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Abstract 

Individual characterization of subjects based on their functional connectome (FC), termed “FC

fingerprinting”, has become a highly sought-after goal in contemporary neuroscience research.

Recent  functional  magnetic  resonance  imaging  (fMRI)  studies  have  demonstrated  unique

characterization and accurate identification of individuals as an accomplished task. However,

FC fingerprinting in magnetoencephalography (MEG) data is still widely unexplored. Here, we

study resting-state MEG data from the Human Connectome Project to assess the MEG FC

fingerprinting and its relationship with several factors including amplitude- and phase-coupling

functional connectivity measures, spatial leakage correction, frequency bands, and behavioral

significance.  To  this  end,  we  first  employ  two  identification  scoring  methods,  differential

identifiability  and  success  rate,  to  provide  quantitative  fingerprint  scores  for  each  FC

measurement.  Secondly,  we  explore  the  edgewise  and  nodal  MEG  fingerprinting  patterns

across  the  different  frequency  bands  (delta,  theta,  alpha,  beta,  and  gamma).  Finally,  we
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investigate the cross-modality fingerprinting patterns obtained from MEG and fMRI recordings

from  the  same  subjects.  We assess  the  behavioral  significance  of  FC  across  connectivity

measures and imaging modalities using partial least square correlation analyses. Our results

suggest  that  fingerprinting  performance  is  heavily  dependent  on  the  functional  connectivity

measure,  frequency band,  identification  scoring method,  and spatial  leakage correction.  We

report higher MEG fingerprints in phase-coupling methods, central frequency bands (alpha and

beta),  and  in  the  visual,  frontoparietal,  dorsal-attention,  and  default-mode  networks.

Furthermore,  cross-modality  comparisons reveal  a certain  degree of  spatial  concordance in

fingerprinting patterns between the MEG and fMRI data, especially in the visual system. Finally,

the  multivariate  correlation  analyses  show  that  MEG  connectomes  have  strong  behavioral

significance,  which however  depends on the considered connectivity  measure and temporal

scale.  This  comprehensive,  albeit  preliminary  investigation  of  MEG  connectome  test-retest

identification  offers  a  first  characterization  of  MEG  fingerprinting  in  relation  to  different

methodological  and  electrophysiological  factors  and  contributes  to  the  understanding  of

fingerprinting cross-modal relationships. We hope that this first investigation will contribute to

setting the grounds for MEG connectome identification.

1. Introduction

The increasing availability of public neuroimaging data in recent decades (D. C. Van Essen et

al., 2012) has given rise to an increasing number of studies aiming at mapping the structure and

function of the human brain across multiple temporal and spatial scales (Cabral, Kringelbach, &

Deco, 2017; Griffa et al., 2017; Wirsich, Amico, Giraud, Goñi, & Sadaghiani, 2020). To this end,

a  new line  of  research  was  born,  which  models  the brain  as  a  network  of  interconnected

functional or structural elements, also known as Brain Connectomics (Bassett & Sporns, 2017;

Bullmore & Sporns, 2009; Fornito & Bullmore, 2015; Fornito, Zalesky, & Bullmore, 2016). In

brain  connectomics,  the  brain  is  often modeled as  a  network  composed of  nodes or  brain

regions (defined according to a predefined brain atlas  (de Reus & van den Heuvel,  2013))

interconnected  by  two  types  of  links  or  edges.  The  first  ones,  the  structural  connections,

represent  the physical  wiring between different  brain regions and are assessed using white

matter  fiber  tractography,  leading  to  the  structural  connectome  (Hagmann,  2005;  Sporns,

Tononi,  &  Kötter,  2005).  The  second  one,  the  functional  connections,  represent  statistical

interdependencies between brain regions’ signals while subjects are either at rest or performing

a task, referred to as functional connectomes  (Friston, 1994). Brain connectomics has been
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proven useful in mapping brain structure and function in large human populations, but also in

investigating the association between individual connectome features and behavioral,  clinical

and genetic profiles (Fornito, Arnatkevičiūtė, & Fulcher, 2019; Fornito, Zalesky, & Breakspear,

2015). 

Recent work on functional magnetic resonance imaging (fMRI) (Amico & Goñi, 2018; Finn et al.,

2015) shows that functional connectomes can serve as ‘fingerprints’ of individual subjects (Finn

et  al.,  2015;  Miranda-Dominguez  et  al.,  2014).  This  capacity  can  be  maximized  across

conditions (Abbas et al., 2020) and different scanning protocols (Bari, Amico, Vike, Talavage, &

Goñi,  2019).  The  fact  that  functional  connectomes,  in  essence,  a  second-order  statistical

summary of brain activity, contains subject-specific information that can be used for prediction

and modeling of individual behavioral and clinical scores, has approached brain connectomics

to precision medicine and personalized treatments (Castellanos, Di Martino, Craddock, Mehta,

& Milham, 2013; Fernandes et al.,  2017; Smith et al.,  2015). Furthermore, several research

studies are also exploring the use of brain activity as a physiological characteristic for next-

generation biometric systems (Fraschini, Hillebrand, Demuru, Didaci, & Marcialis, 2015; Rocca

et al., 2014).

 

Recently, few studies have started to explore connectome fingerprinting in different functional

neuroimaging modalities,  such as functional  Near-Infrared Spectroscopy (fNIRS) (Rodrigues,

Ribeiro,  Sato,  Mesquita,  & Júnior,  2019),  electroencephalography (EEG)  (Matteo Demuru &

Fraschini,  2020), and magnetoencephalography (MEG)  (M. Demuru et al.,  2017). MEG is a

complementary  modality  to  fMRI  which  allows  for  exploring  fast-scale  brain  communication

processes (F. de Pasquale, Della Penna, Sporns, Romani, & Corbetta, 2016; C. J. Stam & van

Straaten, 2012) and offers insights into functional connectivity differences between healthy and

pathological  populations  (Engels  et  al.,  2017;  Cornelis  J.  Stam,  2014).  A recent  study  has

attempted to investigate the neurophysiological foundations of individual differentiation from the

complex dynamics of MEG data (Castanheira, Orozco, Misic, & Baillet, 2021). However, it is still

unclear  whether  functional  connectomes  assessed  at  these  faster  temporal  scales  have

fingerprinting  properties comparable  to those observed at  slower  temporal  scales  with fMRI

(Amico & Goñi, 2018; Finn et al., 2015). In fact, to date, we still do not know all the factors

contributing to brain fingerprinting. The temporal richness of EEG and MEG might give us new

insights  into  the  relationship  between  brain  fingerprinting  across  different  time  scales  or

frequency  bands.  Furthermore,  the  possibility  of  disentangling  phase  and  amplitude

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.02.15.431253doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?T31ghO
https://www.zotero.org/google-docs/?1Z9y6o
https://www.zotero.org/google-docs/?JIUUbg
https://www.zotero.org/google-docs/?SsB3Wv
https://www.zotero.org/google-docs/?SsB3Wv
https://www.zotero.org/google-docs/?8bxPGq
https://www.zotero.org/google-docs/?up0O2V
https://www.zotero.org/google-docs/?up0O2V
https://www.zotero.org/google-docs/?LLxqkm
https://www.zotero.org/google-docs/?LLxqkm
https://www.zotero.org/google-docs/?nTienS
https://www.zotero.org/google-docs/?nTienS
https://www.zotero.org/google-docs/?wnuP0V
https://www.zotero.org/google-docs/?wnuP0V
https://www.zotero.org/google-docs/?qb7ETM
https://www.zotero.org/google-docs/?qb7ETM
https://www.zotero.org/google-docs/?Vc2SR8
https://www.zotero.org/google-docs/?Cd1amn
https://www.zotero.org/google-docs/?Cd1amn
https://www.zotero.org/google-docs/?qzPDr2
https://www.zotero.org/google-docs/?qzPDr2
https://www.zotero.org/google-docs/?QsPRYw
https://www.zotero.org/google-docs/?QsPRYw
https://doi.org/10.1101/2021.02.15.431253
http://creativecommons.org/licenses/by-nc-nd/4.0/


contributions  to  MEG/EEG  functional  connectivity  allows  for  studying  how  individual

connectome features relate to different underlying coupling mechanisms.  

 

In  this  work,  we  address  these  open  questions  by  a  comprehensive  investigation  of  the

fingerprinting properties of MEG functional connectomes. We start by studying the influence of

MEG functional connectivity measures on fingerprinting, and the role of temporal scales and

frequency bands on connectome identification. Furthermore, we report the main brain regions

and connections that have the highest fingerprinting values in MEG data; i.e., they are the most

important for the identification of a single subject in a group. We conclude by comparing and

analyzing the fingerprinting features extracted from MEG data to the ones obtained from fMRI

recordings in the same subjects.

2. Materials and Methods

2.1 HCP data

The dataset used for this study consisted of structural and functional (resting-state MEG and

fMRI) data from 89 subjects (46% females, mean age 29.0 ± 3.6 years) of the 1200 Subjects

release of the Human Connectome Project (HCP) (Larson-Prior et al., 2013; D. C. Van Essen et

al.,  2012; David C. Van Essen et al.,  2013). All  included subjects had complete anatomical,

resting-state MEG and fMRI data and gave written consent according to the HCP consortium

rules. The MEG resting-state recordings were collected at St. Louis University on a whole-head

MAGNES 3600 (4D Neuroimaging, San Diego, CA) system including 248 magnetometers and

23 reference channels. Data were recorded at 2034 Hz sampling rate in three separate runs of

approximately 6 minutes each within a single-day recording session, with subjects lying in the

scanner  in  a  supine position  with  eyes open.  Only  the first  two runs of  each subject  were

considered in this study. Electrooculography and electrocardiography were acquired for ocular

and  cardiac  artefacts’  rejection.  Moreover,  the  outline  of  each  subject’s  scalp  (about  2400

points), anatomical landmarks, and localizer coils’ positions were digitized at the beginning of

the  recording  session.  The  fMRI  resting-state  recordings  were  acquired  at  Washington

University on a dedicated Siemens 3T ‘Connectome Skyra’ scanner with a 32-channel head coil

on four runs of approximatively 15 minutes (TR 720 ms, 2 mm isotropic voxel size), two runs in

a session, and two runs in a separate day session. The two runs of each session were acquired

with left-right (LR) and right-left (RL) phase-encoding directions, respectively. A structural T1w

volume with 0.7 mm isotropic voxel size was acquired as well.
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Functional data acquired for individual subjects on two separate runs (MEG) or on two separate

sessions (fMRI) were tagged as ‘test’ and ‘retest’. Further details on the HCP data can be found

elsewhere (Glasser et al., 2013; Larson-Prior et al., 2013; D. C. Van Essen et al., 2012; David

C. Van Essen et al., 2013).

2.2 Cortical parcellation

We used the Destrieux cortical parcellation provided by the HCP, which includes 148 regions of

interest  (Desikan et al., 2006; DESTRIEUX, FISCHL, DALE, & HALGREN, 2010). Moreover,

each cortical region was assigned to one of the seven resting-state networks (RSNs) defined by

(Yeo et al., 2011) through a majority voting procedure, i.e. each brain region from the Glasser

Atlas was assigned to the most highly present (Yeo-defined) functional network (as analogously

done in (Amico et al., 2018)). 

2.3 MEG processing

We downloaded the preprocessed sensor-level MEG data from the HCP database. The MEG

preprocessing pipeline includes three major steps, (1) Bad channel/segment removal: removing

non-working  channels,  flat  data  segments,  segments  with  abnormally  high  signal  variance,

segments corrupted by artefacts, (2) Filtering: band-pass filtering (1.3-150Hz) and notch filtering

(59-61 Hz/119-121 Hz) to remove power line artefacts, and (3) Artefact removal: decomposition

of MEG data into brain and non-brain (artefactual) components. Bad channels are identified by

searching for outliers in the neighbor correlation distribution; for each channel, bad segments

are identified by an abnormally high z-score relative to the statistical characteristics of the entire

data time series  of  a channel.  Artefact  removal  is  achieved using Independent  Component

Analysis (ICA) followed by automatic classification of the obtained Independent Components

(ICs) into brain and non-brain (artefactual) components. The ICs are evaluated for temporal-

spectral properties and contribution of the eye or heart magnetic signals to classify them as

brain  components,  environmental/instrumental  artefacts,  and  EOG/ECG  components.  The

identified  artefacts are removed from the data and only the brain components are used for

further analysis. In order to obtain source-localized neural activity signals, we then projected the

sensor-level time-series to 148 locations (sources) in the cortex corresponding to the centroids

of the Destrieux regions using FieldTrip r10442 (Oostenveld, Fries, Maris, & Schoffelen, 2010).

First, a forward lead field model was generated for each subject using the single-shell volume

conduction (head) model provided by the HCP (Larson-Prior et al., 2013; Nolte, 2003) and the
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centroids of the 148 cortical regions of interest. Second, the lead field model was inverted using

the Linearly Constrained Minimum-Variance beamforming method to recover the source-level

times-series (Veen, Drongelen, Yuchtman, & Suzuki, 1997; Woolrich, Hunt, Groves, & Barnes,

2011) (Fig. 1A). The reconstructed time-series were subdivided into 33 epochs of 8s duration

(4072 samples) and bandpass filtered into the five canonical frequency bands: delta (0.5-4 Hz),

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-48 Hz) using two-way FIR

filters of order 25. The epoch length of 8s was chosen based on the findings of recent studies

that investigated the effect of epoch length on functional connectivity (Fraschini et al., 2016).

2.4 fMRI processing

For the fMRI comparisons, we took the minimally preprocessed HCP resting-state data (Glasser

et al., 2013) and added the following preprocessing steps. First, we applied a standard general

linear model (GLM) regression which included: detrending; removal of motion regressors and

their first derivatives; removal of white matter (WM), cerebrospinal fluid (CSF) signals and their

first derivatives; global signal regression (and its derivative). Secondly, we bandpass filtered the

time series in the range [0.01 0.15] Hz and averaged them across the voxels belonging to each

one of the 148 Destrieux cortical regions. Finally, region-wise time series were z-scored.

2.5 Functional connectivity measures

There is a wide range of connectivity estimation methods for MEG (Colclough et al., 2016), but

their impact on MEG fingerprinting properties is currently unknown. In this study, we, therefore,

evaluated six different functional connectivity measures based on amplitude- or phase-coupling

between  MEG  time-series,  and  susceptible  or  non-susceptible  to  spatial  leakage  artefacts

(Table  1).  Source-reconstructed MEG time-series  are spatially  correlated due to the limited

ability of beamforming approaches to disentangle shared neuronal components perceived by

the same sensors. This effect, also known as spatial leakage, can artificially inflate short-range

functional connectivity values as well as their cross-subject consistency (Colclough et al., 2016;

Palva & Palva, 2012). Corrections for spatial leakage can be embedded in the definition of the

functional connectivity measure itself (as is the case of some phase-coupling measures, see

below) or can directly act on the source time-series before functional connectivity estimation

(e.g., by pairwise orthogonalization of the time-series).
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Table 1

List of functional connectivity measures used. We separate out functional connectivity measures based

on the  type of  coupling  (amplitude or  phase)  and  the effect  of  spatial  leakage artifact  (corrected  or

uncorrected) in our investigation. Δϕ: instantaneous phase difference; {X}: imaginary component of theℑ{X}: imaginary component of the

cross-spectrum X; Ψ and Φ represents PLI and wPLI values respectively.

For  the  MEG  data  in  our  investigation,  we  considered  two  amplitude-based  functional

connectivity  measures:  i)  Amplitude Envelope Correlation (AEC) and ii)  corrected Amplitude

Envelope Correlation (AECc) computed after pairwise symmetric orthogonalization of the MEG

data in the time domain (M. J. Brookes, Woolrich, & Barnes, 2012; Hipp, Hawellek, Corbetta,

Siegel, & Engel, 2012). Additionally, we considered four phase-based measures: i) the Phase

Locking  Value  (PLV)  which  evaluates  the  time-varying  phase  difference,  as  a  measure  of

phase-locking, between two brain signals (Lachaux, Rodriguez, Martinerie, & Varela, 1999); ii)

the Phase-Lag Index (PLI) which estimates the asymmetry around zero of the distribution of the

phase differences between two signals (Cornelis J. Stam, Nolte, & Daffertshofer, 2007); iii) the

weighted Phase Lag Index (wPLI) which weights the PLI by the magnitude of the imaginary

component of the cross-spectrum  (Vinck, Oostenveld, van Wingerden, Battaglia, & Pennartz,

2011); and iv) the Phase Linearity Measurement (PLM) which measures the synchronization

between brain regions by monitoring their phase differences in time while accounting for narrow

differences in the main frequency components of the two signals  (Baselice, Sorriso, Rucco, &
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Sorrentino, 2019; Sorrentino, Ambrosanio,  Rucco, & Baselice,  2019). While the PLI and the

wPLI  are  intrinsically  insensitive  to  spatial  leakage  since  they  discard  zero  phase-lag

interactions between brain regions, the PLV is susceptible to spatial leakage artifacts. The PLM

formulation includes a correction for spatial leakage by excluding phase-difference components

<  (with  set  to 0.1 Hz according to   𝜀 (with 𝜀 set to 0.1 Hz according to  𝜀 (with 𝜀 set to 0.1 Hz according to (Baselice et al.,  2019). For the fMRI data,  functional

connectivity is conventionally estimated using bivariate methods or recently, using multivariate

methods (Aggarwal, Gupta, & Garg, 2017). In this work, we employed a widely used Pearson’s

Correlation (PC) measure to compute the functional connectivity in the fMRI data. 

For the amplitude-based measures, employed over each epoch of MEG data, raw and pairwise

orthogonalized  band-passed  time-series  were  Hilbert-transformed  to  derive  their  amplitude

envelopes.  The  AEC  (AECc)  was  then  computed  as  the  Pearson’s  correlation  coefficient

between the amplitude envelopes and averaged over epochs. For the phase-based measures,

for  each  epoch,  the  band-passed  time-series  were  Hilbert-transformed  to  derive  the

instantaneous phase signals which were used to compute the PLV, PLI, wPLI, and PLM values.

Finally,  for  each  subject  and  each  FC  measure,  the  functional  connectivity  values  were

averaged over all the epochs to obtain 10 test/retest averaged functional connectivity matrices

per subject of dimension 148 x 148, two for each of the 5 frequency bands (Figure 1B). 

 

2.6 MEG Connectome Fingerprinting

We explored the effect of the functional connectivity measures and frequency bands on the

MEG  connectome  fingerprinting.  Moreover,  we  assessed  the  contribution  in  terms  of

connectome edges and resting-state networks to the overall MEG fingerprinting levels. 

2.6.1 MEG Connectome Fingerprinting: Whole-network level

Inspired by recent work on the maximization of connectivity fingerprints in human functional

connectomes (Amico & Goñi, 2018), we study MEG connectome inter-subject identifiability by

defining the “identifiability”  matrix (see also Fig.  1C),  a square and non-symmetric similarity

matrix of size S2, where S is the number of subjects in the dataset. This matrix encodes the

information  about  the  self-similarity  of  each  subject  with  him/herself  across  the  test/retest

sessions (Iself, main diagonal elements), and the similarity of each subject with the others (Iothers,

off-diagonal elements). The similarity between two functional connectomes was quantified as 
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Fig. 1. MEG fingerprinting analysis pipeline. (A) Resting-state MEG HCP data from two distinct runs

for each subject were pre-processed and source-reconstructed to obtain a clean time series from 148

locations in the cortex. (B) Individual functional connectomes were estimated from these time series using

different functional connectivity measures (Table 1). (C) An identifiability matrix was computed for each

functional connectivity measure from test (columns) - retest (rows) functional connectomes. Values on the

diagonal represent the correlations between the scan-rescan connectomes of individual subjects; values

outside the diagonal represent the inter-subject connectomes’ correlations. The derived Idiff and Success

Rate scores were used to assess the fingerprinting capacity of each functional connectivity measure. (D)

Edgewise  contributions  to  the  overall  fingerprinting  of  each  functional  connectivity  measure  were

assessed with the intra-class correlation coefficient (ICC) and nodal contributions were assessed with the

nodal fingerprinting strength, defined as the column sum of the ICC matrix.

the  Pearson’s  correlation  coefficient  between  the  test/retest  connectivity  matrices.  The

difference between Iself and Iothers (denominated “Differential Identifiability” - Idiff) provides a robust

score of the fingerprinting level of a specific dataset  (Amico & Goñi, 2018). Furthermore, we

also  employed  a  binary  identification  scoring  method  called  success  rate  defined  as  the

percentage of subjects whose identity was correctly predicted out of the total number of subjects

(Finn et al.,  2015). Given the non-symmetric nature of fingerprinting,  we report  the average

success rate between session 1 -  session 2 and session 2 -  session1.  With success rate,
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coupled with differential  identifiability,  we aim to develop a comprehensive understanding of

identification scores and their key role in connectome fingerprinting. We further investigated the

effects  (main  and  interaction)  of  the  factors  studied  in  this  work,  i.e.  subjects,  functional

connectivity metrics, and frequency bands, on individual discriminability (i.e. subject wise Idiff)

and reliability (i.e. subject-wise Iself) using a N-way ANOVA test. For this analysis, the subject-

wise  Idiff is  computed  as  the  difference  between  each  subject’s  Iself and  the  average  Iothers

associated with that subject; whereas the subject-wise Iself is computed as stated above.

In  order  to  assess  the  statistical  significance  of  the  observed  differential  identifiability  and

success rate, we employed a permutation testing framework as follows. At each iteration of the

permutation testing, subjects’ test-retest connectomes were randomly shuffled, then differential

identifiability  and success rate  were computed on the randomized identifiability  matrix.  This

procedure was repeated 1000 times to generate a “null” distribution of differential identifiability

and success rate scores. Furthermore, to achieve a finer quantization of the null distribution, we

merged the null  distributions  from all  the  six  FC measures  and  five  frequency  bands.  The

observed (true) differential identifiability and success rate scores were then compared against

their corresponding null  distribution to determine the p-values. Finally,  the obtained p-values

were corrected for multiple comparisons using Bonferroni correction (Nichols & Holmes, 2001).

2.6.2 Contribution of individual functional connections

We quantified the reliability of the connectome individual edges using the intraclass correlation

coefficient, denoted as ICC (Bartko, 1966; McGraw & Wong, 1996), similarly to previous work

(Amico & Goñi, 2018). ICC is a widely used measure in statistics that describes how strongly

units in the same group resemble each other. The stronger the agreement, the higher its ICC

value. We used ICC to quantify the extent to which an edge, i.e. a functional connectivity value

between  two  brain  regions,  is  identifiable  across  test/retest  acquisitions  across  the  subject

cohort.  In other words, the higher the ICC, the higher the “fingerprinting value” of the edge

connectivity  (Amico & Goñi, 2018). We generated a square and symmetric ICC matrix of size

N2, where N is the number of brain regions (see Fig. 3 A/C). In addition, we investigated the

resting state networks identifiability (or fingerprint) by group-averaging the edgewise ICC values

across  intra-  and  inter-network  connections,  thus  deriving  7x7  ICC  fingerprint  matrices

corresponding to the Yeo’s seven-network parcellation (Yeo et al., 2011). For this investigation,

similarly to the fingerprint of edge connectivity, the higher the ICC,  the higher the “fingerprinting

value”  of  that  resting-state  network.  The  ICC  scores  were  interpreted  following  the  latest
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guidelines stated in  (Koo & Li,  2016); below 0.50: poor,  between 0.50 and 0.75: moderate,

between 0.75 and 0.90: good, and above 0.90: excellent.

2.6.3 Nodal fingerprinting strength

Previous work on fMRI has reported higher fingerprinting value in higher-order regions such as

the frontal lobe (Amico & Goñi, 2018; Finn et al., 2015). For this reason, we were interested in

investigating  possible  fingerprinting  spatial  patterns  in  MEG data  as  well.  We explored  the

identifiability  (or  fingerprinting)  strength  of  each  brain  region  (denominated  as  nodal

fingerprinting  strength)  by  summing  ICC  edgewise  matrix  column-wise.  We  generated  a

distribution of the nodal fingerprinting strength for all the functional connectivity measures and

frequency bands of interest.  We further visualized this by generating brain renders of nodal

fingerprinting  strength  per  region,  where  we  applied  a  5th-95th percentile  threshold  on  the

generated nodal fingerprinting strength distribution of each method under each frequency band

of interest. 

2.6.4 Cross-modality fingerprinting patterns

We were also interested in exploring the cross-modality similarity between the fingerprinting

patterns of MEG and fMRI data. Initially, we conducted a visual comparison between the brain

renders of  nodal  fingerprinting patterns generated using the two modalities.  Furthermore,  in

order to obtain a numerical value for the similarity between the nodal fingerprinting patterns of

MEG and fMRI data, we introduced a correlation coefficient metric called Cross-Modality Nodal

Correlation Coefficient (denoted as CMNCC). We assessed CMNCC for three metrics: (i) Nodal

fingerprinting  strength  (NFS) -  where  we  computed  the  CMNCC  between  the  nodal

fingerprinting strength vectors (computed as described in 2.6.3), of the MEG and fMRI data, (ii)

Whole-brain level- where we computed the CMNCC as the average node-to-node correlation

between edgewise  ICC scores  of  MEG and  fMRI  data,  and  (iii)  Network-level  -  where  the

nodewise CMNCC scores estimated as in (ii) were instead averaged within the 7 Yeo functional

networks, to estimate the functional subsystem with the highest nodal fingerprinting similarity

across the two modalities. The CMNCC metric was computed using the Pearson correlation

coefficient  between  the  edgewise  ICC  scores  of  two  modalities  and  calculated  for  all  FC

measures and frequency bands. The statistical significance of the CMNCC scores for the NFS

metric is obtained against  the null  hypothesis that the correlation scores between MEG and

fMRI  data  occurred  by  chance.  The  significance  results  are  further  corrected  for  multiple
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comparisons  (i.e.  30  tests  for  each  of  the  6  FC measures  and  5  frequency  bands)  using

Bonferroni correction. 

2.7 Multivariate correlations between functional connectomes and cognition

To  investigate  whether  MEG  functional  connectomes  explain  inter-individual  variations  of

cognitive  performances,  we  carried  out  Partial  Least  Square  Correlation  (PLSC)  analyses

between functional  connectivity values (10’878 connections) and 10 cognitive scores across

subjects.  For  the  cognitive  scores,  the  10  cognitive  subdomains  tested  in  the  HCP  were

considered,  namely,  episodic  memory,  executive  functions,  fluid  intelligence,  language,

processing  speed,  self-regulation/impulsivity,  spatial  orientation,  sustained  visual  attention,

verbal episodic memory, and working memory (Barch et al., 2013). For subdomains for which

more  than  one  unadjusted  raw score  was  available,  a  single  score  was  obtained  by  data

projection onto the first component from principal component analysis. The PLSC analysis was

repeated for each MEG functional connectivity measure and each frequency band, as well as

for the fMRI-based connectomes. By definition, PLSC identifies linear combinations of functional

connectivity values that maximally covary with linear combinations of cognitive scores through

singular value decomposition of the data covariance matrix  (Krishnan, Williams, McIntosh, &

Abdi,  2011).  The  weights  of  such  linear  combinations  are  traditionally  referred  to  as  brain

function and cognitive saliences and correspond to the left and right singular vectors of the data

covariance  matrix.  The statistical  significance  of  the PLSC components  was assessed  with

permutation  testing  (1000  permutations;  correlation  patterns  with  p<.05  were  deemed

significant)  (Krishnan et al.,  2011). Reliability of nonzero salience values was assessed with

bootstrapping  procedure  (1000  random  data  resampling  with  replacement)  and  computing

standard scores with respect to the bootstrap distributions (salience values were considered

reliable for absolute standard score > 3) (Krishnan et al., 2011; Zöller et al., 2019). The amount

of cognitive traits’ variance explained by functional connectivity values was quantified as the

sum  of  the  squared  singular  values  corresponding  to  the  significant  PLSC  components,

normalized by the sum of  all  the squared singular  values obtained for  each PLSC analysis

(Krishnan et al., 2011). The effect of the functional connectivity measure and frequency band on

the  amount  of  explained  connectome-cognition  covariance  was  assessed  with  an  ANOVA

analysis. 

3. Results
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In this study, we analyzed data from 84 subjects in the S1200 release of the HCP dataset. MEG

data consisting of resting-state eyes-opened recordings were pre-processed and then source-

reconstructed to 148 cortical  regions of interest, based on the Destrieux cortical parcellation

(see  Materials  and  Methods).  The  pre-processed  MEG  data  was  used  to  estimate  the

Functional  Connectivity  (FC)  between  all  pairs  of  regions  with  six  functional  connectivity

measures of interest i.e. AEC, AECc, PLV, PLM, PLI, and wPLI in the five frequency bands. We

evaluated the impact of different functional connectivity measures and frequency bands on the

MEG connectome fingerprinting at the whole-network level. We then deepened our investigation

by exploring the contribution of single brain regions and edges to the overall MEG fingerprinting.

Finally, we investigated the behavioral significance of MEG functional connectomes in relation

to  their  fingerprinting  value  by  performing  a  set  of  PLSC  analyses  for  different  functional

connectivity measures and frequency bands. 

Fig. 2. MEG connectome fingerprints across bands and measures. Figure shows the performance in

connectome identification of four popular phase-based MEG connectome measures (wPLI, PLI, PLV,

PLM) and two amplitude-based measures (AEC, AECc),  across five different frequency bands (delta,

theta, alpha, beta, gamma).  (A) Identifiability matrix for the six connectivity measures employed, shown

for the alpha and beta bands. (B) Bar plots showing the summary of identification scores employed, i.e.,

Idiff and success rate (SR), across the different measures and frequency bands. The asterisks denote a
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significant identification score after permutation testing (p<0.05, Bonferroni corrected, see Methods for

details).

3.1 MEG connectome fingerprinting across FC measures

We started our MEG connectome fingerprinting exploration by evaluating the impact of different

connectivity  measures  on  connectome  identification,  across  different  frequency  bands.

Simultaneously, we also investigated two scoring methods to quantify functional connectome

identification.  To this aim, we evaluated connectome fingerprinting (or  identifiability)  on four

commonly  used phase-coupling  measures (PLM, wPLI,  PLI,  PLV) and two commonly used

amplitude-coupling  measures  (AEC,  AECc)  (Table  1).  As  identification  scores,  we  used

differential  identifiability  (Idiff)  and  success  rate  (SR)  (see  Methods).  Fig.  2  depicts  the

identification performance of the different connectivity measures and scoring methods reported

for the alpha and beta frequency bands; the results for the other three bands, i.e. delta, theta,

and gamma bands, are provided in Supplementary Fig. S1. We observed large variability of

identifiability measures across the FC measures and bands with Idiff and SR ranging from 11.6%

to 31.7% and 52.9% to 98.2%, respectively. Across the frequency bands, we observed relatively

higher identifiability in the alpha band (Idiff: 22.8% ± 6.67%, SR scores: 82% ± 15.9%) and in the

beta band (Idiff: 19.2% ± 5.93%, SR scores: 77.3% ± 19.6%). In the alpha band specifically, we

observed  higher  Idiff (25.82%  ±  5.94%)  and  SR  scores  (84%  ±  12.83%)  in  phase-based

measures as compared to amplitude-based measures with relatively lower Idiff (16.75% ± 2.85%)

and  SR scores  (77.95% ± 20.25%).  We also  observed  that  wPLI,  PLI,  and  AECc are  the

measures where the identifiability levels are most variable across the frequency bands with Idiff

ranging from 13.74% ± 10.05% in wPLI, 10.56% ± 8.25% in PLI, and 15.3% ± 4.92% in AECc

and SR  ranging from 37.14% ± 27.34% in wPLI, 32.71% ± 22.83% in PLI, and  34.38 % ±

18.9% in AECc. Besides, the highest identifiability scores, among the most variable measures

(i.e. wPLI, PLI, and AECc), were observed in the central frequency bands (alpha and beta).

Specifically, PLM seems to be the preferred connectivity measure for connectome identification

given  the  relatively  higher  and  consistent  identification  scores  (Idiff:  28.04%  ±  2.57%,  SR:

94.63% ± 1.95%) observed for this measure across frequency bands (Fig. 2B). We also observe

that measures susceptible to spatial leakage (i.e. AEC and PLV) have lower Idiff (AEC: 14.6% ±

0.49% PLV: 16.76% ± 0.89%) and but nearly perfect SR (AEC: 97.96% ± 0.29% PLV: 98.08% ±

0.23) scores across all frequency bands. In addition, we observed a characteristic change in the

identifiability levels of the measures susceptible to spatial leakage (i.e. AEC and PLV) between
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the two identification scores under investigation; relatively higher identifiability score for SR and

lower scores for Idiff. 

Furthermore, the delay between each run (or session) is an important aspect that might impact

the  fingerprinting  performance.  Hence,  in  addition  to  the  identification  performance  of  the

temporally close sessions, i.e. sessions 1-2 of the MEG HCP data (as stated previously), we

also  investigated  the  fingerprinting  performance  between  sessions  1-3  (temporally  distant

sessions)  and  compared  it  with  performance  of  sessions  1-2.  The  results,  as  depicted  in

supplementary Fig. S6, demonstrate the stability of our fingerprinting analysis across temporally

close and distant runs (sessions).

We also investigated if there existed an association between the factors explored in this work

(i.e. subject, frequency bands and FC metrics) and the discriminability and reliability of the MEG

connectomes, i.e. their subject-wise Idiff and Iself scores. In order to test this, we conducted a N-

way  ANOVA  analysis  (please  see  Fig.  S4)  that  indicated  a  significant  effect  for  subject

(F(83,1660)=13.61, p< 0.001), frequency bands (F(4,1660)=225.54, p<0.001), and FC metrics

factor (F(5,1660)=364.6, p< 0.001) on individual  Idiff  and Iself.  Furthermore, we also found a

significant  interaction  effect,  specifically  between  frequency  bands  and  FC  metrics  in  both

subject-wise  discriminability  (F(20,1660)=55.55,  p<0.001)  and  reliability  (F(20,1660)=164.79,

p<0.001).

3.2 MEG connectome fingerprinting: Edgewise identifiability 

After exploring fingerprinting at the whole-network level, we then deepened our investigation by

exploring edgewise fingerprinting properties. Figure 3 depicts the edgewise ICC matrices (Fig.

3A, 3C), intra- and inter-network identifiability patterns (Fig. 3B, 3D), and the nodal fingerprinting

strength distribution across functional connectivity measures of frequency bands (Fig. 3E). For

this investigation, we report the results only for a subset of FC measures, namely AEC, AECc,

PLM, and wPLI. The results of PLV and PLI were similar to the ones obtained from AEC and

wPLI, respectively, and are provided in Supplementary Fig. S2.  

Fig. 3 shows that the nodal fingerprinting patterns, both at the edge level and the grouped sub-

network level, are widespread and specific to the functional connectivity measure employed.

Furthermore, the edgewise fingerprinting patterns associated with AECc and PLM connectomes

depicted a certain degree of  spatial  specificity,  with higher intra-network group-average ICC
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scores (denoted as average ICC scores). The alpha band of the AECc measure depicted ‘good’

ICC in the visual subnetwork (average ICC score = 0.76) and ‘moderate’ ICC in the ventral-

attention subnetwork (average ICC score = 0.72); the beta band also depicted ‘good’ ICC in the

visual subnetwork (average ICC score = 0.77) and the frontoparietal subnetwork (average ICC

score = 0.80).  The alpha band of  the PLM measure depicted ‘moderate’  ICC in  the visual

subnetwork (average ICC score = 0.72) and ‘good’ ICC in the somatomotor (average ICC score

=  0.75)  and  dorsal-attention  (average  ICC  score  =  0.75)  subnetworks.  The  edgewise

fingerprinting patterns in the wPLI measure were not spatially specific in the beta band (poor

ICC, average ICC score < 0.42);  the alpha band however depicted ‘good’ ICC in the visual

subnetwork (average ICC score = 0.70). Furthermore, the nodal fingerprinting patterns in the

AEC  measure  were  relatively  lesser  marked  than  AECc  and  PLM  measures  with  overall

moderate  ICC  (average  ICC  scores  =  0.64)  in  both  bands.  However,  the  visual  and

somatomotor subnetworks depicted close to good ICC (average ICC score = 0.72). 

Fig. 3. Edgewise fingerprinting across connectivity measures and bands. (A) & (C) Edgewise MEG

connectivity fingerprints as measured by intra-class correlation (ICC), reported for AEC, AECc, PLM, and

wPLI functional connectivity measures, and for the alpha and beta bands, respectively. (B) & (D) The ICC

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.02.15.431253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431253
http://creativecommons.org/licenses/by-nc-nd/4.0/


average within and across the seven Yeo’s resting-state network edges, for the alpha and beta bands,

respectively.  (E)  The nodal fingerprinting strength distribution across the five frequency bands. VIS =

visual; SM = sensorimotor; DA = dorsal attention; VA = ventral attention; L = limbic; FP = frontoparietal;

DMN = default-mode network.

The nodal fingerprinting strength distribution across frequency bands is depicted in Fig. 3E. The 

distribution of the nodal fingerprinting pattern appears to be specific to frequency bands as well.

The nodal fingerprint strength is relatively higher in the alpha (AEC: 95.39 ± 6.33; AECc: 96.95

± 7; PLM: 98.22 ± 9.4) and the beta (AEC: 95.8 ± 4.76; AECc: 96.57 ± 7.3; PLM: 95.37 ± 5.6)

frequency  bands  as  compared  to  other  frequency  bands  in  most  of  the  measures  under

investigation. In the PLM measures, the nodal fingerprinting strength is relatively higher in the

delta (112.24 ± 5.3), theta (111.33 ± 5.2), and gamma (73.87 ± 8.1) band in addition to the

alpha and beta band as compared to other measures. On the other hand, relatively lower and

spatially unspecific edgewise identifiability patterns in the wPLI measure result in a relatively

lower nodal fingerprinting strength in most of the frequency bands (delta: 28.13 ± 4.7; theta:

32.33  ±  4.9;  beta:  43.9  ±  5.0;  gamma:  13.48  ±  6.6).  In  the  alpha  band,  however,  nodal

fingerprinting strength values are comparable to those observed in the other frequency bands

(64.53 ± 13.68). 

3.3 MEG connectome fingerprinting: Nodal fingerprinting scores

The  brain  render  of  the  nodal  fingerprinting  strength  for  fMRI  data  and  select  three  MEG

measures (AEC, AECc, and PLM) for theta, alpha, and the beta band are depicted in Fig. 4. The

figure characteristically highlights the cortical regions with a relatively higher contribution to the

connectome identifiability. We observe spatially localized patterns specifically in the AECc and

PLM measures. These patterns are prominently observed in the theta and the alpha band and

localized to the posterior regions of the brain (temporal, occipital, and parietal regions) in all the

measures.  In the AECc measure,  the nodal  fingerprinting strength is larger in the temporo-

parietal  regions  including  parts  of  the  default-mode,  frontoparietal,  and  dorsal-attention

networks. In the PLM measure,  parieto-occipital regions with larger nodal fingerprinting strength

involve the visual, default-mode, and dorsal-attention networks. Interestingly, the beta band for

the AECc measure adds the frontal region contributions to the consistent parieto-medial nodal

fingerprinting pattern, specifically involving the frontoparietal and default-mode networks. In the

PLM measure, the pattern becomes more localized to the somatomotor region with some extent

of localization to the parieto-occipital regions as we move to the higher frequency beta band
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(Fig. 4A). We also observe a high fingerprinting specificity to the precuneus region of the brain

across all the frequency bands of the PLM measure. In the AEC measure we observe relatively

lower spatial specificity in the theta band as compared to the nodal fingerprinting patterns in the

theta band of the AECc and PLM measure. However, the alpha and beta bands of the AEC

measure depict notable spatial specificity of the fingerprinting patterns to the temporo-parietal

regions  of  the  brain  involving  frontoparietal,  default-mode,  and  dorsal-attention  networks.

Supplementary Fig.  S3 comprehensively  depicts the brain render of  the nodal  fingerprinting

strength for all the six MEG measures (AEC, AECc, PLM, PLV, PLI, and wPLI) and for all the

five frequency bands (delta, theta, alpha, beta, and gamma). 
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Fig. 4. Nodal fingerprinting patterns in MEG and fMRI. (A) Brain render of ICC subject identifiability as

nodal fingerprinting strength per region reported for three MEG connectivity measures (AEC, AECc, PLM)

and three frequency bands (theta, alpha, beta). (B) The nodal fingerprinting pattern obtained from the

fMRI connectomes of the same subjects.  The nodal fingerprinting strength per region computed as the

sum of columns of ICC edgewise matrix and represented at 5th-95th percentile threshold.

Comprehensively, it is observed that the posterior brain regions, particularly the parieto-occipital

lobes and to some extent the temporal lobe, have a central fingerprinting role, particularly at the

slower  temporal  scales  (theta  and  alpha  bands).  Besides  this,  a  distinctive  participation  of

frontal (in AECc measure) and somatomotor (in PLM measure) regions develops as we move

from slower (theta, alpha) to faster (beta) temporal scales (see Supplementary Fig. S3). 
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Fig. 5. Cross-Modality connectome fingerprinting.  The Cross-Modality Nodal Correlation Coefficient

(CMNCC) comparison between nodal fingerprinting maps of  MEG (AEC, AECc, PLV, PLM, PLI,  and

wPLI) and fMRI data for all the five frequency bands (delta, theta, alpha, beta, and gamma). The CMNCC

comparison was conducted for three metrics: (i) Nodal Fingerprinting Strengths (depicted in Black), (ii)

Whole brain (depicted in Grey), and (iii) Network level (depicted in colors associated with Yeo networks).

The Network Level metric only represents the network with highest similarity (i.e. highest CMNCC score)

between  the  two  modalities.  AEC:  Amplitude  Envelope  Correlation;  AECc:  Amplitude  Envelope

Correlation corrected; PLV: Phase Locking Value; PLM: Phase Linearity Measure; PLI: Phase Lag Index;

wPLI: weighted Phase Lag Index. The asterisks denote significant (p-value < 0.05, Bonferroni corrected)

CMNCC score for the Nodal Fingerprinting Strength parameter.

3.4 Cross-modality connectome fingerprinting

We also visualized the nodal fingerprinting pattern from the fMRI data, depicted in Fig. 4B, to

conduct  a  comparative  analysis  between  the nodal  fingerprinting  patterns  between  the two

imaging  modalities  (i.e.  MEG  and  fMRI)  and  the  role  of  different  functional  connectivity

measures.  The  nodal  fingerprinting  patterns  from  the  fMRI  data  depict  a  notable  spatial

specificity  to  the  parietal  region  of  the  brain  specifically  reflecting  the  higher  fingerprinting

contribution  of  ventral-attention,  dorsal-attention,  and  frontoparietal  networks  (see  Fig.  4B).

Furthermore,  the results  of  the CMNCC investigation (see Methods),  as depicted in  Fig.  5,

reveals  interesting  cross-modality  similarities  between the nodal  fingerprinting  patterns.  The

leakage-corrected measures (i.e. AECc, PLM, PLI, wPLI) depict significant and relatively higher

CMNCC  scores,  i.e.  more  similar  cross-modality  fingerprinting  pattern,  for  NFS  metric  as

compared to leakage-uncorrected measures (i.e. AEC and PLV), where no significant CMNCC

scores were observed. In addition, among the measures with relatively higher CMNCC scores,

we observed relatively high cross-modality similarity of fingerprinting patterns at lower temporal

scales (delta and theta) as compared to higher temporal scales (alpha, beta, and gamma). We

further found that the visual network, in general, is prominently identified as the network with

highest cross-modality fingerprinting similarity (high CMNCC scores) across all the measures

and frequency bands. 

3.5 Behavioral significance of functional connectomes

Multivariate  correlations  between  functional  connectivity  values  and cognitive  scores across

subjects  were  assessed  with  PLSC  analyses.  We  found  significant  connectome-cognition

multivariate correlations for all  connectivity measures but for different frequency bands, with

AECc  and  PLV  showing  significant  correlations  in  all  frequency  bands  and  PLI  showing
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significant correlations in the beta band only (Fig. 6A). An ANOVA analysis with the amount of

explained  connectome-cognition  covariance  as  dependent  variable,  and  the  connectivity

measure (AEC, AECc, PLM, wPLI, PLI, PLV) and band (delta, theta, alpha, beta, gamma) as

independent  variables,  revealed  that  the  amount  of  covariance  explained  by  the significant

PLSC components depends on the connectivity measure used to build the MEG connectomes

(connectivity measure: F(5,16) = 8.10, p = .002; frequency band: F(4,17) = 1.27, p = .34). In

particular, AECc and PLM connectomes explained the largest amount of connectome-cognition

covariance  (average percentage of  explained  covariance across bands:  AECc 58.8%; PLM

51.1%), while PLV connectomes explained the least amount (27.8% on average). The cognitive

saliences  associated  with  the  significant  PLSC  components  were  highly  variable  across

connectivity measures and bands, indicating that functional connectomes derived from different

connectivity measures and across different temporal scales tend to explain different cognitive

dimensions  (Fig.  6B).  In  particular,  the  cognitive  dimensions  mostly  contributing  to  the

connectome-cognition  correlation  patterns  were  impulsivity  and  spatial  orientation  for  lower

frequency bands (delta, theta), processing speed for middle frequency bands (alpha, beta), and

episodic  memory for  the beta band (Fig.  6C).  The connectome-cognition  association  in  the

gamma band was less specific to particular cognitive dimensions (Fig. 6C). Finally, a similar
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PLSC analysis was performed for the fMRI-based connectomes and revealed a significant fMRI-

cognition correlation pattern, mainly involving the episodic memory, working memory and fluid

intelligence dimensions (Fig. 6B,C). The amount of explained connectome-cognition covariance

was lower for the fMRI (18.0%) compared to the MEG connectomes (Fig. 6A).

Fig. 6. Behavioral significance of functional connectomes. (A) Percentage of connectome-cognition

covariance explained by significant multivariate correlation components (p < .05) obtained from PLSC

analyses between 10’878 functional connectivity values and 10 cognitive scores. PLSC components were

independently  assessed  for  each  functional  connectivity  measure  and  frequency  band.  Absent  bars

indicate that no significant correlation with cognition was found for the specific connectivity measure and

band. The dashed grey line represents the percentage of connectome-cognition covariance explained by

the fMRI connectivity data. (B) Cognitive saliences representing the cognitive domains contributing the

most to the connectome-cognition multivariate correlation patterns. Small colored dots represent cognitive

domain weights corresponding to the significant PLSC components across connectivity measures and

bands; large colored dots represent the median weight for each cognitive dimension. Grey diamonds

represent the cognitive salience of the significant fMRI PLSC component. (C) Repartition of cognitive

saliences (absolute weights) across 10 cognitive domains, for different temporal scales. The cognitive

domain color coding is as in panel (C), i.e., from red to black in counterclockwise direction: Episodic
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Memory,  Executive  Functions,  Fluid  Intelligence,  Language,  Processing  Speed,  Impulsivity,  Spatial

Orientations, Sustained Attention, Verbal Episodic Memory, Working Memory. 

Discussion

With the advancement in neuroscientific research and the availability of large public datasets,

researchers are now exploring exciting new avenues in the field of brain connectomics. This

research area provides a supplementary insight in exploring the interconnected neural systems

by comprehensively mapping the neural elements and interconnections that constitute the brain

(Fornito & Bullmore, 2015). Brain connectome fingerprinting has risen as a novel influential field

in brain connectomics (Amico & Goñi, 2018; Finn et al., 2015; Miranda-Dominguez et al., 2014)

and has opened up a new way of extracting and evaluating individual features contained in

functional and structural connectomes. Researchers are now exploring how connectome-wide

patterns evaluated through brain connectomic measures can be leveraged for potential clinical

translational  research as,  for instance,  precision medicine  (Fernandes et  al.,  2017;  Hampel,

Vergallo,  Perry, Lista, & Alzheimer Precision Medicine Initiative (APMI), 2019). However, the

accomplishment of such research goals requires a comprehensive understanding of the role of

various  factors  that  contribute  to  brain  connectome  fingerprinting  such  as  different  brain

connectivity  measures,  frequency  bands,  identification  scoring  methods,  and  neuroimaging

modalities.  

In  this  work,  we  comprehensively  investigated  the  fingerprinting  properties  of  functional

connectomes  extracted  from magnetoencephalography  (MEG)  data  and  compared  them to

fMRI  fingerprinting.  We  investigated  the  role  of  various  functional  connectivity  measures

(amplitude and phase coupling),  identification  scoring methods (differential  identifiability  and

success  rate),  and  frequency  bands  on  functional  connectome  fingerprinting.  We,  then,

deepened  our  investigation  by  evaluating  the  nodal  fingerprinting  patterns  (edge-level  and

grouped sub-network level)  to unravel the spatial specificity of brain fingerprints across sub-

networks and cortical  regions.  We further  extended the study by  conducting  a comparative

analysis  of  fingerprinting  between  fMRI  and  MEG  data  to  develop  a  cross-modality

understanding of connectome fingerprinting. Finally, we assessed the behavioral significance of

MEG and fMRI  connectomes across functional  connectivity  measures and temporal  scales,

allowing a parallelism between fingerprinting value and behavioral significance of the different

functional connectomes.
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In our connectome identification,  which was stable across temporally close and distant runs

(sessions),  we observed interesting differences between the five frequency bands and the two

categories  of  functional  connectivity  measures  (phase-coupling  and  amplitude-coupling

measures).  When  focusing  on  the  AECc,  wPLI  and  PLI  measures,  our  results  indicate  a

characteristic importance of alpha and beta frequency bands in fingerprinting identification. This

finding, although specific to some connectivity measures, might indicate a link between the role

of  brain oscillations in human cognition  (Abhang,  Gawali,  & Mehrotra, 2016;  Engel  & Fries,

2010; Klimesch, 2012) and their fingerprinting value.

The PLM, wPLI and PLI phase-based measures depicted higher identification scores (Idiff) as

compared  to  amplitude-based  measures,  particularly  in  the  alpha  and  beta  bands,  while

measures not corrected for spatial  leakage (AEC, PLV) showed medium-to-low identifiability

scores, as depicted in Fig. 2. In particular, it is striking to observe the difference between Idiff and

SR  for  the  measures  that  are  not  corrected  for  spatial  leakage  (AEC,  PLV,  Fig.  2B)  and

demonstrate  nearly  perfect  success  rate.  Notably,  a  more  in-depth  investigation  on  the

distributions of Iself and Iothers values showed that the Iself and Iothers histograms of the non-leakage

corrected MEG measures (AEC and PLV) are shrinked and shifted towards 1 (please see Fig.

S5), indicating both higher within- and between-connectome similarities. This might be due to

the fact that uncorrected spatial leakage “smoothes” the signal across the cortex, and this effect

might  propagate onto the functional  connectomes,  resulting in  higher  connectome similarity.

Furthermore,  the  distance  between  the  Iself and  Iothers histograms’  means,  as  well  as  the

histograms’ standard deviations, are smaller in non-leakage corrected measures compared to

leakage corrected measures (Fig. S5). The interpretation of this finding is two-fold: on one hand,

the narrowing of the distributions explains the high success rates observed for AEC and PLV;

on the other hand, the reduced distance between the Iself and Iothers distributions explains the low

Idiff observed for AEC and PLV. Hence, the effect of spatial leakage on MEG fingerprinting is

multifaceted. While it  is  true that  spatial  leakage does reduce intra- as well  as inter-subject

connectome variability, which may hinder fingerprinting, a narrow but neat separation between

Iself and Iothers distributions appears to be preserved in non-leakage corrected measures, which

allows to achieve good success rates (Fig. S5). Although it is difficult to identify the reasons for

the latter effect, it  might be that spatial leakage contains some subject-specific components,

possibly linked to individual cortical morphology, that preserve subject identifiability despites the

increased inter-subject connectome similarity. Indeed, previous work showed high identifiability
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value of brain morphological features (Mansour L, Tian, Yeo, Cropley, & Zalesky, 2021). The Idiff

score consistently accounts for general increases of connectome similarity penalizing the Iself

score by the Iothers term. These considerations suggest that Idiff is more sensitive to identification

changes  than the success rate  as  it  accounts  for  both  inter-  and intra-individual  variability.

Collectively, these findings suggest that fingerprinting estimation is dependent on the nature of

functional connectivity measure (amplitude- or phase-coupling; with or without spatial leakage

correction) and the frequency band of  estimation,  as also reported in  an EEG-fingerprinting

research (Fraschini, Pani, Didaci, & Marcialis, 2019). Our study further highlights that the choice

of  the  identification  scoring  method  (Idiff,  SR)  also  plays  an  important  role  in  this  context,

specifically in quantifying and understanding the true fingerprinting potential.

We extended our fingerprinting investigation from whole-network level to edge-level to examine

the  identification  potential  of  a  brain  node  based  solely  on  the  characteristic  functional

connectivity patterns across the subjects in test-retest condition. Our results based on intraclass

correlation show some spatial specificity and functional networks (FNs) patterns. We observed

that the visual network was markedly identifiable across all the measures in the alpha and beta

bands; in addition with somatomotor and dorsal-attention network in the PLM measure, limbic,

frontoparietal, and ventral-attention networks in the AECc measure, and somatomotor in AEC

measure. These findings advance the idea that the visual network is primarily more involved in

the  edgewise  identifiability  in  a  test-retest  condition  and  thus  holds  a  strong  potential  for

accounting  inter-subject  variability.  Furthermore,  in  terms  of  frequency  bands,  the  overall

identification pattern becomes relatively less pronounced in the beta band as compared to the

alpha band with a few exceptions. This might further indicate a link between the role of brain

oscillations in human cognition and the fingerprinting patterns associated with them.  

Another crucial aspect of our investigation was evaluating the nodal fingerprinting strength to

characterize  and  visualize  the  fingerprinting  potential  of  cortical  regions.  Our  investigation

started with assessing the nodal fingerprinting strength distribution across all the five frequency

bands.  The  findings  depicted  in  Fig.  3E  reveals  the  characteristic  dependence  of  nodal

fingerprinting strength on frequency bands with prominently higher strength distributions in the

alpha and beta bands. This finding is coherent with our previous results which highlights the link

between  the  role  of  brain  oscillations  in  human  cognition  and  the  fingerprinting  measures

associated with them. Furthemore, the findings from the brain render visualization of the nodal

fingerprinting strength as depicted in Fig. 4, revealed that the nodal fingerprinting patterns have

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 12, 2021. ; https://doi.org/10.1101/2021.02.15.431253doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Gh1HQB
https://www.zotero.org/google-docs/?mbqn9s
https://doi.org/10.1101/2021.02.15.431253
http://creativecommons.org/licenses/by-nc-nd/4.0/


characteristic cortical specificity. This specificity was primarily observed in the posterior regions

of the brain, specifically the parieto-occipital regions and to some extent the temporal region at

lower  frequency  scales.  From  a  network  perspective,  higher  fingerprinting  contribution  of

default-mode,  dorsal-attention,  and  frontoparietal  networks  was  observed.  These  findings

illustrate a strong agreement between the test-retest  conditions at  these cortical  regions (or

functional networks) and thus accentuates their strong potential in future fingerprinting research

(Amico & Goñi, 2018). 

Another aspect of our fingerprinting investigation was to discern if the fingerprinting patterns are

shared across neuroimaging modalities.  Our analysis demonstrated that irrespectively of the

disparate nature of neuroimaging modalities in consideration, there exists a certain degree of

similarity  in  the  nodal  fingerprinting  patterns  between  MEG  and  fMRI.  This  similarity  was

prominently and significantly observed only in leakage-corrected measures (AECc, PLM, PLI,

wPLI) for the nodal fingerprinting strength factor.. Additionally, we also report a higher similarity

at lower temporal scales (delta and theta) between the fingerprinting patterns in the MEG and

fMRI data for the NFS metric. This finding partially agrees with previous studies  (Matthew J.

Brookes et al., 2011; Garcés et al., 2016; Hipp et al., 2012; Francesco de Pasquale et al., 2010)

where functional  connectivity  similarities between MEG and fMRI were evident  in the theta,

alpha, beta, and gamma bands. On the contrary, the delta band presented smaller similarities.

However, it is important to note that our work does not directly investigate the cross-modality

similarity  of  functional  connectivity,  but  instead  explores  the  cross-modality  similarity  of

connectome identifiability patterns. Furthermore, the spatial distribution of fingerprinting patterns

were observed to be specific to the parietal region of the brain in both MEG and fMRI. Results

from the CMNCC metric at the network-level further revealed the characteristic occurrence of

the  visual  network  to  be  the  most  identifiable  across  the  modalities  for  all  measures  and

frequency bands. This finding is consistent with several other comparative studies on MEG and

fMRI  modalities  which  have  demonstrated  a  high  overlap  of  functional  interactions  in  the

posterior region of the brain (Power, Schlaggar, Lessov-Schlaggar, & Petersen, 2013; Tewarie

et  al.,  2014);  specifically  in  the occipital  lobe  (Lankinen et  al.,  2018;  Liljeström,  Stevenson,

Kujala, & Salmelin, 2015) between the two modalities. Therefore, our current findings imply a

degree of spatial concordance between the nodal fingerprinting patterns across the two imaging

modalities. The divergences between the cross-modality similarities of functional connectivity

and identifiability patterns illustrate the complexity of the relationship between hemodynamics

and electrophysiology (Hipp & Siegel, 2015). 
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A primary motivation for  performing fingerprinting analyses is  to demonstrate that  individual

connectomes are stable within individuals and unique across individuals and thus may be useful

for predicting individual differences in behavior. To unravel this last aspect, we investigated the

behavioral significance of MEG connectomes across different functional connectivity measures

and frequency bands. Our results demonstrate that MEG functional connectomes capture inter-

individual differences in cognitive performances, and that the amount of explained inter-subject

cognitive variability depends on the connectivity measure and frequency band of the individual

connectomes. In particular, the connectivity measures that, on average, allowed better subject

identifiability as quantified with Idiff score (namely, AECc and PLM) were the same ones that

carried the largest behavioral significance, as apparent from the visual comparison of Fig. 2B

and Fig. 6A. Moreover, the connectivity measures with lower Idiff and SR fingerprinting scores in

all expect alpha and beta bands (namely, wPLI and PLI) were also the ones carrying the least

behavioral information, with no significant connectome-cognition multivariate correlation found

for  the  wPLI  and  PLI  connectomes in  the  delta,  alpha  and  gamma bands.  These  findings

highlight a certain degree of correspondence between fingerprinting and behavioral relevance of

MEG connectomes,  particularly  with respect  to  the chosen functional  connectivity  measure.

However,  differences exist.  Alpha-band PLM, wPLI  and PLI  connectomes demonstrate high

fingerprinting value but limited behavioral significance. Similarly,  AEC and PLV connectomes

show  perfect  SR-identifiability  but  moderate  behavioral  significance,  pointing  out  a  partial

dissociation  between  connectomes’  test-retest  identifiability  and  behavior  prediction  already

shown in fMRI connectivity data (Noble et al., 2017; Shirer, Jiang, Price, Ng, & Greicius, 2015).

These considerations highlight the complex and still unclear relationship between FC reliability,

FC  inter-subject  variability  and  FC value  for  behavior  prediction,  which  need  to  be  further

investigated in future work.

Finally,  our  PLSC  analyses  across  imaging  modalities  (MEG,  fMRI)  and  frequency  bands

showed  how  the  predicted  cognitive  domains  may  depend  on  the  temporal  scale  of  the

functional connectomes. In particular,  MEG functional  connectivity in slower temporal scales

(delta,  theta  bands)  mainly  predicts  self-regulation/impulsivity  and  spatial  orientation,  while

faster  temporal  scales  (alpha,  beta  bands)  predicts  processing  speed/executive  functions,

memory and attention performances.  The behavioral  significance of  gamma-band functional

connectivity seems to be less specific to single cognitive domains. While these results need to

be  confirmed  and  extended  within  more  far-reaching  and  dedicated  studies  (Buzsáki  &
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Draguhn,  2004),  few  general  considerations  can  be  done.  Delta  oscillations  have  been

implicated  in  evolutionarily  old  processes  such  as  homeostatic  and  motivational  processes

(Knyazev, 2012) as well as impulsivity (Wu et al., 2018), while theta oscillations are associated

with spatial navigation and memory (Korotkova et al., 2018). On the other side, alpha and beta

bands’ oscillations play an active role in information processing, attention and top-down control

mechanisms  (Engel  &  Fries,  2010;  Klimesch,  2012),  which  is  partially  reflected  in  our

connectome-cognition correlation patterns. In our analyses, ultra-slow fMRI connectomes are

mainly  related to memory and fluid intelligence,  recollecting previous works  (Amico & Goñi,

2018; Finn et al., 2015). Intriguingly, the amount of connectome-cognition covariance explained

by MEG data was larger than the covariance explained by fMRI data, suggesting that large-

scale electrophysiological connectivity patterns at rest might have stronger behavioral relevance

than hemodynamic measures.

Brain  fingerprints  are  influenced  by  many  factors:  extraction  of  the  individual  connectivity

information,  choice  of  the  functional  connectivity  measure,  specific  preprocessing  pipelines,

impact of artifacts (i.e. spatial leakage). Owing to the temporal richness of MEG data we were

able to dig deeper into all these contributions to brain fingerprinting, and partially separate them

throughout  our  analysis.  The  findings  of  our  study  do  indicate  a  strong  potential  of  MEG

connectome  fingerprinting  by  demonstrating  a  robust  and  accurate  subject  identifiability.

Furthermore,  our  extended investigation  on cross-modality  (fMRI/MEG) fingerprints  provides

preliminary evidence of a certain degree of spatial concordance of fingerprinting patterns across

MEG  and  fMRI  data.  These  findings  might  pave  the  way  to  developing  a  cross-modality

connectome fingerprinting paradigm for reliable and robust precision medicine applications. 

This  study has limitations.  In our study we conducted an exhaustive analysis  of the role of

functional connectivity measure in estimating fingerprinting by evaluating six prominently used

amplitude- and phase-based coupling methods. However,  we did not  investigate the role of

effective connectivity on fingerprinting; future studies should explore our framework with a more

diverse set of connectivity measures. We only investigated an epoch length of 8s in our work; It

would be interesting to see the effects of various epoch lengths on the functional connectomes

and derived fingerprints in future studies. The choice of high-pass filter (1.3 Hz) and the delta

band range (0.5-4 Hz) in our work may have impacted the fingerprinting potential in the delta

band specifically. In addition, we only investigated the fingerprinting in a narrow gamma band

range (i.e. 30-48Hz); future studies should explore fingerprinting in full delta and gamma band
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range as well. In the present work we did not consider different source reconstruction strategies

and spatial-leakage correction methods for obtaining source-localized MEG data. The familial

relationships  in  the  MEG  dataset  and  its  relationship  to  fingerprinting  should  be  further

investigated; the impact of different parcellation schemes on MEG fingerprinting should also be

explored.  Recent studies have shown that several choices during MEG data pre-processing

steps (i.e.forward/inverse model, beamforming method, and different implementation software)

can  affect  the  results  in  source  space  (Gross  et  al.,  2013;  van  Diessen  et  al.,  2015).

Furthermore, in this work the cross-modality fingerprinting investigation was restricted to MEG

and fMRI data. Building from our cross-modality framework, future studies should explore the

extent  of  fingerprint  concordance between different  neuroimaging modalities  including EEG,

DTI, PET among others. Another interesting avenue involves the maximization of connectivity

fingerprints in MEG functional connectomes, similarly to (Amico & Goñi, 2018). Finally, it would

be interesting to extend the proposed fingerprinting framework to task-specific data to explore

the relationship between fingerprinting patterns and task-related functional organization. 

Conclusion

In conclusion, we have reported an exhaustive investigation of fingerprinting estimation using

MEG data where we explored the relationship between brain fingerprints and various factors

including  functional  connectivity  measures,  frequency  bands,  spatial  leakage,  identification

scoring  methods,  neuroimaging  modality,  and  behavioral  significance.  We  explored  the

contributions on MEG fingerprints from all these factors, and found that its accurate individual

estimations require careful consideration on these features, especially on the FC measure and

frequency band chosen. We hope that future research in brain connectomics will benefit from

this first comprehensive (albeit preliminary) overview on the brain fingerprinting properties of

MEG data.
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