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Abstract 19 

While language impairment is the defining symptom of aphasia, the co-occurrence of non-language 20 

cognitive deficits and their importance in predicting rehabilitation and recovery outcomes is well 21 

documented. Despite this, people with aphasia (PWA) are rarely tested on assessments of higher 22 

order cognitive functions, making it difficult for studies to associate these functions with a consistent 23 

lesion correlate. Contrary to classic models of speech and language, cumulative evidence shows 24 

that Broca’s area and surrounding regions in the left inferior frontal cortex (LIFC) are involved in, but 25 

not specific to, speech production – suggesting that these regions may be involved in higher-level 26 

cognitive functions that support language production. A better understanding of language processing 27 

in the context of other domain general cognitive functions is essential for improving aphasia 28 

treatments.  29 

This study aimed to explore the brain-behaviour relationships between tests of individual cognitive 30 

skill and language abilities in people with post-stroke aphasia, with a focus on language production 31 

deficits and their associated lesion correlates. We predicted our analysis would reveal a latent (non-32 

language specific) cognitive component, that would be driven by damage to LIFC. 33 

We analysed the behavioural and neural correlates of an extensive battery of language and non-34 

language cognitive tests in a sample of thirty-six adults with long-term speech production deficits 35 

from post-stroke aphasia. All participants were anomic, with relatively intact speech comprehension 36 

and no apraxia of speech. The behavioural variables were analysed using Principal Component 37 

Analysis and their neural correlates were estimated using Voxel-Based Correlational Morphology. 38 

A significant number of anomic adults showed impaired performance on tests of non-language 39 

specific cognitive function. The variance underlying behavioural performance was best captured by 40 

four orthogonal components, two higher-order cognitive components (executive functions and verbal 41 

working memory) and two linguistic processing components (phonology and semantics). Brain-42 

behaviour relationships revealed separable neural correlates for each component in line with 43 

previous studies and an executive functions correlate in the left inferior frontal cortex (LIFC). 44 

Our findings suggest that in adults with chronic post-stroke language production deficits (anomia), 45 

higher-level cognitive functions explain more of the variance in language function than classical 46 
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models of the condition imply. Additionally, lesions to the LIFC, including Broca’s area, were 47 

associated with executive (dys)function, independent of language abilities, suggesting that lesions 48 

to this area are associated with non-language specific higher-level cognitive functions that support 49 

speech production. These findings support contemporary models of speech production that place 50 

language processing within the context of domain-general perception, action and conceptual 51 

knowledge. 52 

 53 

 54 

1. Introduction 55 

While language impairment is the defining consequence of post-stroke aphasia, the presence of co-56 

occurring impairments in other cognitive domains has been well documented (Fucetola et al., 2009; 57 

Helm-Estabrooks, 2002; Murray, 2012; El Hachioui et al., 2014; Marinelli et al., 2017; Ramsey et al., 58 

2017; Schumacher et al., 2019) Despite this,  People With Aphasia (PWA) rarely receive extensive 59 

cognitive assessment, meaning data on individual cognitive skills in this patient population is scarce. 60 

Evidence suggests that executive functions may be impaired in post-stroke aphasia, but the 61 

relationship between language and executive functions is difficult to tease apart (see Fedorenko, 62 

2014) and studies have not been able to converge on the underlying lesions correlates of executive 63 

functions in PWA (Mirman and Thye, 2018).  64 

Deficits in non-language specific cognitive domains have consistently been shown to be predictive 65 

of certain aspects of language function recovery in post-stroke aphasia. Marinelli and colleagues 66 

(2017) examined language and cognitive function in 189 PWA and found more severe language 67 

deficits to be associated with more severe cognitive impairments. Other studies have investigated 68 

executive functions in PWA and consistently found impaired inhibition, working memory or cognitive 69 

flexibility (Frankel et al., 2007; Fridriksson et al., 2006; Jefferies, Patterson and Ralph, 2008; Lee 70 

and Pyun, 2014; Murray, 2012; Vallila-Rohter and Kiran, 2013). A better understanding of language 71 

processing in the context of other domain-general cognitive functions is important for clinical 72 
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management and rehabilitation. In fact, a series of aphasia therapy studies emphasise that cognitive 73 

abilities, particularly executive functions and verbal short-term memory, play an important role in 74 

driving recovery outcomes (Fillingham, Sage and Lambon Ralph, 2005a, 2005b, 2006; Conroy, Sage 75 

and Lambon Ralph, 2009; Mirman et al., 2015; Lambon Ralph et al., 2010; Yeung and Law, 2010; 76 

Snell, Sage and Lambon Ralph, 2010, Sage, Snell and Lambon Ralph, 2011; Dignam et al., 2017; 77 

Lacey et al., 2017; Schumacher et al., 2020). 78 

While studies have highlighted the impact of cognition on aphasia rehabilitation and recovery, few 79 

have explored the contribution of individual cognitive skills and the relationship to underlying lesion 80 

pattern. The neural basis of aphasia is commonly explored by linking behavioural assessment with 81 

brain lesion data. This has resulted in some distinct brain-behaviour relationships for various 82 

language domains, however studies have not been able to converge on a consistent lesion correlate 83 

of higher-level executive functions (Mirman and Thye, 2018), either because non-language 84 

assessments were not included (Kummerer et al., 2013; Mirman et al., 2015) or were only included 85 

in a limited scope (Butler et al., 2014; Halai et al., 2017; Tochadse et al., 2018; though see Lacey et 86 

al., 2017). More recently, the neural correlates of non-language cognitive domains in aphasia have 87 

been explored by Schumacher et al., (2019, 2020) and Alyahya et al., (2020), whose findings are 88 

discussed in more detail below. 89 

When assessing cognitive abilities, it is important to consider that cognition is a multidimensional 90 

construct broadly comprising five general domains, including language, attention, memory, executive 91 

functions and visuo-spatial skills (Helm-Estabrooks, 2002), with each domain containing distinct 92 

components. Using composite or general scores risks reducing the sensitivity of the cognitive 93 

measure. Schumacher and colleagues (2019) recently demonstrated the importance of this by using 94 

a detailed non-verbal neuropsychological assessment to show that brain regions involved in 95 

particular components of the attention and executive functions domains contribute to the abilities of 96 

adults with a wide range of aphasia types. Lacey and colleagues (2017) showed that executive 97 

functioning explains considerable variance in language abilities of PWA. Schumacher et al., (2020) 98 

recently showed that variance in functional communication abilities in PWA can be almost entirely 99 

explained by patients’ verbal short-term memory. Another study used extensive assessments of 100 
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attention to show that different aspects of attention differentially predict language function in aphasia 101 

(Murray, 2012). Finally, studies that have explored the role of cognition in aphasia have typically 102 

involved a sample of diverse aphasia types and severity. While this is pertinent to capturing the 103 

incidence of cognitive impairment in the general aphasic population, the wide variability of aphasia 104 

subtypes can confound analyses of the links between domain-general cognitive impairment and any 105 

particular aphasic subtype or symptom.  106 

Executive functions and language are closely linked in both brain and behaviour. Behaviourally, 107 

cognitive control and working memory have long been known to support language processing 108 

(Gordon et al., 2002; Novais-Santos et al., 2007; January et al., 2009; Fedorenko, 2014). Neurally, 109 

both executive functions and language robustly engage regions within the left frontal cortex (Kaan 110 

and Swaab, 2002; Novick et al., 2005). This makes it challenging to functionally dissociate 111 

anatomical correlates of the two domains. Of particular relevance is the function of Broca’s area and 112 

the left inferior frontal cortices (LIFC). Damage to Broca’s area, which encompasses 113 

cytoarchitecturally defined Brodmann’s area BA 44 and BA 45 of the left posterior inferior frontal 114 

gyrus (LpIFG) (Ardila et al., 2016; Papitto et al., 2020) commonly results in anomia, which has led 115 

people to believe that Broca’s area within the LpIFG play a causal role in language production. 116 

However, research in more recent years challenges this notion. The current view is that long-term 117 

speech production outcome following left inferior frontal damage is best explained by a combination 118 

of damage to Broca’s area and neighbouring regions including the underlying white matter (Gajardo-119 

Vidal and Lorca-Puls et al., 2021), which was also damaged in Paul Broca’s two historic cases 120 

(Dronkers et al., 2007), and that Broca’s area is not specialised for speech and language, but rather 121 

is part of a wider network of general cognitive processing that includes, but is not limited to language 122 

(Duncan, 2010; Duncan, 2013). Nevertheless, some argue that executive functions and language 123 

occupy nearby but distinct regions within the left frontal cortex (Fedorenko and Varley, 2016). To 124 

date, the brain areas required for speech production, and the type of aphasia that results from 125 

damage to the LIFC remains a topic of continued debate (Marie, 1906; Mohr et al., 1978; Alexander 126 

et al., 1990; Lorch, 2008; Fridriksson et al., 2015; Tremblay and Dick, 2016). 127 
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Here, we aimed to tease apart the cognitive processes associated with language production, and 128 

their underlying neural correlates – with a particular interest in how lesion correlates within the LIFG 129 

are associated with long-term language production deficits. We sampled a wide range of PWA from 130 

left hemisphere stroke who had long-term speech production deficits (anomia) and varying damage 131 

to LIFG. Anomia is the most common symptom of post-stroke aphasia and manifests as difficulty in 132 

word retrieval when naming common objects (Laine and Martin, 2013). The participants in this study 133 

had relatively intact comprehension and no speech apraxia. The participants were assessed on an 134 

extensive battery of language and domain-general cognitive functions. The behavioural data were 135 

analysed using Principal Component Analysis (PCA) and their underlying lesion correlates were 136 

mapped using Voxel-Based Correlational Morphology (VBCM). We predicted that our analysis would 137 

reveal a non-language specific higher-level cognitive component to anomic symptoms, which would 138 

be driven by damage to Broca’s area and surrounding regions in the left frontal cortices.  139 

 140 

2. Materials and methods 141 

 142 

2.1 Participants 143 

Thirty-six English speakers with chronic aphasia following a single left-hemisphere stroke 144 

participated in the study (see Fig. 1 for a lesion overlap map, Table 1 for demographic and clinical 145 

data). All were at least 12 months post-stroke and at the time of scanning and assessment, had 146 

normal hearing, normal or corrected-to-normal visual acuity and no previous history of significant 147 

neurological or psychiatric disease. Inclusion criteria were: (i) anomia as determined by the naming 148 

subtest of the Comprehensive Aphasia Test (Swinburn et al., 2005); (ii) good single word 149 

comprehension as assessed by the spoken word comprehension subtest of the Comprehensive 150 

Aphasia Test (Swinburn et al., 2005); (iii) relatively spared ability to repeat single monosyllabic 151 

words from the Psycholinguistic Assessments of Language Processing in Aphasia (Kay et al., 152 

1992); (iv) absence of speech apraxia as determined by the Apraxia Battery for Adults (Dabul, 153 

2000). Participants were excluded if they had any contraindications for scanning or any other 154 

significant neurological or psychiatric conditions. Informed consent was obtained from all 155 
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participants in accordance with the Declaration of Helsinki and the study was approved by the 156 

Central London Research Ethics Committee, UK. 157 

Table 1. Participant demographic and clinical data 158 

ID Gender 
Age 

(years) 
Education 

(years) 
Time post-

stroke (years) 
Total lesion 

volume (cm3) 

01 M 55 16 11 61.53 

02 M 56 11 7 160.80 

03 M 71 13 2 42.76 

04 M 55 11 9 57.24 

05 M 71 16 2 78.36 

06 F 51 13 13 43.42 

07 M 47 13 12 161.81 

08 F 66 16 18 83.18 

09 M 61 16 4 63.56 

10 M 44 16 3 38.14 

11 F 44 17 1 29.49 

12 F 70 11 12 8.93 

13 M 70 11 29 117.55 

14 M 69 16 7 171.71 

15 M 73 11 11 71.31 

16 F 45 11 3 63.53 

17 F 53 11 5 22.25 

18 F 55 13 5 1.51 

19 M 40 17 8 163.75 

20 M 64 13 24 308.18 

21 M 42 17 1 65.80 

22 M 74 16 11 164.53 

23 M 63 16 25 156.91 

24 M 64 16 10 348.23 

25 M 60 16 11 94.32 

26 F 60 11 6 223.29 

27 M 75 11 12 112.55 

28 F 50 16 3 130.60 

29 M 64 11 8 240.39 

30 M 29 13 6 78.61 

31 F 81 10 16 99.38 

32 M 60 13 20 403.11 

33 M 65 13 14 387.17 

34 M 82 13 34 152.61 

35 M 58 16 8 239.29 

36 M 39 17 2 95.70 

Thirty-six participants. 10 Female, age range 29-82 years (mean: 59, SD: 12.5). Average time post-stroke was 159 
10 years and average lesion volume was 131.7cm3. 160 

2.2 Neuropsychology 161 
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Behavioural assessment 162 

A comprehensive battery of language and non-language tests was administered to assess 163 

participants’ language and cognitive abilities (see supplementary material for all administered 164 

behavioural tests [Supplementary Table 1] and percentage of participants with impaired performance 165 

scores [supplementary Fig. 1]). 166 

The language tests administered to assess speech production included the naming and repetition 167 

subtests of the CAT, the word/non-word repetition subtests from the Psycholinguistic Assessments 168 

of Language Processing in Aphasia subtests 8 and 9 (PALPA; Kay et al., 1992), the Boston Naming 169 

Test (BNT; Kaplan, Goodglass and Weintraub, 1983). The language assessments that captured 170 

other language functions included Pyramids and Palm Trees (PPT; Howard and Patterson, 1992), 171 

other subtests from the CAT, and the reading tasks from the PALPA8.  172 

The non-language cognitive assessments included the Cattel Culture Fair IQ Test (Scale 2, Form A; 173 

Cattell and Cattell, 1963), Rey-Osterrieth Complex Figure Test (Osterrieth, 1944), Digit Span tasks 174 

from the Wechsler Adult Intelligence Scale – Fourth Edition (WAIS-IV; Wechsler, 2008), the trail 175 

making and card sorting subtests from the Delis-Kaplan Executive Functions System test (D-KEFS; 176 

Delis, Kaplan and Kramer, 2001), the Hopkins Verbal Learning Test (HVLT; Brandt and Benedict, 177 

2001) and the Children’s Sustained Attention to Response Task (cSART; Robertson et al., 1997). 178 

 179 

Figure 1. Lesion overlap map. A lesion overlap map for the 36 stroke anomic participants. 
Colour scale represents frequency of regional brain damage (hot-body scale with red 
indicating most frequently damaged brain regions i.e., >18 patients, while dark blue < 6 
patients with damage to these regions). Results are shown overlaid on the MNI template 
brain, created in MRIcro-GL (Rorden et al., 2007).   
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Principal Component Analysis (PCA) 180 

PCA is a useful exploratory tool that can extract the underlying latent structure of a set of correlated 181 

variables – like scores in standardised assessments of post-stroke cognitive impairment. There has 182 

been increasing interest in interpreting these latent variables in terms of the potentially separable 183 

cognitive sub-systems underlying (often strongly correlated) task scores. This is typically done by 184 

correlating latent variables with the original scores: those scores that correlate more strongly with 185 

the latent variable are said to load on that latent variable. Here, following recent results, we employ 186 

varimax rotation to encourage greater sparsity, and thus interpretability, in those loadings (Butler et 187 

al., 2014; Halai et al., 2017; Tochadse et al., 2018). 188 

Participants’ scores on all assessments were entered into a PCA with varimax rotation (conducted 189 

with SPSS 26.0). We had 55 variables and 36 cases. Factors with an eigenvalue ≥1.0 were extracted 190 

then rotated. After orthogonal rotation, the factor loadings of each test allowed interpretation of what 191 

cognitive-language primary process was represented by that factor (Table 2). Individual participants’ 192 

scores on each extracted factor were then used as behavioural covariates in the neuroimaging 193 

analysis. 194 

2.3 Neuroimaging 195 

MR Imaging acquisition and analysis 196 

Whole-brain imaging was performed on a 3T Siemens TIM-Trio system (Siemens, Erlangen, 197 

Germany) at the Wellcome Centre for Human Neuroimaging.  Structural (T1-weighted) MRI images 198 

were normalised using Statistical Parametric Mapping software (SPM12) running under Matlab 199 

2015a (MathWorks, Natick, MA). Lesion images were defined by the Automatic Lesion Identification 200 

toolbox (ALI; Seghier et al., 2008), employing a variant of the unified segmentation algorithm 201 

(Ashburner and Friston, 2005), optimised for use in the focally damaged brain.  202 

 203 

Structural MRI scans were pre-processed with Statistical Parametric Mapping software (SPM12: 204 

Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). The images were 205 

normalised into standard Montreal Neurological Institute (MNI) space using a modified unified 206 
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segmentation–normalisation procedure optimised for focal lesioned brains (Seghier et al., 2008). 207 

Data from all participants were entered into the segmentation–normalisation. This procedure 208 

combines segmentation, bias correction and spatial normalisation through the inversion of a single 209 

unified model (see Ashburner and Friston, 2005 for more details). In brief, the unified model 210 

combines tissue class (with an additional tissue class for abnormal voxels), intensity bias and non-211 

linear warping into the same probabilistic models that are assumed to generate subject-specific 212 

images. Images were then smoothed with an 8 mm full-width-half-maximum (FWHM) Gaussian 213 

kernel and used in the lesion analyses described below. The lesion of each participant was 214 

automatically identified using an outlier detection algorithm, compared to healthy controls, based on 215 

fuzzy clustering. Voxel values in these regions range from 0 to 1, with higher values indicating greater 216 

evidence that the voxel is damaged, and evidence is derived by comparing tissue intensity in each 217 

voxel to intensities from a population of neurologically normal controls. The default parameters were 218 

used. The images generated for each participant were individually checked and visually inspected 219 

with respect to the original scan and were used to create the lesion overlap map in Fig. 1.  We 220 

selected the Seghier et al. (2008) method as it is objective and efficient for a large sample of lesions 221 

(Wilke, de Haan, Juenger and Karnath, 2011).  222 

 223 

Lesion-Symptom Mapping 224 

For lesion-symptom mapping, we used the fuzzy lesion images as described above and correlated 225 

these with PCA factor scores using a voxel-based correlational methodology (VBCM: Tyler, Marslen-226 

Wilson and Stamatakis, 2005), a variant of voxel-lesion symptom mapping (VLSM: Bates et al., 227 

2003). We used VBCM   because this approach i) has the virtue of preserving the continuous nature 228 

of both behavioural and neural indices i.e., does not require a binary classification of the 229 

intact/lesioned brain to be marked, as in the case of VLSM, and ii) replicates previous methodology 230 

using varimax-rotated PCA in aphasia (e.g. Butler et al., 2014), aiding data comparisons within the 231 

field. 232 

The VBCM analysis of PCA factors was conducted in SPM12 running on Matlab 2019b. The analysis 233 

used the four continuous multidimensional predictors of the PCA factor scores, which are necessarily 234 
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uncorrelated (orthogonal) with one another; these were entered simultaneously as continuous 235 

behavioural covariates. The outcome of the analysis therefore denotes which voxels’ variation in 236 

tissue concentration corresponds to the unique variance in a given principal component, while 237 

controlling for variation in the other components in the analysis. In order to ensure that the results  238 

were not merely attributable to lesion size, each participants' lesion volume was calculated from the 239 

lesion identified by the automated lesion identification method (Seghier et al., 2008) and this was 240 

entered as a covariate in the VBCM. All analyses were performed with and without a correction for 241 

lesion volume. All anatomical labels were based on the Harvard–Oxford atlas in MNI space. 242 

3. Results 243 

3.1 Neuropsychological profiles and principal language-cognitive factors 244 

The rotated PCA produced a four-factor solution which accounted for 55% of variance in participants’ 245 

performance (F1 = 28.6%; F2 = 10.6%; F3 = 8.3%; F4 = 7.1%). The loadings of each of the different 246 

behavioural assessments on each of the factors are given in Table 2 (for individual participants’ 247 

scores on each factor and percentage of participants with impaired language and non-language 248 

scores, see supplementary Table 1 and supplementary Fig. 2 respectively). Tasks that tapped into 249 

input and output phonology (e.g. word and non-word repetition) loaded heavily on Factor 1, as such 250 

we refer to this factor as ‘Phonology’. Factor 2 was interpreted as ‘Executive Functions’, as 251 

assessments that loaded most heavily on it tapped into non-verbal cognitive processes (e.g. problem 252 

solving and concept formation). Assessments that loaded on Factor 3 were those requiring speech 253 

output (e.g.,  composite picture description) and online maintenance and use of auditory inputs (e.g. 254 

digit span, sentence repetition) along with phonological skills (e.g. reading aloud non-words), hence 255 

we refer to this factor as ‘verbal working memory’. Finally, Factor 4 was interpreted as ‘Semantics’, 256 

the assessments that loaded on this factor were more diverse but primarily required processing of 257 

meaning (e.g. picture naming and comprehension of written sentences).  258 
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Table 2. Loadings of behavioural assessments on rotated PCA factors  259 

Factor loadings >0.5 are given in bold. PALPA = Psycholinguistic Assessments of Language Processing in Aphasia; LILF = 260 

Low Intelligibility Low Frequency, LIHF = Low Intelligibility High Frequency, HIHF = High Intelligibility High Frequency, 261 

HILF = High Intelligibility Low Frequency. CAT = Comprehensive Aphasia Test. DKEFS = Delis-Kaplan Executive Functions 262 

System. WAIS = Wechsler Adult Intelligence Scale. Tests with very low loadings do not appear in this table.263 

 Factor 1 
Phonology 

Factor 2 
Executive 
Functions 

Factor 3 
Verbal Working 

Memory 

Factor 4 
Semantics 

PALPA9 Repetition - Words (LILF) 0.898 0.089 0.064 0.190 
PALPA9 Repetition - Words (LIHF) 0.859 -0.125 0.196 0.204 
PALPA9 Repetition - Words (HILF) 0.829 0.189 0.054 0.055 
PALPA9 Repetition Non-Words 0.826 0.045 0.299 0.135 
PALPA8 Repetition Non-Words 0.792 -0.024 0.308 0.106 
PALPA9 Repetition - Words (HIHF) 0.778 0.108 0.020 0.099 
CAT Repetition - Words 0.696 0.075 0.003 0.404 
CAT Repetition - Non-Words 0.620 0.227 0.180 0.019 
CAT Comprehension - Spoken Words 0.606 0.269 -0.096 -0.099 
CAT Repetition - Complex Words 0.580 0.042 0.252 0.265 
DKEFS Card Sorting: Free Description 0.036 0.892 0.073 0.212 
DKEFS Card Sorting: Correct Sorts 0.119 0.888 0.060 0.179 
DKEFS Card Sorting: Recognition  0.089 0.841 0.207 0.219 
DKEFS Card Sorting: Perceptual Sorts 0.073 0.836 0.178 0.225 
DKEFS Card Sorting: Verbal Sorts 0.177 0.599 -0.052 0.141 
WAIS Forward Digit Span  0.286 0.014 0.870 0.098 
WAIS Backward Digit Span  0.013 0.014 0.791 0.000 
CAT Repetition - Digit String 0.121 0.229 0.776 0.173 
CAT Repetition - Sentences 0.233 -0.004 0.650 0.526 
PALPA8 Reading - Non-Words 0.195 0.228 0.628 0.382 
CAT Spoken Picture Description 0.276 0.241 0.537 0.330 
CAT Reading - Non-Words 0.310 0.378 0.506 0.324 
Boston Naming Test 0.123 0.440 -0.018 0.771 
CAT Reading - Words 0.298 0.243 0.314 0.748 
CAT Naming - Objects 0.400 0.055 0.099 0.713 
CAT Naming - Actions 0.136 0.281 0.170 0.646 
CAT Reading - Complex Words 0.273 0.049 0.568 0.640 
CAT Reading - Function Words 0.088 0.265 0.268 0.544 
CAT Writing to Dictation 0.161 0.290 0.399 0.529 
CAT Comprehension -Written 
Sentences 0.138 0.139 0.372 0.510 
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3.2 The neural basis of performance in chronic stroke aphasia 264 

Voxel-based morphometry of principal component analysis factors 265 

The VBCM results are shown in Fig. 2 and Table 3. Each map displays where tissue damage 266 

covaries uniquely with a given factor score, where the factors are necessarily uncorrelated with one 267 

another. Results are thresholded at p ≤ 0.001 voxel-level and p < 0.05 FWE corrected at cluster-268 

level.  269 

Performance on the phonological factor was uniquely correlated with a cluster of voxels in the left 270 

parietal lobe, with peak voxels in the left superior parietal lobe. The cluster also included voxels in 271 

the left inferior parietal lobule. 272 

Performance on the executive functions factor was uniquely related to a cluster of voxels in the left 273 

frontal lobe, with peak voxels in the left inferior frontal gyrus (pars orbitalis and pars triangularis) and 274 

the left dorsolateral prefrontal cortex. 275 

Performance on the verbal working memory factor was uniquely related to a large cluster of voxels 276 

in the left hemisphere, with peak voxels in the posterior superior temporal gyrus, the superior 277 

longitudinal fasciculus and posterior thalamic radiation. The cluster also included voxels within left 278 

Werenicke’s area, Heschl’s gyrus and the hippocampus. 279 

 280 

Performance on the semantic factor was uniquely related to two clusters in the left hemisphere with 281 

peak voxels in the superior/ middle temporal pole and superior/middle temporal gyrus. The clusters 282 

also included voxels across the left insula. 283 

 284 

 285 
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 286 

 287 

 

Figure 2. Structural correlates associated with each component from the combined PCA. Phonology: 
green; Executive Functions: magenta; Verbal Working Memory: yellow; Semantics: two distinct 
clusters in cyan and indigo. Clusters were obtained by applying a voxel-level threshold at p ≤ 0.001 
and a family-wise error correction of p < 0.05 at cluster level . The lower right corner displays a 
rendered template brain (created in MRIcro-GL) showing the significant clusters projected to the 
left brain surface.  
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Table 3. Neural correlates for omnibus PCA factors 288 

Only clusters with cluster-level FWEc p < 0.05 are shown in the table. 289 

Lesion size and age 290 

Given that some brain regions are more likely than others to be damaged after middle cerebral artery 291 

(MCA) stroke (Phan et al., 2005) and some regions are more susceptible to age-related atrophy, we 292 

controlled for lesion volume and age in subsequent lesion-symptom analyses.  293 

Each participant’s lesion volume was calculated from the lesion identified by the modified 294 

segmentation-normalization procedure (see ‘Materials and methods’ section). For the PCA factors, 295 

lesion volume correlated relatively weakly with the phonology factor (r=0.137, p=0.426), the auditory 296 

working memory factor (r= -0.318, p=0.059) and semantic factor (r= -0.313, p=0.063), and slightly 297 

more strongly with the executive-functions factor (r= -0.426, p=0.10)  298 

Including age in the VBCM model with the PCA factor scores did not alter the pattern of results 299 

obtained. However, including lesion volume in the model reduced the significance of the executive 300 

functions measure, which only reached suprathreshold at voxel-level p < 0.05 and FWEc cluster-301 

level p < 0.05, but did not alter the pattern of results in the remaining 3 PCA factors. As previously 302 

Principal 
Component 

Location 
Extent 

(voxels) 
Z 

MNI co-ordinates 

x y z 

F1 (Phonology) Left Superior Parietal Lobe 175 4.16 -34 -54 58 

F2 (Executive 
Functions)  1563     
 Left Inferior Frontal Gyrus (Pars Triangularis)  3.93 -44 36 2 
 Left Inferior Frontal Gyrus (Pars Orbitalis)  3.59 -40 42 -8 

 
Left Middle Frontal Gyrus (Dorsolateral 
Prefrontal Cortex)  3.56 -30 44 4 

F3 (Verbal 
Working 
Memory)  5262     
 Left Posterior Superior Temporal Gyrus  4.49 -58 -28 6 
 Left Superior Longitudinal Fasciculus  4.94 -38 -44 18 
 Left Posterior Thalamic Radiation  5.35 -36 -46 2 
F4 (Semantics)  209     
 Left Superior Temporal Pole  4.82 -22 10 -24 
 Left Middle Temporal Pole  4.47 -20 12 -34 
  2343     
 Left Superior Temporal Gyrus  4.14 -64 -10 -4 
 Left Middle Temporal Gyrus  4.14 -62 -14 -12 
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mentioned, the executive functions component correlated with tissue damage in the left inferior 303 

frontal cortex (LIFC); as a common region of damage following left MCA stroke (Phan et al., 2005), 304 

high covariance between LIFC tissue integrity and total lesion volume is expected.  305 

 306 

4. Discussion 307 

The aim of the current study was to investigate the presence of latent cognitive factors that might 308 

explain the variance in aphasic language production abilities and how this relates to underlying lesion 309 

patterns. We conducted an extensive language and non-language neuropsychological assessment 310 

in a sample of thirty-six PWA with long-term language production deficits. Our results replicate and 311 

extend work on the neural correlates of higher-level cognitive functions in PWA and their role in 312 

language production. We show that (i) the variance underlying language and non-language test 313 

performance was best captured by four orthogonal components, two higher-order cognitive 314 

components (executive functions and verbal working memory) and two linguistic processing 315 

components (phonology and semantics) (Table 2); (ii) brain-behaviour relationships revealed 316 

separable neural correlates for each component in line with previous studies and showed that lesions 317 

to the left inferior frontal cortex (LIFC) are associated with executive dysfunction, independent of 318 

language ability (Fig. 2, Table 3), suggesting that these regions are involved in, but not specific to, 319 

language production. 320 

The neural correlates associated with the two language components were in line with previous 321 

literature. The phonological component explained the largest proportion of behavioural variance in 322 

our group of anomic adults. Scores on this component, which in our study loaded principally on tests 323 

of single word and non-word repetition, uniquely correlated with tissue damage in the left superior 324 

and inferior parietal lobule (Fig. 2). This is in line with work showing impaired speech repetition 325 

following left hemisphere stroke is associated with left parietal lobe damage (Fridriksson et al., 2010). 326 

More recent studies that have used a similar approach to ours, with a combined rotated PCA and 327 

VBCM in people with aphasia reported a phonology component uniquely related to left temporo-328 
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parietal regions (Butler et al.,2014; Halai et al., 2017; Schumacher et al., 2019; Alyahya et al., 2020). 329 

It is important to note that the phonology component in those studies also loaded on tests of naming 330 

and verbal working memory, as well as repetition, whereas our phonology component was specific 331 

to input/output phonology and loaded heavily on tests of single word and non-word repetition. The 332 

semantic component explained the least amount of behavioural variance in our sample. Scores on 333 

this factor loaded on tests of naming, reading and written comprehension and uniquely correlated 334 

with regions in the left superior/ medial temporal pole and the left superior/ medial temporal gyrus 335 

(Fig. 2). This supports recent findings that extend the temporal regions implicated in semantic 336 

processing (Jackson, 2021).  337 

Importantly, higher cognitive functions, namely executive functions and verbal working memory, 338 

independently explain a significant amount of variance in language abilities in our population of 339 

aphasics with chronic language production deficits. Both have also been shown to be robust 340 

behavioural predictors of aphasia recovery outcomes (Fillingham, Sage and Lambon Ralph, 2005a, 341 

2005b, 2006; Conroy, Sage and Lambon Ralph, 2009; Lambon Ralph et al., 2010; Yeung and Law, 342 

2010; Snell, Sage and Lambon Ralph, 2010, Sage, Snell and Lambon Ralph, 2011; Dignam et al., 343 

2017). During aphasia recovery, executive functions are argued to be important for the generation 344 

of semantic and phonological concepts to aid with word retrieval (Dignam et al, 2017) and to navigate 345 

other complex dynamics of human communication, while the integrity of general memory processes 346 

enables (re)learning and retention of linguistic knowledge during rehabilitation. Schumacher and 347 

colleagues (2020) show that variance in functional communication abilities in PWA, as measured by 348 

the Amsterdam Nijmegen Everyday Language Test, can be almost entirely accounted for by patients’ 349 

verbal short-term memory. In our study, the verbal working memory component uniquely correlated 350 

with regions of tissue damage in the left posterior superior temporal gyrus, left superior longitudinal 351 

fasciculus, as well as Heschl’s gyrus, Wernicke’s area and the hippocampus (Fig. 2). This 352 

component captured abilities both in continuous (narrative) speech production (e.g, spoken picture 353 

description ) and online maintenance  of increasing auditory information (e.g. digit-span, sentence 354 

repetition). This replicates findings from Tochadse et al., (2019) who report a similar neural correlate 355 

associated with auditory working memory in PWA.  356 
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Scores on the executive functions factor uniquely correlated with tissue damage in the left inferior 357 

frontal cortex (LIFC), including pars orbitalis and pars triangularis, and middle frontal gyrus (DLPFC) 358 

(see Fig. 2 for structural correlates and table 3 for MNI co-ordinates). The LIFC results support and 359 

extends recent findings from ECoG and fMRI. Conner et al., (2019) used intracranial recordings to 360 

show that activity in pars triangularis and pars orbitalis is specifically engaged in object naming, 361 

compared to scrambled images, and shows stronger activity for words with high selectivity (number 362 

of possible correct responses). Ekert et al., (2021) used fMRI to show that pars orbitalis was most 363 

activated during object naming, compared to repetition of words and pseudowords. Our participants 364 

all had anomia, and by definition significant object naming deficits. However, our results show that 365 

lesions to pars triangularis and pars orbitalis are associated with executive functions, independent 366 

of language function. This suggests that these regions within the LIFC support high-level planning 367 

and execution that is important for object naming, but not specific to language processing. This 368 

supports contemporary models of speech and language that suggest that language production may 369 

rely on the same process and neural systems that support other high-level action planning and 370 

execution (Botvinivk, 2008; Hickok 2012; Weiss et al., 2016). These findings support the role of 371 

Broca’s area, here pars triangularis in particular, and adjacent pars orbitalis in domain-general 372 

cognition and extend our understanding of the neural correlates of anomia. We show that in a group 373 

of PWA with chronic anomia, lesions to the LIFC including Broca’s area are associated with 374 

executive (dys)function, independent of language abilities. This suggests that, while damage to the 375 

LIFC commonly coincides with language impairment after stroke, lesions to this area might be driving 376 

a (non-language specific) cognitive component of anomia that co-occurs with language impairment 377 

We speculate that lesions to Broca’s area may lead to deficits in high-level executive functioning that 378 

supports language production and that this can contribute to varying levels of long-term language 379 

impairment the nature of which will vary depending on the pattern of damage to neighbouring regions 380 

of grey and white matter (Kimberg et al., 2007; Richardson et al., 2012; Inoue et al., 2014; Mah et 381 

al., 2014; Sperber and Karnath et al., 2017; Gajardo-Vidal and Lorca-Puls et al., 2021).  382 

Behaviourally, the executive functions component loaded on tests of problem solving and concept 383 

formation as measured by the D-KEFS Card Sorting assessment. Card sorting assessments, 384 
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including the D-KEFS and Wisconsin (Berg, 1948) tasks, appear to reliably engage executive 385 

functions and relate to damage in the left inferior frontal cortices (LIFC) and DLPFC in our group of 386 

aphasic adults. The neural correlates associated with our executive functions component show some 387 

overlap, namely pars triangularis and DLPFC, with a PCA component identified by Schumacher and 388 

colleagues (2019), which the authors refer to as ‘inhibit-generate’. Their ‘inhibit-generate’ component 389 

captured abilities of idea generation, reasoning, problem solving and response inhibition in PWA and 390 

loaded on, amongst others, the D-KEFS card sorting test, as we used here. DLPFC is also reported 391 

by Lacey et al., (2017) as a neural correlate of their executive functions component which loaded 392 

on, amongst others, tests of planning, rule following and cognitive flexibility in PWA. Alyahya and 393 

colleagues (2020) also identify the middle frontal gyrus as a structural correlate of executive 394 

functions, specifically tests of abstract reasoning and rule following, in aphasic adults. Baldo et al. 395 

(2005) reported impairment on the Wisconsin Card Sorting Task in aphasic individuals, but not in 396 

adults with left-hemisphere brain damage without aphasia, suggesting that the card sorting task taps 397 

into executive functions that are necessary for effective language function. Consistent with this, 398 

Dignam et al., ( 2017) show that the D-KEFS Card Sorting assessment is predictive of successful 399 

anomia therapy outcomes. Collectively, these findings suggest that in PWA, card sorting tasks such 400 

as the D-KEFS, that we used here, are a sensitive measure of executive functions supporting 401 

language functioning. Not including these assessments of concept formation and problem solving 402 

skills might be a significant contributing reason to why previous studies in aphasia have previously 403 

struggled to find consistent associations between tests of executive functions and brain damage 404 

(Kummerer et al., 2013; Butler et al., 2014; Mirman et al., 2015; Halai et al., 2017; Tochadse et al., 405 

2018).   406 

In conclusion, our findings suggest that in people with chronic post-stroke anomia, cognitive abilities 407 

and in particular executive functions and verbal working memory, help explain significant variance 408 

in language function, more than classical purely linguistic models of the condition imply. Moreover, 409 

lesions to the LIFC, including Broca’s area, determine whether people suffer worse executive 410 

(dys)function, independent of their language abilities. This does not necessarily imply that all 411 

aphasics will have additional cognitive impairments, but that in those who do, higher-level executive 412 
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functions may explain more of the variance in language production ability than previously thought. A 413 

better understanding of the covariance between language and non-language deficits and their 414 

underlying neural correlates will inform more targeted aphasia treatment, tailored to an individual’s 415 

pattern of impairments. This may be in the form of neurostimulation targeting regions of domain-416 

general cognition or by incorporating measures of higher-order cognitive function, such as concept 417 

formation and verbal working memory, to improve the accuracy of aphasia prediction models (Price 418 

et al., 2010; Hope et al., 2013, 2018; Yourganov et al., 2015).  419 
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