C) produces none of the behavioral toxicity 250 

seen for the PS-containing ASOs after ICV injection, showing that the toxicity is not signaling through TLR3 or MDA-251 

5.  We injected 35 nmol of PS-DNA or 50 g of poly(I:C) in PBS to the right lateral ventricle of mice, and recorded 252 

behavioral outcomes according to the EvADINT rubric. (B) Double knockout MyD88-/- STING-/- mice (hollow dots) 253 

show an identical response to wild type mice (filled dots), showing that the acute toxicity is not mediated by TLR7, 254 

TLR9 or the CGAS-STING pathway.  In both panels, each data point represents the EvADINT score from one mouse; 255 

error bars represent SEM. All PS-DNA samples were significantly different from all other samples in both panels 256 

(One-way ANOVA, p < 0.0001). Full sequences and modification patterns are given in Table 2. 257 

 258 

259 
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The improved tolerability of mixed backbone ASOs applies to large brains 260 

We wondered whether the acute toxicity we observed was an artifact of the small brain size of mice.  261 

This would make the concern significantly less relevant to researchers interested in therapeutic 262 

development of ASOs.  To test whether the phenomenon applied to larger brains, we injected two 263 

sheep with fully phosphorothioate ASO (C9ORF72-full PS, Sequence 1), and four sheep with the mixed 264 

backbone analogue of the same sequence (C9ORF72-PS/PO, Sequence 2).   265 

Direct intrathecal injection, the route used for patients receiving ASO therapeutics, is not practical in 266 

sheep because of difficulty accessing the intrathecal compartment and because CSF tends to be expelled 267 

from the site where the dura is punctured, leading to poor uptake of ASO.  Therefore, we used a 268 

technique whereby a microcatheter was threaded up though the intrathecal space and the ASO was 269 

delivered directly into the cisterna magna (see Methods).  In all cases successful microcatheter 270 

navigation was performed into cisterna magna. Both intracisternal contrast injection and cone beam 271 

computed tomography confirmed the correct catheter position prior to ASO injection. Contrast material 272 

opacification was seen in the cisterna magna, around the cerebellum and in the upper cervical spinal 273 

canal. No complication was observed in relation to catheter navigation or contrast injection. 274 

None of the four sheep that were given the mixed backbone ASO (C9ORF72-PS/PO, Sequence 2) showed 275 

evidence of abnormal motor phenotypes. In contrast, both sheep that were given fully 276 

phosphorothioate ASO (C9ORF72-full PS, Sequence 1) showed hindlimb weakness and gait instability 277 

(wobbliness) within the first 24 hours.  Thus, the acute toxicity of fully phosphorothioate ASOs is not 278 

specific to mice but also applies to large brains.  The ASOs were given in Lactated Ringer’s solution, a 279 

calcium-containing diluent readily available at USP-grade, which confirms that the toxicity improvement 280 

mediated by reducing PS content is at least partly distinct from the question of Ca2+ chelation, in larger 281 

brains (in this case, sheep) as in mice as described above. 282 

 283 

Impact on efficacy of reducing phosphorothioate content and Ca2+ formulation  284 

We previously observed for C9ORF72-targeted ASOs that the mixed backbone strategy did not reduce 285 

potency or efficacy as long as the phosphodiester linkages were between MOE nucleotides on both 286 

sides. In contrast, when we modified the linkage between a MOE nucleotide and a deoxynucleotide, the 287 

potency dropped dramatically.21  Thus, in this paper we have focused on a single mixed backbone 288 
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design, in which the three internal linkages in each MOE wing were PO, and all other positions were PS.  289 

To study the effect on efficacy of this backbone design across these sequences, we compared the gene 290 

silencing of ASOs against HTT and MALAT1 in their full PS and mixed backbone versions.  To be able to 291 

discriminate between compound efficacy, we chose a non-saturating dose for this element of our study:  292 

we therefore injected 15 nmol of each ASO ICV, and harvested brains after 3 weeks.   293 

We found that both HTT and MALAT1-targeted ASOs significantly reduced their target mRNA expression, 294 

but there was a trend to reduced efficacy in mixed backbone format relative to the fully PS analogues 295 

(Figure 4A-B).  It is not clear whether this results from a reduction in nuclease stability or a reduction in 296 

cellular uptake, since the PS linkage contributes to both factors.  Nevertheless, this finding suggests that 297 

there is merit in exploring alternate backbone architectures, including next-generation mixed backbone 298 

designs,33 that might allow improvements in acute toxicity while maintaining or improving potency and 299 

efficacy. 300 

Next, we tested whether calcium pre-saturation affected ASO efficacy. We prepared ASOs by dissolving 301 

in PBS, either with or without a Ca2+ pre-saturation step, and injected them ICV into mice. In the context 302 

of either a full PS or mixed PO/PS backbone, we observed that gene silencing efficacy was not affected 303 

by the presence of the Ca2+ pre-saturation step (Figure 4C).   304 
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 305 

Figure 4.  Effect of phosphorothioate reduction and calcium formulation on ASO efficacy.  (A,B) Silencing of (A) Htt 306 

and (B) Malat1 RNA three weeks after a 15 nmol dose of either full PS of mixed backbone (PO/PS) ASOs.  Each data 307 

point represents one mouse; n=6 mice.  (C) Formulation with calcium does not affect the gene silencing efficacy of 308 

ASOs.  ASOs were resuspended and delivered in PBS, with or without first saturating the ASOs with calcium (see 309 

methods).  In all panels, statistical significance was evaluated by one-way ANOVA followed by Tukey’s multiple 310 

comparisons test. Sequence numbers relate to the sequences and modification patterns given in Table 2. 311 

312 
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DISCUSSION 313 

Over the past few years, an increasing number of papers have described the use of gapmer ASOs in the 314 

CNS.  Many of these studies employ ASOs containing full-PS backbones4, 13, 34-36 or those for which the 315 

modification pattern is not clearly disclosed.16, 18, 37, 38  Other recent papers do describe ASOs containing 316 

a mixture of PS and PO linkages for use in the CNS.15, 17, 19, 20, 36, 39-42  However, to the best of our 317 

knowledge, no comparative data on the neurotoxicology of these mixed-backbone ASOs relative to fully-318 

PS ASOs has been presented, nor has the relationship of sugar modification with acute motor 319 

phenotypes been previously known or the underlying mechanism explored before now.   320 

The mechanism for the acute neurotoxicity of PS-modified ASOs is likely multifactorial.  We initially 321 

wondered whether the more polyanionic nature of PS linkages was increasing chelation of divalent ions 322 

by ASOs. Since divalent cations, and Ca2+ in particular, are key for synaptic signaling and 323 

neurotransmission,43, 44 such depletion of divalent cations from CSF would be expected to produce acute 324 

toxicity that would be expected to last until homeostasis of Ca2+ concentration in CSF was restored. Ca2+ 325 

chelation has been responsible for unexpected toxicities in other classes of drugs.45  Supporting a role 326 

for this mechanism, pre-saturating ASOs with Ca2+ before injection improved their tolerability. Other 327 

groups have observed ASO-mediated Ca2+ chelation in cultured neurons.46 However, mixed backbone 328 

strategies improved toxicity even in the presence of such divalent ions, which suggests that Ca2+ 329 

chelation cannot fully explain the acute motor phentoypes induced by PS-modified gapmer ASOs.  330 

Our experiments document that ASO-induced transient motor phenotypes are not a downstream 331 

consequence of innate immune signaling through the major nucleic-acid-sensing immune pathways.  332 

Treatment with poly(I:C) did not recapitulate the acute toxicity induced by treatment with PS-modified 333 

ASOs, suggesting that the PS-ASO-induced motor phenotypes do not result from TLR3- or MDA-5-334 

mediated effects. And experiments in Myd88-/- STING-/- mice confirmed that PS-ASO-induced motor 335 

phenotypes are not mediated by TLR7, TLR9, or cGAS/STING.   336 

At least part of the acute neurotoxicity of PS-ASOs is likely to be mediated by protein binding, for 337 

example, to cell surface receptors involved in neuronal signaling.  PS-DNA shows extensive binding to a 338 

variety of proteins,47-50 including cell-surface and trafficking proteins.51-54  The origins of the high protein 339 

binding of PS-oligos were recently explored with a structural study.55  After systemic administration, an 340 

earlier generation of mixed-backbone modification ASOs showed reduced binding to proteins such as 341 

complement pathway members and clotting factors.56-59  An explanation of the acute motor phenotypes 342 
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related to protein binding is also consistent with the sugar modification data presented above, since PS-343 

MOE reduces nonspecific protein binding relative to PS-DNA;60 for example, recent work showed that 344 

PS-MOE bound various plasma proteins with 3 to 50-fold lower affinity relative to PS-DNA.61  In another 345 

recent study, PS-2’OMe gapmers of two different sequences showed about 2.5-fold lower affinity 346 

protein binding than PS-DNA of the same sequence.55 347 

The acute motor phenotypes discussed in this work do not appear to be related to other types of ASO-348 

induce toxicity – such as liver toxicity or immune stimulation.  For example, in ongoing work in our 349 

group, we have come across sequences that are well-tolerated in terms of acute motor phenotypes, but 350 

still exhibit liver toxicity, and vice versa.  The timing of these effects is also very different: with acute 351 

motor phenotypes strongest in the first hour (perhaps driven by binding to cell-surface receptors as 352 

discussed above), innate immune stimulation peaking at 1-2 days (driven by binding to toll-like receptors 353 

and cytosolic nucleic acid sensors), and liver toxicity evident from 1 day to several days after dosing 354 

(driven by factors including mislocalization of paraspeckle proteins to nucleoli62).   355 

This paper has focused on a single mixed-backbone design, and the impact of replacing three PS linkages 356 

within each MOE wing with their corresponding (unmodified) PO linkages. It is striking that a relatively 357 

small reduction in PS content makes such a dramatic difference in acute toxicity for multiple sequences. 358 

Our work on C9ORF72 showed that this design not only maintained but improved potency relative to the 359 

full PS version.21  Other investigators have also disclosed that some ASOs show increased potency when 360 

a subset of PS linkages are replaced by PO linkages.63  Nevertheless, this design sometimes leads to a 361 

modest loss in potency, as shown in Figure 4.   362 

The well-tolerated nature of fully 2’-modified ASOs in the CNS (Figure 2) has allowed the rapid 363 

development and FDA approval of nusinersen5-9 as well as the first personalized ASO drug, milasen.64  364 

However, recruitment of RNase H requires the presence either of DNA or a DNA analogue, typically as a 365 

gapmer design.65, 66  The fact that PS-DNA shows higher acute toxicity than the corresponding 2’-366 

modified nucleotides (Figure 2) suggests that a major area of focus for nucleic acid chemists should be 367 

the development of sugar or phosphate-modified DNA analogues that elicit robust RNase H cleavage 368 

while reducing the incidence of motor phenotypes when administered to the CNS.  The development of 369 

next-generation mixed-backbone ASOs is an active area of research in our group.33, 67 In the meantime, 370 

researchers can implement mixed backbone designs such as those described here, along with calcium 371 

formulation, to improve the therapeutic index of gapmer ASOs for clinical use in the CNS. 372 

 373 
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METHODS 374 

Oligonucleotides 375 

All oligonucleotides were synthesized using ABI 394 or Akta OligoPilot synthesizers using standard 376 

methods.  Phosphoramidites were purchased from ChemGenes and diluted to 0.1 M in acetonitrile. 377 

Sulfurization was accomplished using DDTT (0.1M, ChemGenes). Benzylthiotetrazole (0.25 M in 378 

acetonitrile, TEDIA) was used as activator.  All cytosine residues were 5-methylcytosine. 379 

Oligonucleotides were deprotected by treatment with concentrated aqueous ammonia at 55°C for 16h 380 

then concentrated and purified by ion-exchange HPLC (eluting with 30% acetonitrile in water containing 381 

increasing gradients of NaClO4) or ion-pairing reverse-phase HPLC (eluting with aqueous 382 

triethylammonium acetate containing increasing gradients of acetonitrile).  All oligonucleotides were 383 

characterized by LCMS. 384 

After HPLC purification, we carried out final desalting and buffer equilibration using ultrafiltration 385 

(Amicon centrifugal filters, 3-kDa molecular weight cutoff, Millipore).  For oligonucleotides administered 386 

in PBS, we placed the oligonucleotide in the Amicon filter and washed with 2 changes of PBS.  To 387 

saturate calcium-binding sites within oligonucleotides, we placed the purified oligonucleotides in the 388 

Amicon filter, washed them twice with a 20 mM solution of CaCl2, twice with water, and once with PBS, 389 

before resuspending the ASOs in PBS (Note, in follow up work after the completion of this study, we 390 

found that a lower concentration of CaCl2 was preferable to minimize compound loss during this wash 391 

step, which is an issue for certain sequences).  For the oligonucleotides used for sheep studies, we did 392 

not carry out calcium saturation in this manner but rather resuspended in USP-grade Lactated Ringers 393 

Solution (LRS, which contains 1.3 mM Ca2+).   394 

 395 

ICV administration of oligonucleotides in mice 396 

Mouse studies were carried out under UMass Medical School IACUC protocol A-2551.  FVB/NCI mice (7-397 

13 weeks old) were anaesthetized by intraperitoneal injection of fentanyl/midazolam/dexmedetomidine 398 

(0.1, 5, and 0.25 mg/kg, respectively, as a solution in sterile saline).  Anaesthetized animals were 399 

transferred to a Kopf small animal stereotaxic frame, ear bars placed and a hand-warmer was placed 400 

underneath the animal to preserve core body-temperature.  Ophthalmic lubricant was placed over each 401 

eye and the fur covering the skull was removed. The scalp was aseptically prepared by thorough 402 
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alternate swabbing with betadine and 70% isopropanol (3x each) and allowed to dry before a medial 403 

incision was made to expose the skull. The periosteum was dried with a sterile cotton swab and the 404 

syringe containing oligonucleotide was moved to bregma. A point was marked on the skull 1 mm 405 

dextrolateral and 0.4 mm posterior from bregma and a 0.6–0.8-mm diameter hole drilled at this 406 

location. The tip of the needle was advanced 2 mm ventrally through this hole into the lateral ventricle 407 

and after a 2 minute wait, the oligonucleotide was injected over a period of 25 seconds (10 L total 408 

injection volume). The needle was left in place for 3 minutes post-injection, then removed and the skin 409 

closed with 5-0 vicryl suture.  An intraperitoneal injection of fluemazenil/atipamezole (0.5 mg/kg and 5 410 

mg/kg respectively, in sterile saline) was used to reverse injected anesthetic agents. Buprenorphine was 411 

also injected for analgesia (0.3 mg/kg, SC). Animals were removed from the stereotaxic frame and 412 

allowed to recover in a warm cage, food and gel were provided, and the animals were observed 413 

periodically over the next 24 hours according to the rubric laid out in Table 1. 414 

For ICV injections in the Myd88-/- STING-/- mice (C57BL/6 background) and corresponding C57BL/6 415 

controls, we used the protocol described above with slightly adjusted coordinates for the ICV injection 416 

(1mm dextrolateral, 2mm posterior, 3mm ventral.) 417 

 418 

STING/MyD88 double knockout mice 419 

Myd88-/- mice on C57BL/6 background68 were obtained from S. Akira (Osaka University, Osaka, Japan). 420 

STING-/- mice on C57BL/6 background69 were originally from G. Barber (University of Miami, Florida) and 421 

obtained from D. Stetson (University of Washington, Seattle). The two strains were intercrossed to 422 

generate Myd88-/- STING-/- double knockouts.  The mice were bred and maintained under pathogen–free 423 

conditions in our animal facility.  The Myd88 and STING deficiencies were confirmed by performing PCR 424 

on DNA obtained after digesting a tail snip. For Myd88, specific primer pairs were used to distinguish the 425 

WT or knockout allele in two separate reactions. Reaction 1 with primer sequences AGC CTC TAC ACC 426 

CTT CTC TTC TCC ACA and AGA CAG GCT GAG TGC AAA CTT GTG CTG was used to detect the WT band at 427 

1000 bp and reaction 2 with primer pairs AGC CTC TAC ACC CTT CTC TTC TCC ACA and ATC GCC TTC TAT 428 

CGC CTT CTT GAC GAG were used to detect KO band at 1000 bp.  For STING, reaction 1 with primer 429 

sequences AGA ACG GAC AGC CAG TAA GTA TAC AG  and CAA TGC TCT CAT AGC CTT CAC TAT C was 430 

used to detect the WT band at 375 bp and reaction 2 with primer pairs AAC TTC CTG ACT AGG GGA GGA 431 

GTA G and CAA TGC TCT CAT AGC CTT CAC TAT C was used to detect the KO band at 470 base pairs. 432 

 433 
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ASO administration in sheep 434 

Sheep studies were carried out under UMass Medical School IACUC protocol A-2593. Jacob sheep were 435 

fasted overnight in preparation for surgery.  A 20G catheter was placed and secured in the jugular vein, 436 

blood (5 mL) was drawn from the catheter for analysis, and the catheter was flushed with saline (0.9% 437 

NaCl).   We administered buprenorphine (0.01 mg/kg IM), acepromazine (0.05 mg/kg IM) and 438 

glycopyrrolate (0.01 mg/kg IM) 30 min prior to induction of anesthesia. An intravenous cocktail of 439 

ketamine (6 mg/kg) and diazepam (0.3 mg/kg) was administered to induce anesthesia, followed by 440 

ketoprofen (2.2. mg/kg SQ) as analgesic and cefazolin (22 mg/kg IV) to minimizes any risk of infection. 441 

The animal was intubated, and a stomach tube was placed to prevent rumen gas pressure build up. 442 

Anesthesia was maintained using vaporized isoflurane (1.5–3.5% in oxygen). Sheep were positioned in 443 

lateral recumbency in an Allura Xper FD20 X-ray system (Philips Medical Systems, Best, Netherlands). A 444 

19-gauge Tuohy needle was inserted in the lumbosacral (L7-S1) intrathecal space and then ~5 mL of CSF 445 

was removed. Using the Touhy needle as entry point, a straight tip microcatheter (Excelsior SL-10; 446 

Stryker Neurovascular) was inserted through the lumen of the needle to access the intrathecal space.  447 

The microcatheter was navigated into the cisterna magna with an assistance of a 0.014” wire under 448 

fluoroscopic guidance. The wire had a slight curve on the tip (Synchro Guidewire, Stryker Neurovascular) 449 

to avoid any nerve or vascular structure damage. A microcatheter contrast injection (1 mL of 450 

Omnipaque 240 mgI/ml) was injected and the pattern of contrast material distribution was visualized 451 

prior to the injection of ASO solution (2 mg/kg in ~3 mL of Lactated Ringers Solution; for comparison, the 452 

mouse doses of 15-35 nmol/mouse equate to about 4-10 mg/kg). Cone beam computed tomography 453 

(Allura Xper FD20 X-ray system) imaging was performed to confirm the final microcatheter position in 454 

the cisterna magna in relation to the nerve and vascular structures. At the end of the procedure the 455 

Touhy needle was withdrawn and the microcatheter was removed. 456 

 457 

EvADINT scoring system for acute neurotoxicity 458 

After ICV administration of ASOs to mice, a blinded investigator ranked the behavior of mice at multiple 459 

timepoints using the rubric laid out in Table 1.  If a mouse died within the first 24 hours, its score was 460 

assigned to be 75; otherwise it was the sum of all other scores.  Seizures, if observed, were scored based 461 

on severity; hyperactive or spastic behavior was also scored based on severity and included twitching, 462 

uncontrolled movement such as “popcorning” and other atypical motor phenotypes.  Besides these 463 

elements, the score was based on the time elapsed until mice resumed normal posture and behavior; 464 
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for example, if a mouse required more than 1 hour but less than 2 hours to be able to right itself 465 

(resume and maintain sternal posture) it would be given a score of 8.   Each mouse was individually 466 

scored.  Examples of scoring, with corresponding videos, are provided in Supporting Table S1. The 467 

breakdown of scoring for each mouse is provided in Supporting Tables S2-S7.   468 

 469 

Evaluation of gene silencing in the CNS  470 

For comparison of backbones on gene silencing efficacy: Mice were euthanized at 3 weeks post-471 

treatment by cervical dislocation and the brain was immediately removed into ice-cold PBS. The brain 472 

was placed in a brain matrix (Braintree scientific) and the most rostral 3 mm discarded. A 1-mm slice was 473 

then taken and each side homogenized independently. The tissue was suspended in Affymetrix 474 

homogenizing solution containing proteinase K and mechanically dissociated using a Quiagen Tissuelyser 475 

with a 2mm tungsten carbide bead. The tubes were then incubated in a water bath at 65 °C until all 476 

tubes appeared transparent. Tubes were centrifuged (16,000 xG, 15 minutes) and supernatant 477 

transferred to a 96 well plate for storage at -80.   Htt, Malat1 and Ppib RNA levels were quantified using 478 

the QuantiGene 2.0 assay kit (Affymetrix, QS0011) as previously described.70   479 

For studying the effect calcium formulation on gene silencing efficacy: Mice were euthanized at 2 weeks 480 

post-injection via IP administration of 0.1mL of 390 mg/mL pentobarbital sodium and the brain and 481 

spinal cord were immediately removed into ice-cold PBS. A 2mm section of the lumbar spinal cord was 482 

cut and placed in an Eppendorf tube in -80°C. The brain was placed in a brain matrix and the most 483 

rostral 3mm discarded. A 2-mm slice was taken, and the cortical section removed and placed in an 484 

Eppendorf tube in -80°C. Tissue was homogenized in TRI-reagent using a Qiagen TissueLyser and 1 g of 485 

RNA was reverse transcribed using High-Capacity cDNA Reverse Transcription kit (Life Technologies) per 486 

the manufacturer’s protocol. qRT-PCR was carried out using iTaq Supermix (Bio-Rad) on Bio-Rad CFX-96 487 

real time machine using gene-specific primers:  Malat1 Primer1: 5’ CTC CAA CAA CCA CTA CTC CAA 3’; 488 

Primer2: 5’ GTA CTG TTC CAA TCT GCT GCT A 3’; probe: /56-FAM/TCA TAC TCC /ZEN/AGT CGC GTC ACA 489 

ATG C/3IABkFQ/. For Ppib (internal control), Primer1: 5’CCG TAG TGC TTC AGC TTG A 3’; Primer2: 5’ AGC 490 

AAG TTC CAT CGT GTC ATC 3’; Probe: /56-FAM/TGC TCT TTC /ZEN/CTC CTG TGC CAT CTC /3IABkFQ/. 491 

 492 

 493 
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SUPPORTING INFORMATION / DATA AVAILABILITY  494 

Supporting information is available in the online version of this file, and includes the following:  495 

Supporting Figure S1 shows the dose responsiveness of acute motor phenotypes.  Supporting Table S1 496 

and associated movies show examples of mouse phenotypes and corresponding assigned scores. Tables 497 

S2-S10 provide a breakdown of the EvADINT scoring for each mouse and each treatment. 498 

 499 
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