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Figure 2. The experimentally obtained chicken cone photoreceptors arrangement in space. In the upper
panels, the configurations from left to right correspond to violet, blue, and green species, respectively.
In the lower panels, from left to right, the configurations correspond to red, double species, and the
overall pattern, respectively. The figure is adapted from [61].
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Figure 3. In the left panel, the Kullback-Leibler divergence Dk is depicted as a function of 8. Dgy,

reaches its minimum of ~ 0.004 at B ~ 1.754. The experimentally obtained photoreceptor fate ratios is
compared to the LEUP for this particular j, in the right panel.

probabilities P; = P(x;) as cone photoreceptors percentages in retina. In turn, we denote o; as
the standard deviation for a given spatially local neighborhood related to the Nearest Neighbor
Distribution (NND). In Ref. [60], the authors have exploited the Delaunay triangulation in order to
calculate the NND for each cone and they have reported the first and second moments of it. In order
to compare the LEUP color distributions against the ex vivo ones, we employ the Kullback-Leibler
divergence. In turn, we numerically search for the f’s which appropriately fit the physiologically
observed photoreceptor fate ratios. In the left panel of Fig. 3, we have depicted the Kullback-Leibler
divergence, i.e.,, Dx; = Y; P;In(P;/Q;), as a function of B, where i denotes different cone cells, and P;
and Q; correspond to the probabilities obtained from the experimental data and the LEUP, respectively.
The plot demonstrates that Dk, has a minimum of ~ 0.004 at § ~ 1.754. We have compared the ex
vivo observed cone distributions to the LEUP, in the right panel of Fig. 3. Interestingly, the B values
that provide the best fit are in the range 1.378 < B < 2.136, where the values of the Kullback-Leibler
divergence are in the order of magnitude 10~3. Thus, it demonstrates that the values of 8 ~ 2 explain
the observed data, implying that the avian cone mosaic distribution is associated with an optimal cell
sensing process that minimizes the corresponding noise.
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4. Thermodynamic robustness of differentiated tissues: the fluctuation theorem

In this section, we determine the thermodynamic constraints of two coarse-grained cell states
that correspond to pluripotent (s) and differentiated (d) states. Then, we apply the obtained results to
the particular case of the avian cone cells differentiation and the formation of photoreceptor mosaics.
To this end, first we show how microstates (internal variables) are related to the microenvironmental
information and heat transfer (cell metabolism).

In this context, a cellular microstate corresponds to a cell phenotype that lives in a tissue, which
could be gene expression, RNA molecules, receptor distribution, etc. In other words, microstate
gives information about the internal states of cell. We label these internal variables as x; and x4
corresponding to pluripotent and differentiated cells, respectively. We define a cellular macrostate as a
statistical observable (e.g., average) of a cell microenvironment that involves multiple cells of different
phenotypes. Macrostates contain information about external variables which are labeled as ys and
Y4. The macrostate y; is assumed to describe a microenvironment of pluripotent progenitor or stem
cells characterized by the microstate x;; the macrostate y; accordingly describes a microenvironment
of differentiated cells characterized by the microstate x;. We denote the number of pluripotent cells
neighboring to a cell with microstate x; as N(ys | xs) and the number of differentiated cells neighboring
to a cell with microstate x; as N(y,; | x4). The total number of pluripotent and differentiated cells
inside system are denoted as N(s) and N(d), respectively.

Now, based on (6), we can write the probability of cell to be in the microstate x; with the

corresponding macrostate s as
e—BsS(ys|xs)—psN(ys|xs)

P(xs) = 7 , (19)
and the probability of being in the microstate x; with the corresponding macrostate d as
e—BaS(alxa)—paN(yalxa)
P(xy) = . (20)

Zy

It is known that for a system which is coupled to a set of heat baths and is in a time-symmetrically
driven nonequilibrium state, the Crooks’ theorem is applicable [48,49]. In this case, the dynamics
follows Brownian motion, i.e., there are no extreme jumps in the system state. For any trajectory to be
initially at x5(0) and is going through microstates x; () over time 7, the Crooks’ theorem implies that
o E0)

' w|xs(t

Fao=in gty D
where ﬁ/ = 1/T, which T is the temperature of heat bath, AQ is the total heat released into bath over
the course of x5(t), and w[xs(t)] is the probability of trajectory xs(t). Eq. (21) demonstrates that when
there is a forward state change, system loses heat to reservoir and in the case of a time-reversed path,
there is a heat gain from reservoir; this, in turn, implies that a forward trajectory is more probable
than a time-reversed one, thus, Eq. (21) substantiates a relation between heat and irreversibility at a
microscopic (cell) level. This conclusion is in agreement with the ideas presented in [7]. The authors of
the mentioned paper have considered differentiation as a series of reversible transitions through many
microstates (we shall use this notion when discussing differentiation at a tissue scale in the following),
where stem cells exhibit reversible oscillations until an attractor drives them towards a differentiated
state. Within this picture, dedifferentiation is more likely to occur only on a small scale with a low
probability, as a series of microstate transitions. We also note that, as is demonstrated in Ref. [49],
Eq. (21) is also valid for other kinds of steady-state probability distributions besides the classical
Boltzmann distribution. In our case, such Brownian jumps are interpreted as changes in phenotypes
and the associated heat losses are assumed to be due to potential changes in cell metabolism. Another
important heat loss contribution comes from the cell divisions, which are required in the differentiation
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Figure 4. Microscopic/Macroscopic transitions between two distinct cell/tissue types.

process [62]. However, there are other minor heat loss sources that are disregarded since they act on
shorter time scales, such as physical friction, changes in the cytoskeleton, etc.

Our goal here is to establish a microreversibility relation for a general differentiation process
(the details of derivation can be found in Appendix). To this end, first we fix the starting point of
a differentiation trajectory as x5, which is a microstate realization that belongs to a pluripotent cell
attractor/set, and the ending point as x;, that is a member of the differentiated phenotypes set (see
Fig. 8 in Appendix). The Crooks’ theorem in (21) is valid for a single differentiation trajectory that
connects a single pluripotent state to a particular differentiation state realization out of many. Therefore,
first we average over all possible paths that connect a pluripotent and a differentiation state, and
then we average over combinations of dedifferentiation paths that connect any pluripotent to any
differentiation states, resulting into:

w(xs — xg)

w(xy — xs) = <exp[ﬁ/AQ§saxd}>xd%xs, (22)

where w(xs — x4) is the transition probability that system is found to be in the microstate x; at time T,
given that system was initially in the microstate x;. The averaged version of the Crooks’ theorem in
(22) has an important implication since it demonstrates that paths leading to differentiation and also
dedifferentiation are many more than one.

Now that we have microscopic relation of (22) at our disposal, we can study macroscopic (tissue)
consequences of that. At this point, we make the second vital assumption of our study (A2) that the
tissue dynamics follows a Markov process. The probabilistic description of macroscopic states of two
distinct cell types, from which one can understand the phenomenon of irreversibility at a macroscopic
level, can be constructed as [49],

W(s —d) = /ddxd /dxS P(xs | s)w(xs — xy), (23)

and
W(d —s) = /dxs /ddxd Pxg | d)w(xg — xs), (24)

where P(x; | s) is the probability that system to be in the microstate x;, given that it is observed in
the macrostate s, and w(x; — x,) is defined as before, where we have omitted T for the notational
convenience. The transition probability W(s — d) in (23) implies the likelihood that cell to be observed
in the macrostate 4 while it was initially prepared in the macrostate s; accordingly, (24) is understood
in the same fashion, i.e., the likelihood that a microenvironment being prepared in the state d to satisfy
the microenvironment s after another time interval 7. These processes are illustrated in Fig. 4.
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By taking the ratio of (23) and (24), we obtain

W(d —s)  [odxs [;dxg[P(xg | d)/P (x4)]P (x4) w(xg — Xs)
W(s —d) [ dxy [ dxs[P(xs | s)/P (xs)]P (xs) w(xs — xg)

(25)

where we have multiplied and divided the numerator and the denominator by P (x;) and P (x;),
respectively. We define the pointwise mutual information for individual trajectories as i; = In[P(x; |
s)/P(xs)] and ip = In[P(x, | d)/P(x4)], and then by taking these definitions into account and replacing
P(x4) by its corresponding relation in (20), (25) reduces to

W(d—s)  [odxs [, duxge2 [ePasWalxa)—#aNalxa) / 7, w(xy — x5)

W(s —d) J;dxg [, dxsen P(xs)w(xs — x4) 26)
. fs dxs fd dxdeGeiﬁﬁ*il (Zl /ZZ) [eflsss(yﬂxs)*ﬂsN(?/s‘xs) /Zl]w(xd — xs)
B [ dxg [, dxse P(xs)w(xs — xg) ’
where
= —[BaS (Va | xa) = BsS (ys | xs)] — [#aN (va | xa) — usN (ys | x5)]-
By exploiting (19) and (22), we can rewrite (26) as
Wid —>s) _ fodvs JyduaeSelteV 2/ Zo)P(xo) (e P M0 sl v xa)

W(s —d) [, dxg [, dxset P(xs)w(xs — x,) ’

where Ai = i, — 1.

Now, (27) can be expressed in terms of the average over all trajectories from the ensemble of
microstates x; which correspond to the macrostate s to the ensemble of microstates x; which correspond
to the macrostate d while each path is weighted by its probability as

m = ({exp[~B AQL. 1) x,—x, exp[—AStrup] exp[—AN] exp[Ai] exp[In(Z1/Z5)])s 54, (28)
where
AStgup = BaS(Ya | Xa) — BsS(ys | xs), 29)
AN = pgN(ya | x4) = usN(ys | xs)-
By rearranging (28) as
({exp[—B AQ, -z, ), v, exp[~ASteup] exp[~AN] 0)

x exp|Ai] exp[In(Zy/Zy)] exp[In{W(s = d)/W(d = s)}|)sa =1,
and using the Jensen’s inequality, i.e., exp[(X)] < (exp[X]), and the fact that e* > 1 + x, we arrive at

Zq

(BAQT 2 )ssd + (ASLEUPYs st + (AN)esg — (Aids g — In [ZJ I {

W(d — s)

W(s—)dJ >0. (31

We note that if s and d correspond to the same identical classes, i.e., W(d — s) = W(s — d), then the
last term of (31) vanishes. Now, by defining the remaining terms as fotal entropy production, that is,

Zq

f = <5,AQ§5—>xd>s%d + <ASLEUP>sad + <AN>sad - <Ai>sﬂd —In {ZJ ’ (32)
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then (31) implies that total entropy production is always non-negative. In other words, (31) can be
considered as a generalization of the second law of thermodynamics (see also Ref. [49]).

The above inequality is reformulation of the fluctuation theorem for tissue differentiation. It relates
thermodynamic properties of system to the LEUP; and as is obtained under general assumptions, it is
applicable to a general cell and tissue differentiation process. In the next subsection, we show how (31)
implies the thermodynamic robustness of cell differentiation, in the particular case of the avian cone
photoreceptor mosaics formation.

4.1. Application: differentiated photoreceptor mosaics are thermodynamically robust

In this subsection, we use the fluctuation theorem, culminated in (31), to demonstrate the
robustness of the avian photoreceptor mosaics. By defining s — d as a pluripotent tissue differentiates
to a more specialized one and denoting its corresponding forward transition probability as py, i.e.,
W(s — d) = ps, and d — s as differentiated tissue dedifferentiates to the pluripotent one with its
backward transition probability of py, i.e., W(d — s) = p;, we can rewrite (31) in terms of p; and py, as

p / ) Z
f<wp@A@ﬁmHm<MmdeuMm%mm%m[ﬂ, (33)

Po Zy

where we have already defined the exponent of the exponential in the right-hand side of (33) as total
entropy production, see (32).

In order to obtain a thermodynamic constraint which ensures the robustness of differentiated
tissue, first we assume that there exists a maximum forward transition probability from s to d in such a
way that

pfmax

= eX
Pb P

<.BIAQ9Tcsexd>5ﬁd + <ASLEUP>s%d + <AN>s%d - <Ai>sﬁd —In |:2:|‘| : (34)

To simplify (34) more, we note that based on (8), we can write

S (xs) = Bs(S (¥s | X5))xs + Hs{N (ys | xs))x, +InZy,

(35)
S (xq) = BalS (Ya | xa))x; + Ha(N (ya | xa))x, +1InZs,

and then by subtracting these two and taking the average over all trajectories from s to d, we obtain

Zq

(AS)sa = (S(xg) — S(x5))s—a = (ASLEUP)s—d + (AN)s_q — In [ZJ ’ (36)

where we have used the definitions of AS gyp and AN as given in (29). Now, (34) can be written as

P max ! /
];T = exp <ﬁ AQ§S—>xd>s%d + <As>s%d - <A1>sad‘| . (37)

The immediate implication of (37) is that, differentiated tissue is thermodynamically robust if

(BAQY, o )ssd + (BS)ssa > (Ai)s . (38)

In the following, we present the avian cone cells differentiation and the corresponding photoreceptor
mosaics formation as an example of which the above inequality is satisfied. In other words, we
demonstrate the robustness of the avian retina development and the irreversibility of the time arrow
in this particular process.

First, we note that as heat dissipation (the first term in the left-hand side of (38)) depends on
metabolic pathways, this implies the crucial role of cell metabolism in the process of cell differentiation.
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In addition, consumption of glucose depends upon cell types. Progenitor or pluripotent stem cells
use glucose as the primary metabolites for anaerobic glycolysis (fermentation) pathway: Glucose +
2 ADP + 2 Phosphate — 2 Lactate + 2 H* + 2 ATP, where as a result of the breakdown of glucose to
lactic acid the amount of energy around 109.4 k] /mol is released [63]. Differentiated cells use glucose
to produce carbon dioxide and water by using aerobic (respiration) reaction: Glucose + 6 O, + 36 ADP
+ 36 Phosphate — 6 CO; + 6 HyO + 36 ATD, where the released energy is around 2820 kJ/mol [63].
Thus, (AQZ, _,x,)s—4 Which is the total heat released during the journey from s to d is 2929.4 k] /mol.
As these reactions have taken place in T = 310 K, we have: <‘B/AQ§S —xy)sd = 9.450, where we have
dropped its dimension as we have set the Boltzmann constant to be 1, in this paper.

Now, in order to investigate (38) for the avian cone cells differentiation, we need to calculate the
value of (AS),_,4 for this particular process. Within the context of photoreceptor cells, differentiated
states are given by an array of five opsin expressions as x = (xg, Xy, X3, Xy, X5) and the corresponding
probability distribution of P(x) = ( Pq, Py, Py, Py, Ps). At this point, we assume — (A3) — that pluripotent
state corresponds to a state which is compatible to an equiprobable distribution of opsins, that is,
P(xs) = (1/5,1/5,1/5,1/5,1/5). Asis discussed in Introduction, pluripotent states are not considered
as attractive fixed point(s) but rather as oscillating attractors that explore the cellular state space [22].
Differentiated states x;’s are all the states that their P(x;)’s are equal to unimodal distributions centered
at certain colors. Kram et al. [60] have reported different color percentages of the green, red, blue,
violet, and double cone cells inside the avian retina (see Supporting Information of the mentioned
reference). By assuming these numbers as the occurrence probabilities of the corresponding cones,
we can write: Py ~ 0.204, P = 0.160, P, ~ 0.133, P, ~ 0.094, and Ps ~ 0.409. Thus, we are able to
calculate entropies of the individual cone cells and as a result that of S(x,) as

S(xd) = — ZPi h’IPl'
i

~ 0.324 + 0.293 + 0.268 + 0.222 + 0.366 (39)
— 1473,

Now, the entropy difference between differentiated and stem cells reads
(AS)sa = (S(x4) — S(x5))s2a = —0.136, (40)

where S(x;) behaves as the entropy of a uniform distribution, i.e., S(xs) = — Y>_;(1/5)In(1/5) = In5;
this is due to the fact that for pluripotent stem cells there are no yet color preferences.

In order differentiated tissue maintains its spatial order and integrity, (38) imposes a lower bound
on heat dissipation (cell metabolism) as

<,BIAQ§5exd>sﬁd > *<As>sﬁd1 (41)

where we have set (Ai)s_.; — 0 for simplicity. Inequality (41) is strongly hold for the values obtained
here, that is, 9.450 > 0.136. This implies that the development of the avian retina is highly robust. In
other words, the arrow of time is almost irreversible in this process.

5. Cell sensing radius limits for robust tissue development

In this section, we derive a relationship between total entropy production and cell sensing radius
in the particular case of progenitor cells differentiation into the avian cone photoreceptors. We calculate
the limits of the sensing radius and, in the parametric space of the LEUP parameters, we suggest the
biologically and physically acceptable regions for robust tissue differentiation.
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In (32), we have introduced total entropy production as

f=@M&ﬂﬁ%+mawm%+mmewMHfm{Z] (2)

where thermodynamic properties of system are related to the LEUP quantities. In order to calculate
(ASLEUP)ss4, Dy assuming the microenvironmental probability distributions as Gaussians, we have

(AS1Eur)ssa = B Inf2recd] — B Infarec?), (@3
where we have used (29). The above can be simplified to

(AStEUP)s 0 = (Ba — o) nf2re] 2+ Bl ngd — B2, (44)
Now, we need to postulate the forms of ag and 0?2 and their scaling with the corresponding cell sensing
radius. Jiao et al. in [61] have found that the differentiated retina mosaic is hyperuniform, that is,
0'5 = VRA, where A < D, and D = 2,3; on the other hand, for progenitor cells, we assume - (A4) —a
Poisson distribution, i.e., (752 = URP. Here, R is the sensing radius, and V and U are the densities of
the cone and progenitor cells neighbors, respectively. Plugging these formulas in (44) leads to

Vﬁq APa = Dps | ¢ (45)

1
(ASLEUP)s sd = (Ba — Bs) In[27re] Y/ + 5 [uﬂs .

Another term of (42) which needs to be dealt with is (AN),_, ;. From (29), we have

(AN)syqg = (Z7_1 (1i.aNig — 1isNig))s—sds (46)

where i counts different types of cones: green, red, blue, violet, and double. We note that the population
at each tissue reads as N; ; = pl-,jRD , where p; ; is the density of microenvironment and j € {s,d}. Thus,
(46) reduces to

(AN)sq = (31 (Hiapig — MisPis))s—saRP = AfiRP. (47)

Putting all terms together, total entropy production (42) becomes

f(R, Ba,Bs) = Co + C1(Ba — Bs) + éln [Z{Zﬂ + M InR + AjiRP, (48)
where we have assumed <.B/AQ)T55—>xd>sﬁdr —(Ai)s 4, and —In(Z; /Z,) as constants and have grouped
them together as Cp, and C; = (1/2) In(27te).

Now that we have an explicit formula for total entropy production at our disposal, we can obtain
the optimal sensing radius for which total entropy production reaches its extremum. To this end, we
note that the first derivative of (48) vanishes at

AP
k= (a5) - )

where I' = (AB; — DBs)/2. When R. is a positive quantity, then the inequality I'/Afi < 0 should
always be satisfied. In order to determine the conditions for which R, minimizes or maximizes total
entropy production, we calculate the second derivative of (48) at (49), and obtain

@ _

R e = R 50)
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Figure 5. The left panel shows total entropy production as a function of sensing radius for Cy = —1,

Bi=PBs=3V=U=1A=1,D =2, and Aji = 0.3. Based on (50), this specific set of parameters
leads to a total entropy production which has a minimum of ~ —0.937 at R, ~ 1.581. In the right panel,
B4 is also treated as a variable. Due to the fact that total entropy production is always positive, the
curve/surface above the gray line/plane is only biologically and physically acceptable.

f(R)

Figure 6. Total entropy production f as a function of R and (R, ;) is shown in the left and right panels,
respectively. In the left panel, we have fixed the parametersas: Cp = —1,8; =3, =1,V =U =1,
A =1,D =2,and Aji = —0.3. f(R) reaches its maximum of ~ 1.542 at R, ~ 0.913. In the right panel,
B4 is also considered as a variable. In both panels, the only biologically and physically acceptable
regions lie above the gray line and the gray plane, as total entropy production should be positive; this
makes total entropy production a bounded function in contrast to the case depicted in Fig. 5.

Thus, R, minimizes total entropy production if I' < 0 and it maximizes if I’ > 0.

In the left panel of Fig. 5, we have illustrated total entropy production (48) as a function of R
for a particular set of the LEUP parameters which minimizes total entropy production based on (50).
The values of the curve above the R-axis (gray line) are biologically and physically relevant as total
entropy production is positive, i.e., it ensures the robustness of differentiation process. Moreover, this
plot shows that as we move away from R, (positive) total entropy production is rapidly increasing.
The right panel of the figure illustrates f as a function of R and f;, where the acceptable regions lie
above the gray plane. Interestingly, minimization of total entropy production occurs only for Aji > 0,
which assumes a decrease in the proliferative activity of differentiated phenotypes.

In Fig. 6, the case for which total entropy production reaches its maximum is shown. This figure
illustrates that (positive) total entropy production is bounded in this case. The immediate implication
of this is tissue dedifferentiation is possible (negative total entropy production) for a large sensing
radius. If we want to have a positive total entropy production, in order to avoid reversibility of
differentiated tissue, we must have some sort of fine-tuning in order to restrict the values of R in
such a way that they lead to a positive f. According to Bialek’s postulated biophysical principles [30],
fine-tuning in Nature is not favorable. In the case of the avian photoreceptors, we can further constrain
our parameters and identify further arguments to exclude this case.
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5.1. Application: the average sensing radius of the avian cone cell

In this subsection, we calculate the average sensing radius for each photoreceptor and by
exploiting (48) we look for the regions, in the parametric space of (Bs, By) and (Bs, B4, Afi), which
result in a positive total entropy production and ensure the robustness of the differentiated tissue.

In the retina of a bird, as explained in the previous sections, the five types of photoreceptor cells,
namely, green, red, blue, violet, and double cones, form mosaic structures. From the experimental data
(see Supporting Information of [60]), we have information about the average standard deviation of the
Nearest Neighbor Distribution (NND) for each color as: og ~ 1.248, 0y = 1.548, 0y, = 1.729, 0, = 2.292,
and 0y ~ 0.948. In addition, Jiao et al. [61] have found how the variance of an avian cone ¢? is related
to its sensing radius R as

0*(R) = M{R> + MpRInR + M3R, (51)

where Mj, Mj, and M3 have been calculated for each color (see Table I of Ref. [61]). By having this
information at our disposal, we are able to calculate the average sensing radius for each photoreceptor

as
Rs ~ 0.786, Fg ~ 1426, R,~2.006, Rj,~2288, R,~ 3.553. (52)

We note that if we assume the minimum sensing radius is equal to the cone size, then the above sensing
radii are very close to the average cone size 2.59 & 1.05um (here, we have used the £30 rule for the
data presented in Fig. 5A of Kram et al. [60]).

In the beginning of this section, we have introduced the variance of the differentiated cells as
07 = VRA; now, by approximating (51) to have such a particular form and setting V = 1, and using
the values of (52), we can find A for each cone as

As; = 0440, Ag~1247, A,=~1256, Ap=~1322, A,~1308, (53)

where they are in agreement with the assumption of hyperuniformity made previously, thatis, A < 2.
As an illustration, based on the values of (52) and (53), we have demonstrated the biologically

(and physically) acceptable regions of total entropy production (48) in the parametric space of the

LEUP parameters: (Bs, B;) and (Bs, B4, Afi) in Fig. 7, in the case of the double cone photoreceptor.

3.0¢
25
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Figure 7. The biologically (and physically) acceptable total entropy production (shaded regions) for the
double cone photoreceptor of the avian retina. In the left panel, we have fixed: Co = -1, V=U =1,
D = 2, and Aji = 0.3. This plot demonstrates the regions where (48) is positive, in the parametric
space of the LEUP parameters (B, B4). We note that we have also imposed the condition regarding the
existence of the optimal sensing radius R, which in this case reads as I' < 0, see also (49) and (50). In
the right panel, we have relaxed the restriction on Aji.
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At this point, we should remind that the parameter Aji is proportional to the difference of
differentiated and pluripotent cells division times. It is well known that the division time of any
differentiated cell is much larger than the division time of the corresponding progenitor one [64].
Therefore, it is safe to assume that Afi > 0. This allows us to identify a relationship for the
corresponding f’s of the cones and their progenitors, where Fig. 7 implies that ; > Bs. The latter is a
sensible result since differentiated cells are expected to be more attentive to their microenvironment in
order to ensure optimal cooperation and tissue integrity.

6. Discussion

In this paper, we have posed the question (Q1) on how cells coordinate intrinsic and extrinsic
variables to determine cell decisions that eventually lead to organized and stable tissues. To tackle
this problem, we have employed the Least microEnvironmental Uncertainty Principle (LEUP), which
has been recently proposed to understand cell decision-making in multicellular systems, and so
far it has been applied to cell migration force distribution [25], collective cell migration [26], and
binary phenotypic plasticity [27]. In the context of the LEUP, we regard differentiation as a sort of
Bayesian decision-making, where cells update their intrinsic variables by encoding microenvironmental
information and producing relevant responses. This provides us with a distribution of internal
states that depends explicitly on the information of the cell current microenvironment, which
is represented by a mesoscopic microenvironmental entropy. Interestingly, we have shown that
local microenvironmental entropy should decrease in time leading to more organized cellular
microenvironment, which is the case in differentiated tissues. As a proof of principle, we have
challenged the LEUP predictions to reproduce differentiated avian photoreceptor mosaics. Although,
by fitting a single parameter 3, we have successfully reproduced the photoreceptor statistics, still this
cannot be considered as a rigorous validation. To this end, we have recently gathered an inter-species
collection of photoreceptor mosaics to further investigate the potential of the LEUP to reproduce these
tissues and possibly classify them.

By using the aforementioned results, we have attempted to shed light on the macroscopic
transition between pluripotent and differentiated tissues and have specified it to the formation of
photoreceptor mosaics, which is related to the question (Q2) posed in Introduction. In this respect,
we have developed a stochastic thermodynamic-like theory, based on the Crooks’ theorem, for a
general cell and tissue differentiation process. We have shown that differentiated tissues are highly
robust to dedifferentiation, even though individual cells are allowed to go back into pluripotent
phenotypes. Biologically, the robustness of differentiated tissues depends on reduced proliferation,
change from anaerobic to aerobic metabolism, and increased cell sensing that leads to higher order
of microenvironmental organization. In particular, we have estimated the critical sensing radii of
photoreceptor cones that ensure the thermodynamic robustness of differentiated mosaics, which turns
out to be in the range of 0.8ym to 3.5um, see (52). We note that the critical radius is the minimal radius
required to ensure tissue robustness and therefore should serve as a lower bound for the real values.
Now, if we assume that the minimum sensing radius is equal to the cone size, then our predicted
range correlates with the average cone size 2.59 £ 1.05um (here, we have used the +3¢ rule for the
data presented in Fig. 5A of Kram et al. [60]).

In summary, our LEUP-driven model is based on the four crucial assumptions: (A1) there is
a timescale separation between the internal and microenvironmental variables dynamics, (A2) the
multicellular system (tissue), where cell is differentiating, follows a Markovian dynamics with the
assumption of microscopic reversibility, (A3) a flat cell state distribution is assumed for pluripotent
cell states, and (A4) the spatial distribution of the early microenvironmental pluripotent cells follows
a Poisson distribution. Based on these assumptions, we have arrived at three important results: (I)
predicting the color percentage of the cone cells in the avian retina without any knowledge about the
underlying biophysical and biochemical mechanisms, (II) demonstrating the robustness of cell-tissue
differentiation in thermodynamic terms, and (III) determining the limits of the cell sensing radius
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by establishing a relation between total entropy production and microenvironmental sensing. In the
following, we further elaborate on these results.

Prediction of the cone color distribution: By calibrating a single parameter in the LEUP, we are
able to predict the cone color percentage in the avian retina accurately. Our finding regarding the
LEUP parameter which reads as 8 ~ 1.754 (close to 2), gives a strong indication that cells sense their
environment quasi-optimally when choosing a particular cell fate during differentiation process. For
future study and investigation, we want to examine the validity of this result for photoreceptor mosaics
of other species [65-68].

Robustness and measurement of information gain in differentiation: We have constructed the
fluctuation theorem for tissue differentiation and have derived a generalization of the second law
of thermodynamics for this process based on a Markovian dynamics. It would be interesting and
more realistic to relax this assumption and to analyze the problem using the LEUP on the basis of
non-Markovian or memory processes [69], which can lead to different results. The only requirement is
that system should have a unique stationary state. We also note that the LEUP-driven second law of
thermodynamics can also be seen as a generalization of the Bayesian second law of thermodynamics
[70] and the conditional second law of thermodynamics in a strongly coupled system [71].

Our theory, which in the current paper has been applied to the specific case of the avian
photoreceptor mosaics, suggests that differentiated tissue is (highly) thermodynamically robust,
that is, the arrow of time is almost irreversible, and this robustness depends on microenvironmental
sensing and cell metabolism. It should be remarked that, as is demonstrated in (38), if we have the
values of (ﬁ/AQ§S “yxy)s—d and (AS),_,4, then we can determine the upper bound of pointwise mutual
information difference which is denoted as (Ai); .4 within the context of the LEUP. However, in
the present work, we have only considered transitions between equilibrium end-states and have set
(Ai)s_4 = 0. In a future study, we plan to investigate nonequilibrium dynamics of transitions between
progenitor and differentiated cell states and establish the upper bound of information gain in cell
differentiation. (We also note that the value of (Ai), .4 can also be obtained directly from experiments,
see Refs. [72-75].)

Limits of sensing radius: By studying total entropy production as a function of cell sensing radius
and the LEUP parameters, we have provided an understanding of how a cell regulates its sensing
radius according to its microenvironment to ensure the thermodynamic robustness of differentiated
tissue. We have shown two cases where (a) the entropy production goes to infinity beyond a certain
threshold radius which is depicted in Fig. 5 and (b) the entropy production goes to a maximum value
as in Fig. 6. Interestingly, we conclude that the former is the most biologically relevant case since
it requires the division time of differentiated cells to be larger than that of the pluripotent ones and
biologically systems operate away from fine-tuned parameter regimes to withstand noisy perturbations.
On the technical side, we have assumed that the spatial distribution of pluripotent tissue resembles a
Poisson distribution. It would be interesting to relax this assumption and to derive this distribution
from real tissue data.

One important issue is the range of validity of (A1) regarding the timescale separation between cell
decision and cell cycle characteristic times. Although cell decisions may seem happening within one
cell cycle, the underlying molecular expressions may evolve over many cell cycles [76,77]. When these
molecular expressions cross a threshold then cell decision emerges very fast. Therefore, the definition
of cell decision should be treated with care. In our case, we specify a cell decision only when the cell
state switches to another dynamic attractor, that induces at the same time some noticeable phenotypic
changes. Such attractor transitions are manifested as switches with much shorter characteristic times
than a cell cycle [20].

We want to make a brief comment on the relation of our theory to the commonly used approach
of the maximum entropy production (MEP). The MEP formalism explains only the transition from a
pluripotent state to a differentiating one without realizing the corresponding dynamics. To build a
connection between these two, one has to construct the LEUP theory for transition paths like maximum
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caliber principle [78]. Instead of internal and external variables, one uses internal and external paths of
the corresponding evolution. Then, by exploiting the formulation of maximum caliber, one can write
the time evolution of microenvironmental path entropy — as a conservation equation — in terms of
sources and fluxes and subsequently in terms of path action and entropy production [79,80]. In this
regard, one can use maximum caliber principle to construct appropriate transition probabilities and
even understand the spatiotemporal dynamics [81]. Finally, one should maximize the internal path
entropy which resembles the MEP approach. Working out the details of this connection remains for a
future work.

Our proposed theory has important and interesting implications for cancer research and therapy.
In particular, (42) states that the balance of metabolic, proliferative, and tissue organization changes
(the LEUP term), needed to be taken place in order to destabilize the differentiated state, that is, to
promote carcinogenesis. Until now, the majority of the therapies were focused on antiproliferative
strategies, such as chemotherapy and radiotherapy, and more seldom to the metabolic conditions such
as vasculature normalization. Here, we have proposed that changes in the tissue organization plays a
critical role. This fact has been very recently identified in the context of tumor evolution by West et al.
[82]. We also note that in [83], it is realized that microenvironment normalization might be the key for
immunotherapeutic success. The mechanistic connection between tissue architecture and cell sensing
mechanisms is established in the context of our theory. Strikingly, the experimental work of M. Levin’s
group [84] shows that disrupting the ion channel sensing in a tissue can induce tumorigenesis. In this
regard, we have put forward that investigating changes in the cell sensory processes deserve more
attention and might be pivotal in treating cancers. Our goal is to calibrate the existing theory to human
photoreceptors data, thus we could apply these ideas to retinoblastoma tumours.

In a nutshell, we have shown how the LEUP facilitates the inference of cellular intrinsic states
(or, cell phenotypes) by means of local microenvironmental entropies or fluctuations. This allows
the evaluation of cellular states without the detailed grasp of the underlying mechanisms. The
sole knowledge about extrinsic variables distributions (or, collective cell decision-making) suffices.
Therefore, we can apply the LEUP to cell differentiation problems where the biological or biophysical
knowledge is unclear or unknown.
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W(k)(xs1 - xdj)

Figure 8. Schematic transitions between pluripotent and differentiated microstates.

Appendix: the proof of differentiation microreversibility relation

Let us assume that a particular differentiated state belongs to the corresponding fixed point
attractor which involves a number of realizations, Xg; € Qg = {x4,, X4, - Xq,, }- A pluripotent cell
state belongs also to an attractor — but not to a fixed point as is discussed in the main text — that involves
the following realizations, x5, € Qs = {xs, Xs,, ..., Xs, }, Where n > m. The transition probability
between a pluripotent x;; and a differentiated X4, microstate can be denoted as w¥) (xsi — xd].), where
k € {1,..., K} represents a possible path between the two states, see also Fig. 8. Now, by invoking the
Crooks’ theorem, we can write the condition of microscopic reversibility for a single path k as

w(k) (xSi — xdj)

_ "o
w(k)(xd], — X)) exp(p Qij J (54)

where B = 1/T, which T is the temperature of heat bath. The quantity QE;() is the heat dissipation in
the k-th path during the transition from xs; to x4,. Now, by averaging over all paths, we can write the
path-independent transition probability as

w(xs; — xd].) w® (x5, — xd].)
w(xd], — Xs,)

_ _ ' Ak) !

= (ex S > ex iils 55
where Q;; = (Qg() )k is the total heat dissipation over all paths (the lower bound is based on Jensen'’s
inequality). The transition between a pluripotent state, x;, to any differentiated state, x;, can be
interpreted as a transition from any x;; to any Xq;- Therefore, we can write:

n m
w(xs = xg) =YY w(xs, = Xa;), (56)
i=1j=1
where the average over the corresponding paths is assumed. Now, the ratio of the

forward/differentiation over the backward/dedifferentiation transition probability reads

w(xs, —xy.)
n m — n m 1 ~(k
w(xs N xd) 7 i=1 Z/:1 w(xdj - xsi)w(xdjﬁxsi) _ Zizl Zj:l W(xdj — xsi)<exp[l5 Q,(j)bk (57)
w(xg — xs) in1 Ly w(xa; = xs;) im1 Ly w(Xg, = xs;) '
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The last term in (57) can be viewed as a weighted average over all possible dedifferentiation paths
between pluripotent and differentiated states, that is,

w(xs — x4)
w(xg — Xs)

= ((explB Qi) = (explB'BQL e Dxome (58)

de 5

where the latter has been used for notational simplicity. This is the microreversibility relation for a
general differentiation process that corresponds to (22) in the main text.
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