Abstract
We explore the link between on-going neuronal activity at primary motor cortex (M1) and face movement in awake mice. By combining custom-made behavioral sequencing analysis and fast volumetric Ca2+-imaging, we simultaneously tracked M1 population activity during many different facial motor sequences. We show that a facial area of M1 displays distinct trajectories of neuronal population dynamics across different spontaneous facial motor sequences, suggesting an underlying population dynamics code.
Significance statement How our brain controls a seemingly limitless diversity of body movements remains largely unknown. Recent research brings new light into this subject by showing that neuronal populations at the primary motor cortex display different dynamics during forelimb reaching movements versus grasping, which suggests that different motor sequences could be associated with distinct motor cortex population dynamics. To explore this possibility, we designed an experimental paradigm for simultaneously tracking the activity of neuronal populations in motor cortex across many different motor sequences. Our results support the concept that distinct population dynamics encode different motor sequences, bringing new insight into the role of motor cortex in sculpting behavior while opening new avenues for future research.
Competing Interest Statement
The authors have declared no competing interest.