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Abstract  25 

Two gene classes that have proven useful in understanding the phenotypic states of cells are 26 
housekeeping genes and essential genes. Housekeeping genes are often defined as stably expressed in 27 
mRNA expression experiments, as essential for cellular maintenance in functional analyses, or both. This 28 
imprecise definition can suggest that stably expressed genes are essential for cellular maintenance. 29 
Although defining whether there is a relationship between stable expression and essentiality (deleterious 30 
if not expressed) would not only aid in the design of experiment controls but could also reveal some 31 
fundamental biological principles, this question has not been formally approached. Gini coefficient has 32 
been proposed to identify housekeeping genes that we refer to as Gini genes. We use transcriptomics and 33 
functional genomics data to identify and characterize Gini genes in several human datasets, and across 12 34 
species, that include human, chicken, and C. elegans. We show that Gini coefficients are highly correlated 35 
across human tissue and human cancer datasets. We also show that the Gini coefficients of Gini genes 36 
that are conserved (1:1 human orthologs) across different organisms can capture taxonomic groups such 37 
as primates. We find that essential genes tend to have lower Gini coefficients suggesting that Gini genes 38 
may also be essential. Thus, we provide here not only experimental basis for defining housekeeping 39 
genes; we also show that these genes capture organism-specific biology. 40 

Significance 41 

Housekeeping genes are considered to be consistently expressed across cell types due to being essential 42 
for cellular maintenance. These genes have been known to have unique evolutionary and genomic 43 
features, to be markers of organismal health, and for benchmarking gene expression experiments. Here 44 
we present the first quantitative experimental support for this definition. We further show that across 45 
species the list of housekeeping genes can vary drastically, despite being highly correlated at pathway-46 
level. Finally, we provide a resource and computational pipeline for identifying housekeeping genes and 47 
lists of housekeeping genes for 12 different organisms. 48 

Introduction 49 

Analysis of large-scale “omics” data is now commonplace1, applied to a gamut of questions2–5 and 50 
organisms6–13. This situation is rife with opportunities to study the molecular bases of phenotypes and 51 
biological principles within and across organisms11,14,15. One key feature in all organisms is housekeeping 52 
genes. Housekeeping genes are often identified by being stably expressed in all samples/conditions 53 
(tissues, environments, cell lines, etc.)16. Additionally, the most pervasively used definition invokes 54 
essentiality (as in, required or necessary for cell survival)16–20. However, stability (similar expression 55 
across cell types and conditions) and essentiality (loss-of-function) are two very different features of a 56 
gene with different levels of regulation, that manifest at different levels of organization, and have not 57 
been shown to be related. Here, we present an experimental basis for this definition, and define 58 
housekeeping genes for several species.  59 

Predefining housekeeping genes for an organism brings several potential benefits. At the experimental 60 
level, it can save in troubleshooting for the identification and validation of mRNA expression controls in 61 
difficult cell types (i.e. reticulocytes) and unique samples (i.e. patient biopsies) analyzed via 62 
transcriptomics20 and quantitative real-time PCR (qRT-PCR)21, as well as more robust ways to normalize 63 
the growing number of single-cell RNAseq studies. Indeed, one can look for expression levels for these 64 
genes, as has been done historically. However, a better list of candidates may be possible if there was a 65 
way to systemically identify a large list of these genes from transcriptomics datasets.  66 
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At the systems level, housekeeping genes can be defined as the minimal set of genes required to sustain 67 
life22 and markers of an organism’s healthy biological state23. At the evolutionary level, they may allow us 68 
to define organism-specific unique genomic24–26 and evolutionary features26–28. Thus, knowledge of 69 
housekeeping genes can significantly contribute to explorative, basic, and translational studies. Despite 70 
these and other potential benefits, a list of housekeeping gene candidates for multiple species has not yet 71 
been produced. 72 

Recently, we presented StanDep, a pipeline for constructing context-specific metabolic network models. 73 
StanDep effectively captures metabolic housekeeping genes, defined as genes expressed in most of the 74 
analyzed contexts (tissues, cell types, cell lines, etc.)29. The ability of StanDep to capture housekeeping 75 
genes can be attributed to its effectiveness at capturing transcriptomic variability among different 76 
samples. Other recent efforts have been made to identify housekeeping genes 16,21,30,31. A particularly 77 
powerful approach is a mathematical framework called GeneGini28,30,31 which leverages the Gini 78 
coefficient (GC), a statistical metric quantifying inequality among groups32. GC varies from 0 to 1; in 79 
Economics, lower Gini coefficients mean lower income inequality. Similarly, in the framework of our 80 
work, the GC of a gene is proportional to the inequality in its expression across samples30. Therefore, 81 
genes with a low GC (referred to as Gini genes here on) are stably expressed, and could be considered 82 
housekeeping genes. However, many questions remain about Gini genes. Do these genes retain their 83 
housekeeping status across species? Which cellular functions are they responsible for? How essential are 84 
they? Answers to these questions are central to the definition of a housekeeping gene and efforts to 85 
understand their biological relevance. 86 

Here, we used the GC approach to identify Gini (or housekeeping) genes in human tissue and cell 87 
lines7,10,33–36. We show that GC values were highly correlated across human datasets and that the 88 
correlation was higher between datasets of similar samples (e.g. correlation between GTEx and HPA was 89 
higher than that between GTEx and CellMiner). We also applied GC analysis to transcriptomics datasets 90 
of 12 different organisms which include those in Brawand et al. 33, humans10,34,35,37, C. elegans6, Chinese 91 
hamster tissues38 and Chinese hamster ovary (CHO) cells. We show that the list of Gini genes may 92 
capture species relevant features and yet maintain a high across-species correlation when analyzed as GO 93 
terms. Using CRISPR-Cas9 essentiality screen of CHO39 and cancer cell lines40–42, and whole-animal 94 
essentiality RNAi screening of C. elegans, we show that essential genes tend to have lower GC. Further, 95 
we also show that Gini genes and essential genes significantly overlap in their functions. Further, we 96 
provide a list of housekeeping genes with their Gini coefficient for each of the datasets used in this 97 
analysis. Thus, our analysis provides an experimental basis for the concept of housekeeping gene.  98 

Results 99 

GAPDH may not be a good candidate as a housekeeping gene 100 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is the most commonly used housekeeping gene to 101 
benchmark expression of other genes in qRT-PCR analyses. To define the appropriateness of GAPDH as 102 
a housekeeping gene, we started with previously published transcriptomics data belonging to CHO cells, 103 
hamster tissues38, human tissues from Genotype-Tissue Expression (GTEx) project34 and Human Protein 104 
Atlas (HPA)10, and NCI-60 cancer cells (Klijn et al.35, and CellMiner43). We calculated the GC for these 105 
datasets and then compared the GC of GAPDH across the 7 datasets. 106 

Low GC represents low variability in level of expression across tissues or samples, as would be expected 107 
for housekeeping genes. However, our analyses indicated that the GC values for GAPDH were very 108 
different across all human and hamster datasets. For instance, Klijn et al. (i.e., NCI-60 cell lines) showed 109 
the lowest GC value was at 14.6 percentile and hamster tissue had the highest GC value at 57.6 percentile 110 
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(Figure 1A). The GC values in human datasets varied by 18 percentiles while hamster and CHO data 111 
differed by 35.3 percentiles. Thus, the high variability in GC percentiles indicate that GAPDH may not be 112 
a good candidate as a housekeeping gene as it is not as stably expressed as generally thought. 113 

 114 
Figure 1. Analysis of previously identified housekeeping genes. (A) Glyceraldhyde 3-phosphate dehydrogenase 115 
(GAPDH) may not be a good choice for housekeeping gene. Gini coefficients were converted to percentiles (x-axis) 116 
using each of the datasets (y-axis). GAPDH has high Gini coefficient in most of the datasets. (B) Coverage of 117 
previously identified 3688 housekeeping genes16 within the 3688 Gini genes with lowest Gini coefficients within 118 
each of the datasets. 119 

Gini coefficient identifies consistently expressed genes across different datasets 120 
Housekeeping genes, by definition, should have low GC (low inequality across samples). To test whether 121 
Gini genes had low GC, as expected for housekeeping genes, we first tested whether Gini genes are found 122 
across two datasets of the same organism. For this we compared the list of Gini genes we extracted from 123 
human tissue datasets from HPA and GTEx, and from the NCI-60 Cancer datasets from CellMiner and 124 
Klijn et al. We further compared the Gini genes to a previously published list of 3688 housekeeping 125 
genes16. For this analysis, we chose 3688 Gini genes for each dataset.  126 

15687 genes were present in both human tissue datasets, 16052 genes were present in both NCI-60 cancer 127 
datasets, and 14327 genes were present in all 4 datasets. From each dataset, Gini genes were the 3688 128 
genes that have the lowest GC to account for different shapes of Gini coefficient distributions (Fig. S1A). 129 
Gini genes obtained from combining lists from datasets of same sample types had a coverage of 81.4% 130 
and 69.8% of the 3688 previously reported housekeeping genes, for tissue datasets and NCI-60 cancer 131 
datasets, respectively (Figure 1B). Further, the GC for genes present in a given pair of datasets were 132 
highly correlated, and more so for datasets of the same sample types (Figure 2A). Yet, we found that for 133 
all datasets, previously identified housekeeping genes had low GC values (Fig. S1B). 134 

The lower accuracy of cancer datasets is expected as previously identified housekeeping genes were 135 
defined using human tissue transcriptomics. However, since both the datasets are of human cells, this is 136 
also reflected in, not only the correlation coefficient but also in the ~70% accuracy of the combined 137 
prediction from cancer datasets. In the absence of data to remove batch effects, it is difficult to control for 138 
other factors. Cross comparison of GC of Gini genes revealed that the median of these genes was very 139 
similar (Fig. S2). These results together suggest that Gini genes for a given species will consistently have 140 
low GC regardless of sample types or dataset being considered. 141 
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 142 
Figure 2. Gini coefficients are highly correlated for human datasets. (A) Gini coefficients of genes are highly 143 
correlated across human datasets, regardless of sample type. Datasets of sample types are more highly correlated 144 
than those of different sample types. (B) GO term coverage is highly correlated across human datasets. 145 

 Gini genes preserve organism-specific information 146 
The correlation of GC across datasets supports the idea that the Gini genes belong to similar pathways 147 
across datasets. To test this hypothesis, we performed GO term enrichment analysis on the Gini genes 148 
identified in the transcriptomic analyses just described above.  149 

Across the sample types, we found 1189 GO terms enriched in at least one dataset (Fig. S3, Table S1). To 150 
minimize undesired influence from changes in the number of subject or query genes for the 151 
hypergeometric test, we analyzed all the 1189 GO terms across all datasets. Background frequency of a 152 
GO term was defined using all the genes in each dataset for which GC was calculated. We found that 153 
coverage of these GO terms (ratio of number of Gini genes to the number in the background in a GO 154 
term) was highly correlated across datasets (ρmean = 0.93 across 6 pairs of datasets; Figure 3E (red box)). 155 
This comparison is shown for dataset pairs involving GTEx in Figure 2B. These results suggest that 156 
human Gini genes are enriched for some biological functions. However, the high correlation in enriched 157 
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GO terms between these datasets could also be due to datasets belonging to the same organism, i.e. 158 
humans.  159 

 160 
Figure 3. Gini coefficients accurately capture organism-specific differences. (A-B) Jaccard similarity between 161 
Gini genes identified using organism-specific transcriptomes capture cluster containing primates. The number of 162 
Gini genes with 1:1 orthologs in all organisms is shown using the bar plot on the right of the dendrogram. (C) 163 
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Principal component 1 (PC1) also captures the cluster containing primates. Also shown are the top 20 primate Gini 164 
genes (pink), the top 20 shared Gini genes (green), and top 20 Gini genes in all non-primates (blue) using the 165 
principal component coefficients of the first principal components. (D) Correlation among Gini coefficients across 166 
different organisms reproduce cluster containing primates (left panel). The Gini coefficients of genes belonging to 167 
top 20, middle 20, and bottom 20 coefficients of PC1 are shown (right panel). Left 20 Gini genes are specific to non-168 
primates, middle 20 Gini genes are shared, and right 20 Gini genes are specific to primates. (E) GO term coverage is 169 
highly correlated across different datasets, also shown are the GO term correlations with human datasets used in 170 
Figure 1. 171 

Next, we adapted and applied our analysis to a previously published 9 endothermal organisms33 dataset 172 
that includes chicken, platypus, opossum, mouse, macaque, orangutan, gorilla, chimpanzee, and humans. 173 
Since most of these organisms do not have a Gene Ontology available, we analyzed only the 1:1 orthologs 174 
across all these organisms, i.e. 5423 genes. Another advantage is also that one can control for the number 175 
of subject genes which will be same as the 5423 genes; effectively removing the influence of sample size 176 
in the statistical tests. For the purpose of this exercise, Gini genes were defined by applying a threshold at 177 
17.5 percentile. 178 

Interestingly, we found that Gini genes (Figure 3A and 3B) and correlations of Gini coefficients (Figure 179 
3C) of 1:1 orthologs were able to cluster primate mammals from egg laying - chicken and metronome 180 
(platypus), and marsupials - mouse, and opossum. Different from the analyses of human datasets shown 181 
above, we found lower correlations among Gini values when comparing the 9 endothermal species than 182 
those found amongst human datasets (Figure 3B). Importantly, Principal Component Analysis (PCA) on 183 
these data was able to reproduce the cluster consisting of primates and the cluster consisting of other 184 
organisms (Figure 3C, dendrogram). The first two principal components accounted for 45.4% of the 185 
explained variation (Fig. S4). The first principal component determined the primate cluster; and, at the 186 
same time, revealed genes for which expression pattern remained conserved across tissues for all 187 
organisms (Figure 3D, green), primates only (Figure 3D, pink), or non-primates only (Figure 3D, blue). 188 
Interestingly, similar to human datasets, the coverage of GO terms (Table S2) associated with Gini genes 189 
was highly correlated across all the organisms (Figure 3E (black box)). These results together show that 190 
Gini genes contain important information about species-specific biology, yet higher-level features, such 191 
as GO terms, are shared by all Gini genes. 192 

Gini genes are essential 193 
Considering Gini genes are similar across different organisms, they are likely to also be essential for 194 
survival of these organisms. Due to technological and ethical limitations, it is difficult to test all 195 
organisms mentioned above. Therefore, we compared gene essentiality in CRIPSR-Cas9 screens with 196 
Gini genes of CHO and human cancer cell lines. For cancer cell lines, we used CRISPR guide-RNA score 197 
(log-fold change of guide-RNA) from Depmap40,41. For CHO cells, we used the list of genes from a 198 
published study (Table S6 for accession IDs).  199 

Across 20 cancer cell lines, 72% of Gini genes had a negative CRISPR score; and thus, were essential. 200 
We also found that 2800 genes essential in all 20 cancer cell lines also had lower GC, when calculated 201 
using transcriptomics data for 20 cell lines from Klijn et al. and CellMiner (Figure 4A and B). Similar 202 
results were observed for 338 essential genes in CHO (Figure 4C). Thus, suggesting that essential genes 203 
have lower GC and are more likely to be Gini genes too. 204 

Since gene essentiality is context and health-status dependent, we investigated the correlation between GC 205 
and gene essentiality in a healthy living animal model. We identified Gini genes in C. elegans using a 206 
previously published transcriptomics dataset6 and whole animal RNAi screen of all 1535 predicted 207 
metabolic genes in the worm (Ke W. and Drangowska-Way A. et al, unpublished). Three relevant 208 
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phenotypic classes were observed in RNAi-treated C. elegans: 1) high-confidence essential, after 5 days 209 
of incubation at 25C animals were arrested at a pre-adulthood stage in ≥5 out of the 6 independent RNAi 210 
treatments against that gene; 2) Medium confidence essential, animals did not reach adulthood in ≥3 out 211 
of the 6 independent RNAi treatments; and 3) Wild-type (Please see Supplementary Methods for details). 212 
Here, too, we found that essential genes (high confidence and medium confidence classes) had 213 
significantly lower Gini coefficients than the rest of the tested genes (Table 1, Table S4). 214 

 215 
Figure 4. Gini genes are essential. Gini coefficients of essential genes compared to the complete (A) CellMiner, 216 
(B) Klijn et al. cancer datasets, and (C) CHO datasets. 2800 genes essential in 20 cell lines were extracted from 217 
DepMap40,41, and 338 CHO essential genes (Table S5) were extracted from Kai et al.39 (D) GO term coverage of 218 
essential genes and that of Gini genes from CellMiner (blue, 0.8557), Klijn et al. (yellow, 0.8907), and CHO (green, 219 
0.7055) are correlated. The slightly lower correlation in CHO cells is likely due to fewer number of essential genes 220 
in CHO.  221 
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Geneset Geneset definition Number of 
genes in 

each class 

Number of 
genes for 
which GC 

was 
calculated(a) 

Sign test 
(median 

GC
geneset < 

median GC
all) 

G1 High confidence essential 48 38 5.808 x 10-5 

G2 Medium confidence essential 64 49 0.0427 

G1 + G2  112 87 4.5304 x 10-5 
G3 Wild-type 1095 532 0.9814 
G4 Untested(b) 174 97 0.0335 
G1 + G2 + G4  286 184 9.3050 x 10-5 
G5 Unknown(c) 94 58 0.347 
Table 1. Whole animal essential genes in C. elegans have significantly lower Gini coefficient than non-222 
essential genes. (a) Numbers in this column are smaller than in column C because genes with GC equal to zero were 223 
excluded from the analysis. (b) Untested includes genes with strong effects on health and/or development that 224 
prevented us from obtaining large enough populations of worms for quantitative analyses. These observations are in 225 
agreement with the low gene essentiality correlation p value observed for this class. (c) Untested core metabolic 226 
gene due to lack of RNAi clone or other technical limitations. 227 

GO terms of Gini genes are highly correlated across different datasets and organisms (Figure 2B, Figure 228 
3E). Thus, we also performed GO term analysis for essential and Gini genes in CHO and cancer cell lines. 229 
The analysis of cancer cell lines revealed that coverage of GO terms for the 2800 essential genes is highly 230 
correlated with that of same number of Gini genes identified using Klijn et al. (Figure 4D, yellow; ρ = 231 
0.8907) and CellMiner (Figure 4D, blue; ρ = 0.8596). A similar comparison between CHO essential 232 
genes and Gini genes (at 17.5 percentile) also resulted in a high correlation of ρ = 0.9557 (Figure 4D, 233 
green). Together these results suggest that Gini genes and essential genes show the same distribution, and 234 
hence, are likely largely overlapping. 235 

Discussion 236 

Historically, housekeeping genes have been defined as genes that are consistently expressed across 237 
tissues, and often thought to be essential. Extending from this definition, genes qualified as 238 
“housekeeping” are extensively used in benchmarking and normalizing gene expression results in diverse 239 
experimental settings, including qRT-PCR, bulk and single-cell transcriptomics, in situ hybridization, 240 
western blots, FACS, etc. Further, housekeeping genes are expected to convey important information 241 
about the needs of an organism. However, systematic investigation of whether the underlying biology 242 
supports the current definition of housekeeping genes has been mostly lacking (Supplementary Results). 243 
Thus, we extensively evaluated the claims of this definition by spanning our analysis across datasets 244 
belonging to a variety of organisms. As a result, we provide an experimentally supported list of Gini 245 
genes (Table S3) and formalize the evidence in support of the notion that we can call these Gini genes 246 
housekeeping genes as they are expressed across tissues and species. Further, we validate the notion that 247 
housekeeping genes are enriched in, though not necessarily are, essential genes.  248 

Gini coefficient (GC) is a statistical metric that allows one to identify inequality in gene expression across 249 
different samples. GC has recently been shown to identify housekeeping genes in human cells30,31. 250 
However, it remained unclear whether housekeeping genes are “housekeeping” across species. Besides, 251 
application to other datasets and organisms, we also study the properties of GC-identified housekeeping 252 
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genes. We referred to these genes with low GC as Gini genes. The low GC of these genes suggests that 253 
they are more equally, i.e. consistently, expressed across samples. Therefore, we here show that Gini 254 
genes are expressed at a wide range of expression levels, they are likely to be essential, and that they 255 
share functions across different datasets. 256 

Scientific articles often define housekeeping genes as being required for cellular maintenance. However, 257 
they are most often identified through searching for genes with consistent expression across samples. 258 
Thus, though two important properties of housekeeping genes are: (i) they belong to cellular maintenance 259 
pathways; and hence, (ii) their functions are “essential”, to the best of our knowledge, there has not been a 260 
study that quantitatively tests the basis for neither of these two implicit, and often explicit, claims. This is 261 
despite the reality that the importance of characterizing a list of essential genes has garnered significant 262 
interest44–47. Hence, here we quantitatively test these claims about housekeeping genes. Firstly, for the 263 
claim of essentiality, using CHO and cancer gene essentiality CRISPR-Cas9 screens, we show that the 264 
majority, but not all, of consistently expressed genes (Gini genes) are essential. Secondly, we show that 265 
there is a high correlation in GO terms derived from Gini genes from different datasets, suggesting that 266 
Gini genes are indeed coming from population of genes with similar molecular functionalities, as 267 
described by GO terms, across different datasets. However, given the vagueness of the term “cellular 268 
maintenance”, it is rather arbitrary to decide whether housekeeping genes are preferentially associated to 269 
this term.  270 

Another gap in the current understanding of housekeeping genes is whether they are “housekeeping” 271 
across species. Gini genes calculated using multi-organism datasets showed high GO term correlation 272 
across organisms, suggesting conservation of housekeeping pathways. However, this correlation across 273 
species is slightly reduced when compared to the correlation across human datasets (Figure 3E). It is 274 
possible that this reduced correlation in due to data limitations. The pathway analyses presented here were 275 
done using human GO terms; therefore, genes from any given organism were mapped to corresponding 276 
human orthologs and gene identifiers. Of course, this process eliminated many Gini genes. In fact, the 1:1 277 
ortholog-based GO term analysis used here resulted in eliminating, on average, 69% of the Gini genes 278 
from each of the 9 organisms analyzed. Therefore, availability of gene ontology beyond model organisms 279 
can provide molecular insight into species-specific biology. 280 

Until now, the concept of housekeeping was often described using a list of genes; in the framework of GC, 281 
selecting housekeeping genes would require thresholding such that genes which have a GC below a 282 
certain value may be regarded as housekeeping genes. However, thresholding eliminates possibly 283 
meaningful information. Indeed, our PCA of genes showed that principal component containing the 284 
highest variation (39.5%) did not explain Gini values in distinctly some of the 9 organisms (Fig. S5). Gini 285 
values for large number of genes were needed to capture species-specific clusters. In this study, we also 286 
show that even though fewer GO terms were enriched in all the datasets or organisms, the coverage of 287 
GO terms that were enriched in each dataset was highly correlated across datasets. These results suggest 288 
that housekeeping functions, rather than a list of genes, are better described as the state of the organism. 289 
This explanation has been suggested previously49. To test such a hypothesis, there would be a need to 290 
prepare models of these organisms at multiple levels of regulation that could simulate and quantify an 291 
organismal phenotype. Then, one could possibly test, for example, if carbon flux across different tissues 292 
of organisms is correlated. Indeed, this means there is a need for standardized models for diverse set of 293 
organisms50,51. 294 

Key molecular similarities likely underlie the physiological similarities between related species. By 295 
crossing Gini coefficients with CRISPR-Cas9 essentiality screens and GO terms we may have captured 296 
some of these key molecular similarities as our analysis was able to distinguish primate from non-primate 297 
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endotherms. On the other hand, even though animals seem phenotypically very different they share 298 
molecular similarities that we can capture at the level of GO terms, even if not at the level of specific 299 
gene IDs. Nevertheless, what is essential across environmental contexts and taxonomic groups, if 300 
anything, is worth future investigation. Our study only scratches the surface of the answer to these 301 
questions and shows the need for organism-specific tools and models; but not just for model organisms, 302 
we need models for a diverse set of organisms. Our study suggests that analysis of the ever-increasing 303 
“omics” datasets presents an opportunity for better understanding of the biological functions fundamental 304 
to sustain life and drive evolution. 305 

Method 306 

Literature search 307 
We performed a literature search using Harzing’s Publish or Perish 752 to extract the top 1000 hits from 308 
Google Scholar for the query keywords: housekeeping, genes, maintenance, and required. The list of top 309 
1000 papers was downloaded to an excel sheet for further analysis and visualization on MATLAB. 310 

Data extraction  311 
Transcriptomic datasets were obtained from various sources (Table 2). To resolve differences in gene 312 
identifiers, we mapped all to NCBI Entrez gene identifiers using BioMart, within the Ensembl website. 313 
When genes did not map to an NCBI gene identifier, we discarded these genes from the analyses.  314 

Organism (sample type) Data source Modifications 
Transcriptomics 
Human (tissues) HPA10 - 

Brawand et al., 201133 Converted to TPM from read 
per base 

GTEx34  
Human (NCI-60 cancer cell 
lines) 

CellMiner43 - 
Klijn et al. 201535 - 

C. elegans (cell types) Cao et al., 20176 - 
Chicken, Platypus, Orangutan, 
Bonobo, Gorilla, Chimpanzee, 
Macaque, Mouse, Opossum 
(tissues) 

Brawand et al., 201133 Converted to TPM from read 
per base 

Chinese hamster (tissues) Shamie I.S.*, Duttke S.H.*, la 
Cour Karottki K.J., Han C.Z., 
Hansen A.H., Hefzi H., Xiong 
K., Li S., Roth S., Tao J., Lee 
G.M., Glass C.K., Kildegaard 
H.F., Benner C., Lewis N.E. A 
Chinese hamster transcription 
start site atlas that enables 
targeted editing of CHO cells. 
bioRxiv, (2020). DOI: 
10.1101/2020.10.09.33404538 

 

Chinese hamster ovaries (cell 
lines) 

See Table S6 for accession IDs  

Essentiality screens   
Human (NCI-60 cancer cell 
lines) – CRISPR-Cas9 

DepMap40–42 - 
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CHO cell lines – CRISPR-Cas9 Kai et al. 202039 and Table S5 - 
C. elegans (cell types) - RNAi Unpublished study provided by 

Eyleen J. O’Rourke; method 
described in Ke et al. 201853 and 
Supplementary text. 

- 

Table 2. Data sources used for this study. 315 

Gini Coefficient (GC) 316 
The GC measures the inequality in frequency distribution of a given parameter (e.g., levels of income, 317 
income mobility54, education55, etc.) compared to the frequency distribution of total population32. For 318 
analysis of transcriptomic data, the parameter is expression of a given gene and is compared against the 319 
total gene expression is distributed across different samples30. The GC is calculated as the ratio of area 320 
between the Lorenz curve and line of equality over the total area under the line of equality. The Lorenz 321 
curve is the graphical representation of the distribution of a given parameter; and is given by eqn. (1): 322 

������� �  

 � ����
�
�

��

�
 

(1) 

where µ denotes the average, f(x) denotes the probability density function, and F(x) denotes the 323 
cumulative distribution function. The calculation was implemented in MATLAB (R2016b), for which the 324 
code is available at GitHub (https://github.com/LewisLabUCSD/gene-gini-matlab). 325 

Gene Ontology (GO) enrichment 326 
Due to lack of availability of unique gene ontologies for the different organisms discussed in the study, 327 
genes of the organisms that mapped to the human ortholog genes were used to identify the respective GO 328 
term. Here, hypergeometric tests were used to check whether the number of genes associated to a GO 329 
term, in the query list, are more significant given the distribution among GO terms in the subject gene list. 330 
GO terms associated to human genes were downloaded from Gene Ontology Consortium webpage 331 
(http://current.geneontology.org/products/pages/downloads.html). All analysis was focused only on the 332 
Biological Process (P) aspect. All p-values were calculated using hypergeometric test for 333 
overrepresentation reported after correction using the Benjamini Hochberg FDR. 334 
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Figure Captions 460 

Figure 1. Analysis of previously identified housekeeping genes. (A) Glyceraldhyde 3-phosphate 461 
dehydrogenase (GAPDH) may not be a good choice for housekeeping gene. Gini coefficients were 462 
converted to percentiles (x-axis) using each of the datasets (y-axis). GAPDH has high Gini coefficient in 463 
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most of the datasets. (B) Coverage of previously identified 3688 housekeeping genes16 within the 3688 464 
Gini genes with lowest Gini coefficients within each of the datasets.  465 

Figure 2. Gini coefficients are highly corelated for human datasets. (A) Gini coefficients of genes are 466 
highly correlated across human datasets, regardless of sample type. Datasets of sample types are more 467 
highly correlated than those of different sample types. (B) GO term coverage is highly correlated across 468 
human datasets. 469 

Figure 3. Gini coefficients accurately capture organism-specific differences. (A-B) Jaccard similarity 470 
between Gini genes identified using organism-specific transcriptomes capture cluster containing primates. 471 
The number of Gini genes with 1:1 orthologs in all organisms is shown using the bar plot on the right of 472 
the dendrogram. (C) Principal component 1 (PC1) also captures the cluster containing primates. Also 473 
shown are top 20 (pink), middle 20 (green), and bottom 20 (blue) coefficients of the first principal 474 
components. (D) Correlation among Gini coefficients across different organisms reproduce cluster 475 
containing primates (left panel). The Gini coefficients of genes belonging to top 20, middle 20, and 476 
bottom 20 coefficients of PC1 are shown (right panel). Top 20 Gini genes are specific to primates, middle 477 
20 are universal Gini genes, and bottom 20 are specific to non-primates. (E) GO term coverage is highly 478 
correlated across different datasets, also shown are the GO term correlations with human datasets used in 479 
Figure 1. 480 

Figure 4. Gini genes are essential. Gini coefficients of essential genes compared to the complete (A) 481 
CellMiner, (B) Klijn et al. cancer datasets, and (C) CHO datasets. 2800 genes essential in 20 cell lines 482 
were extracted from DepMap40,41, and 338 CHO essential genes were extracted from Kai et al.39 (D) GO 483 
term coverage of essential genes and that of Gini genes from CellMiner (blue, 0.8557), Klijn et al. 484 
(yellow, 0.8907), and CHO (green, 0.7055) are correlated. The slightly lower correlation in CHO cells is 485 
likely due to fewer number of essential genes in CHO.  486 
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