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Abstract 29 

The human brain generates a rich repertoire of spatiotemporal dynamics during normal 30 

wakefulness, supporting a wide variety of conscious experiences and cognitive functions. 31 

However, neural dynamics are reconfigured, in comparable ways, when consciousness is lost 32 

either due to anaesthesia or disorders of consciousness (DOC). Here, leveraging a 33 

neurobiologically realistic whole-brain computational model informed by functional MRI, 34 

diffusion MRI, and PET, we sought to identify the neurobiological mechanisms that explain 35 

the common reconfiguration of neural dynamics observed both for transient pharmacological 36 

intervention and chronic neuroanatomical injury. Our results show that, by incorporating local 37 

inhibitory action through a PET-based GABA receptor density map, our model can reproduce 38 

the brain dynamics of subjects undergoing propofol anaesthesia, and that this effect depends 39 

specifically on the spatial distribution of GABA receptors across cortical regions. Additionally, 40 

using a structural connectome obtained from DOC patients, we demonstrate how the dynamics 41 

that characterise loss of consciousness can emerge from changes in neuroanatomical 42 

connectivity. Crucially, we find that each of these two interventions generalises across datasets: 43 

a model with increased GABA-mediated inhibition can reproduce the dynamics of DOC 44 

patients’ brains, and a model with a DOC connectome is also compatible with brain dynamics 45 

observed during propofol anaesthesia. These results demonstrate how increased inhibition and 46 

connectome randomisation represent different neurobiological paths towards the characteristic 47 

dynamics of the unconscious brain. Overall, the present findings begin to disentangle the 48 

neurobiological mechanisms by which highly dissimilar perturbations of the brain’s 49 

neurodynamics can lead to unconsciousness. 50 

  51 
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Introduction 52 

 53 

A central challenge of contemporary neuroscience is the quest to understand how the 54 

neurobiology and function of the human brain give rise to conscious experience 1,2. One way 55 

to address this question is to identify changes in brain function that accompany changes in 56 

conscious state. However, the brain is a paradigmatic example of a complex system 3, and 57 

different perturbations of its precise functioning can serve as a path towards loss of 58 

consciousness. Examples of such perturbations range from transient pharmacological (general 59 

anaesthetic) interventions having widespread effects on neuromodulation 4–7, to chronic 60 

disorders of consciousness arising from traumatic or anoxic injuries of diverse location and 61 

extent, often including changes to the physical connectivity between brain regions 8–12. 62 

 63 

In order to shed light on how the human brain supports consciousness, two fundamental 64 

challenges must be addressed. The first is to identify neurobiological signatures of 65 

consciousness and its loss that are generalisable across different paths to unconsciousness, 66 

rather than being specific to any of them 13. The second is to provide a mechanistic 67 

understanding of the previously identified signatures of consciousness, in terms of the 68 

underlying neurobiological principles 14.  69 

 70 

Substantial progress has recently been made towards answering the first question. The human 71 

brain generates a constantly changing repertoire of neural dynamics, supporting the rich variety 72 

of conscious experiences and cognitive functions 15,16,25–29,17–24. These complex dynamics self-73 

organise 30 according to the recursive local-global interplay of neuronal excitation and 74 

inhibition, and their intricate interactions across the network of the brain’s anatomical 75 

connections (human connectome) 16,31–37.  76 

 77 

Recently, converging evidence from multimodal neuroimaging has further shown that brain 78 

dynamics are substantially and consistently altered when consciousness is lost, which suggests 79 

that specific aspects of neural dynamics may play a central role in supporting human 80 

consciousness. In particular, striking similarities have been observed across brain dynamics 81 

induced by different ways of losing consciousness, such as acute pharmacological intervention 82 

with different anaesthetic drugs, but also chronic disorders of consciousness 13,38–44. These 83 

findings suggest that spatio-temporal dynamics may provide a “common currency” between 84 
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brain and mind 45 capable of encoding the difference between consciousness and 85 

unconsciousness.  86 

 87 

Despite recent achievements in finding common signatures of consciousness and its loss, the 88 

causal neurobiological mechanisms underlying these processes remain elusive. For example, 89 

anaesthesia is known to operate at the level of neurotransmission (propofol is a potent agonist 90 

of inhibitory GABA-A receptors 46,47), without affecting the physical organisation of the human 91 

connectome. In contrast, disorders of consciousness (DOC) arise from severe brain injury, 92 

typically due to anoxia or head trauma, which cause brain lesions of variable severity and 93 

location often including alterations of the physical connectivity between patients’ brain regions  94 

10,48–56. This similarity of outcomes and neural signatures 13,38–42 despite arising from radically 95 

different causes, begs the question: How can (transient) pharmacological and (chronic) 96 

structural perturbations converge to similar effects on brain dynamics, and the corresponding 97 

state of unconsciousness?  98 

 99 

Here, we sought to obtain mechanistic insights into this fundamental question by employing  100 

whole-brain computational modelling,  which is emerging  as a powerful tool  to investigate 101 

the neurobiological mechanisms underlying macroscale neural phenomena 14,35,57–60. These 102 

models represent regional macroscale activity in terms of local dynamics influenced by inter-103 

regional anatomical connectivity (obtained e.g. from diffusion MRI tractography), using 104 

approximations derived from oscillatory mechanisms (e.g. Kuramoto model), statistical 105 

mechanics (e.g. Ising model), or dynamical systems theory (e.g. Hopf model) 35,61.   106 

Crucially, in silico models are uniquely suited to investigate how different neurobiological 107 

perturbations can induce similar alterations of brain dynamics 14. Just like neuropsychological 108 

studies in human patients and experimental lesions in animal models have provided invaluable 109 

insights about brain organisation, function and dysfunction 62–65, whole-brain computational 110 

models can be systematically and reversibly lesioned to investigate the resulting alterations in 111 

macroscale brain dynamics. Being fully accessible to the researcher, the model’s parameters 112 

can be systematically altered in ways that are still beyond the capabilities of experimental 113 

research, whether in humans or animals 14,66.  114 

For these reasons, whole-brain computational modelling is becoming increasingly prominent 115 

as a tool to investigate the causal mechanisms that drive brain network organisation in healthy 116 
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and pathological conditions 35,57,75,67–74. In particular, recent efforts have capitalised on the 117 

tractability of the Hopf and Ising models, beginning to shed light on the mechanisms of loss of 118 

consciousness during sleep, anaesthesia, and disorders of consciousness in terms of local-119 

global synchronisation behaviour (Hopf model) 76–82 or statistical temperature (Ising model) 83–120 

85. 121 

Crucially, recent work has demonstrated that more detailed biophysical models that incorporate 122 

neurophysiologically realistic information about excitation, inhibition and neuromodulation – 123 

so-called Dynamic Mean Field (DMF) models – can provide insights about pharmacologically-124 

induced changes in macroscale fMRI dynamics, in terms of  the underlying neurobiology 86–88. 125 

These models reduce the intricate dynamics of individual neurons to a set of coupled 126 

differential equations which approximate the detailed microscale neural properties of spiking 127 

neurons (incorporating realistic aspects of neurophysiology such as synaptic dynamics and 128 

membrane potential) 89 via a mean-field reduction 31,34,37,90,91. Specifically, cortical regions are 129 

represented as macroscopic neural fields, whose local dynamics are coupled together by a 130 

network of anatomical connections 31,34,37. An additional biophysical haemodynamic model can 131 

then be used to turn the DMF model’s dynamics into a realistic simulator of BOLD signals 92. 132 

Thus, neurobiologically realistic whole-brain computational modelling provides a principled 133 

way to bridge across scales, relating the macroscale neural dynamics of fMRI to the microscale 134 

neurophysiological mechanisms from which they emerge 14. 135 

However, to date no studies have harnessed the power of DMF models to provide 136 

neurobiologically realistic accounts of pharmacological and chronic loss of consciousness. 137 

Such an effort is vital because as Sanz-Perl and colleagues remark, “modeling efforts 138 

incorporating more complex dynamics could allow in silico rehearsal of interventions with 139 

ampler neurobiological interpretation” 80. Here, we leveraged a neurobiologically realistic 140 

DMF model informed by multimodal neuroimaging including empirical dynamics from 141 

functional MRI, anatomical connectivity obtained from diffusion MRI, and GABA-A receptor 142 

density estimated from positron emission tomography (PET) (Figure 1).  143 

We used this modelling approach to simulate the empirical fMRI macroscale brain dynamics 144 

observed in the same N=16 subjects at baseline and during loss of consciousness induced by 145 

the intravenous anaesthetic, propofol. We also studied the fMRI dynamics of a cohort (N=21) 146 

of patients suffering from chronic disorders of consciousness (DOC) as a result of severe brain 147 

injury (traumatic or anoxic), comparing them with a group of N=20 healthy controls. By 148 
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subjecting the models to “virtual anaesthesia” (local modulation of inhibitory gain based on 149 

empirical GABA-A receptor distribution) and “virtual DOC” (alteration of the model’s 150 

structural connectome), we sought to identify the neurobiological mechanisms underlying a 151 

fundamental question of modern neuroscience: how can transient perturbations of 152 

neurotransmission and chronic lesions to the structural connectome, both give rise to 153 

unconsciousness and its characteristic similar brain dynamics 13,38,39,41,93? 154 

 155 

 156 

Figure 1. Overview of whole-brain computational model incorporating multimodal neuroimaging data. 157 

Based on a cortical parcellation with 68 regions of interest, each node (cortical region) is modelled through a 158 

neurophysiologically realistic biophysical model incorporating excitatory (NMDA) as well as inhibitory (GABA) 159 

synaptic dynamics. Nodes are connected by structural connectivity (from diffusion MRI) and the model’s 160 

dynamics are fitted to simulate empirical brain dynamics (from functional MRI). Neurotransmitter information 161 

from PET can also be added in the model as modulating the local neuronal gain 86. 162 

 163 
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Results 164 

The neurobiologically realistic dynamic mean-field (DMF) model only one free parameter: a 165 

global coupling parameter, denoted by G, which scales the excitatory-to-excitatory coupling 166 

between brain regions, as established  by the empirical structural connectome. Thus, calibrating 167 

the model corresponds to finding the value of G that allows the model to best simulate observed 168 

fMRI dynamics of the human brain at rest (which is assessed in terms of the KS-distance 169 

between real and simulated data, see 86).  We followed this procedure for each of our two 170 

datasets (Figure 2): for the propofol dataset we optimised the model to fit the fMRI dynamics 171 

acquired during the baseline awake scan, and for the DOC dataset we optimised the model to 172 

fit the dynamics observed in the  healthy controls.  These two calibrated DMF models  - with 173 

their corresponding global coupling values fitted to the dynamics of the conscious brain - 174 

constitute the starting point for our investigations.  175 

 176 

 177 

 178 

 179 
Figure 2. Overview of model fitting procedure. (A.i) Time-resolved matrices of functional connectivity are 180 

obtained from empirical functional MRI via the sliding-window approach: regional BOLD time-series are 181 

partitioned into windows of 30 TRs, sliding by 3 TRs at a time, following the same approach as previous work 182 

using the DMF model 86; functional connectivity between each pair of regions is computed within each window 183 

by means of Pearson correlation, generating a stack of FC matrices representing the evolution of FC over time. 184 

(A.ii) The same procedure is repeated for the simulated BOLD timeseries produced by the model with various 185 

levels of the global coupling parameter, G. (B) For both the empirical and simulated functional connectivity 186 

dynamics (FCD), a time-versus-time FCD matrix is computed by correlating the time-dependent FC matrices 187 

centred at each timepoint. (C) Histograms of the distribution of FCD values in each matrix are obtained over all 188 

participants (blue) and for each simulation (red), and their similarity is evaluated by means of the Kolmogorov-189 
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Smirnov distance. (D) Across values of the global coupling parameter G, we compute the KS-distance between 190 

the empirical FCD and the FCD of each simulation (red solid line; dashed lines indicate standard deviation). The 191 

optimum value of G for the model (blue vertical line) is chosen as the one that minimises the average KS-distance 192 

across 100 simulations (here shown for the awake condition of the propofol dataset, where G=1.6). This procedure 193 

determines the value that allows the model to best simulate the empirical dynamics of functional connectivity in 194 

the healthy human brain. 195 

 196 

Inhibitory modulation from GABA-A receptor distribution reveals a 197 

shared mechanism for loss of consciousness 198 

The effects of propofol anaesthesia on the brain were modelled by capitalising on the recently 199 

built  whole-brain map of GABA-A regional receptor density, generated on the basis of 200 

benzodiazepine receptor (BZR) density measured from [11C]flumazenil Positron Emission 201 

Tomography (PET) 94.  Incorporating this information in the DMF model allowed us to evaluate 202 

the extent to which the dynamics of the anaesthetised brain can be explained in terms of 203 

propofol-induced alterations in the detailed balance of local excitation and inhibition. 204 

 205 

In previous work Deco and colleagues 86 modelled the effects of the serotonergic drug LSD by 206 

locally modulating the neuronal gain of each excitatory population in the model according to 207 

the empirical distribution of 5HT-2A receptors across brain regions 86. Inspired by their 208 

approach, here we show for the first time that the influence of regional GABA-A receptor 209 

density on functional dynamics can be modelled using a DMF model informed by regional 210 

GABA-A receptor density. 211 

 212 

The strategy followed in 86 was to first calibrate the model on baseline data to obtain a global 213 

coupling value, and then fit a secondary excitatory parameter separately on baseline and post-214 

dose data. Our approach follows Deco’s but differs in one key respect: given the inhibitory 215 

nature of GABA, we modulated the inhibitory (rather than excitatory) local gain.1 To do so, we 216 

introduced an inhibitory gain scaling parameter in the model, denoted by sI. This parameter 217 

allowed us to scale the inhibitory gain at each region according to the empirical local density 218 

of GABA-A receptors, as quantified based on PET-derived maps of receptor density 94.  219 

 220 

 
1 Note that the excitatory and inhibitory populations within each region in the biophysical model are mutually and 

recursively coupled, and hence both excitation and inhibition are eventually affected by this procedure. 
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This procedure allowed us to ask whether adjusting the value of inhibitory gain sI according to 221 

local GABA-A receptor density would allow the model to simulate the characteristic dynamics 222 

of acute propofol-induced unconsciousness. A positive answer to this question would implicate 223 

regional GABA-ergic inhibition as a neurobiological mechanism behind the action of propofol 224 

(a known GABA-ergic agonist) in inducing the characteristic macroscale dynamics observed 225 

during loss of consciousness due to propofol anaesthesia 13,38,40,41.  226 

 227 

To address this issue, we studied  whether some appropriate value of sI  (which scales the  gain 228 

related to the local GABA-A receptor density) would improve the model’s ability to simulate 229 

the dynamics of deep propofol anaesthesia. For this purpose, we used the previously calibrated 230 

DMF model to generate simulations for each value of sI between 0 (corresponding to the model 231 

without local GABA inhibitory modulation) and 1, in increments of 0.02. Then, for each value 232 

of sI, we computed the KS distance between the model’s simulated macroscale dynamics and 233 

the empirical dynamics observed in the anaesthetised subjects. The optimal value of sI, was 234 

then identified as the value that resulted in the minimum mean KS distance between empirical 235 

and simulated dynamics (across N=10 simulations for each value of sI), thereby establishing a 236 

propofol model.  237 

 238 

Note that a model incorporating additional neurobiological information (in this case, 239 

information about the regional distribution of GABA-A receptors) might produce generally 240 

better-fitting simulations just in virtue of its increased complexity. To control for this 241 

possibility, we compared the propofol model with an analogous model, which also incorporated 242 

regional GABA-A receptor density, but whose inhibitory gain scaling parameter was chosen 243 

as the one that best fitted the empirical dynamics observed in awake subjects. We refer to this 244 

as the baseline model.  245 

 246 

Having completed the fitting procedure for our models, we then proceeded to analyse the 247 

models’ performance. To this end, we generated 100 simulations from each of the propofol and 248 

baseline models. For both models, we then computed the KS distance between each simulation, 249 

and the empirical dynamics observed during wakefulness, and during anaesthesia. This 250 

provided us with a way to quantify the ability of each model (in terms of goodness of fit, i.e. 251 

low KS distance) to simulate the empirical brain dynamics observed during wakefulness, and 252 

the empirical brain dynamics observed during propofol-induced loss of consciousness. 253 

 254 
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Results show that incorporating the regional distribution of GABA-A receptors as local 255 

modulators of the global inhibitory gain, substantially improved the DMF model’s fit to 256 

empirical brain dynamics observed during propofol anaesthesia (Figure 3B and Table 1). This 257 

improvement could not be explained as a generic effect due to additional model complexity: if 258 

this had been the case, improvements should have been observed for the model’s ability to fit 259 

both awake and anaesthetised dynamics. Instead, the improvement was specific to 260 

anaesthetised dynamics, and the propofol model actually had poorer ability to fit the awake 261 

dynamics. In other words, the addition of this inhibition parameter in accordance with its 262 

empirical distribution across brain regions, makes the model capable of switching between 263 

simulating awake or anaesthetised brain dynamics - and when it is simulating anaesthetised 264 

brain dynamics, the model’s fit to awake brain dynamics deteriorates. Since propofol is a well-265 

known GABA-ergic agonist, these results confirm that taking into account  GABA agonism 266 

(local modulation of inhibitory gain by regional GABA-A receptor density) is sufficient to 267 

recapitulate the known effects of the GABA-ergic agent propofol on empirical brain dynamics, 268 

leading to dynamics that are known to characterise the state of unconsciousness. 269 

 270 

 271 

 272 

 273 

Figure 3. Modulation of inhibitory gain by empirical GABA-A receptor density improves model fit to 274 

propofol dynamics. (A) The inhibitory gain of each node in the balanced DMF model is modulated by the 275 

regional density of GABA-A receptors, estimated from PET. (B) Mean model fit for 100 simulations for the 276 

propofol dataset, quantified as KS-distance to the baseline (awake) and propofol (anaesthetised) conditions, using 277 

a value of gain for inhibitory scaling sI derived from calibrating the model with either the baseline or propofol 278 

conditions. Error bars represent the standard error of the mean. 279 

 280 

 281 

 282 

 283 

 284 

 285 
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Table 1. Statistical testing for the effects of local inhibitory GABA modulation. 286 

                      Original GABA map     Scrambled GABA map          Uniform GABA map 287 
 

Estimate Standard 
error 

p-value Estimate Standard 
error 

p-
value 

Estimate Standard 
error 

p-
value 

Model 0.04 0.009 <.0001 -0.01 0.006 .081 2x10-17 0.007 1.0 

Target 
condition 0.03 0.009 .0008 0.003 0.006 .610 0.02 0.007 .001 

Interaction - 0.06 0.01 <.0001 -- -- -- -- -- -- 

 288 

 289 

Crucially, we also confirmed  that the improved fit to anaesthetised dynamics is not merely the 290 

result of increasing overall inhibition in the model: rather, regional information about the 291 

distribution of GABA receptor density plays a key role in the model’s improved fit. To 292 

demonstrate this point, we show that the results are not replicated if the PET-derived regional 293 

distribution of GABA-A receptor density is reshuffled across regions (Figure 4A), or if uniform 294 

values are used for each region (i.e. by setting all regions to have a value equal to the mean of 295 

the distribution; Figure 4B).  In both cases, the model’s ability to fit anaesthetised dynamics is 296 

not improved with respect to the baseline model (Figure 4A,B and Table 1). Therefore, our 297 

results show that the specific regional distribution of GABA-A receptors across the cortex plays 298 

a key role in generating the brain dynamics characteristic of unconsciousness induced by 299 

propofol administration. 300 

 301 

 302 

 303 
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 304 

 305 

Figure 4. Modulation of inhibitory gain by reshuffled or uniform GABA-A receptor density. (A) The 306 

inhibitory gain of each node in the balanced DMF model is modulated by the regional density of GABA-A 307 

receptors, reshuffled across cortical regions. Plot shows the mean model fit for 100 simulations, quantified as KS-308 

distance between simulated and empirical dynamics, for each combination of condition and gain. (B) The 309 

inhibitory gain of each node in the balanced DMF model is modulated by the regional density of GABA-A 310 

receptors, set to a uniform value (mean of the empirical distribution) across cortical regions. Plot shows the mean 311 

model fit for 100 simulations, quantified as KS-distance between and empirical dynamics, for each combination 312 

of condition and gain. Error bars represent the standard error of the mean. 313 

 314 

Simulated brain injury induces unconscious-like dynamics 315 

Whole-brain computational models provide a unique tool to understand the effects of 316 

connectome alterations on macroscale brain dynamics 70,71,83. Connectome replacement allows 317 

us to determine which of two conditions is more compatible with a given perturbation of the 318 

connectome, in terms of the connectome’s capacity to support the corresponding brain 319 

dynamics. Specifically, a smaller impact of connectome perturbation on the model’s fit to 320 

condition X than condition Y, indicates that the perturbed connectome is better suited to 321 

supporting the dynamics of condition X than Y. We term this procedure “Connectome 322 

Replacement Analysis”, which is illustrated in Figure 5A. 323 
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Leveraging this capability, we  subjected the  DMF model to the virtual equivalent of severe 324 

brain injury: namely, we replaced the underlying connectivity matrix governing the long-range 325 

interactions between brain regions with a connectome obtained from diffusion-weighted 326 

imaging of N=21 patients with chronic DOC due to severe brain injury. This procedure imparts 327 

on the model with effects akin to what severe brain injury does on anatomical connectivity. 328 

This “virtual DOC” provides a way to isolate the effects over brain dynamics of connectivity 329 

disruptions that result in loss of human consciousness. 330 

Note that  such substantial perturbations are expected to deteriorate the model’s ability to 331 

replicate the dynamics of awake healthy brains (i.e. increasing the KS distance, corresponding 332 

to decreased goodness-of-fit): our models were optimised with biophysical parameters 333 

pertaining to healthy brains, and using a healthy connectome. However, our hypothesis was 334 

that the dynamics generated by the model with DOC connectome should be more similar (lower 335 

KS distance, indicating a better fit) to the empirical dynamics of DOC patients’ brains, than to 336 

the dynamics of conscious, healthy brains. 337 

Our results supported these predictions. As expected, connectome replacement led to a 338 

reduction in the model’s ability to fit control brain dynamics (Figure 5B). Also as expected, the 339 

model with the healthy connectome was better able to simulate conscious than unconscious 340 

dynamics (Figure 5B, blue plots). Crucially, however, this pattern reversed following 341 

replacement of the healthy connectome with the DOC connectome (Figure 5B, red plots): 342 

dynamics generated using the DOC connectome were more similar to the empirical brain 343 

dynamics of DOC patients, than to conscious controls (Table 2). This observation supports our 344 

hypothesis, demonstrating that unconscious brain dynamics are more compatible with the DOC 345 

connectome than conscious dynamics; below, we also demonstrate that this result is not 346 

specific to the chronic unconsciousness that characterises disorders of consciousness, but rather 347 

it generalises to the transient unconsciousness caused by propofol anaesthesia, too.  348 

 349 

 350 

 351 

Figure 5. Connectome replacement analysis with DOC connectome. (A) The original healthy connectome of 352 

the model is replaced with the group-average connectome obtained from diffusion MRI of N=21 DOC patients, 353 
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and the resulting model is used to generate 100 simulations. (B) Plot shows the mean model fit for 100 simulations, 354 

for the original and perturbed models for the DOC dataset, quantified as the KS-distance to the control (conscious) 355 

and DOC (unconscious) conditions. Error bars represent the standard error of the mean.  356 

 357 

 358 

Table 2. Statistical testing for the effects of connectome replacement. 359 

                      DOC connectome       Random connectome    Lattice connectome 360 
 

Estimate Standard 
error 

p-value Estimate Standard 
error 

p-value Estimate Standard 
error 

p-value 

Model 0.20 0.012 <.0001 0.29 0.012 <.0001 0.06 0.012 <.0001 

Target 
condition 0.10 0.012 <.0001 0.10 0.012 <.0001 0.10 0.012 <.0001 

Interaction - 0.23 0.016 <.0001 - 0.21 0.017 <.0001 0.05 0.016 .007 

 361 

 362 

Remarkably, these results could be replicated by replacing the original healthy structural 363 

connectome with a randomised version having the same average connectivity 95. After 364 

perturbation, the model’s fit to DOC brain dynamics became better than the model’s fit to 365 

conscious dynamics (Figure 6A and Table 2), suggesting that unconscious dynamics are more 366 

compatible than conscious dynamics with a randomised connectome. In contrast, the opposite 367 

effect was observed when the original connectome was rewired into a regular (lattice) network, 368 

which had a larger impact on the model’s fit to DOC than control brain dynamics (Figure 6B 369 

and Table 2). Crucially, the fact that lattice networks further degrade the fit of DOC dynamics 370 

demonstrates that not every deviation from the original healthy connectome leads to a higher 371 

compatibility  with unconscious over  conscious dynamics: rather, compatibility depends on 372 

the specific topology of the perturbed connectome. Together, these results suggest that DOC 373 

dynamics are more compatible with an unstructured connectome.   374 

 375 

 376 
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 377 
 378 

Figure 6. Connectome replacement analysis with random and lattice networks. (A) Plots show the mean 379 

model fit for 100 simulations, quantified as the KS distance to each condition for the original and perturbed models 380 

using a randomised connectome. (B) Plots show the mean model fit for 100 simulations, quantified as the KS 381 

distance to each condition for the original and perturbed models using a lattice-like connectome. Error bars 382 

represent the standard error of the mean. 383 

 384 

 385 

Generalisation across datasets 386 

Having identified the role of GABA-mediated inhibition for propofol anaesthesia, we next 387 

sought to determine to what extent inhibition can also explain the dynamics of unconsciousness 388 

arising from severe brain injury. Our rationale was that, even though these patients have not 389 

been exposed to GABA-ergic agents but rather owe their condition to severe brain injury, 390 

recent evidence suggests similarities of brain dynamics during anaesthesia and disorders of 391 

consciousness 13,38,39,42,96. A positive answer to this question would further implicate a change 392 

in the excitation-inhibition balance, not just in the generation of dynamics pertaining to 393 

propofol anaesthesia, but more broadly as a general mechanism responsible for the 394 

characteristic dynamics of unconscious states - whether due to anaesthesia or brain injury. 395 

 396 
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Therefore, we followed the same “virtual anaesthesia” procedure with empirical data from 397 

healthy controls and DOC patients. Intriguingly, we observed analogous results:  local 398 

modulation of inhibitory gain based on GABA-A receptor density allowed the model to 399 

substantially improve its fit to DOC patients’ brain dynamics (Figure 7A and Table 3). 400 

However, in contrast with propofol anaesthesia, the improvements were also observed when 401 

the regional receptor map was scrambled, or replaced by a uniform map (Figure 7B,C and 402 

Table 3). Thus, whereas propofol anaesthesia depends on the specific distribution of GABA-A 403 

receptors across the cortex, indicating that these receptors are mediating the effects of propofol, 404 

the characteristic dynamics of DOCs are less selective, and appear to correspond to a non-405 

specific increase in global inhibition. 406 

 407 

 408 
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 409 

 410 

Figure 7. Modulation of inhibitory gain by empirical GABA-A receptor density improves model fit to DOC 411 

brain dynamics. (A) Mean model fit for 100 simulations for the DOC dataset, evaluating KS distance (lower 412 

means better fit) to the control (conscious) and DOC (unconscious) conditions, using a value of inhibitory gain 413 

scaling sI derived from either the control subjects or the DOC patients. (B) The inhibitory gain of each node in the 414 

balanced DMF model is modulated by the regional density of GABA-A receptors, reshuffled across cortical 415 

regions. Plot shows the mean model fit (KS-distance) between simulated and empirical dynamics, for each 416 

combination of condition and gain. (C) The inhibitory gain of each node in the balanced DMF model is modulated 417 

by the regional density of GABA-A receptors, set to a uniform value (mean of the empirical distribution) across 418 

cortical regions. Plot shows the mean model fit (KS-distance) between simulated and empirical dynamics, for 419 

each combination of condition and gain. Error bars show the standard error of the mean. 420 

 421 

 422 

 423 

 424 
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Table 3. Generalisation of local GABA modulation results to DOC patients. 425 

         Original GABA map     Scrambled GABA map           Uniform GABA map 426 
 

Estimate Standard 
error 

p-value Estimate Standard 
error 

p-value Estimate Standard 
error 

p-value 

Model 0.08 0.011 <.0001 0.01 0.012 <.0001 0.07 0.011 <.0001 

Target 
condition 0.06 0.011 <.0001 0.11 0.012 .317 0.08 0.011 <.0001 

Interaction - 0.14 0.015 <.0001 - 0.15 0.017 <.0001 - 0.18 0.016 <.0001 

 427 

 428 

Additionally, if propofol and severe injury are different ways by which the human brain can be 429 

pushed towards unconsciousness, then inducing a virtual DOC via connectome replacement 430 

should also lead to a model that is better able to simulate the dynamics of an anaesthetised 431 

brain, than an awake brain - thereby recapitulating what we previously observed with DOC 432 

brain dynamics. Remarkably, results show that - as previously observed with DOC patients -433 

simulated dynamics generated from a model using the DOC connectome are more compatible 434 

(lower KS distance) with the dynamics of propofol anaesthesia than with the dynamics of 435 

awake subjects’ brains (Figure 8A and Table 4).  436 

 437 

Furthermore, the importance of topology of the perturbed connectome was also observed for 438 

propofol dynamics, with randomisation of the connectome having a smaller effect on the 439 

model’s ability to fit propofol dynamics than awake dynamics (Figure 8B and Table 4). 440 

Conversely, the decrease in the model’s ability to fit empirical data was exacerbated for the 441 

propofol condition, when the original connectome was replaced with a lattice network (Figure 442 

8C and Table 4). 443 

 444 

These findings generalise our DOC results to propofol anaesthesia, indicating that the DOC 445 

connectome is not only more compatible with DOC patients’ brain dynamics than with healthy 446 

subjects’ dynamics. Rather, the generalisation to propofol anaesthesia suggests that the DOC 447 

connectome may be more compatible with unconscious dynamics in general: whether arising 448 

from brain injury or pharmacological intervention. 449 

    450 
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 451 

 452 

Figure 8. Connectome replacement analysis with DOC connectome generalises to propofol anaesthesia. (A) 453 

Plot shows the mean model fit for 100 simulations from the original and perturbed models for the DOC dataset, 454 

evaluated as KS-distance to the baseline (conscious) and propofol (unconscious) conditions. (B) Plot shows the 455 

mean model fit (KS distance) for 100 simulations, showing the fit to each condition for the original and perturbed 456 

models using a randomised connectome. (C) Plot shows the mean model fit (KS distance) for 100 simulations, 457 

showing the fit to each condition for the original and perturbed models using a lattice-like connectome. Error bars 458 

represent the standard error of the mean. 459 
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 460 

 461 

 462 

Table 4. Generalisation of connectome replacement results to anaesthetised volunteers. 463 

 464 

          DOC connectome       Random connectome    Lattice connectome 465 
 

Estimate Standard 
error 

p-value Estimate Standard 
error 

p-value Estimate Standard 
error 

p-value 

Model 0.09 0.010 <.0001 0.32 0.010 <.0001 0.20 0.006 <.0001 

Target 
condition 0.02 0.010 .031 0.02 0.010 .0495 0.04 0.006 <.0001 

Interaction - 0.08 0.013 <.0001 - 0.07 0.015 <.0001 - - - 

 466 

  467 
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Discussion 468 

The human brain generates a constantly varying set of neural dynamics, supporting a rich 469 

repertoire of conscious experiences and cognitive functions 15–18,20, which unfold out of an 470 

interplay between the structural connectome and the brain’s neuromodulatory mechanisms 471 

16,31–37. This paper sought to identify neurobiological mechanisms that are capable of explaining 472 

how highly dissimilar causes - such as transient perturbations of neurotransmission versus  473 

chronic lesions to brain anatomy and connectivity - can give rise to loss of consciousness and 474 

its characteristic brain dynamics 14. 475 

To this end, we employed a whole-brain Dynamic Mean Field model that simulates macroscale 476 

functional dynamics of the human brain by means of neurobiologically realistic biophysical 477 

modelling, which integrates empirical neuronal dynamics from functional MRI, anatomical 478 

connectivity obtained from diffusion MRI, and neurotransmitter receptor density estimated 479 

from positron emission tomography. In addition to providing insights about the mechanisms 480 

that are responsible for observed macroscale neurobiology, DMF models offer a powerful tool 481 

to understand the causal mechanisms underlying pharmacologically-induced macroscale 482 

changes in neural dynamics 86–88. The effect of inhibition was assessed by enriching the DMF 483 

model, modulating the neuronal gain of each inhibitory population according to the empirical 484 

density of GABA-A receptors across cortical regions, quantified using in-vivo Positron 485 

Emission Tomography autoradiography 94. Additionally, the role of lesions to brain anatomy 486 

was studied by considering the connectome observed in a population of DOC patients. 487 

Our results demonstrate that GABA-mediated inhibition plays a mechanistic role in the 488 

emergence of the characteristic macroscale dynamics observed during propofol-induced 489 

unconsciousness. These results align with neurophysiological evidence indicating that propofol 490 

is primarily a GABA-A receptor agonist 46,47. Indeed, our results further indicate that propofol 491 

anaesthesia is crucially dependent on the specific regional distribution of GABA-A receptors 492 

across the cortex, since neither reshuffling this distribution across regions nor setting all regions 493 

to equal density values could reproduce the same effect. Future research may build on this 494 

finding of regional specificity  by seeking to identify whether GABA-A receptor density at 495 

specific regions plays an especially prominent role in propofol-induced anaesthesia, or whether 496 

concerted action across the entire cortex is required. The prominent involvement of the brain’s 497 

default mode network in anaesthesia induced with the GABA-ergic agents propofol and 498 
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sevoflurane 13,39,40,93,97,98 and more specifically the precuneus/posterior cingulate cortices, 499 

suggests that GABA receptor density at these regions may be an especially promising candidate 500 

for predicting anaesthetic effects.  501 

 502 

Remarkably, our PET-informed results showed that considering GABA-mediated scaling of 503 

regional inhibitory gain also improved the model’s ability to simulate the characteristic 504 

dynamics of DOC patients’ brains, even though these patients owe their chronic condition to 505 

severe brain injury rather than pharmacological intervention. This observation suggests a 506 

change of excitatory-inhibitory balance in favour of inhibition, not just in the generation of 507 

dynamics pertaining to propofol anaesthesia, but more broadly as a general neurobiological 508 

mechanism for the dynamics that characterise unconsciousness - whether due to anaesthesia or 509 

brain injury. Indeed, there is evidence that physiologically awake but unconscious DOC 510 

patients show cortical OFF-periods analogous to those observed in healthy individuals during 511 

sleep 99, possibly arising from reduced cortico-cortical connectivity and a resulting shift in 512 

excitatory-inhibitory balance towards excessive inhibition 100, as is observed at a local level 513 

after stroke 101. And indeed, both disorders of consciousness and general anaesthesia are known 514 

to correspond to reduced cerebral metabolism, as measured with PET 102,103. 515 

 516 

Crucially, the present results are consistent with the recent findings of 41, where the framework 517 

of connectome harmonic decomposition revealed how propofol anaesthesia and disorders of 518 

consciousness can both be explained in terms of coarse-grained harmonic modes of the 519 

connectome providing increased contributions to brain dynamics.  An increase in the 520 

contribution of coarse-grained harmonic modes had been previously generated in silico by 521 

increasing inhibition in a Wilson-Cowan computational model 16. Hence, taken together these 522 

studies suggest that a change in the global balance between excitation and inhibition in favour 523 

of inhibition seems to play a role in the characteristic dynamics of unconsciousness - which the 524 

present work formally demonstrates by combining empirical fMRI data on propofol 525 

anaesthesia and DOC, with whole-brain computational modelling informed by GABA-A 526 

receptor density.  527 

 528 

Nevertheless, a key difference emerged between anaesthesia and DOC: whereas anaesthesia 529 

critically depends on propofol’s specific pattern of local inhibition across the cortex, 530 

incorporating regional specificity of GABA receptor density distribution did not further 531 

improve the model’s ability to simulate DOC patients’ brain dynamics, beyond the 532 
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improvement provided by using a uniform or scrambled GABA-A receptor map. Therefore, 533 

whereas propofol anaesthesia is causally mediated by GABA-A receptors and their specific 534 

distribution across the cortex, it appears that a global increase in inhibition is sufficient to 535 

generate the characteristic dynamics of disorders of consciousness. 536 

 537 

Our results from connectome replacement in the whole-brain model informed by empirical 538 

anatomical connectivity (dMRI), point to injury-induced randomisation of the connectome as 539 

one such candidate mechanism in DOC patients. Specifically, our findings show that (a) 540 

unconscious fMRI dynamics (whether due to propofol anaesthesia or brain injury) are more 541 

compatible with the empirical DOC connectome, than conscious dynamics; and (b) 542 

unconscious dynamics are also more compatible with a random connectome than conscious 543 

dynamics (whereas the opposite holds for a lattice-like connectome). It makes sense that the 544 

effect of rewiring the network into a lattice should have the opposite effect of randomisation: 545 

lattice networks are characterised by high clustering but also high average shortest path 546 

between pairs of nodes - the opposite of random networks. Indeed, the well-known “small-547 

world” organisation that characterises many real-world networks, including the human brain 548 

104,105 (but see 106) is defined as being the topological middle ground between these two 549 

extremes of possible network configurations 95,107. 550 

 551 

It is also remarkable that the same results from connectome replacement - greater compatibility 552 

of unconscious dynamics with the DOC connectome perturbation - could be generalised to the 553 

propofol dataset. For DOC patients, such a result may perhaps be expected, since the initial 554 

connectome used in the model was obtained from healthy controls, whereas the perturbed DOC 555 

connectome was obtained by combining the individual connectomes of the same DOC patients. 556 

However, observing the same result in the propofol dataset is a powerful validation of our 557 

approach, demonstrating that the results are specific to the presence vs absence of 558 

consciousness, rather than being influenced by the specific dataset used. 559 

 560 

Thus, thanks to connectome replacement we can infer that the increased neuronal inhibition 561 

that characterises both disorders of consciousness and anaesthesia, is functionally equivalent 562 

to randomisation of the connectome. However, propofol’s anaesthetic effects are mediated by 563 

GABA-A receptors according to their specific regional distribution, whereas disorders of 564 

consciousness can be explained in terms of a more generic increase in global inhibition - 565 

possibly arising from randomisation of the connectome due to anatomical lesions, whose extent 566 
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and location are do not follow uniform patterns. Anaesthesia may be expected to operate 567 

similarly across individuals, in terms of which regions are more or less affected by propofol. 568 

In contrast, each DOC patient is unique in the cause, extent and location of their brain injury. 569 

As a result, whereas anaesthesia may depend on specific localised patterns, it stands to reason 570 

that the characteristic macroscale dynamics of DOC patients’ brains should arise from global-571 

scale neurobiological mechanisms, which may originate from a variety of causes without 572 

necessarily depending on specific locations for injury.  On the other hand, future research may 573 

also explicitly investigate whether lesions leading to disorders of consciousness show an 574 

association with regional distribution of GABA-A receptors. 575 

 576 

Our results combining fMRI (neural dynamics), dMRI (anatomical connectivity) and PET 577 

(neurotransmitter system) demonstrate that human consciousness arises from the delicate 578 

balance of local excitation and inhibition, interacting across an intricate network of anatomical 579 

connections. Many paths can lead to unconsciousness by disturbing this balance, whether by 580 

influencing the nodes’ activity (through inhibitory modulation) or the connectivity between 581 

them (through connectome randomisation). As befits such a complex dynamical system as the 582 

human brain, it is likely that other paths to unconsciousness will also exist, explaining 583 

phenomena such as regular sleep-wake alternation, epileptic seizures, and the effects of non-584 

GABAergic anaesthetics such as ketamine – some of which have already started to be explored 585 

using whole-brain computational modelling 68,76,78,79,81. Extending the present framework to 586 

account for additional ways of losing consciousness will be a crucial endeavour, informing 587 

both our understanding of brain network function and of human consciousness. Likewise, it is 588 

vital to combine multimodal neuroimaging and whole-brain modelling to identify paths from 589 

unconsciousness back to consciousness, using our understanding of post-anaesthetic recovery 590 

to restore consciousness in DOC patients, whether by means of custom-designed drugs or deep 591 

brain stimulation 57,58,86. 592 

 593 

Limitations 594 

A well-known adage asserts that “All models are wrong”, and the present work is no exception. 595 

Models of neurobiological function can vary in complexity related to the level of physiological 596 

detail and scale, with both aspects incurring costs in terms of computational resources and time. 597 

Thus, trade-offs between realism and complexity are unavoidable 35. At the end of the spectrum 598 
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favouring physiological accuracy, microscale spiking models of individual neurons can 599 

incorporate thousands of parameters to account for numerous aspects of their neurobiology, 600 

but at present such models are not yet able to demonstrate computational scalability and 601 

theoretical tractability that could make them useful for the purposes of the present investigation 602 

of macroscale brain dynamics 35. At the other end of the spectrum, important insights about the 603 

spatial and temporal organisation of macroscale brain networks can be attained from abstract 604 

statistical modelling based on  Hidden Markov Models, PCA/ICA, and clustering approaches 605 

17,18,20,23,28,29,108. Rather than seeking to provide plausible neurobiological mechanisms of 606 

empirical brain dynamics, these approaches aim to obtain low-dimensional descriptions of the 607 

data (in terms of “metastates”, components or clusters), which can lead to conceptually and 608 

computationally more tractable accounts that have been proven useful to study questions about 609 

the macroscale organisation of the brain.  610 

 611 

Note that the same adage also admits that “some models are useful”: following insights from 612 

statistical mechanics, which has demonstrated how macroscopic phenomena can sometimes be 613 

understood when atoms are modelled as aggregates rather than individuals. The present work 614 

uses a dynamic mean-field model to reduce the complexity of spiking neuron models to a more 615 

tractable set of differential equations that represent the mean activity of macroscopic neuronal 616 

ensembles 37,90. This approach allowed us to simulate realistic whole-brain dynamics in terms 617 

of a small number of neurobiologically-informed parameters, thus combining tractability with 618 

causal insight.  619 

 620 

Nevertheless, we acknowledge that a wide variety of other modelling approaches are possible; 621 

indeed, even among DMF models, alternatives have been developed that incorporate additional 622 

information about regional neurobiology 109,110 or use different fitting procedures 87. Likewise, 623 

alternative models (e.g. Hopf, Ising) have recently been used to investigate loss of 624 

consciousness during sleep 76–81 anaesthesia 78–80,82,84,85 and also disorders of consciousness 625 

80,82,83. Though less neurobiologically detailed, such models have been able to provide insights 626 

about different aspects of brain function, such as criticality and the predicted effects of applying 627 

external perturbations to individual regions. Thus, it is clear that further complementary 628 

insights may be obtained by considering additional neurobiological mechanisms and multiple 629 

levels of explanation - each of which may require a different modelling approach 14,35,58. 630 
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We also assumed that the characteristic dynamics of propofol anaesthesia and disorders of 631 

consciousness would correspond to loss of consciousness. Although this is a robust finding 632 

supported by converging empirical evidence, the assumption may not hold for every state of 633 

unconsciousness, and active investigation in the area remains ongoing. Finally, it is important 634 

to note that the diversity of disorders of consciousness in terms of aetiology and severity can 635 

greatly benefit from an individual-subject approach. Since we considered the cohort of DOC 636 

patients as a whole, it is possible that the similar effects of perturbation using a random 637 

connectome or the DOC connectome may in fact arise because we obtained a single “DOC 638 

connectome” from the combination of several patients, whose individual lesions may be 639 

specific but distinct. Likewise, each patient may only exhibit increased inhibition in a specific 640 

region, but if such regions differ across patients, then considering them together may result in 641 

apparently uniform inhibition. Indeed, analysing such a diverse cohort as a group is always 642 

challenging; having demonstrated the efficacy of our modelling approach at the group level, 643 

we expect that a fruitful avenue for future research will be to refine our results by considering 644 

the specificity of each unique patient condition. In this regard, it is intriguing that some DOC 645 

patients can be paradoxically awakened by administration of the drug zolpidem, which is a 646 

GABA-ergic agonist 111, which suggests that - at least some patients - the causative 647 

neurobiological mechanisms may be substantially different from those identified here based on 648 

a group-average DOC connectome. Thus, in future efforts we will apply the frameworks 649 

developed here to individual patients, to explore their specific deficits and potential avenues to 650 

promote recovery at a finer-grained level.  651 

It is also not just the DOC patients who could benefit from an individualised approach: the 652 

GABA-A receptor map used here was obtained from an independent sample of volunteers 94 653 

and therefore the present work could not take into account individual differences in regional 654 

GABA-A receptor density distribution. Such differences may however play an important role 655 

in explaining individual susceptibility to anaesthesia with GABA-ergic agents - and potentially 656 

predict individual risk of experiencing post-anaesthetic complications, such as emergence 657 

delirium 112,113. Investigating this possibility will be an important avenue of future research. 658 

 659 

Conclusion 660 

 661 
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Taken together, our results from a neurobiologically plausible whole-brain computational 662 

model demonstrate fundamental similarities, not just between the macroscale brain dynamics 663 

that characterise anaesthesia and disorders of consciousness 13,38–42 but also between the 664 

neurobiological mechanisms from which they can arise  - despite the fact that anaesthesia is a 665 

transient pharmacological intervention and DOCs are the result of permanent neuroanatomical 666 

injury.  Both disorders of consciousness and propofol anaesthesia were shown to arise from 667 

neurobiological mechanisms that are functionally equivalent to connectome randomisation, 668 

and both involve increased perturbed excitation-inhibition balance, as indicated by 669 

incorporating into the model information about regional GABA-A receptor density estimated 670 

from PET. However, differences also emerged: a global increase in inhibition suffices to 671 

explain the macroscale dynamics that characterise disorders of consciousness, whereas the 672 

anaesthetic effects of propofol are mediated by GABA-A receptors according to their specific 673 

distribution across cortical regions.   674 

 675 

Overall, the present findings begin to unravel the neurobiological mechanisms by which 676 

different perturbations of the brain’s structure and function - transient pharmacological 677 

intervention and chronic neuroanatomical injury - can lead to unconsciousness. Having 678 

demonstrated the power of whole-brain computational modelling to address this challenge, the 679 

same framework may also prove fruitful to address the reverse problem: namely, how the 680 

recovery of consciousness after anaesthesia can inform our ability to restore consciousness in 681 

DOC patients. 682 

 683 

 684 

  685 
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Materials and Methods 686 

  687 

 Anaesthesia Data 688 

The propofol data employed in this study have been published before 3,13,114. For clarity and 689 

consistency of reporting, where applicable we use the same wording as our previous study 13. 690 

 Recruitment 691 

As previously reported 13, “The propofol data were collected at the Robarts Research Institute 692 

in London, Ontario (Canada) between May and November 2014. A total of 19 (18–40 years; 693 

13 males) healthy, right- handed, native English speakers, with no history of neurological 694 

disorders were recruited. Each volunteer provided written informed consent, following relevant 695 

ethical guidelines, and received monetary compensation for their time. The Health Sciences 696 

Research Ethics Board and Psychology Research Ethics Board of Western University (Ontario, 697 

Canada) ethically approved this study. Due to equipment malfunction or physiological 698 

impediments to anaesthesia in the scanner, data from three participants (1 male) were excluded 699 

from analyses, leaving 16” 13. 700 

  701 

Procedure 702 

Resting-state fMRI data were acquired at no sedation (Awake), and Deep sedation 703 

(anaesthetised: Ramsay score of 5). As previously reported 13: “Ramsay level was 704 

independently assessed by two anaesthesiologists and one anaesthesia nurse in the scanning 705 

room before fMRI acquisition began, in each condition. Additionally, participants performed 706 

two tests: a computerised auditory target-detection task and a memory test of verbal recall, to 707 

evaluate their level of wakefulness independently of the assessors. For the Awake condition, 708 

participants did not receive a Ramsey score, as this scale is designed for patients in critical 709 

care. Instead, they had to be fully awake, alert and communicating appropriately. An infrared 710 

camera located inside the scanner was used to monitor wakefulness. For the Deep sedation 711 

condition, propofol was administered intravenously using an AS50 auto syringe infusion pump 712 

(Baxter Healthcare, Singapore); step-wise sedation increments sedation were achieved using 713 
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an effect-site/plasma steering algorithm combined with the computer-controlled infusion 714 

pump. Further manual adjustments were performed as required to reach target concentrations 715 

of propofol, as predicted by the TIVA Trainer (European Society for Intravenous Aneaesthesia, 716 

eurosiva.eu) pharmacokinetic simulation program. This software also specified the blood 717 

concentrations of propofol, following the Marsh 3-compartment model, which were used as 718 

targets for the pharmacokinetic model providing target-controlled infusion. The initial propofol 719 

target effect-site concentration was 0.6 µg mL-1, with oxygen titrated to maintain SpO2 above 720 

96%. Concentration was then increased by increments of 0.3 µg mL-1, and Ramsay score was 721 

assessed: if lower than 5, a further increment occurred. Participants were deemed to have 722 

reached Ramsay level 5 once they stopped responding to verbal commands, were unable to 723 

engage in conversation, and were rousable only to physical stimulation. Data acquisition began 724 

once loss of behavioural responsiveness occurred for both tasks, and the three assessors agreed 725 

that Ramsay sedation level 5 had been reached. The mean estimated effect-site and plasma 726 

propofol concentrations were kept stable by the pharmacokinetic model delivered via the TIVA 727 

Trainer infusion pump; the mean estimated effect-site propofol concentration was 2.48 (1.82- 728 

3.14) µg mL-1, and the mean estimated plasma propofol concentration was 2.68 (1.92- 3.44) 729 

µg mL-1. Mean total mass of propofol administered was 486.58 (373.30- 599.86) mg. These 730 

values of variability are typical for the pharmacokinetics and pharmacodynamics of propofol. 731 

At Ramsay 5 sedation level, participants remained capable of spontaneous cardiovascular 732 

function and ventilation. However, since the sedation procedure did not take place in a hospital 733 

setting, airway security could not be ensured by intubation during scanning, although two 734 

anaesthesiologists closely monitored each participant. Consequently, scanner time was 735 

minimised to ensure return to normal breathing following deep sedation. No state changes or 736 

movement were noted during the deep sedation scanning for any of the participants included 737 

in the study” 13.  738 

Design 739 

As previously reported 13: “In the scanner, subjects were instructed to relax with closed eyes, 740 

without falling asleep; 8 minutes of fMRI scan without any task (“resting-state”) were acquired 741 

for each participant. Additionally, a separate 5-minute long scan was also acquired while a 742 

plot-driven story was presented through headphones to participants, who were instructed to 743 

listen while keeping their eyes closed” 13. The present analysis focuses on the resting-state data 744 
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only; the story scan data have been published separately 84 and will not be discussed further 745 

here. 746 

Data Acquisition 747 

As previously reported 13: “MRI scanning was performed using a 3-Tesla Siemens Tim Trio 748 

scanner (32-channel coil), and 256 functional volumes (echo-planar images, EPI) were 749 

collected from each participant, with the following parameters: slices = 33, with 25% inter-750 

slice gap; resolution = 3mm isotropic; TR = 2000ms; TE = 30ms; flip angle = 75 degrees; 751 

matrix size = 64x64. The order of acquisition was interleaved, bottom-up. Anatomical scanning 752 

was also performed, acquiring a high-resolution T1- weighted volume (32-channel coil, 1mm 753 

isotropic voxel size) with a 3D MPRAGE sequence, using the following parameters: TA = 754 

5min, TE = 4.25ms, 240x256 matrix size, 9 degrees FA” 13. 755 

Disorders of Consciousness Patient Data 756 

The DOC patient functional data employed in this study have been published before 13,41,115. 757 

For clarity and consistency of reporting, where applicable we use the same wording as our 758 

previous study 13. 759 

 760 

Recruitment 761 

As previously reported 13: “A sample of 71 DOC patients was included in this study. Patients 762 

were recruited from specialised long-term care centres. To be invited to the study, patients must 763 

have had a DOC diagnosis, written informed consent to participation from their legal 764 

representative, and were capable of being transported to Addenbrooke's Hospital. The 765 

exclusion criteria included any medical condition that made it unsafe for the patient to 766 

participate (decision made by clinical personnel blinded to the specific aims of the study) or 767 

any reason they are unsuitable to enter the MRI scanner environment (e.g. non-MRI-safe 768 

implants), significant pre-existing mental health problems, or insufficient English pre injury. 769 

After admission, each patient underwent clinical and neuroimaging testing. Patients spent a 770 

total of five days (including arrival and departure days) at Addenbrooke's Hospital. Coma 771 

Recovery Scale-Revised (CRS-R) assessments were recorded at least daily for the five days of 772 

admission. If behaviours were indicative of awareness at any time, patients were classified as 773 
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MCS; otherwise UWS. We assigned MCS- or MCS+ sub-classification if behaviours were 774 

consistent throughout the week. The most frequent signs of consciousness in MCS- patients 775 

are visual fixation and pursuit, automatic motor reactions (e.g. scratching, pulling the bed sheet) 776 

and localisation to noxious stimulation whereas MCS+ patients may, in addition, follow simple 777 

commands, intelligibly verbalise or intentionally but inaccurately communicate 53,54. Scanning 778 

occurred at the Wolfson Brain Imaging Centre, Addenbrooke’s Hospital, between January 779 

2010 and December 2015; medication prescribed to each patient was maintained during 780 

scanning. Ethical approval for testing patients was provided by the National Research Ethics 781 

Service (National Health Service, UK; LREC reference 99/391). All clinical investigations 782 

were conducted in accordance with the Declaration of Helsinki. As a focus of this study was 783 

on graph-theoretical properties of the brain, patients were systematically excluded from the 784 

final cohort analysed in this study based on the following criteria: 1) large focal brain damage 785 

(i.e. more than 1/3 of one hemisphere) as stated by an expert in neuroanatomy blinded to the 786 

patients' diagnoses; 2) excessive head motion during resting state scanning (i.e. greater than 787 

3mm in translation and/or 3 degrees in rotation); 3) suboptimal segmentation and normalization 788 

of images; 4) incomplete brain acquisition. A total of 21 adults (13 males; 17-70 years; mean 789 

time post injury: 13 months) meeting diagnostic criteria for Unresponsive Wakefulness 790 

Syndrome/Vegetative State or Minimally Conscious State due to brain injury were included in 791 

this study.” 13 (Table 5). 792 

Table 5: Demographic information for patients with Disorders of Consciousness. 793 

Sex Age Months 
post 
injury 

Aetiology Diagnosis CRS-
R 
Score 

Scan 

M 46 23 TBI UWS 6 12 
dir 

M 57 14 TBI MCS- 12 12 
dir 

M 35 34 Anoxic UWS 8 12 
dir 

M 17 17 Anoxic UWS 8 12 
dir 

F 31 9 Anoxic MCS- 10 12 
dir 

F 38 13 TBI MCS 11 12 
dir 

M 29 68 TBI MCS 10 63 
dir 

M 23 4 TBI MCS 7 63 
dir 

F 70 11 Cerebral 
bleed 

MCS 9 63 
dir 
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F 30 6 Anoxic MCS- 9 63 
dir 

F 36 6 Anoxic UWS 8 63 
dir 

M 22 5 Anoxic UWS 7 63 
dir 

M 40 14 Anoxic UWS 7 63 
dir 

F 62 7 Anoxic UWS 7 63 
dir 

M 46 10 Anoxic UWS 5 63 
dir 

M 21 7 TBI MCS 11 63 
dir 

M 67 14 TBI MCS- 11 63 
dir 

F 55 6 Hypoxia UWS 12 63 
dir 

M 28 14 TBI MCS 8 63 
dir 

M 22 12 TBI MCS 10 63 
dir 

F 28 8 ADEM UWS 6 63 
dir 

CRS-R, Coma Recovery Scale-Revised; UWS, Unresponsive Wakefulness Syndrome; MCS, Minimally 794 

Conscious State; TBI, Traumatic Brain Injury. 795 

 796 

FMRI Data Acquisition 797 

As previously reported 13: “Resting-state fMRI was acquired for 10 minutes (300 volumes, 798 

TR=2000ms) using a Siemens Trio 3T scanner (Erlangen, Germany). Functional images (32 799 

slices) were acquired using an echo planar sequence, with the following parameters: 3 x 3 x 800 

3.75mm resolution, TR = 2000ms, TE = 30ms, 78 degrees FA. Anatomical scanning was also 801 

performed, acquiring high-resolution T1-weighted images with an MPRAGE sequence, using 802 

the following parameters: TR = 2300ms, TE = 2.47ms, 150 slices, resolution 1 x 1 x 1mm”. 803 

Acquisition of Diffusion-Weighted Data 804 

As the data were acquired over the course of several years, two different diffusion-weighted 805 

image acquisition schemes were used for the DOC patients.  The first acquisition scheme  (used 806 

for the N=7 patients whose data were acquired earliest in time) used an echo planar sequence 807 

(TR = 8300 ms, TE = 98 ms, matrix size = 96 x 96, 63 slices, slice thickness = 2 mm, no gap, 808 

flip angle = 90°). This included diffusion sensitising gradients applied along 12 non-collinear 809 

directions with 5 b-values that ranged from 340 to 1590 s/mm2 and 5 b = 0 images. One of 810 
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these patients only had partial brain coverage for the diffusion MRI acquisition, and their DWI 811 

data were excluded from further analysis. The more recent acquisition scheme (used for the 812 

more recently scanned patients, and for all healthy controls) instead involved the use of 63 813 

directions with a b-value of 1000 s/mm2. Both DWI acquisition types have been used before 814 

in the context of structural connectivity analysis in DOC patients 51,53. 815 

 816 

Healthy controls 817 

We also acquired diffusion MRI data from N=20 healthy volunteers (13 males; 19-57 years), 818 

with no history of psychiatric or neurological disorders. The mean age was not significantly 819 

different between healthy controls (M = 35.75; SD = 11.42) and DOC patients (M = 38.24; SD 820 

= 15.96) (t(39) = -0.57, p = 0.571, Hedges’s g = -0.18; permutation-based t-test).  821 

FMRI Data Acquisition 822 

Resting-state fMRI was acquired for 5:20 minutes (160 volumes, TR=2000ms) using a Siemens 823 

Trio 3T scanner (Erlangen, Germany). The acquisition parameters were the same as those for 824 

the DOC patients: Functional images (32 slices) were acquired using an echo planar sequence, 825 

with the following parameters: 3 x 3 x 3.75mm resolution, TR = 2000ms, TE = 30ms, 78 826 

degrees FA. High-resolution T1-weighted anatomical images were also acquired, using an 827 

MPRAGE sequence with the following parameters: TR = 2300ms, TE = 2.47ms, 150 slices, 828 

resolution 1 x 1 x 1mm. Two subjects had incomplete fMRI acquisition, leaving N=18 subjects 829 

for the final analysis. 830 

 831 

Acquisition of diffusion-weighted imaging data 832 

The diffusion-weighted acquisition scheme was the same 63-directions scheme used for the 833 

DOC patients: TR = 8300 ms, TE = 98 ms, matrix size = 96 x 96, 63 slices, slice thickness = 2 834 

mm, no gap, flip angle = 90°, 63 directions with a b-value of 1000 s/mm2. 835 

 836 
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Functional MRI preprocessing and denoising 837 

Following our previous work 13, we preprocessed the functional imaging data using a standard 838 

pipeline, implemented within the SPM12-based (http://www.fil.ion.ucl.ac.uk/spm) toolbox 839 

CONN (http://www.nitrc.org/projects/conn), version 17f 116. As described, “The pipeline 840 

comprised the following steps: removal of the first five scans, to allow magnetisation to reach 841 

steady state; functional realignment and motion correction; slice-timing correction to account 842 

for differences in time of acquisition between slices; identification of outlier scans for 843 

subsequent regression by means of the quality assurance/artifact rejection software Artifact 844 

Detection Toolbox (art; (http://www.nitrc.org/projects/artifact_detect); spatial normalisation to 845 

Montreal Neurological Institute (MNI-152) standard space with 2mm isotropic resampling 846 

resolution, using the segmented grey matter image from each volunteer’s high-resolution T1-847 

weighted image, together with an a priori grey matter template” 13. 848 

For the DOC patients, due to the presence of deformations caused by brain injury, rather than 849 

relying on automated pipelines, each patient’s brain was individually preprocessed using 850 

SPM12, with visual inspections after each step. To further reduce potential movement artifacts, 851 

data underwent despiking with a hyperbolic tangent squashing function. Since the controls had 852 

a shorter scan duration than DOC patients, to ensure comparability between the two cohorts 853 

the DOC functional scans were truncated to be of the same length as the control subjects’ 854 

functional scans (after removal of the initial scans). 855 

To reduce noise due to cardiac and motion artifacts, we applied the anatomical CompCor 856 

method of denoising the functional data 117. The anatomical CompCor method (also 857 

implemented within the CONN toolbox) involves regressing out of the functional data the 858 

following confounding effects: the first five principal components attributable to each 859 

individual’s white matter signal, and the first five components attributable to individual 860 

cerebrospinal fluid (CSF) signal; six subject-specific realignment parameters (three translations 861 

and three rotations) as well as their first- order temporal derivatives; the artifacts identified by 862 

art; and main effect of scanning condition 117. Linear detrending was also applied, and the 863 

subject-specific denoised BOLD signal timeseries were band-pass filtered to eliminate both 864 

low-frequency drift effects and high-frequency noise, thus retaining frequencies between 0.008 865 

and 0.09 Hz. 866 

 867 
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DWI Preprocessing and tractography 868 

The diffusion data were preprocessed with MRtrix3 tools 118. After manually removing 869 

diffusion-weighted volumes with substantial distortion 53, the pipeline involved the following 870 

steps: (i) DWI data denoising by exploiting data redundancy in the PCA domain 119 (dwidenoise 871 

command); (ii) Correction for distortions induced by eddy currents and subject motion by 872 

registering all DWIs to b0, using FSL’s eddy tool (through MRtrix3 dwipreproc command); 873 

(iii) rotation of the diffusion gradient vectors to account for subject motion estimated by eddy 874 

120; (iv) b1 field inhomogeneity correction for DWI volumes (dwibiascorrect command); (v) 875 

generation of a brain mask through a combination of MRtrix3 dwi2mask and FSL BET 876 

commands.  877 

DTI data were reconstructed from the preprocessed DWIs using DSI Studio (www.dsi-878 

studio.labsolver.org), which implements q-space diffeomorphic reconstruction (QSDR 121), an 879 

established methodology to investigate structural networks in DOC patients 54. As explained in 880 

the original publication 121, “QSDR is a model-free method that calculates the orientational 881 

distribution of the density of diffusing water in a standard space, to conserve the diffusible 882 

spins and preserve the continuity of fiber geometry for fiber tracking. QSDR first reconstructs 883 

diffusion-weighted images in native space and computes the quantitative anisotropy (QA) in 884 

each voxel 121. These QA values are used to warp the brain to a template QA volume in 885 

Montreal Neurological Institute (MNI) space using the statistical parametric mapping (SPM) 886 

nonlinear registration algorithm. Once in MNI space, spin density functions (SDFs) were again 887 

reconstructed with a mean diffusion distance of 1.25 mm using three fiber orientations per 888 

voxel” 121.  889 

 890 

Following previous work 122, “After reconstruction with QSDR, we used deterministic fiber 891 

tracking with a high-performing “FACT” algorithm with 1,000,000 streamlines, to identify the 892 

connections between brain regions, following previously established parameters 122,123: angular 893 

cutoff = 55◦, step size = 1.0 mm, tract length between 10mm (minimum) and 400mm 894 

(maximum), no spin density function smoothing, and QA threshold determined by DWI signal 895 

in the cerebro-spinal fluid. DSI Studio automatically applies a default anisotropy threshold of 896 

0.6 Otsu's threshold to the anisotropy values of the spin density function, in order to generate 897 

a white matter mask which is then used for automatic screening of each streamline, to exclude 898 

streamlines improper termination locations 122,123”. 899 
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 900 

Brain parcellation 901 

For both BOLD and DWI data, brains were parcellated into 68 cortical regions of interest 902 

(ROIs), according to the Desikan-Killiany anatomical atlas 124, in line with previous whole-903 

brain modelling work 109. 904 

 905 

Functional Connectivity Dynamics 906 

Following 86, functional connectivity dynamics (FCD) were quantified in terms of Pearson 907 

correlation between regional BOLD timeseries, computed within a sliding window of 30 TRs 908 

with increments of 3 TRs. Subsequently, the resulting matrices of functional connectivity at 909 

times tx and ty were themselves correlated, for each pair of timepoints tx and ty, thereby 910 

obtaining an FCD matrix of time-versus-time correlations. Thus, each entry in the FCD matrix 911 

represents the similarity between functional connectivity patterns at different points in time.  912 

 913 

Group Structural Connectivity 914 

The structural connectivity (SC) for the DMF model was obtained by following the procedure 915 

described in 109 to derive a group-consensus structural connectivity matrix. Separately for the 916 

healthy controls and DOC patients, a consensus matrix C was obtained as follows. For each 917 

pair of regions i and j, if more than half of subjects had non-zero connection i and j, Cij was set 918 

to the average across all subjects with non-zero connections between i and j. Otherwise, Cij was 919 

set to zero.  920 

 921 

Whole-brain computational modelling 922 

Whole-brain spontaneous brain activity (as quantified using blood oxygen level dependent 923 

(BOLD) signal data from functional MRI) was simulated using a neurobiologically realistic 924 

Dynamic Mean Field (DMF) model. The DMF model 31,34,37 uses an empirically validated 925 
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mathematical mean-field approach to represent the collective behaviour of integrate-and-fire 926 

neurons by means of coupled differential equations, providing a neurobiologically plausible 927 

account of regional neuronal firing rate. 928 

Specifically, the model simulates local biophysical dynamics of excitatory (NMDA) and 929 

inhibitory (GABA) neuronal populations, interacting over long-range neuroanatomical 930 

connections (white matter tracts obtained from diffusion MRI). The model further incorporates 931 

multimodal neuroimaging information about empirical brain dynamics (measured using 932 

functional MRI) and neurotransmitter receptor density, estimated from positron emission 933 

tomography (PET) 86. 934 

Each cortical area n (defined by a parcellation scheme) is represented in terms of two 935 

reciprocally coupled neuronal masses, one excitatory and the other inhibitory, with the synaptic 936 

connections between excitatory neuronal populations in different regions given by the weight 937 

of structural connectivity, to account for the number and density of interregional axon fibers. 938 

Additional factors that can influence the long-range excitatory-to-excitatory coupling between 939 

brain regions, such as neurotransmission but also synaptic plasticity mechanisms, are 940 

accounted for by a global coupling parameter, G. Since conductivity of the white matter fibers 941 

is assumed to be constant across the brain, G constitutes the only free parameter in the model.  942 

The following differential equations therefore govern the model’s behaviour: 943 

𝐼𝑛
(𝐸)

 =  𝑊𝐸𝐼0  + 𝑤+𝐽𝑁𝑀𝐷𝐴𝑆𝑛
(𝐸)

+ 𝐺𝐽𝑁𝑀𝐷𝐴 ∑ 𝐶𝑛𝑝𝑆𝑝
(𝐸)

 −  𝐽𝑛
𝐹𝐼𝐶𝑆𝑛

(𝐼)

𝑁

𝑝

 944 

𝐼𝑛
(𝐼)

 =  𝑊𝐼𝐼0  +  𝐽𝑁𝑀𝐷𝐴𝑆𝑛
(𝐸)

− 𝑆𝑛
(𝐼)

 945 

 946 

𝑟𝑛
(𝐸)

 =  𝐹(𝐼𝑛
(𝐸)

)  =  
𝑔𝐸(𝐼𝑛

(𝐸)
−  𝐼𝑡ℎ𝑟

(𝐸)
)

1 −  𝑒𝑥𝑝 (−𝑑𝐸𝑔𝐸(𝐼𝑛
(𝐸)

−  𝐼𝑡ℎ𝑟
(𝐸)

))
 947 

𝑟𝑛
(𝐼)

 =  𝐹(𝐼𝑛
(𝐼)

)  =  
𝑔𝑁𝑀𝑔𝐼(𝐼𝑛

(𝐼)
−  𝐼𝑡ℎ𝑟

(𝐼)
)

1 −  𝑒𝑥𝑝 (−𝑑𝐼𝑔𝑁𝑀𝑔𝐼(𝐼𝑛
(𝐼)

−  𝐼𝑡ℎ𝑟
(𝐼)

))
 948 

𝑑𝑆𝑛
(𝐸)

(𝑡)

𝑑𝑡
 =  

𝑆𝑛
(𝐸)

𝜏𝑁𝑀𝐷𝐴
 +  (1 +  𝑆𝑛

(𝐸)
) 𝛾𝑟𝑛

(𝐸)
 + 𝜎𝜈𝑛(𝑡) 949 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 22, 2021. ; https://doi.org/10.1101/2021.02.14.431140doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431140
http://creativecommons.org/licenses/by/4.0/


38 
 

𝑑𝑆𝑛
(𝐼)

(𝑡)

𝑑𝑡
 =  

𝑆𝑛
(𝐼)

𝜏𝐺𝐴𝐵𝐴𝐴

 +  𝑟𝑛
(𝐼)

 + 𝜎𝜈𝑛(𝑡) 950 

𝑔𝑛
𝑁𝑀  =  1 +  𝑠𝐼𝑑𝑛

𝐺𝐴𝐵𝐴 951 

 952 

Following previous work 86,88, “for each excitatory (E) and inhibitory (I) neural mass, the 953 

quantities 𝐼𝑛
(𝐸.𝐼)

, 𝑟𝑛
(𝐸,𝐼)

, and 𝑆𝑛
(𝐸,𝐼)

 represent its total input current (nA), firing rate (Hz) and 954 

synaptic gating variable, respectively. The function F(·) is the transfer function (or F–I curve), 955 

representing the non-linear relationship between the input current and the output firing rate of 956 

a neural population. Finally, 𝐽𝑛
𝐹𝐼𝐶  is the local feedback inhibitory control of region n, which is 957 

optimized to keep its average firing rate at approximately 3Hz 37,88, and 𝜈𝑛 is uncorrelated 958 

Gaussian noise injected to region n”. The model’s fixed parameters are reported in Table 6 959 

37,86,88. Additionally, 𝑔𝑛
𝑁𝑀 is the neuromodulatory scaling factor modulating the transfer 960 

function for each cortical region in the model as a function of 𝑑𝑛
𝐺𝐴𝐵𝐴, the regional density of 961 

GABA-A receptors (see below for details) and an inhibitory gain scaling parameter 𝑠𝐼. The 962 

baseline model (corresponding to a DMF model without GABA-A regional inhibitory 963 

neuromodulation) is obtained by setting 𝑠𝐼 to zero, in which case G remains the sole free 964 

parameter in the model. Details for optimisation of the 𝑠𝐼 parameter for the GABA-A 965 

modulated model are provided below. 966 

 967 

 968 

 969 

Table 6. Dynamic Mean Field model parameters from 37,86,88. 970 

Parameter Symbol Value  

      
External current I0 0.382 nA 

    

Excitatory scaling factor for I0 WE 1  

    

Inhibitory scaling factor for I0 WI 0.7  

    

Local excitatory recurrence w+ 1.4  

    

Excitatory synaptic coupling JNMDA 0.15 nA  

   

Threshold for F (In
(E)) Ithr

(E) 0.403 nA 
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Threshold for F (In
(I)) Ithr

(I) 0.288 nA 

Gain factor of F (In
(E)) gE 310 nC 1 

Gain factor of F (In
(I)) gI 615 nC 1 

Shape of F (In
(E)) around Ithr

(E) dE 0.16 s  

Shape of F (In
(I)) around Ithr

(I) dI 0.087 s  

Excitatory kinetic parameter 𝛾 0.641  

    

Amplitude of uncorrelated Gaussian noise vn 𝜎 0.01 nA  

    

Time constant of NMDA 𝜏𝑁𝑀𝐷𝐴 100 ms  

    

Time constant of GABA 𝜏𝐺𝐴𝐵𝐴𝐴
 10 ms  

 971 

 972 

A Balloon-Windkessel (BW) hemodynamic model 92 was then used to turn simulated regional 973 

neuronal activity into simulated regional BOLD signal. The Balloon-Windkessel model 974 

considers the BOLD signal as a nonlinear function of the normalized total deoxyhemoglobin 975 

voxel content, normalized venous volume, resting net oxygen extraction fraction by the 976 

capillary bed, and resting blood volume fraction. The BOLD-signal estimation for each brain 977 

area is computed from the level of neuronal activity in that particular area. Finally, simulated 978 

regional BOLD signal was bandpass filtered in the same range as the empirical data (0.008-979 

0.09 Hz).  980 

 981 

Implementation 982 

The code used to run all the simulations in this study was written in optimised C++ using the 983 

high-performance library Eigen. The C++ core of the code, together with Python and 984 

Octave/Matlab interfaces is publicly available at http://www.gitlab.com/concog/fastdmf. 985 

 986 

To simulate BOLD data, FastDMF splits the problem in two steps: integrating the coupled 987 

differential equations underlying the DMF model, to obtain excitatory firing rates in each brain 988 

region; and using these firing rates to integrate the (uncoupled) differential equations of the 989 

BW hemodynamic model and obtain BOLD timeseries. 990 

 991 

Integration of the DMF equations is performed with the Euler-Maruyama method, and it is 992 

highly parallelizable and bounded by the O(N^2) complexity of the matrix-vector 993 

multiplication corresponding to the excitatory-to-excitatory coupling between brain regions. 994 
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Simulated excitatory firing rates are stored in a cylindrical array with a fixed buffer size to limit 995 

memory requirements. 996 

 997 

In addition, a further set of threads is spawned to solve the BW model using the simulated 998 

excitatory firing rates. Since the BW solver reads from the same cylindrical array, it interfaces 999 

with the DMF solver with a controlled multi-threaded architecture. Every TR-equivalent in 1000 

simulation time the value of all BOLD signals is copied to a pre-allocated array, to be returned 1001 

at the end of the requested simulation time. 1002 

 1003 

In a standard laptop, FastDMF attains a speed-up of between 5x and 10x over publicly available 1004 

Matlab implementations, due to the speed of Eigen and the parallelisation of DMF and BW 1005 

solvers. In addition, due to the cylindrical buffer, this implementation is able to simulate 1006 

arbitrarily long BOLD time series with a fixed memory overhead, thereby allocating orders of 1007 

magnitude less memory than a naive Matlab implementation. 1008 

 1009 

Finally, the library includes interface functions for Matlab (via its C Matrix API) and Python 1010 

(via the Boost.Python library). In both languages the function returns a standard array 1011 

(numpy.ndarray in the case of Python) that can be easily processed for further analysis. 1012 

 1013 

Fitting of the G parameter 1014 

In order to identify appropriate parameters for the simulations, early whole-brain modelling 1015 

efforts used the grand average FC as target for fitting the model to empirical data. However, it 1016 

has since become apparent that the macroscale neural signals measured by functional MRI are 1017 

not static, even on the timescale of a few tens of seconds: rather, they exhibit a wide range of 1018 

dynamics. Therefore, in order to properly take into account the time-dependencies of FC, it is 1019 

advantageous to fit the model to empirical functional connectivity dynamics (FCD). Doing so 1020 

ensures that the simulated BOLD data will exhibit realistic patterns of time-evolving functional 1021 

connectivity 86,91. 1022 

Unlike matrices of inter-regional connectivity, where each brain region is the same across 1023 

different scans, FCDs are represented as matrices encoding the relationship between brain 1024 

dynamics at different timepoints. Since timepoints are not the same across individuals or scans, 1025 

FCD matrices cannot be compared by means of simple correlation. Therefore, to evaluate 1026 
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model performance in terms of producing meaningful temporal dynamics, here we follow the 1027 

approach of 86, using the Kolmogorov-Smirnov distance to compare the histograms of 1028 

empirical and simulated FCD values (obtained from the upper triangular FCD matrix), to find 1029 

the G parameter that results in the best match between empirical and simulated functional 1030 

connectivity dynamics.  1031 

To find the value of G that generates simulations whose FCD best match empirical FCD, we 1032 

generated 100 simulations for each value of G between 0.1 and 2.5, using increments of 0.1. 1033 

For each simulation at each value of G, we computed the KS distance between empirical 1034 

(group-wise) and simulated FCD. Finally, we set the model’s G parameter to the value that 1035 

minimised the mean KS distance - corresponding to the model that is best capable of simulating 1036 

the temporal dynamics of functional connectivity observed in the healthy human brain at rest. 1037 

This procedure was performed separately for the propofol dataset (with 250 TRs) and the DOC 1038 

dataset, which was truncated to the number of TRs available for the healthy controls (155 TRs). 1039 

 1040 

Local inhibitory gain modulation from GABA-A maps 1041 

We modulated local inhibitory gain based on the recent high-resolution quantitative atlas of 1042 

human brain GABA-A receptors, generated on the basis of benzodiazepine receptor (BZR) 1043 

density measured from [11C]flumazenil Positron Emission Tomography (PET) 1044 

autoradiography 94. Based on this atlas, we obtained a quantitative measure of GABA-A 1045 

receptor density for each region of the Desikan-Killiany cortical parcellation. Following 86 1046 

regional density values were normalised between 0 and 1 by dividing each by the maximum 1047 

value. 1048 

We then used the previously calibrated DMF model to generate simulations for each value of 1049 

sI between 0 (corresponding to the model without local GABA-A inhibitory modulation, i.e. 1050 

the original DMF model) and 1, in increments of 0.02. Then, for each value of sI, we computed 1051 

the KS distance between the model’s simulated macroscale dynamics and the empirical 1052 

dynamics observed in each condition (baseline or propofol, control or DOC). For each 1053 

condition, the optimal value of sI, was then identified as the value that resulted in the minimum 1054 

mean KS distance between empirical and simulated dynamics (across N=10 simulations for 1055 

each value of sI). 1056 
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As validation analysis, we also repeated the same procedure, optimising the inhibitory gain 1057 

scaling sI, but with two different kinds of receptor density maps: a “scrambled” map, whereby 1058 

the values of GABA-A receptor density obtained from PET were randomised across regions; 1059 

and a “uniform” map, whereby each region was set to the same value, corresponding to the 1060 

mean of the distribution of PET-derived receptor densities. 1061 

Connectome Replacement 1062 

Connectome replacement was performed using the initial balanced DMF model (i.e. with 1063 

optimised G parameter, but without additional inhibitory gain modulation), based on the 1064 

consensus connectome from diffusion imaging of healthy controls (referred to as the “healthy 1065 

connectome”). 1066 

 1067 

Three perturbed connectomes were used. Firstly, the consensus connectome obtained from 1068 

diffusion imaging of N=21 DOC patients, referred to as the “DOC connectome”. Secondly, the 1069 

original healthy connectome was randomised according to the weight-preserving procedure of 1070 

95 to generate a “random connectome” that differs from the original in terms of topology, but 1071 

preserves the weight distribution. Thirdly, we used the procedure described in 95 to turn the 1072 

healthy connectome into a lattice network with the same weight distribution - providing a 1073 

different and opposite perturbation of the network’s topology. 1074 

 1075 

For each perturbed connectome, the DMF model was used to generate 100 simulations, using 1076 

the optimal global coupling G, but with inter-regional connectivity given by the perturbed 1077 

connectome rather than the original connectome. This was repeated for each dataset (propofol 1078 

and DOC) and the resulting simulations were compared with each condition (baseline/propofol 1079 

and control/DOC) in terms of KS-distance.  1080 

 1081 

Statistical analysis 1082 

To test the effect of the various procedures over the DMF model, we performed linear 1083 

regression modelling using the KS distance as target variable, while considering model and 1084 

target condition as predictor variables. For each scenario, models with and without interactions 1085 

between model and target condition were constructed; then, selection between these models 1086 
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was conducted according to the Akaike information criterion (AIC). All analyses were 1087 

conducted using RStudio (Version 1.3.1093; http://www.rstudio.com/).  1088 
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