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Abstract 

Heterogeneity in transcription initiation has important consequences for transcript stability and 

translation, and shifts in transcription start site (TSS) usage are prevalent in various disease and 

developmental contexts. Accordingly, numerous methods for global TSS profiling have been 

developed, including our recently published Survey of TRanscription Initiation at Promoter 

Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start 

sites (TSSs) on a genome-wide scale with minimal cost and time. In parallel to our development 

of STRIPE-seq, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping 

data. TSRexploreR provides functions for TSS and TSR detection, normalization, correlation, 

visualization, and differential TSS/TSR analysis. TSRexploreR is highly interoperable, accepting 

the data structures of TSS and TSR sets generated by several existing tools for processing and 

alignment of TSS mapping data, such as CAGEr for Cap Analysis of Gene Expression (CAGE) 

data. Lastly, TSRexploreR implements a novel approach for the detection of shifts in TSS 

distribution.  
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Introduction 

Genome-wide mapping of transcription start sites (TSSs) is crucial to understanding gene 

regulation. Clusters of TSSs, referred to as transcription start regions (TSRs), are associated 

with promoter elements and represent genomic positions at which RNA polymerase can initiate 

synthesis of new RNA molecules. Variation in TSS usage alters the length of 5’ untranslated 

regions (5’ UTRs), which has been shown to influence transcript stability and translation (1-3), 

and is recognized as a major contributor to transcript isoform diversity in mammalian cells and 

tissues (4-6). Alternative initiation has also been described in human cancers (7,8) and 

inflammatory bowel diseases (9) as well as during development, particularly in zebrafish (10). 

Thus, understanding gene regulation under physiological and pathologic conditions on a global 

scale requires accurate profiling of TSSs. To this end, numerous techniques have been 

developed, including Cap Analysis of Gene Expression (CAGE) (11), RNA Annotation and 

Mapping of Promoters for Analysis of Gene Expression (RAMPAGE) (12), and 5’ global run-on 

sequencing (GRO-cap) (13).  

We recently introduced a new TSS mapping method termed Survey of TRanscription 

Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq) (14), a rapid, 

efficient, simple, and cost-effective TSS profiling approach compatible with limited input 

amounts. In parallel, we developed software to streamline analysis of STRIPE-seq data, as well 

as data resulting from other popular methods. Here, we describe the product of our code 

development as TSRexploreR, an R package for comprehensive and flexible exploration of TSS 

mapping data. TSRexploreR accepts pre-processed TSS and TSR data in a variety of common 

formats, including prior alignment results in BAM format. TSRexploreR performs normalization 

and offers a plethora of functions for correlation, visualization, and differential TSS/TSR 

analysis. Furthermore, TSRexploreR implements a novel approach to detect shifts in TSS 

distributions within TSRs. In sum, TSRexploreR is a feature-rich, interoperable, and easy-to-use 

software package for comprehensive analysis of TSS mapping data. 

 

Materials and Methods 

TSRexploreR implementation 

TSRexploreR is fully implemented in R (with the exception of TSS shifting analysis, described 

below) and makes use of numerous Bioconductor packages and CRAN libraries such as 

Tidyverse and data.table. Data is stored in a TSRexploreR S4 object in common Bioconductor 

formats such as GenomicRanges (GRanges) or as a data.table for rapid, memory-efficient 

manipulation. TSRexplorer accepts bedGraph, bigWig, CTSS, and tab-delimited table files for 
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TSSs and BED and tab-delimited table files for TSRs. Alignment BAM files can also be 

processed by TSRexploreR, as described below. TSRexploreR is packaged with STRIPE-seq-

detected TSSs along budding yeast chromosome IV alongside the Ensembl release 99 budding 

yeast V64-1-1 genome sequence and annotation GTF. TSRexploreR is available at 

https://github.com/zentnerlab/TSRexploreR/releases/tag/v0.1.0 and as a Singularity container 

(library://zentlab/default/tsrexplorer:main), ensuring prolonged compatibility and reproducibility. 

 

BAM processing 

Alignments in BAM format are loaded into TSRexploreR using the GenomicAlignments package 

(15) and can be processed as needed during import. An analysis of soft-clipping is performed, 

with reads having more than a user-specified number of soft-clipped bases removed. Filtering 

based on BAM flags is also performed, enabling removal of secondary alignments and, for 

paired-end reads, removal of unpaired or improperly paired reads and read pairs flagged as 

duplicates based on identical start and end positions. Overlapping 5’ read ends are then 

aggregated into TSSs. It has been frequently observed in both CAGE and TSRT-based TSS 

mapping protocols that a nonspecific G (corresponding to C on the first-strand cDNA) is often 

present at the 5’-most position of the R1 read (16,17). To correct for this artifact, we determine 

the frequency of reads with soft-clipped G bases. For each read with a 5’ G following removal of 

soft-clipped bases, a Bernoulli trial is conducted using the aforementioned soft-clipped G 

frequency as the “success” probability to decide if the G should be removed, which is similar in 

principle to the approach used with CAGE data (16). 

 

TSRexplorer vignettes 

Step-by-step vignettes for performing common tasks in TSRexploreR are available at the 

following URLs:  

 

BAM import and processing: 

https://github.com/zentnerlab/TSRexploreR/blob/v0.1.0/documentation/BAM_PROCESSING.pdf 

 

Standard TSS/TSR exploration: 

https://github.com/zentnerlab/TSRexploreR/blob/v0.1.0/documentation/STANDARD_ANALYSIS

.pdf 

 

Differential feature analysis: 
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https://github.com/zentnerlab/TSRexploreR/blob/v0.1.0/documentation/DIFF_FEATURES.pdf 

 

TSS shifting analysis: 

https://github.com/zentnerlab/TSRexploreR/blob/v0.1.0/documentation/FEATURE_SHIFT.pdf 

 

Data conditioning: 

https://github.com/zentnerlab/TSRexploreR/blob/v0.1.0/documentation/DATA_CONDITIONING.

pdf 

 

TSS and TSR analysis 

Yeast nAnT-iCAGE CTSSs (18) were obtained from www.yeastss.org (19) and imported into 

TSRexploreR. The nine growth conditions analyzed were: log-phase growth in rich yeast-

peptone-dextrose medium (YPD, the control condition), cell cycle arrest with �-factor, DNA 

damage induced by methyl methanesulfonate (DD), diauxic shift (DSA), YP medium with 16% 

glucose to induce fermentation (Glc), log-phase growth in yeast-peptone-galactose medium 

(Gal), oxidative stress induced by H2O2, 37°C heat shock (HS), and osmotic stress induced by 

NaCl. For genome assembly and annotation we used the R packages 

`BSgenome.Scerevisiae.UCSC.sacCer3` v1.4.0 and 

`TxDb.Scerevisiae.UCSC.sacCer3.sgdGene` v3.2.2, respectively. Code used for yeast CAGE 

analysis is available at  https://github.com/zentnerlab/Policastro_etal_2021/tree/v0.1.0. 

 

Zebrafish TSS shifting analysis 

For TSRexploreR analysis, zebrafish developmental CAGE data were obtained as TPM-

normalized bigWig files from http://promshift.genereg.net/zebrafish/CAGE/ and imported into 

TSRexploreR. Scores for negative-strand TSSs were multiplied by -1 to yield positive values. 

For CAGEr analysis, datasets were imported into CAGEr v1.30.3 from the R package 

`ZebrafishDevelopmentalCAGE` v0.99.0 and TPM-normalized using the power-law approach. 

For both methods, TSSs supported by ≥3 TPM in one of the two samples were clustered into 

TSRs with a maximum clustering distance of 25 bp and a maximum TSR width of 250 bp. TSRs 

supported by at least 10 TPM in both samples were merged if they were within 100 bp of one 

another. An FDR threshold of 0.05 was used to assess the significance of shifting results from 

both approaches. Code used for shifting analysis is available at  

https://github.com/zentnerlab/Policastro_etal_2021/tree/v0.1.0. 
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Results and Discussion 

 

Analysis of yeast nAnT-iCAGE data with TSRexploreR 

To demonstrate the features of TSRexploreR, we analyzed nAnT-iCAGE CTSSs from yeast 

cells grown under a variety of conditions (18). In cases where a single plot is shown, this 

indicates a result from one YPD control replicate. 

 

Genomic annotation and threshold exploration 

Using annotations provided in GTF or TxDb format, TSRexploreR links TSSs to known genomic 

features (20). Assignment of TSSs to such features, particularly promoters, is useful in 

establishing a read threshold for downstream analyses. TSRexploreR threshold analysis 

determines the fraction of TSSs that is promoter-proximal and the number of transcripts or 

genes with at least one unique TSS across a range of raw read count thresholds. This analysis 

allows selection of a threshold that balances removal of likely artifacts (particularly weak TSSs 

in gene bodies) with detection of lowly abundant but legitimate promoter-proximal TSSs. Using 

a promoter definition of -250 to +100 bp relative to annotated gene starts (start codons for 

mRNA genes, TSSs for ncRNA genes), we selected a threshold of 10 counts/TSS, yielding 

promoter-proximal TSS fractions of 0.603-0.750 (Figure 1B, Supplementary Figure S1). 

Following annotation and thresholding, the distribution of TSSs relative to known genomic 

features can be visualized as stacked barplots (Figure 1C). A feature detection plot, wherein the 

number of genes or transcripts with at least one unique TSS position meeting the specified 

threshold is displayed, can also be generated (Figure 1D). 

 

Normalization 

TSRexploreR includes three options for normalization. The first, counts per million (CPM), is a 

simple read number-based normalization approach commonly used for data visualization and is 

particularly appropriate for replicate comparison. However, CPM normalization is considered to 

be simplistic when comparing samples from distinct biological conditions (21) and so we 

implemented two additional normalization approaches considered more appropriate for such 

cases: trimmed mean of M-values (TMM) (21), used in edgeR (22), and median-of-ratios 

(MOR), used in DESeq2 (23). For this example, data were normalized using the MOR 

approach. Normalized samples can be compared via a PCA plot (24) (Figure 1E) or correlation 

heatmaps (25) (Supplementary Figure S2). 
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Visualization of TSS data 

TSSs can be exported in bedGraph, bigWig, or tab-delimited table format. TSSs and/or TSRs at 

a specific gene or its promoter can also be directly visualized using Gviz (26). To demonstrate 

this feature, we plotted MOR-normalized TSS counts from one replicate each of the YPD and 

Gal conditions at the promoter of the GAL2 gene, encoding a permease required for galactose 

utilization (Figure 1F). TSS signal around gene starts can also be displayed as a heatmap 

(Figure 1G), and the distribution of TSS positions relative to annotated gene starts can be 

visualized as a density plot (Figure 1H). 

 

TSR detection and analysis 

TSRexploreR uses a simple distance-based clustering approach to aggregate TSSs into TSRs 

based on a user-specified TSS count threshold that must be met in a specified number of 

samples and maximum inter-TSS distance. For this analysis, we used a raw count threshold of 

10 in at least one sample, a maximum distance of 25 bp, and a maximum TSR width of 250. 

Many of the analyses described above for TSSs can also be applied to TSRs: correlation, 

analysis of genomic distribution, feature detection, and density/signal relative to annotated gene 

starts. 

 

Characterization of TSR features 

It has been well established that there is a continuum of TSR shapes ranging from sharp or 

peaked, wherein transcription initiates at one or a few strong TSSs, to broad or dispersed, 

wherein there are several TSSs of similar strength (27). TSRexploreR calculates three metrics 

relating to TSR shape: 1) shape index (SI), which assesses the shape of TSRs via analysis of 

the position of each constituent TSS and its strength relative to the overall score of the TSR  

(27); 2) inter-quantile range (IQR), which measures the distance between the base positions of 

the given TSS signal quantiles, providing information on the width of a TSR without being 

affected by weak TSSs on its edges (28); 3) peak balance, which assesses the skew of TSSs 

around the TSR center (29) (Supplementary Figure S3). 

 

TSS sequence analysis 

TSRexploreR includes several functions for analyzing the sequence context of TSSs. 

Furthermore, as it is often desirable to assess specific subsets of TSSs or TSRs, TSRexploreR 

includes a number of conditioning functions for grouping, ordering, quantiling, and filtering data. 

Here, we demonstrate these features by splitting TSRs into quintiles by score and plotting 
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sequence logos (30) around the dominant TSS of each TSR in its quintile (Figure 2A). This 

analysis indicates a pyrimidine (Y = C or T) preference at the -1 position and a purine (R = A or 

G) preference at the +1 position (the TSS itself), as well as an A base in the -8 position (Figure 

2A), consistent with previous studies (31), that decreased in information content with decreasing 

TSS score. Sequences surrounding TSSs can also be visualized as color plots (Figure 2B). 

Lastly, the frequencies of all observed -1/+1 dinucleotides can be plotted (Figure 2C). 

 

Analysis of differential TSR usage 

Transcription is highly dynamic and plastic, able to respond quickly to myriad stimuli. To enable 

analysis of differential TSS and TSR usage across distinct conditions, TSRexploreR generates 

matrices of counts within merged regions that are used as input for edgeR or DESeq2. We used 

DESeq2 to build a statistical model and then performed contrasts of treated samples versus the 

control YPD condition (see Supplementary Table S1 for full differential TSR analysis results). As 

an overview of differential feature analysis, a stacked barplot of the number of changed features 

in each contrast can be generated (Figure 2D). The results of individual comparisons (for this 

example, Gal versus YPD) can also be visualized as a MA plot, displaying log2(fold change) 

versus mean expression (Figure 2E), and as a volcano plot, displaying -log10(FDR) versus 

log2(fold change) (Supplementary Figure S4). We also demonstrate visualization of differential 

TSR signal using conditioned heatmaps, wherein data are split by the direction of signal change 

and ordered by signal in the control sample (Figure 2F). To facilitate interpretation of differential 

feature analysis results, TSRexploreR annotates differential features and exports a list of gene 

names compatible with clusterProfiler, a robust R package for gene ontology (GO) analysis (32). 

Genes associated with upregulated promoter-proximal TSRs were enriched for GO biological 

process terms including ‘carbohydrate metabolic process’ and ‘generation of precursor 

metabolites and energy’ (Supplementary Figure S5, Supplementary Table S2). Genes with 

downregulated promoter-proximal TSRs were enriched for processes related to ribosome 

biogenesis (Supplementary Figure S5, Supplementary Table S2), consistent with previous work 

showing reduced levels of ribosomal protein gene transcripts in cells grown continuously in 

galactose (33). 

 

Detection of TSS shifts with TSRexploreR 

Numerous studies indicate that large-scale shifts in TSS distribution are prevalent in various 

developmental settings (10) and may also be induced by mutations in general transcription 

factors (34). Computational detection of TSS shifts may be approached as testing for 
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differences between two discrete probability distributions. The CAGEr package (28) assesses 

spatial shifts in TSS usage by generating aggregate TSRs from TSRs identified in all samples, 

and comparing empirical cumulative distribution functions (ECDFs), where the sample with 

larger total signal has its ECDF rescaled by the ratio of total signal. This results in a score 

between negative infinity and 1, with larger positive values posited to indicate that a given 

proportion of signal in the second sample is outside of the TSS-containing region in the first 

sample. For instance, a CAGEr shift score of 0.4 would indicate that at least 40% of the 

transcription initiation in the second sample is independent of that in the first sample. This 

approach only assesses spatial separation between two distributions and so does not address 

shifts in signal distribution at largely overlapping positions. Furthermore, it produces a 

substantial number of negative shift scores, the interpretation of which can be unclear. Lastly, it 

does not indicate shift direction. In addition to calculating the shifting score, CAGEr also 

performs a Kolmogorov-Smirnov (K-S) test on the ECDFs, identifying the point of maximal 

distance between them. The stated purpose of the K-S test is twofold: 1) to assess significance 

of the observed difference in TSS distribution between the two samples and 2) to capture 

changes in TSS distributions within mostly overlapping positions that are not captured by the 

shift score. However, calculation of the K-S statistic is unrelated to the shift score and so its p-

value does not indicate the score’s significance. Furthermore, the derivation of the p-value 

formula for the K-S test assumes the data come from a continuous distribution, an assumption 

not met by TSS distributions, which are observed at discrete locations. Lastly, the K-S test, like 

the shift score, does not indicate direction. 

Given these limitations, we implement an alternative approach to detecting TSS shifts 

using a more intuitive metric. We use a signed version of earth mover’s distance (EMD) (35), 

which we refer to as earth mover’s score (EMS), to characterize between-sample differences in 

TSS distributions within merged TSRs. For this approach, we imagine that the two TSS 

distributions in question are piles of dirt, and ask how much dirt from one pile we would need to 

move, how far, and in which direction, to recreate the distribution of the other sample. The 

computed EMS thus represents the minimum “cost” of converting one distribution into the other. 

The resulting score is between -1 and 1, with larger magnitudes indicating larger shifts and the 

sign indicating direction (negative values indicate upstream shifts and positive values indicate 

downstream shifts). Figure 3A-C illustrates the intuition for calculation of the EMS. Our 

implementation calculates shift scores as well as a p-value and FDR threshold based on a 

permutation test. TSS shifting analysis is implemented in C++ to enhance execution speed. 
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To illustrate the capacity of our EMS-based approach to detect TSS shifts, we turned to 

a set of CAGE experiments performed throughout zebrafish embryonic development. Detailed 

analysis of this dataset revealed distinct distributions of TSSs for the maternally-deposited and 

zygotic forms of several hundred transcripts (10), and so it provides a robust test case. We 

compared the earliest and latest time points assayed (unfertilized egg and Prim-20, 

respectively) using both the established CAGEr approach and our EMS-based method. Using 

CAGEr with no shift score threshold, we detected 3,950 significantly shifted TSRs, while 

applying a shift score threshold of 0.4 yielded 1,314 significant shifts (Supplementary Table S3). 

EMS-based analysis yielded 1,052 significantly shifted TSRs (Supplementary Table S4); we 

note that this number is slightly variable due to the use of a permutation test for determining 

significance. To illustrate the relationship between our EMS-based shift score and TSS 

redistribution, we visualized data at several loci displaying various degrees of shifting (Figure 

3D). At kdm7ab, CAGE signal was markedly shifted downstream in the Prim-20 sample, yielded 

a shift score of 0.856 (FDR = 0.029); this shift was not detected by CAGEr. A more modest 

downstream shift was observed at pif1 (shift score = 0.363, FDR = 0.013). The pif1 shift was 

detected as highly significant by CAGEr (FDR = 0), though the shift score was negative (-

0.406). At epcam, we detected a robust upstream shift (shift score = -0.588, FDR = 0); this shift 

was also detected by CAGEr, though with a very small shift score (0.069). Lastly, at tcf25, we 

observed a highly significant upstream shift (shift score = -0.637, FDR = 0). The tcf25 shift was 

also marked as highly significant by CAGEr (FDR = 0), but the sign of the robust shift score 

(0.742) does not relate to the direction of the shift.  

 

Concluding remarks 

TSRexploreR leverages the extensive Bioconductor ecosystem and the tidyverse to provide a 

feature-rich and straightforward tool for TSS mapping analysis. We also introduce a novel 

approach to detecting TSS shifts. While TSRexploreR was originally developed to handle 

STRIPE-seq data, it has been made highly interoperable and can thus be readily incorporated 

into workflows using existing TSS analysis software such as CAGEr, TSRchitect, and 

CAGEfightR. 
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Figure 1. TSS analysis with TSRexploreR 
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(A) Schematic depicting input formats accepted by TSRexploreR and creation of the 

TSRexploreR object. (B) Threshold plot showing the fraction of TSSs that is promoter-proximal 

(-250 to +100 relative to annotated gene starts) and the number of features (in this case, 

transcripts) with at least one unique TSS position at each threshold in YPD replicate 1. (C) 

Barplot of the genomic distribution of TSSs in each sample. (D) Barplot of the number of 

transcripts with a unique TSS position in each sample, and whether that TSS is promoter-

proximal or not. (E) PCA plot of TSSs detected in each CAGE sample. (F) Signal tracks of 

normalized signal (YPD and Gal replicate 1) at the GAL2 locus. (G) Heatmap of normalized 

signal from YPD replicate 1 relative to annotated gene starts, sorted descending by total signal. 

(H) Density plot of unique TSS positions relative to annotated gene starts for YPD replicate 1. 
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Figure 2. Sequence analysis and differential TSR detection 

(A) Sequence logos (quintiled in descending order by TSR score), (B) base color plot (in 

descending order by TSR score), and (C) barplot of dinucleotide frequencies at the dominant 

TSSs of TSRs called in YPD replicate 1. Only TSRs > 10 bp in width were considered for these 

plots. (D) Barplot of the number of differentially expressed TSRs for comparison of each 

indicated condition to the YPD control. (E) MA plot of differential TSR results for the Gal versus 
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YPD comparison. (F) Heatmap of normalized signal TSR around the annotated starts of genes 

with downregulated and upregulated promoter-proximal TSRs in the Gal versus YPD 

comparison. 
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Figure 3. Detection of TSS shifts using earth mover’s score  

(A) Stylized TSS distributions for two samples at a hypothetical region of interest. (B) Illustration 

of how Sample Two would need to be “moved” in order to match Sample One. Material (or 

“earth”) must be moved from the empty bars into the shaded bars while the solid bars remain 

unchanged. Some material has to be shifted in both directions, but more is moved upstream 

than downstream. Calculating how much, how far, and which “piles" to move is a standard 

constrained optimization problem known by the name “optimal transport”, but here it reduces to 

a simple integral. (C) Calculation of the EMS for the hypothetical example illustrated in (B). The 

upstream (purple, negative) and downstream (green, positive) areas between the ECDFs are 

simply integrated and then subtracted from each other. The result is normalized to the number 

of locations with expression in either sample. This example has an EMS of 0.243 with a p-value 

of 0 based on an approximate permutation test using 1000 resamples. (D) Tracks of zebrafish 

CAGE signal from the unfertilized egg (UF) and Prim-20 stages at four promoters displaying 

significant shifts in TSS distribution by the EMS-based method implemented in TSRexploreR. 

Note that only the strand from which the TSS signal originates is shown. Shift scores and 

statistical measures calculated by CAGEr and TSRexploreR are also included. 
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