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Abstract 16 
Variation in the neural code between individuals contributes to making each person unique.  17 
Using ~100 neural population recordings from major ganglion cell types in the macaque retina, 18 
we develop an interpretable computational representation of individual variability using machine 19 
learning. This representation preserves invariances, such as asymmetries between ON and 20 
OFF cells, while capturing individual variation and covariation in properties such as nonlinearity, 21 
temporal dynamics, and spatial receptive field size. The similarity of these properties across cell 22 
types was dependent on the similarity of their synaptic connections. Surprisingly, male retinas 23 
exhibited higher firing rates and faster temporal integration than female retinas. By exploiting 24 
data from previously recorded macaque retinas, a new macaque retina (and crucially, a human 25 
retina) could be efficiently characterized. Simulations indicated that combining a vast dataset of 26 
healthy macaque recordings with behavioral feedback could be used to identify the neural code 27 
and improve retinal implants for treating blindness.  28 
 29 
Main 30 
 31 
An emerging frontier in biomedicine is understanding variability between individuals, with 32 
implications ranging from the mathematical modeling of living systems to ethics and 33 
personalized medicine. In neuroscience, differences in mental function between individuals are 34 
substantial, yet little is known about the underlying variation in the information processing 35 
performed by neural circuits. Neuroimaging, gross structural, and behavioral measurements in 36 
humans cannot reveal the neural code at circuit resolution, and physiological measurements in 37 
invertebrates or rodents have uncertain applicability to humans. These limitations have led to a 38 
large gap in our understanding of variability in the neural code and its implications for 39 
translational medicine and neuroengineering. Two technical challenges have limited our 40 
understanding of this variability in higher animal models: high-resolution, large-scale 41 
physiological recordings from many animals, and methods for deciphering variability in complex 42 
circuit level computations. 43 
 44 
 45 
 46 
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Modeling the shared and individual components of neural coding variability 1 
  2 
To overcome these limitations, we exploited large-scale multi-electrode recordings from ~21626 3 
retinal ganglion cells (RGCs) aggregated over 112 recordings from 66 isolated primate retinas, 4 
in which the functional properties of diverse cell types have been extensively studied1–5. These 5 
data, gathered over a decade of experimentation, exhibited significant neural coding variability 6 
across recordings. As a baseline, response properties in each recording were summarized by 7 
the parameters of a linear-nonlinear-Poisson (LNP) encoding model. This widely used model6 8 
captures light-evoked responses in RGCs using a spatiotemporal linear filter applied to the 9 
stimulus, followed by an output nonlinearity and stochastic spike generation. Receptive field 10 
sizes of two known RGC types -- ON and OFF parasol -- exhibited substantial variation across 11 
recordings. This variability was evident across retinal eccentricities, but was also present at a 12 
given eccentricity (Figure 1A, first column, Figure 1G). Diversity was also seen in the kinetics of 13 
light response (Figure 1A, second column) and in the form of the output nonlinearity (Figure 1A, 14 
third column). When the LNP model was extended to capture an additional computational motif, 15 
nonlinear integration of spatial subunits within the receptive field7, the change in prediction 16 
accuracy was also variable across recordings (Figure 1A, last column). 17 
 18 
The structure and covariation of these response properties was therefore explored using a 19 
flexible model that captured nonlinear spatial integration, and combined shared and recording-20 
specific parameters. The shared component was a multilayered convolutional neural network 21 
(CNN), an extension of the LNP model, consisting of multiple alternating stages of spatio-22 
temporal filtering, normalization and rectification. The rectification captured nonlinear spatial 23 
integration, and the convolutional structure captured the known translational invariance of visual 24 
signals in each cell type (cells of the same type at different locations have very similar response 25 
properties8). The model output consisted of multiple firing rate maps in each retina, one for each 26 
cell type. To predict a given cell’s responses, the model-predicted firing rate was read off from 27 
the map at the cell’s location (Figure 1B). Due to the translational invariance constraint, the 28 
proposed model cannot capture differences between cells belonging to the same cell type, 29 
resulting in poorer prediction accuracy compared to models that allow for cell-specific 30 
parameters such as single-cell LNP6 or other state-of-the-art models9,10. However, this 31 
constraint enabled the proposed neural network architecture to predict responses across 32 
different recordings with different numbers of cells, while focusing on variation across 33 
recordings. When trained using ON and OFF parasol cell responses in each retina separately, 34 
the CNN model exhibited performance superior to the single-retina LNP model (LNP model with 35 
common parameters for all cells of a given type), as expected given its more flexible structure 36 
(Figure 1E). However, when the CNN model was trained on multiple retinas together, it failed to 37 
capture the responses of retinas with low firing rates, highly modulated responses, or other 38 
features that varied between recordings (Figure 1C, rasters).  39 
 40 
To capture the variation of light response properties across recordings in a compact and 41 
tractable way, a small number of recording-specific parameters were used to reweight the 42 
activations of different filters at each layer of the shared CNN. Data from all recordings were 43 
used to learn the ~100K parameters of the shared CNN, while data from each recording were 44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 14, 2021. ; https://doi.org/10.1101/2021.02.14.431169doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.14.431169
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

used to obtain a small number recording-specific parameters. The collection of these recording-1 
specific parameters were interpreted as a manifold of neural coding variability. When learned 2 
using 71 recordings, the low-dimensional manifold captured variations in background firing rate, 3 
sustained vs. transient dynamics, and response nonlinearities (Figure 1C, rasters). The ability to 4 
simultaneously predict responses across multiple retinas saturated at ~15 dimensions of the 5 
learned manifold (Figure 1D), much lower than the total number of CNN parameters, and the 6 
performance of this joint model based on the manifold was only slightly lower than a CNN model 7 
trained for each retina separately (Figure 1F). Thus, a simple, low-dimensional representation 8 
can efficiently and accurately capture the diversity of retinal computations. 9 
 10 
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Figure 1. Modeling variability in the neural code (A) Variability of response properties across preparations. Spatial 1 
receptive fields (first column), time of zero-crossing of temporal filter (second column), nonlinearity (third column) and 2 
change in response likelihood with five nonlinear subunits (fourth column) for OFF parasol cells in three 3 
representative recordings (rows, same y-axis for each response property across recordings). The last row represents 4 
the range of response parameters across 122 preparations, sorted according to their population means, and error 5 
bars corresponding to the robust standard deviation. Arrows indicate the values of the chosen retinas in the first three 6 
rows. (B) Architecture of the neural network for capturing response variation. The visual stimulus is passed through 7 
multiple layers of convolution with spatial filters, with adaptive batch normalization and rectification at each layer, 8 
producing two firing rate maps (one each for ON and OFF parasol cell types). The Poisson firing rate for each cell is 9 
read off from the value at the cell’s location in the firing rate map of its cell type. Retina-specific tuning of responses is 10 
performed by adjusting the mean and standard deviation of the activation values at each layer, determined by a linear 11 
transformation of the retina’s location in the low-dimensional manifold. (C) Response prediction across 4 12 
representative training retinas (columns). The receptive field mosaics are shown for each retina (middle row), along 13 
with response predictions for a randomly selected OFF parasol (top row) and ON parasol cell (bottom row). Rasters 14 
(60 trials) for predicted responses to a 3 sec long white noise stimulus using the LNP model; neural network model, 15 
trained jointly on multiple retinas, with retina-specific parameters (15 dimensional manifold, joint NN) or without them 16 
(no manifold, global NN). (D) Model error (log likelihood) on test stimuli with varying manifold dimensionality; 17 
dimensions=0 indicates no retina-specific adaptation (global NN). Error bars indicate the standard deviation across 18 
retinas. (E) Prediction accuracy, averaged across cells, for different retinas (points), using a neural network trained on 19 
data from each individual retina (x-axis) and an LNP model with shared parameters across cells of a given type in 20 
each retina (y-axis). Prediction accuracy is measured as correlation between predicted firing rate and recorded 21 
responses smoothed with a Gaussian filter (σ: 11ms). (F) Similar to (E), comparing predictions from the neural 22 
network with a 15-dimensional manifold, trained jointly (y-axis) vs. trained on each retina separately (x-axis).  (G) 23 
Range of eccentricities (x-axis) and the average receptive field sizes (y-axis) for ON parasol (blue) and OFF parasol 24 
(magenta) cells across 122 preparations used in this study. 25 

Neural coding manifold smoothly captures systematic variation across recordings 26 

The learned manifold smoothly captured changes in neural code with a greater perturbation in 27 
manifold location leading to a greater decrease in response prediction accuracy (Figure 2G). 28 
The manifold geometrically represented variation in several light response properties, including 29 
receptive field size, time course, output nonlinearity, and spike train autocorrelation. This was 30 
observed by projecting the average response property for each retina onto its principal 31 
component across all recordings, and then identifying the manifold direction with maximum 32 
correlation to this projection. The Spearman rank correlation between these projections and the 33 
projections along the identified manifold direction was significantly higher than the value 34 
observed in random permutations of the data (p < 0.001 for all response properties) (Figure 2B, 35 
C, D, E, F), indicating that the geometry of the manifold is well-suited to representing the 36 
response properties linearly. 37 

The geometry of the manifold also captured co-variation in response properties of different cell 38 
types across recordings. For both spiking autocorrelation and response nonlinearity, the large 39 
angles between the manifold directions for ON and OFF parasol cells (86° and 76° respectively) 40 
were consistent with low Spearman rank correlation in these response properties (0.28 and 0.12 41 
respectively). Conversely, for response time course and receptive field size, the small angles 42 
between the directions for ON and OFF cells (45° and 16° respectively) were consistent with 43 
larger Spearman rank correlation (0.56 and 0.95 respectively). Although high correlation is 44 
expected for receptive field size based on variation in the eccentricity of different recordings, the 45 
moderate correlation observed for response time course and the low correlation observed for 46 
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nonlinearity and autocorrelation have not been previously reported. While this analysis could be 1 
done directly in the space of LNP model parameters, the manifold presents a more flexible way 2 
to study these response properties for a wide range of encoding models.  3 

The manifold also captured known invariances in retinal encoding, i.e. properties that were 4 
consistent across retinas. To assess whether these invariances were present at many 5 
intermediate manifold locations not directly sampled in the experiments, the manifold locations 6 
of recorded retinas were perturbed using Gaussian noise with standard deviation equal to the 7 
median nearest neighbor separation (Figure 2H). Light responses were then generated using 8 
these randomly sampled manifold locations, and the encoding properties were summarized by 9 
fitting a LNP model. For the simulated responses, OFF parasol cells had consistently smaller 10 
RFs (Figure 2I) and slower time courses (Figure 2J) than ON parasol cells, as expected based 11 
on previously reported asymmetries8.  12 

 13 

 14 
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Figure 2. Geometry of manifold. (A) Summary of the steps in subsequent analysis. Left: Schematic of the manifold 1 
representation of variability. Each recording is summarized by its neural encoding function, indicated by a point (gray) 2 
in space of all possible neural encoding functions. The observed neural encoding functions lie in a low-dimensional 3 
manifold (depicted as curved surface, but could be more than two dimensional) within this space. Different manifolds 4 
(other surfaces) would potentially correspond to different properties that are invariant across recordings. The training 5 
procedure learns a coordinate system (𝛼)within the manifold. Middle: Directions corresponding to response features 6 
can be identified in the learned coordinate system for representing the manifold. Right: Geometry of the subspace 7 
corresponding to the identified directions lead to interpretation of the variations. (B) Manifold locations for 95 8 
preparations (points), projected onto the 2D subspace given by the first principal components of variation in the 9 
output nonlinearity for OFF and ON parasol cells. Size and color of dots indicate deviation from the mean. Colored 10 
lines indicate the direction of maximum nonlinearity variation for ON parasol (blue) and OFF parasol (magenta) cells. 11 
Insets: Lines show output nonlinearities for all cells in representative retinas. (C, D, E) Similar to (B), for time course, 12 
receptive field size and autocorrelation, respectively. (F) Angle between ON and OFF parasol directions for particular 13 
response properties, as a function of manifold dimension. (G) Change in response prediction accuracy (y-axis) as the 14 
manifold location is perturbed from the learned location. Each black dot represents a different perturbation, the red 15 
line is the average. (H) Random manifold locations (red) were sampled by adding noise to the learned retina-specific 16 
locations (black). Responses to a white noise stimulus of 100 cells of each type (ON and OFF parasol) were sampled 17 
from random locations in the visual field using the firing rate maps for the two cell types associated with these 18 
sampled manifold locations. These simulated responses were then used to fit a LNP model. (I, J) Relationship 19 
between ON and OFF parasol cells for receptive field area and zero crossing of response time course, respectively, 20 
for recorded (red) and randomly sampled (black) retinas  21 

Manifold reveals covariation associated with connectivity, and male-female differences 22 

The manifold of variability revealed two novel properties of retinal encoding. First, the RGC 23 
types that receive synaptic input from bipolar cells at similar depths in the inner plexiform layer 24 
(IPL) showed greater covariation in their response properties across recordings. To examine 25 
covariation between cell types, the ON and OFF midget cell types were included with the ON 26 
and OFF parasol cell types considered thus far. In 85 recordings (53 macaques), the similarity 27 
of three response properties – nonlinearity, time course and autocorrelation – across different 28 
pairs of cell types was measured either directly, or in the manifold (Figure 3A-C). Using both 29 
methods, the highest correlation in these physiological properties was observed between cell-30 
type pairs with the same polarity (ON or OFF), consistent with the lamination of ON and OFF 31 
cells in the inner and outer IPL, respectively (Figure 3D). Moreover, for cell type pairs with 32 
opposite polarities, a higher correlation in physiological properties was observed for the ON-33 
parasol/OFF-parasol pair than for the ON-midget/OFF-midget pair, consistent with the 34 
lamination of parasol cells closer to the middle of IPL (Figure 3A-D). These observations 35 
support the approach of studying the response properties of newer cell types (such as ON and 36 
OFF smooth monostratified cells4) after normalizing to the properties of more commonly studied 37 
cells with similar synaptic inputs, thereby minimizing the effects of inter-retina variability. 38 

Second, the recordings from male and female retinas were separated in the manifold (d’=1.8 for 39 
15 dimensional manifold, Figure 3E), in a way that could not be explained by variations in 40 
experimental factors (Figure 3I). For both ON and OFF parasol cells, the differences between 41 
male and female retinas were partially due to differences in firing rate and speed of temporal 42 
filtering. This was determined by computing the direction separating the means of male and 43 
female retinas in the manifold, and determining the angle between this direction and the 44 
directions most aligned with variation in firing rate and response time course (cosine(angle) ~ 45 
0.5 for both) (Figure 3H). Note that unlike gender, animal age did not separate different 46 
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recordings on the manifold. In principle, the observed gender differences could be confounded 1 
by variation in experimental methods such as dissection procedure (isolation from the retinal 2 
pigment epithelium, or RPE) or temperature (31°-36°C across recordings). Because higher 3 
recording temperatures were associated with isolation from the RPE for technical reasons, the 4 
directions in the manifold representing dissection method and temperature variation were 5 
aligned (cosine(angle) ~ 0.57, Figure 3H). Compared to firing rate and response time course, 6 
these experimental factors were less aligned to the direction of gender separation 7 
(cosine(angle) ~ 0.26) (Figure 3H), suggesting that gender differences were probably not due to 8 
differences in these experimental methods. To eliminate experimental factors more rigorously, 9 
the separation of males and females in the manifold was measured after conditioning the data in 10 
several ways. For each condition, a bootstrap rank test was performed to verify if the mean 11 
locations of male and female recordings differed (see Methods). Significant separation (p<0.05) 12 

was observed for the recordings with RPE-isolated dissections and high temperature (≥33.5°C), 13 
whereas the separation was not significant (p>0.1) for RPE-attached dissections and lower 14 
temperatures (<33.5°C) (Figure 3I). For the RPE-isolated retinas, the male recordings exhibited 15 
higher firing rates (Figure 3F) and faster temporal integration (Figure 3G) (p<0.01, see Methods 16 
for details).  17 

Although this conditioning on specific experimental conditions revealed statistically significant 18 
differences between males and females, the level of significance was lower when compared to 19 
all the recordings (Figure 3I), potentially due to a reduction in the number of samples when 20 
analysis is restricted to a particular set of experimental conditions. The manifold made it 21 
possible to separate experimental variations more efficiently, without reducing the number of 22 
data points. To accomplish this, the data were projected onto axes in the manifold orthogonal to 23 
the two identified directions of experimental variability. This projection increased the statistical 24 
separation between the male and female retinas (p<10-6) (Figure 3I). Thus, the geometry of the 25 
manifold, which smoothly organizes the neural computation across retinas, makes it possible to 26 
examine statistical trends in the data efficiently in spite of potential experimental confounds.  27 

 28 

 29 
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 1 

Figure 3 Biological factors underlying variability. Relation between the first principal component of (A) 2 
nonlinearity, (B) response time course and (C) spike train autocorrelation variation for different pairs of cell types. The 3 
relationship is either measured directly using Spearman rank correlation, or the cosine of the angle between 4 
corresponding directions in the 15-dimensional manifold. (D) Distinct lamination depths for the bipolar-ganglion cell 5 
synapse for different ganglion cell types11. (E) Two dimensional PCA projection of manifold locations for recordings 6 
from male (blue) and female (red) retinas. (F) The average firing rate for ON parasol (y-axis) and OFF parasol (x-7 
axis) cells for preparations with isolated RPE. The mean manifold location of male (blue) and female (red) recordings 8 
were different (p<0.01 for bootstrap and p<0.05 for hierarchical bootstrap). Black line joins the mean male and female 9 
locations. (G) Similar to (F) for the time course of STA, with separation of male and female retinas (p < 0.01 for 10 
bootstrap and p<0.05 for hierarchical bootstrap12). (H) Cosine of the angle (y-axis) between the manifold directions 11 
corresponding to different pairs of factors, which are either biological (gender, firing rate, time of zero crossing of time 12 
course) and experimental (temperature, dissection - whether retinal pigment epithelium (RPE) was attached or 13 
isolated). (I) Degree of separation of male and female recordings measured using a resampling test, for all the 14 
recordings, conditioned on the subset of recordings with specific dissection procedure or temperature, or all 15 
recordings with locations projected orthogonal to directions for dissection procedure and temperature variation.  16 

 17 
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Manifold generalizes to a novel recording 1 

The manifold permitted efficient response modeling of a new, previously unseen retina by 2 
leveraging trends in the large data set of retinas used for training. Response modeling can be 3 
performed efficiently by identifying the manifold location of a new retina in several ways, using 4 
limited data. In the absence of any new data, the “typical” manifold location for a new retina can 5 
be obtained by merely averaging the locations of all training retinas. In the case of a 6 
degenerated retina with no light evoked response, partial information such as the 7 
autocorrelation function of the spiking of recorded neurons can still be identified from 8 
spontaneous activity. In this case, the manifold location can be approximated by averaging the 9 
locations of training retinas that have similar autocorrelation. Finally, in the presence of light 10 
evoked responses, gradient descent can be used to optimize the manifold location based on the 11 
likelihood of the data, leveraging the training retinas as prior information (Figure 4A).  12 

These three approaches were examined using a model trained with 71 preparations and tested 13 
with 24 preparations. The proximity of manifold locations identified by approximation and 14 
optimization suggest that these approaches accurately capture properties of the new retina 15 
(Figure 4B). To examine the efficiency obtained by using the manifold, the optimization 16 
approach with limited data was studied by measuring convergence of the manifold location and 17 
of response prediction accuracy. First, the manifold location converged quickly as the recording 18 
duration increased, with ~3 minutes of light response data producing a location similar to that 19 
produced by ~30 minutes of data (Figure 4C). Second, whereas optimization of the manifold 20 
location performed similarly to training the full model (along with the CNN) when performed with 21 
a large amount of data, the manifold approach more accurately predicted light responses when 22 
the data were limited (~8 sec) (Figure 4D).  23 

The efficiency of the low dimensional manifold could come at a cost of its generalization 24 
accuracy to new retinas. On varying the manifold dimensionality, the ability to predict responses 25 
to previously unseen retinas saturated at ~15 dimensions (Figure 4E, black line), a value that 26 
did not change with the number of retinas used for training (Figure 4E, colored lines). Hence, in 27 
addition to the previous observation on generalization to new stimuli within the collection of 28 
retinas used for learning (Figure 1D), the low dimensional manifold is also able to generalize to 29 
new, previously unseen retinas. 30 

These findings suggest that the manifold may aid in translating our understanding of the 31 
macaque retina to the human retina, an important goal for biomedical research. Recent work13,14 32 
has shown that the receptive field properties of the four numerically dominant RGC types (ON 33 
and OFF parasol and midget) are similar to those of their macaque counterparts. To test 34 
whether light responses in the human retina fall within the range observed across many 35 
macaque retinas, the manifold location of a single human retina was identified using the three 36 
operations described above (averaging, approximation, optimization). For each method, the 37 
estimated manifold location of the human retina was well within the span of manifold locations of 38 
many macaque retinas (Figure 4B,C), and the responses of a new retina were predicted with 39 
similar accuracy and efficiency in the two species (Figure 4D). Hence, the manifold reveals 40 
similar light response properties of corresponding RGC types in macaques and humans. 41 
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Given that the macaque retinal code translates accurately to humans, it may provide a valuable 1 
tool for the development of an advanced artificial retina for treating vision loss. However, a 2 
challenging first step in restoring vision with such a device is to identify how the neurons in a 3 
blind retina should encode visual stimuli with the implant. In this setting, the retina is no longer 4 
light-sensitive, but the blind person with an implanted device could potentially report the 5 
similarity of artificially induced images to a verbally described object. The correct neural 6 
encoding could be identified by estimating the location of the retina on the low-dimensional 7 
manifold, using a psychophysical discrimination task with the following iterative procedure: (i) 8 
sample a few of the plausible manifold locations , (ii) use each of these manifold locations to 9 
predict retinal responses for a particular visual stimulus, (iii) stimulate with the implanted device 10 
to produce each of these responses, (iv) ask the subject which stimulus produced a sensation 11 
that most closely matches a verbal description of it, and (iv) update the set of plausible manifold 12 
locations.  13 

To illustrate the feasibility of this procedure, the above steps were simulated assuming (for 14 
simplicity) an artificial retina that has perfect cellular selectivity of stimulation. For updating the 15 
plausible locations, the perceptual accuracy was assumed to be governed by the Kullbeck-16 
Leibler divergence between the distribution of neural responses associated with the tested 17 
manifold location and the distribution of responses associated with the true location. The set of 18 
plausible locations identified by the procedure converged to the true location (given by 19 
optimization; see above) in a small number of steps (see Methods, Figure 4F). Hence, the low-20 
dimensional manifold could provide valuable efficiency in translational applications. 21 
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1 
Figure 4.  Generalization to new, previously unseen retinas. (A) Efficient identification of manifold location.  2 
Training retinas (gray points) are used to define the manifold. Then, the manifold location of a new retina is 3 
determined in one of several ways - averaging (red): compute the mean location of all training retinas; approximation 4 
(orange): compute the mean location of a subset of training retinas with specific features similar to the new retina; 5 
optimization (green): gradient descent on the manifold location to maximize the prediction accuracy for measured 6 
light responses of the new retina. (B) Identified manifold locations using averaging (+; same for all retinas), 7 
approximation (♢) and optimization (🗆) for testing retinas (colors, each pair joined with a line). Black points 8 
correspond to the locations of training retinas. (C) Optimized manifold location for three retinas (colored lines), with 9 
varying duration of recorded responses. Training retina locations (black points) and locations identified by averaging 10 
(+) are shown. For (B, C), the 15 dimensional manifold is projected into two dimensions that capture autocorrelation 11 
variation (same as Figure 2E)  (D) Response prediction loss with optimization of manifold location (y-axis) vs. loss 12 
with learning all neural network parameters (x-axis), using either 8.33ms (red) or 15-30 min (black) of data. (E) 13 
Convergence of prediction loss with optimized manifold location, averaged across 24 testing retinas (y-axis) as a 14 
function of the number of manifold dimensions (x-axis). Loss measured as negative log-likelihood, averaged across 15 
cells. Colored lines indicate loss obtained using fewer training retinas. (F) Simulation of the discrimination task used 16 
to identify manifold location in the retina of a blind person. At each step, the visual stimulus is a letter from English 17 
alphabet (top row). Two dimensional projection of the manifold with locations of training retinas (black dots) is shown 18 
(bottom row). Posterior over the set of feasible manifold locations approximated using a Gaussian (red circle). At 19 
each step, random manifold locations are sampled from the posterior, and corresponding responses are reproduced 20 
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using the artificial retina, and feedback from the subject is used to update the posterior using Monte Carlo methods 1 
(all samples in green, accepted samples in red). In ~20 steps, the estimated manifold location (orange) converges to 2 
the true underlying location (blue).  3 

Conclusions and Discussion 4 

Recent studies have shown that neural responses in the retina, which have often been 5 
described using pseudo-linear models6,15, can be modeled more accurately using artificial neural 6 
networks9,10. However, the function of these complex models can be difficult to interpret. While 7 
using machine learning models to more accurately capture shared (and complex) aspects of 8 
neural response, the present work crucially maintained the information about variability between 9 
recordings in an interpretable low-dimensional manifold. 16. As a result, the manifold revealed 10 
novel structure in inter-retina variation, such as gender-based differences and covariation of 11 
several response properties across cell types. In principle, such an approach could be used for 12 
other applications in which the varying neural computation of interest is captured using a simple 13 
low-dimensional manifold, while machine learning models improve accuracy by capturing 14 
complex but unchanging aspects of the computation that are of less immediate interest. 15 

At least three sources of biological variability in the neural code may play a role in the present 16 
data: variation between animals, differences between the two eyes, and variation across retinal 17 
locations in a given eye. However, in the present data, these sources of variability are 18 
confounded with variation in experimental procedures for euthanasia, for eye removal, and for 19 
ex vivo recording, respectively. Thus, it is not possible to definitively isolate biological and 20 
experimental variation in the present data, though the observed male-female differences were 21 
separated from the clear influences of experimental procedures and therefore most likely reflect 22 
true biological differences. The tools developed here make it possible to capture and analyze 23 
both biological and experimental variability in a single framework, an asset for understanding 24 
the neural code more completely using imperfect experimental data. However, future work will 25 
be needed to parse the mechanisms of both biological and experimental variability, potentially 26 
exploiting the geometry of the manifold. For example, the low-dimensional manifold made it 27 
possible to project the data into a subspace orthogonal to known confounds, and thus to control 28 
for them without losing data by conditioning on specific experimental variables. 29 

The present findings on neural coding differences between male and female retinas add to a 30 
large literature on gender-based differences in brain structure and function17–19. In the retina, 31 
genetic differences between male and female primates (including humans) produce different 32 
variation in cone photopigment spectral sensitivities, and thus different color vision, across the 33 
population20. However, to our knowledge, differences in neural coding between males and 34 
females have not been reported, perhaps due to the lack of appropriate physiological recordings 35 
and/or analysis tools. In the present work, the large data set and the geometry of the manifold 36 
representation made it possible to establish the observed male-female differences in spite of 37 
other potential confounds. 38 

The manifold of neural coding variability may also be useful in other neuroengineering 39 
applications, such as motor prostheses. The goal in motor prosthesis is usually to read out the 40 
neural activity in a paralyzed person to control a computer cursor or a robotic limb21. Similar to 41 
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the problem of identifying the neural encoding in blind person, identifying the neural mapping in 1 
a paralyzed person is limited by the absence of simultaneous neural recordings and limb 2 
trajectory measurements, and thus may benefit from leveraging existing data that captures the 3 
diversity of neural coding across individuals. Specifically, a manifold of inter-individual variation 4 
may be useful for identifying neural decoding in a person with an implant, perhaps using a task 5 
involving imagined movements to identify the manifold location22. The manifold may also be 6 
useful for adjusting to the challenge of variability over time in chronic recordings23.  7 

The neural coding manifold may also be useful for harnessing brain plasticity, which could 8 
improve vision with an artificial retina. Indeed, present-day retinal implants make little attempt to 9 
reproduce the neural code of the retina, and thus implicitly rely heavily on plasticity to 10 
compensate for device limitations24. In motor prostheses, it has been shown that the brain can 11 
more easily adjust its activity to accommodate perturbations in the artificial neural decoder if 12 
these perturbations lie in a specific low-dimensional manifold25. In the case of an artificial retina, 13 
we hypothesize that the brain may more readily learn to interpret the neural activity produced by 14 
the implanted device if the visual encoding that it uses lies within the manifold of retinal coding 15 
variability. 16 
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Methods 30 

Recordings 31 

Preparation and recording methods are described elsewhere1,2,8. Briefly, eyes were enucleated from 32 
terminally anesthetized macaque monkeys (M. Mulatta or M. Fascicularis) used by other experimenters in 33 
accordance with institutional guidelines for the care and use of animals. Immediately after enucleation, 34 
the anterior portion of the eye and the vitreous were removed in room light. The eye was stored in 35 
darkness in oxygenated Ames’ solution (Sigma, St. Louis, MO) at 33°C pH 7.4. Segments of isolated or 36 
RPE-attached peripheral retina (approximately 3mm x 3mm, taken from 6-15mm temporal equivalent 37 
eccentricity8) were placed flat, RGC side down, on a planar array of 512 extracellular microelectrodes 38 
arranged in an isosceles triangular lattice. The electrode spacing was 60μm in each row, and the array 39 
covered a rectangular region measuring 1800 µm x 900 µm. While recording, the retina was perfused with 40 
Ames’ solution (31-36°C; typically 32 °C for RPE attached and 34°C for RPE isolated dissections), 41 
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bubbled with 95% O2 and 5% CO2, pH 7.4. Voltage signals on each electrode were bandpass filtered 1 
(80Hz - 2kHz), amplified, and digitized at 20 kHz 1. 2 

A custom spike-sorting algorithm was used to identify and segregate spikes from distinct cells1. Briefly, 3 
candidate spike events were detected using a threshold on each electrode, and voltage waveforms on the 4 
electrode and nearby electrodes in the 4ms period surrounding the time of the spike were extracted. 5 
Candidate neurons were identified by clustering the waveforms using a Gaussian mixture model. 6 
Candidate neurons were retained only if the assigned spikes exhibited a 1 ms refractory period and had a 7 
stable firing rate for the entire duration of recording. Duplicate spike trains were identified by temporal 8 
cross-correlation and removed. For each cell, the autocorrelation of the recorded spike train was 9 
computed and normalized by its value at zero time lag.  10 

Visual stimuli and cell type identification 11 

Visual stimuli were delivered using the optically reduced image of a CRT monitor refreshing at 120 Hz 12 
and focused on the photoreceptor outer segments. The optical path passed through the transparent plug 13 
and Ames’ solution or through the mostly transparent electrode array and the retina. The relative 14 
emission spectrum of each display primary was measured with a spectroradiometer (PR-701, 15 
PhotoResearch) after passing through the optical elements between the display and the retina. The total 16 
power of each display primary was measured with a calibrated photodiode (UDT Instruments). The mean 17 
photoisomerization rates for the cone photoreceptors were estimated by computing the inner product of 18 
the primary power spectra with the spectral sensitivity of each cone type, and multiplying by the effective 19 
collecting area of primate cones (~0.6 µm2)26,27, resulting in photoisomerization rates of approximately 20 
800–2200, 800–2200, 400–900 for the long-, middle- and short-wavelength sensitive cones, respectively. 21 
The stimulus pixel size on the retina was either 41.6 microns (8 monitor pixels), 52 microns (10 monitor 22 
pixels) or 83.2 microns (16 monitor pixels). A new white noise frame was drawn at refresh rates of 60 Hz 23 
or 30 Hz. The pixel contrast (difference between the maximum and minimum intensities divided by the 24 
sum) was 96% for each display primary, with mean intensity of 50%. The white noise stimulus either 25 
modulated the three display primaries independently, or coherently, at each spatial location.  26 

In each recording, RGCs were classified into distinct types using properties of the spatial receptive field 27 
and response time course obtained from the spike-triggered average (STA) stimulus 68,28. A two-28 
dimensional Gaussian fit to the spatial receptive field was used for determining the center location8. All 29 
analyses used recordings with stable firing rates and nearly complete tiling of ON and OFF parasol cell 30 
receptive field mosaics. For Figure 3, only recordings that also had nearly complete ON and OFF midget 31 
cell mosaics were used. For model fitting, both the visual stimulus and spike times were binned at 8.33ms 32 
(120Hz), and the visual stimulus was upsampled to 8 monitor pixels, resulting in a common 80x40 pixel 33 
grid across recordings. 34 

Linear Nonlinear Poisson model 35 

The Linear Nonlinear Poisson (LNP) model consists of a linear spatio-temporal filter followed by a point 36 
nonlinearity6. A filter that is separable in space and time was used8, which is equivalent to a cascade of a 37 
spatial filter and a temporal filter. These filters were estimated for each cell in each recording as follows. 38 
First, the STA was computed by averaging the stimulus preceding spikes, over all pixel locations and 39 
250ms (30 frames at 120Hz) prior to the spike. Next, the spatial filter was computed by choosing the STA 40 
frame with the single largest pixel magnitude. The spatial filter was restricted to a rectangular window 41 
around the receptive field. The receptive field was defined as the set of pixels with absolute magnitude 42 
greater than 2.5σ, contiguous with the strongest pixel, where σ is the robust standard deviation29 of pixels 43 
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in the STA, an estimate of the measurement noise. Next, the temporal filter was identified by averaging 1 
the time course of all pixels in the receptive field. Finally, the output nonlinearity was estimated by fitting a 2 
5th order polynomial to the relationship between the observed responses and the generator signal, which 3 
was computed by filtering the stimulus with the estimated spatial and temporal filters6.  4 

For describing variation in spatial nonlinearities, subunit models were fitted using spike triggered 5 
clustering d7. Briefly, neural responses were modeled by passing the stimulus through multiple linear 6 
filters (subunits), followed by an exponential nonlinearity, and summation over the filter outputs. The 7 
temporal filtering of each subunit was assumed to be identical to the time course of the STA. The spatial 8 
filters were inferred by soft-clustering the collection of stimuli preceding a spike. To assess the degree of 9 
subunit nonlinearity, the log-likelihood of a model with five subunits was compared to that of a model with 10 
one subunit (which reduces to an LNP model).  11 

Neural network model  12 

A convolutional neural network was used to predict RGC responses across multiple recordings 13 
simultaneously. Below, the model architecture and the fitting procedure are described in detail.   14 

Notation 15 

The model 𝑓(𝑆, 𝛼! , 𝐶!), takes as its input the visual stimulus 𝑆, recording-specific information about the 16 
collection of recorded cells 𝐶!, and the recording-specific manifold location 𝛼!, and yields as its output the 17 
predictions for recording-specific response 𝑅!. 18 

The recent history of the visual stimulus is given by 𝑆 ∈ 𝑅"!×""×"#, where 𝑹 is the set of real numbers, 19 
𝑑$ × 𝑑%	are the spatial dimensions (80 x 40), and 𝑑&is the number of time bins (30). Stimuli presented at 20 
different spatial or temporal resolution were upsampled or downsampled to these dimensions.  21 

The recording specific manifold location is given by 𝛼! ∈ 𝑅', where 𝑛is the manifold dimensionality. 22 

The recording specific information about recorded cells is given by 𝐶! = {𝑥(𝑐), 𝑦(𝑐), 𝑡(𝑐)}()*
()|,$| , where 23 

each cell 𝑐 is described by its receptive location (𝑥(𝑐), 𝑦(𝑐)) in the 𝑑$ 	× 𝑑% visual space and its cell type 24 
𝑡(𝑐). For models with only two cell types, 𝑡(𝑐) ∈ {0, 1}, for ON and OFF parasols respectively. For models 25 
with four cell types, 𝑡(𝑐) 	∈ {0, 1, 2, 3}, corresponding to ON parasol, OFF parasol, ON midget, and OFF 26 
midget cell types. 27 

The responses are given by 𝑅! ∈ 𝑍-|,$|, where 𝑍+  denotes non-negative integers and |𝐶!| is the 28 
collection of cells in recording 𝑖. Responses were binned at the same resolution as the stimulus (8.33ms).  29 

Model architecture 30 

The model 𝑓(𝑆, 𝛼! , 𝐶!) passes the visual stimulus 𝑆	through a multilayered convolutional neural network, 31 
with each layer consisting of a convolution (stride 1), retina-specific normalization and a point-wise 32 
(softplus) nonlinearity (see Figure 1B). The model output is Poisson firing rate. This firing rate is used to 33 
predict the responses 𝑅!. The number of channels and filter sizes are chosen by cross-validation, as 34 
described below. Recording-specific normalization and challenges associated with predicting responses 35 
for varying numbers of cells across recordings are also given below. 36 
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Recording-specific normalization is inspired by previous work30, in which a translationally-invariant affine 1 
transformation of the layer activations adapts the model to each recording. The scale and shift 2 
coefficients for this affine transform are determined linearly from the manifold location𝛼!. Let 𝑎>(𝑥, 𝑦, 𝑙, 𝑡)be 3 
the activation after convolution at location 𝑥, 𝑦 in the channel 𝑙 of layer 𝑡. First, the mean 𝜇 and standard 4 
deviation 𝜎 across samples in a batch are computed, and used to calculate normalized activations: 5 
𝑎@(𝑥, 𝑦, 𝑙, 𝑡) = /0($,%,3,&)56

7
. Next, using the manifold location 𝛼!, a learned affine transform determines the 6 

desired mean (	𝜇@ = 𝑃𝛼! 	+ 𝑝)and standard deviation (𝜎@ = 𝑄𝛼! 	+ 𝑞 )for each layer. Finally, the 7 
normalized activations are transformed to give recording-specific activations 𝑎(𝑥, 𝑦, 𝑙, 𝑡) ← 𝑎@(𝑥, 𝑦, 𝑙, 𝑡)𝜎3,&I +8 
𝜇3,&I . Note that the retina-specific scales and shifts are the same for each location in visual space, 9 
preserving the translational invariance of convolutional networks and reflecting the homogenous response 10 
properties of the RGCs belonging to a single type.   11 

A potential challenge is that the number of recorded neurons, and hence the number of outputs of 𝑓(. ), is 12 
variable across recordings. To address this issue, the model predicts multiple response maps, one for 13 
each cell-type, with the same spatial dimensions as the visual stimulus. The response for each cell is 14 
read off from its cell location in the response map of the corresponding cell type. Specifically, 𝑓(. )outputs 15 
𝑚!(𝑥, 𝑦), which corresponds to firing rate map of cell-type 𝑖, and for a cell with type 𝑡(𝑐)and centered at 16 
𝑥(𝑐), 𝑦(𝑐), the Poisson firing rate is given by 𝑚&(()(𝑥(𝑐), 𝑦(𝑐)).  17 

Model fitting 18 

Estimation of recording-specific parameters (𝛼!)and the shared parameters are performed by maximizing 19 
the log-likelihood of observed responses, summed across all the cells, recordings and stimuli. This is 20 
performed by stochastic gradient descent, where at each step, a randomly sampled batch of stimuli and 21 
corresponding responses from a particular recording are used to update the shared and the 22 
corresponding recording-specific parameters. The batch size was 250 and the updates were performed 23 
using the Adam31 update algorithm with learning rate of 0.1. For each training retina, the first 4 min of 24 
white noise data were used for testing and the remainder was used for training. The duration of the 25 
stimulus varied from 15-90 min (median 30 min) across experiments. A model with 4 layers, 3 x 3 or 1 x 1 26 
filter size, 64 channels per layer and a 15 dimensional manifold was chosen based on cross validation 27 
and used for subsequent analysis (see Figure 1B for architecture).  28 

Variation of neural coding on the manifold 29 

The following steps were used to test if the manifold captured variations in neural response properties 30 
across recordings. First, the manifold direction that was maximally correlated to the variations of a 31 
particular response feature was identified by linear regression. Second, recordings were projected along 32 
this direction, and the Spearman rank correlation with the response property was measured. Statistical 33 
significance was measured with a permutation test, where the null distribution was generated by 34 
permuting the recordings with the manifold locations fixed. In Figure 2, the Spearman rank correlation and 35 
its statistical significance was measured for the first principal component projection of various response 36 
properties such as receptive field size (ON: 0.78, p<0.0001 ; OFF: 0.76, p<0.0001), time course (ON: 37 
0.83, OFF: 0.85; p < 0.0001), output non-linearity of the LNP model (Spearman rank correlation for ON: 38 
0.92; OFF: 0.92; p < 0.0001) and normalized auto-correlation (ON: 0.97, OFF: 0.94, p < 0.0001). The 39 
interdependence between response properties was either measured directly in raw data using Spearman 40 
rank correlation, or with the angle between the corresponding manifold directions.  41 

Differences between male and female recordings 42 
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For analysis of gender differences, only the subset of recordings (102) from one species (M. Mulatta) 1 
were used. First, the separation between male and female recordings was measured by computing the d’ 2 
value of the projection of the two distributions onto the difference in the means. The d’ value observed 3 
(~1.8) indicated that the gender based differences were not large on an individual basis. Second, a 4 
bootstrap test was performed to test whether the mean locations of the male and female recordings were 5 
statistically distinguishable. The distance between the mean manifold locations of male and female 6 
retinas was measured and compared to a null distribution of distances generated by resampling (with 7 
replacement) of the manifold locations. The null distribution was fitted with a normal distribution and the 8 
significance level was measured as the probability mass greater than the observed distance in data. 9 
Because multiple preparations were frequently recorded from the same animal, a hierarchical variant of 10 
this bootstrap test was performed, in which the resampling was performed according to the hierarchical 11 
structure of the data12, by first sampling an animal and then sampling the manifold location of one of the 12 
recordings from that animal, both with replacement. Hierarchical bootstrap is more conservative and 13 
biased towards accepting the null hypothesis12. Mean manifold locations for male and female retinas were 14 
significantly different (p<10-6 for bootstrap and p<0.05 for hierarchical bootstrap). Identical tests were 15 
applied for assessing male-female differences in firing rate and the speed of temporal filtering (p<0.01 for 16 
bootstrap and p<0.05 for hierarchical bootstrap for both quantities).  17 

Invariance of neural coding on the manifold 18 

The ability of the manifold to preserve previously reported invariances of the neural code was tested as 19 
follows. First, random manifold locations were sampled by perturbing the learned locations of training 20 
retinas with a Gaussian noise of standard deviation equal to their median nearest-neighbor distance. 21 
Second, a ~800 sec long white noise stimulus was sampled, and ON and OFF parasol firing rate maps 22 
were computed using the neural network, which was adapted using the manifold locations. Third, the 23 
Poisson firing rates for 200 cells (100 of each type) with random receptive field locations were read off 24 
from the firing rate maps. Finally, the cell responses were sampled, and used to estimate a Linear-25 
Nonlinear Poisson model, which served as an interpretable summary of neural encoding captured by the 26 
manifold location. Comparison of average receptive field size and the zero crossing time of the temporal 27 
filter revealed known invariances between ON and OFF parasols (Figure 2J, K).  28 

Estimation of the manifold location of a previously unseen retina 29 

By fixing the shared parameters after learning, and estimating the recording-specific representation on 30 
the manifold, the trained model was adapted to predict responses in a new, previously unseen recording. 31 
Based on the amount of data available, several methods can be employed to identify the manifold 32 
location (Figure 4). These methods are described below in detail. 33 

Averaging: When no data about the new retina are available, the simplest approach is to average the 34 
locations of all the retinas used for training.  35 

Approximation: This is similar to averaging, but only using the subset of training retinas with similar 36 
response properties as the new retina. For Figure 4, locations of five training retinas with the most similar 37 
autocorrelation function were used for approximation. 38 

Optimization: When light response data are available, the manifold location 𝛼!was determined by 39 
Bayesian inference. Bayesian inference combines a Gaussian prior (𝑃89!:9(𝛼) ∼ 𝑁(𝜇89!:9 , 𝜎89!:9)) over 40 
manifold locations determined from the training retinas and the likelihood (𝑃(𝑅!&	|	𝑆& , 𝛼!)) of stimulus-41 
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response data for the new retina. The posterior 𝑃(𝛼!|	{𝑆& , 𝑅!& })was maximized using gradient ascent 1 
(learning rate 0.1) :  2 

𝛼!∗ = 𝑎𝑟𝑔𝑚𝑎𝑥<𝑃(𝛼!|	{𝑆& , 𝑅!& }) 	= 𝑎𝑟𝑔𝑚𝑎𝑥< 	P
&

𝑙𝑜𝑔 𝑃(𝑅!& |	𝑆& , 𝛼!) 	+𝑙𝑜𝑔 𝑃89!:9(𝛼!) 3 

Discrimination task: Simulation of manifold location estimation in a blind person implanted with a retinal 4 
prosthesis was performed using a discrimination task. For a given visual stimulus, the task involves using 5 
the implanted retinal prosthesis to reproduce responses corresponding to two manifold locations and the 6 
subject selects the response that yields perception most closely matching a verbally described stimulus. 7 
Multiple rounds of this task are used to update the posterior on manifold locations.  8 

The discrimination task was simulated under the assumption that the perceptual difference of the 9 
responses generated by hypothetical retinas at two manifold locations 𝛼*and 𝛼= for a stimulus 𝑆 is equal 10 
to the KL-divergence between the corresponding response distributions 𝑃(𝑅|𝑆, 𝛼*) and 𝑃(𝑅|𝑆, 𝛼=). Given 11 
𝛼&9>?as the true underlying manifold location, the blind person’s feedback𝑌(𝛼&9>? , 𝛼*, 𝛼=) = 0 if  12 

	𝐷@A(𝑃(𝑅|𝑆, 𝛼*)	||	𝑃(𝑅|𝑆, 𝛼&9>?) 	≤ 	𝐷@A(𝑃(𝑅|𝑆, 𝛼=)	||	𝑃(𝑅|𝑆, 𝛼&9>?) 13 

and 𝑌 = 1 otherwise. For simplicity, sampled responses were used to compute an unbiased estimate of 14 
the KL-divergence : 15 

	𝐷@A(𝑃(𝑅|𝑆, 𝛼*)	||	𝑃(𝑅|𝑆, 𝛼&9>?) ≈ ∑B$∼D(B|E,<%) 𝑙𝑜𝑔 ( D(B$|E,<%)
D(B$|E,<&'())

).  16 

Hence, the posterior over manifold location after 𝑡 steps of the task is given by:  17 

𝑃8:F&?9!:9(𝛼	|	{𝑆& , 𝛼*,& , 𝛼=,& , 𝑌&}&)*
&)G	) 	∝ 	X

&)G

&)*

𝑃(𝑌&	|	𝑆&,𝛼*,& , 𝛼=,&)	𝑃89!:9(𝛼) 18 

where the prior is estimated from training retinas as a Gaussian distribution: 𝑃89!:9(𝛼) ∼ 𝑁(𝜇89!:9 , 𝜎89!:9).  19 

In the simulations, the visual stimulus 𝑆consisted of letters of English alphabet, flashed for 100	𝑚𝑠and 20 
preceded and succeeded by 50	𝑚𝑠of gray screen. At each step, a Gaussian approximation of the 21 
posterior 𝑃8:F&?9!:9(𝛼) ∼ 𝑁(𝜇8:F&?9!:9 , 𝜎8:F&?9!:9) was maintained, and updated using Monte-Carlo 22 
sampling. In summary, the steps for the 𝑡&Iiteration of the algorithm are as follows :  23 

1. Sample symmetric 𝛼*,&, 𝛼=,& around posterior mean:  𝛼*,& ∼ 𝑃8:F&?9!:9(𝛼); 𝛼=,& = 2𝜇8:F&?9!:9	 −	𝛼*,&. 24 
2. Sample an English letter and a target stimulus 𝑆&. 25 
3. Sample responses 𝑅*,& ∼ 𝑃(𝑅|𝑆& , 𝛼*,&); 𝑅=,& ∼ 𝑃(𝑅|𝑆& , 𝛼=,&). 26 
4. Get patient feedback 𝑌(𝛼&9>? , 𝛼*,& , 𝛼=,&), based on an estimate of the KL divergence using sampled 27 

responses 𝑅*,&, 𝑅=,&. 28 
5. Update the posterior of plausible manifold locations.  29 

a. Sample 𝑁 retina locations 𝛼! ∼ 𝑃8:F&?9!:9(𝛼) for 𝑖	 ∈ [1,⋯ ,𝑁]. 30 
b. For the set of sampled manifold locations, find the subset that matches user feedback, 31 

i.e., with 𝑌(𝛼! , 𝛼*,3 , 𝛼=,3) = 𝑌(𝛼&9>? , 𝛼*,3 , 𝛼=,3)for all 𝑙	(= 1, . . . , 𝑡)previous steps. Let this 32 
subset of be{𝛼@J}. 33 
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c. Update posterior distribution with 𝜇8:F&?9!:9 =	< 𝛼K̀ >and 𝜎2𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =	< 𝛼𝑗𝛼𝑗𝑇 >1 

	−	𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝜇𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
𝑇 .	 2 

For results shown in Figure 4F, 𝛼&9>? was set as the result of optimizing the manifold location using light-3 
evoked responses. In the simulations, the posterior distribution converged in ~20 steps, suggesting that 4 
the low dimensional manifold can be used for efficiently identifying the expected neural code in a blind 5 
person. However, the amount of noise in the simulation is probably lower compared to what would be 6 
encountered in practice, leading to a larger number of steps to identify the true manifold location and may 7 
perhaps require changes to the estimator of KL divergence and the method to update the posterior of 𝛼. 8 

Data/Code Availability 9 

The data/code that support the findings of this study are available from the corresponding author upon 10 
reasonable request. 11 
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