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Abstract

In breeding programs, balancing short-term genetic gain and loss of diversity per generation is

essential to sustain a long-term genetic response. Depending on the dynamic of the species, the

acceptable trade-off will be different. One of the most common and successful tools to achieve this

management is the Optimal Contribution Selection (OCS), which readily mathematically formulate

the trade-off  between genetic  gain  and coancestry.  However,  OCS only  accounts for  the next

generation gain and diversity, which can lead to suboptimality given the uncertainties of random

mating and segregation. In this paper, we have extended the OCS by conveniently integrating a

way to promote certain parental pairs, so that this method can account for the next t+2 generation.

In the study case of Populus nigra, fully phenotyped and SNP array genotyped, we have shown

that  (i)  a non negligible part  of  the long-term success of  a breeding strategy depends on the

implemented mating strategy, and (ii) favoring a compensatory mating can accelerate the selection

without compromising the future diversity.

keywords : genomic selection, quantitative genetics, mating selection, simulation.

Introduction

Genomic selection (Meuwissen  et al., 2001), in spite of using more precise Mendelian sampling

terms compared to pedigree-based selection, and drastically increasing genetic response doing so,

it also accelerates the loss of genetic diversity per unit of time (Goddard, 2009; Hayes et al., 2009;

Rutkoski et al., 2015). Yet, over the past decades, a growing number of authors have emphasized

the importance of balancing loss of diversity and short-term genetic gain to sustain a long-term

genetic  response  (Brisbane  &  Gibson,  1995;  Woolliams  et  al.,  2002;  Jannink,  2010).  This  is

especially true for perennial trees, for which minimal husbandry is provided while they can face

harsh environments over a long period.
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Optimal contribution selection (or OCS) was introduced by Meuwissen (1997) as a complement to

the widely  used Best  Linear  Unbiased  Predictor  (BLUP).  BLUP conveniently  integrated family

information for increased accuracy but also led to rapid co-selection of relatives. OCS maximizes

the  genetic  gain  while  maintaining  the  inbreeding  rate  to  a  predefined  level.  It  was  originally

formulated with the pedigree-based relationship matrix (A), but nowadays it can be easily adapted

to the genomic relationship matrix (G). Its simplicity has made it today one of the most successful

strategies to address the problem of selection-induced loss of diversity (Meuwissen et al., 2020).

Furthermore, its flexibility has facilitated countless extensions. As a non-exhaustive illustration of its

potential, De Beukelaer (2017) extended OCS for different measures, such as heterozygosity, or

the criterion of Li et al. (2008); Gebregiwergis et al. (2020) incorporated an alternative formulation

of the genomic relationship matrix via QTL and markers; and some authors even attempted to

combine  it  with  mating  (Varona  &  Misztal,  1999;  Toro  &  Varona,  2010;  Vitezica  et  al.,  2013;

Akdemir & Sánchez, 2016).

Mating selection also addresses the long-term dynamics, but on a different timescale than OCS, by

controlling  homozygosity  in  the  next  generation,  or  equivalently  inbreeding  at  generation  t+2.

Softening selection on this  expanded timescale is of  particular  interest  in breeding in  order to

reduce the so-called  and undesired Bulmer  effect  (Bulmer,  1971).  Therefore,  by their  different

timescales,  OCS  and  mating  selection,  although  incompatible  in  their  formulations,  might  be

complementary (Akdemir & Sánchez, 2016; Yoshida et al., 2020). Some sort of mating selection

could be useful for perennials where production plantings consist  of elite clones resulting from

selected crosses. We have therefore attempted to combine OCS and mating selection with an

alternative formulation of  the genomic relationship matrix.  However,  planning mating strategies

raises some operational issues,  and we need simple solutions that  impose mating without the

operational constraints.
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The twofold challenge of this article, as an extension of the classic OCS, is to (1) devise a way to

make OCS promote the likelihood  of  useful  matings,  while  (2)  avoiding the need  to  explicitly

optimize the mating allocation. To do so, following the approach of Gebregiwergis et al. (2020), we

explored alternative ways of constructing the genomic relationship matrices to help OCS account

for  coancestry at  the t+2 or higher generation.  We believe that  studying these questions,  and

finding a way to incorporate mating into OCS could lead to a methodology that allows for higher

selection plateaus (Jannink, 2010) in a long term breeding program. First, we have developed a

deterministic algorithm that can solve both classic OCS and any of its extensions. We have then

applied our method to the case study of selection in a population of Populus nigra L. (Salicaceae),

to show by simulations that a multi-generation breeding program can achieve higher performances

than with a classic OCS, for a certain range of parameters. Finally, we have shown that, among all

the possible ways of constructing the genomic relationship matrix, the best overall strategy in our

comparison is to favor mating similar to the so-called compensatory mating (Santiago & Caballero,

1995; Sánchez et al., 2006).

Methods

Optimal contribution selection

Genetic contributions are the cornerstone of OCS. The two opposing items in the optimization of

selection in OCS, gain and diversity, can be formulated according to the same decision variable,

genetic contribution. The genetic contribution can be defined as the proportion of genes from a

given ancestor that  are present  in a given cohort  of  descendants.  More generally,  the genetic

contribution of  an individual is its proportional contribution to the gene pool of the descendant

population  (Woolliams  &  Mäntysaari,  1995).  In  our  case,  when  considering  non-overlapping

generations, the genetic contribution of a given parent would simply be its proportional contribution

to the offspring of the next generation. We denote c the vector of N genetic contributions, with N

being the size of the parental population. Defined as such, ∑ ci = 1.

4

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 18, 2021. ; https://doi.org/10.1101/2021.02.15.431233doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431233
http://creativecommons.org/licenses/by-nc-nd/4.0/


With the knowledge of Y the vector of parental breeding values and A the numerator relationship

matrix between parents (or G the realized genomic relationship matrix), it is possible to formulate

the  expected  future  performance  or  inbreeding  coefficient  of  the  population  as  cTY  (cY  for

simplicity) or as ½ cTAc respectively (or cTGc when using the genomic relationship matrix; cAc and

cGc  for  simplicity).  Deriving  optimal  selection  decisions  simultaneously  accounting  for  future

performance and future inbreeding is then possible through OCS, using genetic contributions as a

decision variable. One of the simplest formulations of such a problem is to solve min. cY − λ cGc

(see Woolliams  et  al.,  2002 and references therein).  It  is  important  to  note  that  the weighted

average  of  cTAc  (or  cTGc)  represents  the  expected  inbreeding  assuming  panmixia  or,  more

precisely,  uniting  in  a  full  diallelic  way  all  parents  while  respecting  each  parental  c.  This

corresponds to the best expectation for inbreeding when the mating regime is unknown or not

under the control of the breeder, which is often the case when, for example, matings are allowed to

follow an open pollination regime as in a seed orchard.

As  can  be  demonstrated,  cGc  is  proportional  to  ||  f  -  0.5  ||,  where  f  is  the  vector  of  allelic

frequencies in the next  generation,  and ||.||  the l2-norm. Therefore,  minimizing cGc makes the

resulting frequencies tend toward 0.5, which is the furthest point from fixation. As selection over

cycles tends to accelerate the change of frequencies when they are intermediate, i.e. when the

variances  are  at  the  highest  levels,  the  risks  of  loss  of  favorable  alleles  by  hitchhiking  the

alternative detrimentals would also increase (Sánchez et al., 2006). By maintaining frequencies at

intermediate  levels,  OCS would  reduce  this  risk  with  potentially  a  slower  fixation  of  favorable

alleles, but overall benefits over the long-term genetic gain.

OCS and convexe optimisation

Originally,  Meuwissen  et  al. (2001)  formulated OCS as the maximization  of  genetic  gain  (cY)

subject to a constrained inbreeding coefficient (cAc). Likewise, it is also possible to minimize the

inbreeding rate while  constraining the genetic  gain (Akdemir  &  Sánchez,  2016).  Choosing the

adequate constraint  is  critical  for  populations never confronted to OCS. The methodology was
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primarily devised with long-term domesticated populations in mind, where records of change in

inbreeding and genetic  gain  are  typically  known over  several  cycles,  facilitating  the choice of

constraints. In the absence of historical references, for novel species, a gradient of constraints

would need to be evaluated a priori. In this sense, a holistic approach allowing visualization of the

optimized function over a wide range of scenarios would be preferable as a start.

Following  the  approach  of  Akdemir  et  al.  (2019),  we  considered  OCS  as  a  multi-objective

optimization,  where  gain  and  diversity  are  improved  simultaneously,  i.e.  maximizing  gain  and

minimizing coancestry,  by pondering weights that  set  the balance between the two items. The

solutions  of  a  multi-objective  optimization,  called  Pareto  optima (Figure  S1),  delineate  a  two-

dimensional curve.

Optimizing in two dimensions (genetic gain and coancestry) does not have the same meaning as

optimizing  in  one  dimension  with  constraints.  Mathematically,  multi-objective  optimization  (or

minimize (cGc, -cY) ) is equivalent to the scalarized version of the problem: minimize λ cGc - cY for

any λ > 0. The scalarized problem has a unique global solution since the objective function is

strictly convex (G is positive definite, as shown below). In other words, the curve of Pareto optima

is the parametric curve, as a function of λ, of solutions minimizing λ cGc - cY. It is therefore the set

of (c*Gc*, c*Y), where c* is the optimal contribution vector for a given λ. Without loss of generality,

we consider the scalarized problem parameterized by α such that the problem becomes:

min. α cGc − (1 − α) cY  (1)

where α  [0;1] can be interpreted as the tradeoff value between coancestry and genetic gain (or⋲

the weight of coancestry compared to that of genetic gain).
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Each  OCS solution  given  a  constraint  (as  in  Meuwissen  et  al.,  2001)  is  a  particular  Pareto

optimum, or,  in other words, is the solution of  the scalarized problem for  a particular  α (if  the

constraint is not ill-formulated, i.e.  not out of range). Choosing a value for α is as arbitrary as

choosing a value for a constraint when there is no a priori, but at least the range of α is known, and

its interpretation is biologically intuitive : α is the quantification of the tradeoff between genetic gain

and diversity. Different selection scenarios can then be compared by varying a single parameter.

We  have  furthermore  added  some  operational  constraints  to  the  multi-objective  problem:  the

contributions must be larger than 0 to have a biological meaning but smaller than 0.5 to avoid

selfing (0 ≤ c ≤ 0.5), and the sum of all contributions must be equal to 1 (1T.c = 1). The constrained

scalarized problem for a particular value of α is a constrained quadratic programming and can

therefore be solved deterministically with an interior point method, adequate to solve constrained

convex optimization (Boyd et al., 2004). The algorithm used here (coded in R − version 3.6.3) is

available on github (https://github.com/mathieutiret/ocs_solve.git).

Different genomic matrices

Let X be the matrix describing the genotypes of the population, with L rows (number of markers)

and N columns (number of individuals). The two homozygous states are encoded as −1 and 1, and

the heterozygous state as 0 (as in VanRaden, 2008). The realized genomic relationship matrix is

then formulated as G = XTX (N x N matrix). Note that the elements of X are not corrected by minor

allele frequencies,  nor should the resulting G be scaled by the expected heterozygosity,  as is

usually done for genomic estimation. Therefore, the diagonal elements of G provide information on

the number of homozygous loci per individual, while the off-diagonal elements reflect the number

of  homozygous  states  shared  by  individuals  across  loci.  Thus,  for  off-diagonals,  the  same

homozygous state at a given locus adds one unit to the count, while one unit is subtracted for

opposite homozygous states (not accounting for heterozygote by heterozygote, pointed out by Gao

& Martin, 2009), producing overall large values for pairs with resembling parents and small values
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for pairs with genetically distinct parents. For illustration, the matrix multiplication for one locus was

summarized in Table S1.

We can see G as a penalty matrix when used to minimize the future population coancestry (or

cGc). Some parental combinations will be penalized, such as the pairs comprising parents with the

same homozygous state (1 in Table S1). Likewise, some pairs will be promoted, such as those with

distinct  homozygous states (-1  in  Table  S1),  as they  will  produce heterozygous offspring  It  is

possible to generalize how different pairs contribute differentially to future diversity, as summarized

in Table 1. In this generalization, β and γ range from -1 to 1, respectively weighting heterozygous x

heterozygous (He x Ho) pairs, or heterozygous x heterozygous (He x He) pairs. He x Ho pairs

were called compensatory matings in previous studies when involving a selected QTL (Caballero

et al., 1996; Sánchez et al., 2006). A high value of γ penalizes pairs of heterozygous candidates

such that they would not be promoted among the selected parents and their likelihood of mating be

consequently reduced. Playing with γ and β makes it possible to influence the mating strategy by

pondering  different  states  among  the  contributing  parents  according  to  their  future  impact  on

diversity. Hereafter, we denote G* the matrix constructed according to Table 1, with G* = G + β Q +

γ W, Q being the matrix accounting for heterozygous x homozygous loci and W accounting for

heterozygous x heterozygous loci, as G account for homozygote loci (details in Supplementary

materials).

Table 1. Generalization of the genomic relationship matrix for one locus, with parameters β and γ,

both  ranging  from  -1  to  1,  weighting  respectively  heterozygous  x  homozygous  pairs,  or

heterozygous x heterozygous pairs.

parents − 1 0 1

− 1 1 β − 1
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0 β γ β

1 − 1 β 1

One might notice that, for one single locus, He x He pairs are different from He x Ho in terms of

resulting diversity at the generation t+2. G does not distinguish between these matings, although

G* could. An alternative construction to correct this drawback would involve weightings resulting in

relatedness among the offspring equal to the Jacquard distance, which would correspond to β =

0.25 and γ = 0 in G*. The allele sharing distance of Gao & Martin (2009) offers another alternative

construction for G*.

In addition, we can derive that (details in Supplementary materials) :

cTG*c = cTGc + β cTQc + γ cTWc = cTGc + β 2HeTHo + γ HeTHe, (2)

where He is the vector (of size L) of the proportion of heterozygous individuals contributing to the

next generation for each locus, and Ho the equivalent for homozygous individuals. We can see

from this equation that controlling β and γ allows us to change the frequency of the carriers of

favorable genotypic states, which in turn would favor the occurrence of certain crosses increasing

the  segregation  of  diversity,  for  instance  by  promoting  double  heterozygous  pairs  over

homozygous  x  heterozygous  pairs.  Such  extra  segregation  could  intuitively  allow  for  a  more

sustainable genetic progress over the long term, without the risk of hitchhiking. It is important to

note that using alternative G* in OCS is not intended as a mating selection  per se since OCS

focuses  on  contributions  per  individual,  but  rather  as  a  strategy  for  managing  sustained

heterozygosity.
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For  the  objective  function  to  be  strictly  convex,  G*  must  be  positive  definite.  Therefore,  we

performed a spectral projection of G* on the set of positive definite matrices, ensuring that the

projected matrix is the closest positive definite matrix to G* (according to the spectral norm; Boyd

et al., 2004). We will from here onward denote the projection of G* as G* itself to ease the reading.

Other  approaches  to  handle  mating  such  as  Minimum  Coancestry  Mating  (Sonesson  &

Meuwissen, 2000) were proposed, but additional steps on top of OCS makes it computationally or

mathematically demanding, whereas modifying the genomic relationship matrix directly and easily

modifies how OCS behaves and impacts matings.

Genomic data

The population used in the study included 1009 individuals from the French breeding population of

Populus nigra (Pégard et al., 2020). All of them were genotyped with a 12k Infinium array (Faivre-

Rampant  et al., 2016) resulting in 5253 usable SNP markers after quality and frequency filtering

(minor allele frequency higher than 0.05). The resulting genotypes were phased, imputed and a

consensus  recombination  map  derived  (Pégard  et  al.,  2019)  by  using  FImpute  software

(Sargolzaei  et al., 2014). The allelic effects were estimated from a genomic multitrait evaluation

using breedR (Muñoz & Sanchez, 2020). In this study, we considered the trunk circumference as a

focal trait.

Poplar is a dioecious species. Sex, however, cannot be determined before seven years of age, nor

can it be predicted from the genomic profile yet. For the prospections in the study, and to overcome

the missing sex of  unsexed candidates,  we assumed a monoecious population.  However,  our

method could be easily extended to dioecious populations by adding one simple constraint : dTc =

0.5, where d is a design vector indicating the female/male individuals.

Due to the arbitrary sampling of poplar individuals required for breeding purposes, the dataset

used  here  was  strongly  structured  (Figure  S2).  In  order  to  check  for  possible  effects  of  the

structure, in addition to the original dataset, we considered another dataset in which we shuffled
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the  alleles  at  each  locus  so  that  the  allele  frequencies  remained  unchanged,  while  linkage

disequilibrium could be removed.

Simulation pipeline

We  considered  different  simulation  scenarios,  assuming  different  values  of  α,  β  and  γ.  We

simulated multi-generation breeding schemes of a constant population size N at each generation,

and the parameters (α, β and γ) remained constant across generations within a given scenario. No

introgression of external genetic material was considered here. As mentioned above, we estimated

the allelic effects from the genotype data with a real phenotype (trunk circumference). The resulting

allelic effects were considered “true” and constant across generations, and used to obtain the True

Breeding Value (TBV) of the newly simulated candidates.

When simulating  multi-generation  breeding  programs,  the  question  arises  as  to  how genomic

estimated breeding values (GEBVs) should be assessed at each new virtual generation. Due to the

strong demand for computing resources, we mainly considered the case of heritability h2 = 1, that

is GEBVs equal to TBVs. However, we considered a smaller set of simulations for the case of h2 =

0.66,  with  only  α varying (β and γ fixed to 0).  In  this  case,  the newly  generated phenotypes

underwent a normally distributed perturbation of mean 0 and variance (1 − h²)σg
2, where σg

2 was

the TBV variance. At each generation, as was done in Jannink (2010) and De Beukelaer  et al.

(2017), GEBV was assessed with a ridge regression model (Searle 2006), without including all

previous generations in the genomic evaluation (which would have been done in a real evaluation).

The precision therefore became gradually smaller over generations.

OCS was then applied at each generation on the simulated GEBVs, and the resulting contributions

were converted into a random mating plan that fits the OCS solution. Finally, with the mating plan,

we simulated the next generation with an ad hoc program (written in C++17 and available on

github at https://github.com/mathieutiret/meiosis.git).
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Every  simulated  replicate  proceeded  for  20  (non-overlapping)  generations,  and  was  devised

without mutation. The simulation followed a grid of parameters: α ranged from 0.1 to 0.9 (with steps

of 0.1), β ranged from − 1 to 1 (with steps of 0.5), and γ ranged from − 1 to 1 (with steps of 0.5).

Each parametric setting was simulated 100 times. In order to compare the results from different β

and γ, we also computed for each simulation the “true” coancestry, which is the coancestry the

population would have if β and γ were equal to 0.

Statistical analyses

Finally, in order to determine the relative importance of the factors α, β and γ on the genetic gain

and  coancestry  (through  an  analysis  of  variance)  at  a  given  generation,  we  considered  the

following statistical model:

Y ~ α + β + γ + α2 + e,

where Y is the output variable (either genetic gain or true coancestry), α, β and γ the simulation

parameters treated as fixed effects, α2 the squared parameter of α, and e the residual fitted to a

normal distribution. We consider here a polynomial regression (quadratic term α2) as there could

be some symmetrical boundary effects of α upon Y. We will hereafter refer to this as model (1). In

some cases however, we focused on a given value of α, in which case we considered the following

model:

Y ~ β + γ + e,

with equal notations and assumptions as model (1). We will hereafter refer to this as model (2).

These  two models  were analyzed  using  R -  3.6.3  (functions  lm and  anova from the base R
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package  stats). We considered a Type I analysis of variance for polynomial regression, and the

statistical significance of each factor was assessed with a Fisher’s F-test. 

Results

Overall evolution of genetic gain and coancestry met common expectations

In this section, we only studied the effect of α, considering β and γ both equal to 0, corresponding

then to the classical formulation of OCS. As expected, the average value of both genetic gain and

coancestry increased over time (Table 2). Moreover, and also as expected, the increases in genetic

gain and coancestry were more pronounced for lower α. Different heritabilities led to a different

average genetic gain after twenty generations: 161.8 ± 4.2 when h2 = 1, and 148.7 ± 4.9 when h2 =

0.66. When looking at the ratios between changes in coancestry and changes in genetic gain over

the studied period (in other words a measure of the cost of diversity per unit of genetic gain), it is

clear that increases in α reduced the impact of genetic gain on diversity accordingly. In the extreme

with the highest α, producing genetic gain has no perceptible cost in coancestry. Such efficiency

was most evident when raising the heritability levels. This result is again expected, corroborating

that selection is more efficient when the heritability of the trait is higher.

Table 2. Average values, standard deviations and coefficients of variation (CV, in percentages) of

genetic gain or coancestry depending on the heritability, at generation 1 and 20, with β = γ = 0.

genetic gain coancestry

h2 = 0.66 h2 = 1 h2 = 0.66 h2 = 1

t = 1 t = 20 t = 1 t = 20 t = 1 t = 20 t = 1 t = 20

α = 0.1 μ 42.1 148.7 44.6 161.8 0.3 1.0 0.3 1.0
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σ 1.2 4.9 0.1 4.2 0.03 0.01 0.0001 0.01

CV 3.0 3.3 0.2 2.6 8.5 1.0 0.1 0.9

α = 0.9

μ 34.2 103.0 35.3 118.3 0.2 0.2 0.2 0.2

σ 0.3 1.8 0.11 2.1 0.0004 0.002 0.0001 0.003

CV 1.0 1.8 0.32 1.75 0.2 1.36 0.07 1.70

There is, however, no expectation regarding the genetic gain and coancestry variances, since OCS

formulates its objective function and constraints in terms of expected values, not of variances.

Nevertheless, simulations showed a consistent increase in the variance and coefficient of variation

(CV) for genetic gain over time (Table 2). As for coancestry, the variances also increased, except

for  the combination h2 = 0.66 and α = 0.1,  where both the variance and CV decreased.  The

increases in variance for both genetic gain and coancestry were less pronounced for α = 0.9 than

for α = 0.1 (Table 2), suggesting that the risk associated with a targeted genetic gain was better

controlled when restricting coancestry.  Finally,  in  the long run,  variances and CV were similar

between  different  values  of  heritabilities,  suggesting  that  even  with  a  perfect  heritability,  the

variance eventually  increases.  It  can be noted,  however,  that  the variances and CV remained

overall low (CV < 10%).
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Trading genetic gain for diversity decreases short-term genetic gain, but increases long-

term gain

In this section, we studied the evolution pattern of genetic gain and coancestry in the case of β and

γ equal to 0, on the shuffled dataset, as it is the case for “classic” OCS.

Short-term vs long-term genetic gain. Different long-term horizons of genetic gain were reached

depending on the value of  α when h2 = 1 (Figure 1).  In  the relatively  short-term, less than 6

generations, the achieved genetic gain decreased with increasing α. Eventually, in the longer term,

the optimum α for genetic gain shifted from lower values to intermediate and then higher values of

α. At the highest horizon, the lower the value of α, the lower the plateau of genetic gain, or the

sooner the bend marking the start of the plateau. Such a plateau has already been described in the

literature for OCS (Jannink, 2010; De Beukelaer  et al., 2017), indicating a trade-off between the

short and long-term horizons when setting the importance of gain versus diversity. When h2 = 0.66

(not shown), the increase in genetic gain over time was slower than when h2 = 1, with no view of

the bend preceding the plateau: as stated above, the increase in genetic gain is slower for smaller

heritabilities.

Figure 1.  Evolution over time of coancestry (left panel) or genetic gain (right panel), for different

values of α (dark blue for α = 0.1, light blue for α = 0.9), with β = γ = 0, and h2 = 1.

Short-term vs long-term coancestry. The parameter α also had a strong effect on the pattern of

evolution of coancestry when h2 = 1 (Figure 1). The optimum α for coancestry (i.e. α = 1) did not

change across generations, i.e. the same ranking of α according to coancestries occurred for all

generations.  The  most  relevant  feature,  however,  is  that  the  change  in  coancestry  between

extreme values of  α was larger than those observed for  gain.  In the long term (at  generation

twenty), coancestry increased by 448% when α shifted from 0.9 to 0.1 (Table 2). In the same time

horizon and over the same shift of α, genetic gain had only increased by 37%. Such a difference in
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scale of response between gain and coancestry is clear even at the first generation of application

of OCS. When observing the Pareto function (Figure S1), depicting the best trade-offs between

gain and coancestry across the range of α, it is clear that there is potentially a substantial reduction

in coancestry with minimum costs in gain whenever α is set between zero and intermediate values

(α < 0.5). The difference between h2 = 1 and h2 = 0.66 was significant for genetic gain (all  p <

0.05/180, Student’s t-tests with Bonferroni correction for 180 tests), while it was not for coancestry

(only 58 Student’s t-tests showed a p-value < 0.05/180).

The effect of α as the most explanatory factor after a long run

After one generation of OCS. Model (1) showed strong adjusted coefficients of determination for

both genetic  gain (r2 =  0.86) and coancestry (r2 = 0.95) (Table S2 and S3,  respectively),  thus

suggesting a strong explanatory power of the parameters α, β and γ. Likewise, in the small dataset

with h2 = 0.66 (β and γ fixed to 0), model (1) showed strong coefficients for both genetic gain (r2 =

0.96) and coancestry (r2 = 0.96).

The proportion of the sum of squares varied across parameters, ranking α as the most explanatory

factor for both genetic gain (76.8%) and coancestry (78.2%). β had a weak effect on both genetic

gain (4.0%) and coancestry (0.07%), showing that weighting pairs according to their impact on

segregation is  not  efficient  for  controlling the population in the very short-term. Comparatively,

effects  of  γ  were  small  for  both  genetic  gain  (1.4%)  and  coancestry  (0.07%).  Knowing  that

controlling mating only has an effect on a population at generation t+2, β and γ were expected to

have small effects, as confirmed by these simulations: their effect is expected to be relevant in the

subsequent  generations.  Quadratic  coefficient  of  α  did  not  have  a  strong  sum of  squares  for

genetic  gain  (4.0%),  but  rather  large for  coancestry  (17.1%),  making the coefficient  α  explain

95.3% of the total variance: in the short-term, α is the main predictive and explanatory factor.
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After  twenty  generations  of  OCS.  Model  (1)  still  showed  strong  adjusted  coefficients  of

determination  for  both  genetic  gain  (r2 =  0.79)  and  coancestry  (r2 =  0.93).  For  genetic  gain,

quadratic α was the most explanatory factor, followed by α causing the joint sum of squares of α to

be equal to 63% (21% + 42%; Table S2). Likewise, for coancestry, the effect of α was the most

explanatory factor,  with the joint  sum of  squares equal  to 91.5.3% (91.3% + 0.2%; Table S3),

suggesting  that  the  overall  population  dynamics  (genetic  gain  and  coancestry)  is  mostly

determined by α. From generation one to twenty, the effect of β increased from 4.0% to 15.9% for

genetic  gain,  and increased from 0.07% to  1.4% for  coancestry:  its  effect  converged towards

intermediate values for genetic gain and remained low for coancestry, showing that He x Ho pairs

had a lesser but still not negligible role in the population dynamics. The effect of γ decreased to an

even smaller value for both genetic gain (0.007%) and coancestry (0.01%), corroborating the fact

that He x He pairs are negligible for the population dynamics. Overall, in the long run, α was the

predominant effect, with β coming second, and a negligible effect for γ. As for the small dataset

with h2 = 0.66, model (1) showed strong adjusted coefficients of determination for both the genetic

gain (r2
adj = 0.99) and coancestry (r2

adj > 0.99), showing that even with a weaker heritability, α was

still a strong explanatory factor of the long-term population dynamics. Similar results have been

shown in previous studies (see Clark et al., 2013).

Compensatory matings as the most efficient mating strategy

In  this  section,  we finally  studied the influence of  all  the parameters,  α,  β  and γ,  on a multi-

generation OCS, on the shuffled dataset, with a single value of heritability (h2 = 1). Each parametric

combination was kept constant across generations for a given set of parameters. It is important to

remember that β weights the importance of He x Ho pairs in G* (higher β, lower importance), while

γ weights the importance of He x He pairs (higher γ, lower importance).

Negligibility of He x He pairs. Model (2) showed a much stronger effect of β on both genetic gain

and coancestry than γ (Figures S3 and S5). For high values of α (α > 0.4), the proportion of genetic

gain variance explained was much higher for β (> 30%) than for γ (< 5%), again suggesting a
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stronger effect  of He x Ho pairs on genetic gain than He x He pairs (Figure S4).  Indeed,  the

estimated values of β were increasingly negative as α increased, corroborating that favoring He x

Ho pairs (negative β) improves genetic gain. On the other hand, the estimates of γ remained close

to 0, showing its negligibility. Likewise, for coancestry, β had a higher explanatory power (> 70%)

than γ (< 10%, Figure S6). The effects of β increased as α increased, showing that favoring He x

Ho pairs (β < 0) would enable to maintain a lower coancestry.

Advantage of semi compensatory mating. After twenty generations, the performances in terms

of genetic gain or (true) coancestry were different according to α and β (Figure 2). For low values

of α (< 0.5, i.e. promoting the maximization of genetic gain over the minimization of coancestry),

both  genetic  gain  and  coancestry  were  strongly  influenced  by  α,  but  only  negligibly  by  β,

suggesting that when genetic gain is the main driver of OCS, information about preferential pairs

does not allow further improvement in performance in the breeding system. However, for larger α

(> 0.5, i.e. promoting the minimization of coancestry over the maximization of gain), favoring He x

Ho pairs (β < 0) or no mating (β = 0) resulted in best performances, i.e. a higher genetic gain for a

given value of (true) coancestry. More precisely, the apparent Pareto function is upwardly bounded

by β = 0 and β = -0.5, and this is even more clear when α tends towards its maximum value,

suggesting that optimality is between the “no mating” strategy and the semi-compensatory mating.

It can be noted that full compensatory mating (β = -1) is suboptimal, detached from the Pareto limit,

compared to the previous two strategies. The results thus suggest that β has a significant role

when coancestry is the main driver of OCS. In this case, promoting the He x Ho pairs could be as

favorable as none, both situations being on the Pareto curve.

Figure 2. Coancestry versus genetic gain, at generation 20, for different values of α (dark blue for

α = 0.1, light blue for α = 0.9) and β (circle for β = -1; triangle for β = -0.5; square for β = 0; cross

for β = 0.5; and square crossed for β = 1), with γ = 0 and h2 = 1. Coancestry on the x-axis is the

true coancestry, meaning that it is computed assuming that β = γ = 0.
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However,  considering an alternative way of  assessing the potential  of  a  breeding program by

measuring  the  GEBV of  the  population  from favorable  alleles  that  are  not  fixed  yet,  the  two

alternatives with a “no mating” strategy (β = 0) and the semi-compensatory mating (β = -0.5) can

be ultimately distinguished (Figure 3). For α < 0.5, β = 0 is the best strategy with a slightly higher

genetic potential over counterparts. As α increases beyond 0.5, however, the average GEBV gets

progressively higher for β = -0.5, meaning that, while the two alternatives are equally on the Pareto

curve, semi-compensatory mating keeps a higher potential of genetic gain, potentially ensuring a

higher selection plateau.

Figure  3.  Boxplots  of GEBV,  at  generation  20,  for  different  values  of  α  and  β,  when  only

considering alleles that are not yet fixed, with γ = 0 and h2 = 1.

Discussion

Long-term strategy in breeding programs

In a multi-generation breeding program, being able to select favorable alleles with little losses due

would be the most desirable feature. Drift often occurs through unwanted genetic hitchhiking when

favorable  and  unfavorable  alleles  are  trapped  by  limited  sampling  in  continuous  segments  in

linkage disequilibrium. There is therefore always a risk of loss as recombination might not be able

to cope with the pace of selection and sampling generating the unfavorable linkage. One way to

render recombination more efficient without slowing down the selection process would be to favor

the pairing of candidates with a high potential for segregation in the offspring. It can be done more

or less explicitly. One of the classical approaches, as shown in previous works (Jannink, 2010; De

Beukelaer et al., 2017; Allier et al., 2019), consists in accounting for diversity through the tradeoff

parameter α, where diversity among candidates is modeled through relatedness or coancestry.

This weighted approach, or the constrained formulation, can enhance the selection plateau, but
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often at the cost of slowing down the rate of progress. When such a perspective is applied to late

maturing perennials, the cost in time for slow progress becomes a heavy drawback.

Another  alternative  to  accelerate  breeding  without  the  drawback  of  drift  is  to  minimize  the

uncertainties concerning the consequences of selection decisions, so that decisions can be based

on sounding predictions of the impact of selection on future generations. A way of doing this is to

account  for  the mating regime between candidates,  which is typically set  at  random for  OCS.

Explicit consideration of mating has proven to be a successful alternative (see Akdemir & Sánchez,

2016),  although often computationally  demanding and not  deterministically solvable,  except  for

regular, very specific schemes based on a “round-robin” handling of reproductive roles and genetic

contributions (Sánchez et al., 2003). We tried a different, simpler approach here, by tweaking the

OCS to implicitly reflect the choice of pairs: we obtained better long-term performances and the

problem is  deterministically  solvable.  We have shown that  modifying the genomic  relationship

matrix could be an easy solution with a satisfying compromise between high performance and

doability.

When focusing on genetic gain (low α), the best modification of the genomic relationship matrix

was undoubtedly none (β = γ = 0), meaning that no mating plan can counterbalance the effect of

drift. However, when considering higher α, the best modification was when we favored He x Ho

pairs (lower β). Such pairs can be seen as a kind of compensatory mating, and they have already

been  described  as  performing  alternatives  when  it  comes  to  minimize  hitchhiking  effects  in

selected  populations  (Caballero  et  al.,  1996;  Sánchez  et  al.,  2006).  Our  work  suggests  that

benefits of compensatory mating come from maintaining a high selective potential among not yet

fixed alleles (Figure 3).
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Mating (β and γ) as a nested effect of diversity (α)

In the OCS formulation, α remains the most important factor determining gain and diversity in the

population dynamics over generations. In its classical formulation, i.e. β and γ equal to zero, OCS

has become one of the most efficient strategies with a combination of genetic gain and coancestry

making the very edge of the Pareto optimum, as expected. When allowing for different weightings

for the breeding pairs through the extra parameters β and γ, it was clear that pair choice had also a

non-negligible role that increased in importance over generations (Tables S2 and S3), both for

genetic gain and coancestry. Mating, seen through the implicit formulation derived here, was then

the second most important factor in the optimal outputs. We could safely conjecture that through

an explicit  formulation such importance could be further enhanced,  although it  would probably

remain second to the effect of α, as already pinpointed by Toro & Varona (2010).

For a given α, and notably for the highest values, β modulated the genetic gain over generations in

a direct  and conspicuous manner (Figure 2):  promoting He x Ho pairs  (i.e.,  β < 0)  increased

genetic gain, while penalizing He x Ho pairs (β > 0) decreased genetic gain. Increasing genetic

gain usually means: (i) a lower genetic (and genic) variance after selection, (ii) a higher level of

fixation of favorable alleles, which constitutes the matter making up genetic gain, and (iii) a higher

level of negative linkage disequilibrium covariance due to the Bulmer effect (Bulmer, 1974).

Therefore, the extra gain obtained from β < 0 could come from using more efficiently the genic

variance, resulting in more depletion compared to that of higher β levels (Figure S7), and thus

converting  this  available  variation  into  favorable  allele  fixation,  or  likewise  unfavorable  allele

elimination. Compared to β = 0, β = -0.5 was always on the side of the Pareto curve with higher

coancestry (and gain). Promoting He x Ho pairs, which could theoretically boost segregation in

descendants more than any other combination, could be the source of the extra genetic variation

that  is  made  available  favorably  for  selection  under  β  <  0.  On  the  other  hand,  promoting

segregation across loci could be a source of linkage disequilibrium generating negative covariation
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of effects, as the chances of uniting alleles of opposing effects across neighboring loci could be

increased and further boosted by selection. Such a tendency is clearly shown in Figure S8.

When looking at the opposite extreme, when β > 0 and notably at β = 1, genetic gain is lowest

while the levels of genotypic covariance due to linkage disequilibrium are soon recovered from

initial Bulmer effect depression and reached the highest values (Figure S8). We can confidently

assume that selection was weak with β = 1, leaving available variance unused. A substantial part of

the genotypic  variance is inflated due to positive linkage disequilibrium, which means that  the

underlying  genic  variance  is  not  that  high.  This  is  confirmed partially  by  Figure  S7  on  genic

variance, notably for the extreme case of β = 1.

If He x Ho are penalized with β = 1, we could suppose that other pairs like Ho x Ho get promoted

instead, and the fact that positive linkage disequilibrium is present would mean that genotypes

concentrate either favorable homozygotes or unfavorable homozygotes. This situation, or when the

genotypic  variance  is  higher  than  the  genic  variance,  is  potentially  favorable  for  selection  to

discriminate efficiently between favorable and unfavorable alleles, the extreme case being that of

sublines or lineages with selection proceeding between them. This potentiality, however, did not

materialize in better gains for β = 1, suggesting that there is a cause of inefficiency preventing

selection from using that  advantage.  One such cause could be the fact  of  having unfavorable

alleles segregating in the population with a risk of fixation, dragging gain downwards. The analysis

on effect of selection and drift − that is, the accumulation of favorable allele and loss of unfavorable

allele, or respectively the accumulation of unfavorable allele and loss of favorable alleles (Figure

S9) − was not conclusive. They are surprisingly equivalent, almost symmetrical, suggesting that

selection  has no advantages over  drift,  and whenever  favorable  alleles  get  fixed,  unfavorable

counterparts get fixed on the way.

Variance in OCS equation

The main challenge of OCS lies in the management of stochasticity: the objective function, as

stated above,  is  formulated with expected values,  and not  with variances,  thus neglecting the
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variability caused by the uncertainties of random mating and the Mendelian sampling. This causes

stochasticity  around predicted Pareto optima,  even more pronounced when considering a low

heritability. In that latter case, selection precision is expected to be low, giving higher chances to

drift to lower the selection plateau.

Introducing variability in  the parameter could also be desirable in  the case of  multi-generation

breeding, such as considering different values of α, β and γ for each generation, depending on the

current state of the population. For instance, considering a high value of α (high diversity) could be

important at the very short term to prevent losses of favorable alleles in low frequency, but once

the Bulmer effect is absorbed by recombination, it could be safely to switch to a more aggressive

strategy such as with lower values of α, and semi compensatory mating (β = -0.5). Preliminary

works  showed  indeed  that  a  decreasing  α  along  the  generations  brings  better  long-term

performances. Differential selection over generation is therefore a field worth investigating, and

warrants further studies.

One potential source of uncertainty in our study could be the limitation of the evaluation population

to  the  current  and  the  previous  parental  generation  in  order  to  simplify  and  speed  up  the

simulations. To some extent, such a constraint could have favored the scenarios with higher α,

which were less affected by evaluation errors (data not shown). Indeed, they provided a wider

diversity on which to evaluate more precisely the allelic effects. However, it would not be expected

that such an effect distorts the comparison across neighboring values of β.

Conclusions

In this paper, we have shown an intuitive way to extend the classic OCS by (1) reformulating the

concept with the tradeoff α (and providing a deterministically solvable algorithm) and (2) accounting

implicitly  for mating by extending the formulation of the genomic relationship matrix.  As shown

above, in multi-generation breeding programs it is important to account for diversity to reach a
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higher selection plateau, even though the speed at which it is reached can be slow. Accounting for

mating, even implicitly as proposed here by favoring some kind of semi compensatory mating,

could minimize the speed problem, by “accelerating” the breeding while maintaining a high level of

diversity  and  selective  potential  for  future  generations.  Finally,  this  study  could  open  up  new

possibilities to make OCS a more adaptive tool to handle the dynamics of genetic diversity in

selected populations.
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