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ABSTRACT 10 

Contrast is a key feature of the visual scene that aids object recognition. Attention has 11 

been shown to selectively enhance the responses to low contrast stimuli in visual area 12 

V4, a critical hub that sends projections both up and down the visual hierarchy. Veridical 13 

encoding of contrast information is a key computation in early visual areas, while later 14 

stages encode higher level features that benefit from improved sensitivity to low contrast. 15 

How area V4 meets these distinct information processing demands in the attentive state 16 

is not known. We found that attentional modulation of contrast responses in area V4 is 17 

cortical layer and cell-class specific. Putative excitatory neurons in the superficial output 18 

layers that project to higher areas show enhanced boosting of low contrast information. 19 

On the other hand, putative excitatory neurons of deep output layers that project to early 20 

visual areas exhibit contrast-independent scaling. Computational modeling revealed that 21 

such layer-wise differences may result from variations in spatial integration extent of 22 

inhibitory neurons. These findings reveal that the nature of interactions between attention 23 

and contrast in V4 is highly compartmentalized, in alignment with the demands of the 24 

visual processing hierarchy. 25 

 26 

 27 

 28 
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INTRODUCTION 30 

Voluntary attention is essential for sensory guided behavior and memory formation 31 

(Petersen and Posner, 2012). Failures in sensory processing and selective attention are 32 

aspects of many mental illnesses, including schizophrenia and mood disorders 33 

(Fioravanti et al., 2005; McIntyre et al., 2010; Neuchterlein et al., 1991). Visual spatial 34 

attention plays a critical role in visual sensory processing: It allows improved perception 35 

of behaviorally relevant target stimuli among competing distractors by boosting the 36 

apparent visibility of the target (Carrasco et al., 2004). At the neuronal level, attention 37 

modulates the activity of cortical neurons that encode an attended visual stimulus at 38 

various stages of visual processing (Bisley and Goldberg, 2003; Ghose and Maunsell, 39 

2008; Moran and Desimone, 1985; Motter, 1993; Reynolds et al., 1999; Treue and 40 

Martinez Trujillo, 1999; Treue and Maunsell, 1996). In visual areas such as V4 and MT, 41 

attention modulates neuronal mean firing rates, increases their firing reliability, and 42 

reduces the co-variability among pairs of neurons (Cohen and Maunsell, 2009; Mitchell 43 

et al., 2007, 2009; Reynolds and Chelazzi, 2004; Treue and Martinez Trujillo, 1999). 44 

However, the computational principles that underlie the activity of neuronal populations 45 

that represent both sensory information and the attentional state remain poorly 46 

understood (Moore and Zirnsak, 2017; Reynolds and Chelazzi, 2004).  47 

 48 

Object recognition is mediated by a hierarchy of cortical visual processing areas that form 49 

the ventral visual stream. Contrast is a key feature of the visual scene that aids object 50 

recognition, and the encoding of contrast information is one of the most important 51 

computations performed by early visual areas. On the other hand, visual features 52 

represented in higher areas such as the inferotemporal (IT) cortex benefit from improved 53 

sensitivity to low contrast stimuli (Avidan et al., 2002; Rolls and Baylis, 1986). Visual area 54 

V4 is a critical hub in the ventral stream that sends feedforward projections to areas such 55 

as IT and feedback projections to early visual processing areas (Anderson and Martin, 56 

2006; Douglas and Martin, 1991; Van Essen and Maunsell, 1983). Attention has been 57 

shown to selectively enhance the responses to low contrast stimuli (Martinez-Trujillo and 58 

Treue, 2002; Reynolds et al., 2000). Attention mediated selective enhancement of low 59 
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contrast features is thought to aid invariant representations in higher object recognition 60 

areas downstream of V4 (Roe et al., 2012). However, such a bias in the attention-61 

modulated feedback from V4 to upstream visual areas can disrupt the contrast-based 62 

feature extraction functions of these stages. How area V4 meets these distinct information 63 

processing demands of the visual processing hierarchy is not known. While attention can 64 

enhance V4 responses in a contrast-independent manner (response gain) under certain 65 

experimental conditions (Williford and Maunsell, 2006), an understanding of robust 66 

mechanisms of  feedback from V4 that does not interfere with the contrast landscape of 67 

scene representations in early visual areas remains elusive.   68 

 69 

One possibility is that distinct subpopulations in V4 mediate these functional demands.  70 

Indeed, the sensory cortical sheet, including area V4, is not a homogeneous piece of 71 

tissue along its depth; rather, it has a six-layered or laminar structure made up of multiple 72 

cell classes, of both excitatory and local inhibitory kind, with largely stereotypical 73 

anatomical connectivity between and within layers (Douglas and Martin, 2004). Layer 4 74 

(the input layer) is the primary target of projections carrying visual information from early 75 

areas, such as V1, V2, and V3 (Felleman and Van Essen, 1991; Ungerleider et al., 2008). 76 

Visual information is then processed by local neural subpopulations as it is sent to layers 77 

2/3 (the superficial layer) and layers 5/6 (the deep layer), which serve as output nodes in 78 

the laminar circuit (Hirsch and Martinez, 2006; Rockland and Pandya, 1979). The 79 

superficial layers feed information forward to downstream visual areas, such as IT (Borra 80 

et al., 2010; Distler et al., 1993), whereas the deep layers send feedback information to 81 

upstream early visual areas (Callaway, 1998; Gattass et al., 2014; Mehta et al., 2000; 82 

Ungerleider et al., 2008). This anatomical organization suggests distinct functional roles 83 

(D'Souza and Burkhalter, 2017), and differential attentional modulation of sensory 84 

representation among cell-class and layers-specific neural subpopulations. In support of 85 

this idea, a recent study of simultaneous depth recordings in visual area V4 has shown 86 

layer-specific attentional modulation of average neuronal responses, reliability of 87 

responses, and correlations between responses of pairs of neurons (Nandy et al., 2017). 88 

Therefore, to fully understand the attentional modulation of sensory computations, it is 89 
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essential to investigate the modulation of sensory representation in these subpopulations. 90 

Our broad hypothesis is that the attentional modulation of contrast computations in area 91 

V4 is not homogeneous, but rather is layer- and cell-class specific and that these 92 

differences reflect the different computational demands on these subpopulations. 93 

Considering their key contribution to feedback projections to early visual areas, we 94 

specifically expect that projection neurons in the deep layers show uniform attentional 95 

modulation across all contrasts in order to minimally impact the faithful representation of 96 

contrast landscape in their target areas.  97 

 98 

In this study, we characterized layer- and cell-class specific neural subpopulations from 99 

extracellular simultaneous laminar recordings of single neurons within area V4 of 100 

macaque monkeys performing an attention-demanding task. Using unsupervised 101 

clustering techniques on spiking properties, we distinguished five functional clusters of 102 

neurons. We distinguished layer identities – superficial, input or deep – of these neurons 103 

using features of local field potentials. To test our hypothesis, we characterized the 104 

attentional modulation of contrast response functions in these sub-populations. We 105 

interpreted our findings within a computational framework of attentional modulation of 106 

contrast responses (Reynolds and Heeger, 2009), which  yielded predictions for distinct 107 

mechanistic roles of these neural subpopulations in attentive perception. 108 

 109 

RESULTS 110 

In the primate visual system, cortical sensitivity to features such as luminance contrast 111 

varies with the locus of spatial attention; contrast response functions (CRF) of cortical 112 

neurons are measured to quantify this dependence (Kastner and Ungerleider, 2000; 113 

Reynolds and Chelazzi, 2004; Reynolds et al., 2000). However, the laminar- and cell-114 

class specific dependence of CRF on the attentive state is not known. Using linear array 115 

electrodes, we recorded neuronal activity from well-isolated single units, multi-unit 116 

clusters, and local field potentials (LFPs) in visual area V4 of two rhesus macaques (right 117 

hemisphere in monkey A, left hemisphere in monkey C) during an attention demanding 118 

orientation change detection task (Figure 1A, B; see Methods). We used current source 119 
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density (CSD) analysis to identify different laminar compartments (superficial, input, and 120 

deep), and assigned isolated single units to one of the three layers (see Methods). In the 121 

main experiment, we presented a sequence of paired Gabor stimuli with different 122 

contrasts (Figure 1B); one stimulus was presented inside the receptive fields (RFs) of the 123 

recorded neurons and the other at an equally eccentric location across the vertical 124 

meridian. Attention was cued either to the stimuli within the neurons’ RFs (“attend-in”) or 125 

to the stimuli in the contralateral visual hemifield (“attend-away”).  126 

 127 

Attentional Modulation of Contrast Response Function 128 

To examine the effects of attention on individual neurons, we used the method of ordinary 129 

least squares to fit each neuron’s contrast responses from both attentional states to a 130 

hyperbolic ratio function (Figure 1C). This function is described by four parameters: !!"#, 131 

"$% , #, and $, where !!"#  is the attainable maximum response, "$%  is the contrast at 132 

which neuronal response is half-maximal, # is the baseline activity, and $ describes the 133 

nonlinearity of the function. Attention effects differ considerably for individual neurons. 134 

Attention either enhances or suppresses neuronal responses at different contrast levels 135 

(Figure 1D). We quantified the effect of attention on every recorded neuron by computing 136 

the attentional modulation index (AMI) using contrast responses from both attention 137 

conditions (see Methods). We saw a significant variance of AMI values at each contrast 138 

level (Figure 1E). We also examined how attention impacts the values of best-fitting 139 

parameters (Figure 1F). The mean AMIs for !!"# and # are significantly higher than zero 140 

(Mann-Whitney U test, p < 0.01 for both distributions), which is consistent with previous 141 

observations in V4 (Williford and Maunsell, 2006). The same percentage change in !!"# 142 

and # (15% increase) supports an effect of contrast independent scaling by attention. 143 

The average modulations of "$% and $ are significantly smaller than zero (Mann-Whitney 144 

U test, p < 0.01 for "$% and p ≪ 0.01 for $), suggesting an increased sensitivity to low 145 

contrast stimuli and a reduction in the sensitivity to contrast change, respectively. The 146 

bootstrap sampling distributions of the mean difference from 0 support the average 147 

attention effects on !!"# , $ and # (Figure 1G). These results indicate that the overall 148 

effect of attention on V4 neuron responses cannot be simply explained as selective 149 
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boosting of low contrast. It is a combination of modulations in multiple parameters of the 150 

contrast response function (Figure 1F, G).  151 

 152 

Classification of Single Units Using Electrophysiological Features  153 

To investigate whether attention modulates different classes of neurons uniformly or 154 

differentially, we characterized classes of single units based on two electrophysiological 155 

properties extracted from extracellular recordings: the peak-to-trough duration (PTD) and 156 

the local variation (&'). Properties of the action potential waveform, especially the PTD, 157 

have been extensively used to classify neurons into narrow- (putative inhibitory) and 158 

broad-spiking (putative excitatory) cells (Constantinidis and Goldman-Rakic, 2002; 159 

Diester and Nieder, 2008; Hussar and Pasternak, 2009; Johnston et al., 2009; Kaufman 160 

et al., 2010; Mitchell et al., 2007; Wilson et al., 1994). The shapes of average spiking 161 

waveform for all single units in our data were also highly variable (Figure 2A). We 162 

exploited the information structure in the entire waveforms by applying principal 163 

component analysis (PCA). The correlation pattern between the first two components of 164 

the PCA (cumulative percentages of explained variance: 59.62%, 83.10%) supported the 165 

idea that neurons can be separated into meaningful clusters by waveform shape 166 

measures (Figure 2B). The clusters generated by neurons’ PTDs in the PCA component 167 

space were minimally overlapped (Supp. Figure 2E). Therefore, we chose PTD instead 168 

of PCA components as one of the classification features for further analysis since the 169 

PTD is more interpretable. 170 

 171 

Firing variability measures have been previously used as an additional electrophysiology-172 

based dimension along which neurons have been found to be separable (Anderson et al., 173 

2011; Ardid et al., 2015; Degenetais et al., 2002). We used &', a measure that effectively 174 

characterizes neurons' intrinsic spiking,  and controls the effect of transient variations in 175 

firing rates (Shinomoto et al., 2003) (see Methods). To achieve stable classification of 176 

single units across attention conditions, we verified that &'  was not significantly 177 

modulated by attentional states (Figure 2C). 178 

 179 
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We used a meta-clustering analysis based on the k-means clustering algorithm (see 180 

Methods) in the two-dimensional space of PTD and &', and identified five clusters of 181 

isolated single units (Figure 2D) (Ardid et al., 2015; Hartigan and Wong, 1979). The five-182 

cluster result was picked because it was the largest set of distinct cell classes that 183 

characterized a majority (99.7%) of single units in the dataset (Supp. Figure 2A). Narrow-184 

spiking cells become a cluster by themselves, while those classified as broad-spiking cells 185 

(Mitchell et al., 2007; Nandy et al., 2017) are split into four clusters. Based on the average 186 

PTD and &' of each cluster, we termed these five clusters as Narrow, Medium Regular, 187 

Medium Bursty, Broad Regular, and Broad Bursty. 188 

 189 

We validated our classification results using several methods (see Methods). First, we 190 

gathered additional support for the meta-clustering based number of clusters by applying 191 

a data-driven approach based on a novel form of cross-validation (Fu and Perry, 2020). 192 

The method incorporates clustering results from the unsupervised algorithm into its 193 

supervised training of linear classifiers to produce cross-validation errors (see Methods). 194 

The five-cluster result showed the lowest cross-validation error (Supp. Figure 2B). 195 

Second, we validated the stability of the clustering result by bootstrap subsampling 196 

analysis (Hennig, 2007). The Jaccard similarity, averaged across subsamples, is a 197 

measure of each cluster's robustness regarding its sensitivity to the amount of data. All 198 

clusters in the five-cluster result had average Jaccard similarities greater than 0.5, 199 

implying that clusters remained stable under subsampling (Supp. Figure 2C). A cell-wise 200 

co-clustering matrix showing the probability that each pair of neurons belongs to a same 201 

cluster across all subsamples also supported the number of clusters we chose (Supp. 202 

Figure 2D). Third, we visualized our dataset by applying nonlinear transformations: t-SNE 203 

(Hinton and Roweis, 2003) and UMAP (McInnes et al., 2018). Although these techniques 204 

are generally suited for embedding high-dimensional data for visualization in a low-205 

dimensional space, their algorithms that enlarge the distance differences in the original 206 

dataset also make them useful for recovering well-separated clusters. When we explored 207 

the hyperparameters of both algorithms, we found that most of the five clusters were still 208 

separable in both t-SNE and UMAP space (Figure 2E; Supp. Figure 2G, H). Notably, all 209 
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four non-Narrow clusters were separable, including the Medium Regular and the Medium 210 

Bursty which occupied distinct locations in the t-SNE and UMAP space (Supp. Figure 2G, 211 

H).  212 

 213 

One of the assumptions we made to use the PTD as a clustering feature was that it 214 

captures a significant amount of the variations of neurons' spiking waveforms. We tested 215 

this assumption by clustering neurons in the principal component space of the AP 216 

waveform and comparing them with neuronal groups defined by their PTD. We divided 217 

neurons into narrow- (0-250 μs), medium- (250-350 μs), and broad-spiking (350-550 μs) 218 

groups, and found that the 3 clusters generated from the k-means clustering were 219 

consistent with the 3 neuronal groups defined by the spike width (Supp. Figure 2F). 220 

 221 

The clusters differ in terms of their firing rates (Supp. Figure 2I). Notably, Narrow class 222 

neurons exhibited higher firing rates than the Broad Regular cluster when averaged 223 

across layers (mean 10.2 Hz compared to 5.6 Hz, Mann-Whitney U test, p < 0.05). It is in 224 

agreement with previous findings that narrow-spiking neurons, considered putative 225 

inhibitory interneurons, show higher firing rates than broad-spiking neurons, thought to 226 

be putative excitatory pyramidal cells (Connors and Gutnick, 1990; McCormick et al., 227 

1985; Mitchell et al., 2007; Nowak et al., 2003; Povysheva et al., 2006). 228 

 229 

Cell-Class and Layer-Specific Attentional Modulation 230 

We next examined how attention modulates contrast responses for each cell class. We 231 

first computed the AMIs of best-fitting CRF parameters for every cell class. The pattern 232 

of modulations of CRF parameters was distinct for individual cell classes (Figure 2F). 233 

Narrow and Medium Regular cell classes showed significant positive modulations of 234 

!!"#	only, implying a contrast-independent effect by attention. On the other hand, both 235 

Broad Regular and Broad Bursty classes showed significant negative modulations of "$% 236 

(Figure 2F), suggesting a selective enhancement of responses to low contrast stimuli. 237 

This effect was novel to these classes and not revealed in the analysis of unclassified 238 

neurons (Figure 1G). None of the remaining cell classes – Narrow, Medium Bursty and 239 
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Medium Regular – showed a significant modulation of "$%  by attention, an effect that 240 

matched the analysis of unclassified neurons (Figure 1G). Medium Bursty neurons 241 

showed a modulation pattern that was distinct from the ones for any of the other four cell 242 

classes: significant positive modulations of !!"#  and baseline activity, implying a pure 243 

response gain effect by attention.  244 

 245 

To further investigate the cell-class specific attentional modulation at each contrast level, 246 

we computed the AMI as a function of contrast using CRFs from both attentional states 247 

for every single unit and then averaged AMIs across single units within a cluster (Figure 248 

3A, left panel). We found that the AMIs of Narrow and Medium Regular classes were 249 

relatively less dependent on contrast, whereas the remaining clusters appeared to be 250 

modulated by attention in a contrast-dependent manner (Figure 3A, left panel). When 251 

averaged across all contrasts, attention positively modulated firing rates for all cell classes 252 

except the Medium Regular class (Mann-Whitney U test, p < 0.01 except for MR). Further, 253 

attentional modulation differed in significant ways among the non-Narrow clusters (Figure 254 

3A, right panel). To quantify the contrast dependence of attentional modulation for each 255 

single unit, we first averaged the AMIs within the low-contrast and the high-contrast 256 

ranges with the contrast boundary set at each unit’s best-fitting "$% parameter. We then 257 

defined the contrast dependence index (CDI) of a single unit as the difference between 258 

the two average AMIs normalized by the AMI averaged across all contrasts (see Methods). 259 

Contrast independent modulation would then result in CDI = 0, reflecting a pure scaling 260 

effect of attention on the CRF. A positive CDI would indicate a more robust attentional 261 

modulation at the low-contrast range. A negative CDI would suggest a stronger attention 262 

effect on neural responses at the high-contrast range (Figure 3B). We examined the CDI 263 

distribution within each cell class and found that the Narrow and Medium Regular classes 264 

showed small mean CDIs, and their distributions were not significantly different from zero. 265 

However, the other 3 clusters (Medium Bursty, Broad Regular, Broad Bursty) exhibited 266 

more positive CDIs (Figure 3C). These results are consistent with our findings of AMIs of 267 

CRF parameters for each cell class (Figure 2F), confirming that attention modulated 268 

Narrow and Medium Regular cell classes’ responses regardless of the stimulus contrast. 269 
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On the other hand, the modulations for Medium Bursty, Broad Regular, and Broad Bursty 270 

classes were dependent on contrast and were more robust in the low-contrast range.  271 

 272 

We further inspected the laminar profile of the attention effect and its contrast 273 

dependence for every cell class (Figure 3D, E). We excluded from our analysis clusters 274 

that contained an insufficient number of units (n < 10) in a layer. When averaged across 275 

contrasts, (Figure 3D, right panels), Narrow class neurons showed significant attentional 276 

modulations in the input layer, but not in the superficial or deep layer (Figure 3D, right 277 

panels, Mann-Whitney U test, psuperficial = 0.79, pinput < 0.01, pdeep = 0.06). On the other 278 

hand, Broad Regular neurons were robustly modulated by attention across all cortical 279 

layers (Figure 3D, right panels, Mann-Whitney U test, psuperficial ≪ 0.01, pinput ≪ 0.01, pdeep 280 

≪ 0.01). The AMI difference between these two cell classes is in agreement with the 281 

differences between narrow- and “broad”-spiking cells previously reported in these 282 

cortical layer (Nandy et al., 2017); it is important to note that the AMI patterns across 283 

layers were distinct for the other three cell classes (Figure 3D). Two key laminar patterns 284 

of contrast dependence emerged from these 5 clusters. First, the attentional modulation 285 

of the Narrow cell class was independent of contrast across all cortical layers. Second, 286 

the Broad Regular cell class exhibited a strong contrast dependence and, specifically, a 287 

significant modulation in the low-contrast range in the superficial and input layers; but its 288 

dependence on contrast was not significant in the deep layer (Figure 3E). It is important 289 

to note that at least one non-Narrow class (Medium Regular) was functionally similar to  290 

Narrow neurons in superficial and input layers. Also notably, the laminar differences did 291 

not emerge when all units in a layer were analyzed as either a single class or more 292 

conventionally as narrow vs. “broad” classes.        293 

 294 

Laminar network mechanisms of contrast dependence of AMI across layers 295 

We next used computational modeling to gain insights into the possible neural 296 

mechanisms underlying the layer- and cell-class specific AMI dependency on stimulus 297 

contrast. Variation in CDI across experimental paradigms has been previous observed 298 

(Martinez-Trujillo and Treue, 2002; Reynolds et al., 2000; Williford and Maunsell, 2006), 299 
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and explained by paradigm-specific normalization due to attention (Reynolds and Heeger, 300 

2009). We hypothesized that normalization mechanisms can also explain the layer-301 

specific differences in CDI in our empirical findings (Figure 3D, E). To test this, we first 302 

interpreted our results in the context of the normalization model of attention (Reynolds 303 

and Heeger, 2009) to generate predictions about layer-specific cortical connectivity that 304 

might underlie the variations in CDI. The normalization model of attention proposes a 305 

computational principle that accounts for various attention effects on neurons’ contrast 306 

response functions (Reynolds and Heeger, 2009). Normalization model assumes that the 307 

relative sizes of excitatory receptive field and suppressive field of neurons, and the 308 

‘attention field’ of the experimental paradigm shape the net suppressive drive to individual 309 

neurons. The suppressive drive ultimately determines the CDI of individual neurons in a 310 

population. We thus investigated the consequences of varying the relative sizes of 311 

excitatory receptive field and suppressive field of individual neurons on attentional 312 

modulations of CRFs (see Methods). This inquiry was motivated by the observation that 313 

neuronal receptive field sizes change along the cortical depth in sensory areas (Gilbert, 314 

1977; Sur et al., 1985; Vaiceliunaite et al., 2013), and based on the assumption that 315 

‘attention field’ sizes are constant for an experimental paradigm. 316 

 317 

We simulated the normalization model with different sizes of excitatory receptive field and 318 

suppressive field of neurons, and generated neuronal responses to different stimulus 319 

contrasts in “attend in” and “attend away” conditions (Figure 4A, top panel). We computed 320 

the AMI and the CDI for each combination of size parameters (see Methods). We find 321 

that the CDI depends both on the excitatory receptive field size and on the suppressive 322 

field size. Holding the attention field size and the stimulus size fixed, a smaller 323 

suppressive field or a smaller excitatory receptive field leads to a greater CDI of the 324 

attentional modulation (Figure 4A, middle panel). On the other hand, a larger suppressive 325 

field or a larger excitatory receptive field results in a smaller CDI (Figure 4A, middle panel). 326 

These results hold for a wide range of values of the stimulus size and the attention field 327 

size. The pattern is robust when the attention field and the stimulus are both small or large 328 

(Supp. Figure 4B, i). The results are also stable for both a linear and saturating transfer 329 
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function assumption between the stimulus contrast and excitatory drive in the 330 

normalization model (Supp. Figure 4B, ii). We also computed the AMI of suppressive drive 331 

of neurons for each combination of size parameters. The CDI of model neurons is roughly 332 

proportional to the AMI of suppressive drive (Figure 4A, bottom panel). Greater the AMI 333 

of suppressive drive, stronger is the CDI of model neurons, and vice versa. Since Broad 334 

Regular neurons are putative excitatory pyramidal cells, these results suggest two 335 

possible neural mechanisms that explain the laminar profile of CDIs of Broad Regular 336 

neurons: the suppressive field size increases along the depth of V4 (Figure 4A, middle 337 

panel) or the excitatory receptive field is more extensive in the deeper layer of V4 (Supp. 338 

Figure 4C).  339 

 340 

The normalization model predicts the AMI of the suppressive drive (Figure 4A, bottom 341 

panel) to be correlated with the CDI of neuronal responses (Figure 4A, middle panel) 342 

(Reynolds and Heeger, 2009). However, the suppressive field in the model can be 343 

implemented by various biophysical mechanisms (Carandini, 2004). One possible 344 

mechanism is shunting inhibition via lateral connections from other neurons in the cortical 345 

neighborhood (Carandini and Heeger, 1994; Carandini et al., 1997; Kouh and Poggio, 346 

2008), in which case the receptive field of local inhibitory neurons can approximate the 347 

suppressive field. Since the average AMI of the putative inhibitory (Narrow) cluster and 348 

CDI of putative excitatory (Broad) clusters in the input and deep layers in our empirical 349 

data (Figure 3D right panels, Figure 3E) is also correlated, we further explored this 350 

mechanism mediated by local inhibitory neurons. Under this assumption, the prediction 351 

about the changes in suppressive field size down the cortical depth from the normalization 352 

model transforms into one about changes in the excitatory (E) - inhibitory (I) connectivity 353 

along the cortical depth. Similarly, the prediction about the changes in excitatory receptive 354 

field sizes down the cortical depth can also transforms into one about the changes in the 355 

E-E connectivity along the cortical depth (Gilbert and Wiesel, 1985; Hirsch and Gilbert, 356 

1991). The layer-specificity of cortical connectivity implies different temporal signatures 357 

of neural activity across layers.  358 

 359 
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We next used a spiking network model to examine the effects of excitatory and inhibitory 360 

receptive field sizes on spike-time correlation between populations of local excitatory (E) 361 

and inhibitory neurons (I). Our spiking network model focuses on connectivity 362 

mechanisms for generating variable sizes of suppressive and excitatory receptive fields 363 

in a cortical network.  The amplitude of the spike-time correlation between neurons has 364 

been shown to depend on both the connection strength and the background synaptic 365 

noise (Ostojic et al., 2009). Therefore, the spike-time correlation between neurons can be 366 

a proxy for the size of the postsynaptic neuron’s receptive field. We hypothesized that a 367 

smaller receptive field of the postsynaptic neuron would make the local connections more 368 

dominant against background inputs and lead to a higher spike-time correlation between 369 

the locally connected neurons. We examined how spike-time correlations change as a 370 

function of the inhibitory or excitatory receptive field size in a conductance-based model 371 

of spiking neurons (see Methods). We set up 10 local networks or “columns” of E and I 372 

units that were interconnected in a ring formation (Figure 4B, Supp. Figure 4C). Neurons 373 

within the same column were mutually coupled, while interactions between columns were 374 

confined to excitatory connections to local E and I neurons whose strengths decayed with 375 

distance between columns. All connections occurred with a probability of 0.5. We 376 

modeled the receptive field size as the standard deviation ()& or )') of the connection 377 

strength between columns (Figure 4B, Supp. Figure 4C). We performed simulations that 378 

generated spiking activity in response to a step input (Figure 4B, bottom panel). The 379 

spike-time correlation between local E and I populations was calculated using pooled 380 

spike trains within the same column; the resulting spike-time correlation was averaged 381 

across columns. We found that the inhibitory receptive field size has a critical impact on 382 

the spike-time correlation amplitude in such a network (Figure 4C), while the excitatory 383 

receptive field size has little effect (Supp. Figure 4C). A larger inhibitory receptive field 384 

(larger values of )&) leads to a lower spike-time correlation between the local E and I 385 

populations in the network (Figure 4C). This result suggests that the prediction about 386 

inhibitory receptive field sizes down the cortical depth as the basis of CDI variation of 387 

Broad Regular neurons can be tested by examining the spike-time correlation between 388 

local E and I populations within each layer.  389 
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 390 

To test this prediction in our dataset, we computed the session-averaged spike-time 391 

correlation between Narrow (putative inhibitory neurons) and Broad Regular (putative 392 

excitatory neurons) single units within each layer (see Methods). We found that the spike-393 

time correlation amplitudes were higher in the superficial layer and the input layer than 394 

that in the deep layer (Figure 4D). We compared the spike-time correlations in the deep 395 

layer with those in either superficial or input layers, averaged within 3 different 50ms time 396 

windows. The 95% confidence interval of the mean difference between layers in either 397 

comparison was greater than 0 for the center window (Supp. Figure 4D). In accordance 398 

with our findings from the E-I network models (Figure 4C), this suggests that inhibitory 399 

neurons in the deep layer exhibit relatively broader receptive fields, which supports the 400 

prediction by the normalization model of attention (Figure 4A, middle panel). Our findings 401 

thus provide a parsimonious explanation for the layer- and cell-class specific contrast 402 

dependence of attentional modulation observed in area V4 (Figure 4E).  403 

 404 

DISCUSSION 405 

Spatial attention plays a critical role in sensory guided behavior. It is thought to achieve 406 

this by enhancing the responses to low contrast stimuli in mid-tier visual cortical areas 407 

such as V4.  While later stages of the visual processing hierarchy are thought to benefit 408 

from this manipulation, V4 also sends feedback projections to early visual areas that use 409 

veridical representation of contrast to aid object recognition. How area V4 meets these 410 

distinct information processing demands is not known. Contrary to the simplifying 411 

assumptions of prior empirical studies, we tested the hypothesis that V4 customizes its 412 

output to different stages of the visual processing hierarchy through layer- and cell-class 413 

specific attentional modulation of contrast computations. Recent advances in 414 

experimental techniques have shown layer- and cell-class specific functional specificity 415 

of computations in the cortical circuit (Adesnik and Naka, 2018; Adesnik and Scanziani, 416 

2010; Naka and Adesnik, 2016; Olsen et al., 2012).  However, these studies have been 417 

limited to species in which higher cognitive functions, such as attention, are challenging 418 

to study. Using computational approaches on laminar neural data in area V4 of the 419 
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macaque, we find that the attentional modulation of neural responses to visual luminance 420 

contrast is indeed layer- and cell-class specific. We classified neurons into five functional 421 

cell classes defined by their action potential widths and the statistics of firing variability 422 

(Figure 2D); these classes show specificity in attention effects on their contrast response 423 

functions (Figure 2F) and the contrast dependence of attentional modulation (Figure 3C). 424 

Specifically, Narrow neurons show contrast-independent response modulation across 425 

layers; Broad Regular neurons, the putative projection neurons, exhibit significant 426 

contrast dependence of attentional modulation in the superficial layers, that project to 427 

higher level visual areas, but not in the deep layers, that project to earlier visual areas 428 

(Figure 3D, E). Notably, this highly significant laminar difference was not observable 429 

without cell-class identification. These results provide the first evidence for our broad 430 

hypothesis that attentional modulation of contrast computations in the visual cortex is 431 

heterogeneous across those cell classes and layers that project to distinct stages of the 432 

visual processing hierarchy. The qualitative nature of the attention modulation of contrast 433 

in our data is not only distinct but suggests optimization for the computational demands 434 

of the target stages. Selective boosting of responses to low contrast stimuli is 435 

compartmentalized to the superficial output layers that project representations such as 436 

extended contours and object surfaces to higher areas (see Roe et al., 2012 for a review).  437 

Contrast-independent scaling of neural responses is confined to the deep output layers. 438 

Neurons in these layers project back to early visual areas that are reliant on faithful 439 

representation of luminance contrast for low-level feature extraction. We speculate that 440 

the contrast-independent attentive feedback provides a spatial boost signal to early visual 441 

areas that do not receive direct inputs from attention control centers such as the frontal 442 

eye fields (Ungerleider et al., 2008). This also aligns with the predictive coding model of 443 

object recognition, wherein V4 is a higher-level area in the object recognition hierarchy 444 

that generates predictions of lower-level activity, without corrupting the sensory 445 

landscape that is needed for error correction (Rao and Ballard, 1999).  446 

 447 

When interpreted within the framework of the normalization model of attention (Figure 448 

4A), the layer-specific attention modulation predicts differences in the spatial pooling of 449 
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local inhibitory populations across layers. Such differences further predict a layer-specific 450 

signature of correlations between the activities of local inhibitory and putative excitatory 451 

neurons when explored in a spiking E-I network model (Figure 4B, C). We find robust 452 

evidence for differences in inhibitory spatial pooling across layers through our analyses 453 

of correlations between putative inhibitory and putative excitatory neurons in the 454 

superficial, input, and deep layers of the cortex (Figure 4D, E). 455 

 456 

Classification of cell-types 457 

The duration of the extracellular spike waveform has been used to distinguish putative 458 

inhibitory interneurons from putative excitatory pyramidal cells in a wide range of species 459 

and across various brain regions (Ardid et al., 2015; Bruno and Simons, 2002; 460 

Constantinidis and Goldman-Rakic, 2002; Csicsvari et al., 1999; Fox and Ranck, 1981; 461 

Frank et al., 2001; Mitchell et al., 2007; Nandy et al., 2017; Rao et al., 1999; Simons, 462 

1978; Swadlow, 2003; Wilson et al., 1994). In terms of attention effects, narrow-spiking 463 

neurons show stronger attention-dependent increases in absolute firing rates and firing 464 

reliability than broad-spiking cells (Mitchell et al., 2007). Statistics of the firing pattern and 465 

unsupervised clustering algorithms are also effective in identifying subpopulations of 466 

neurons with distinct functional properties (Ardid et al., 2015; Compte et al., 2003; 467 

Gouwens et al., 2019; Hawken et al., 2020; Shinomoto et al., 2009). It is important to note 468 

that the clusters we distinguished based on spike width and firing variability may not 469 

correspond to neuronal classes differentiated based on morphology or protein expression 470 

patterns (Migliore and Shepherd, 2005; Tasic et al., 2018; Zeng and Sanes, 2017). Two 471 

possible correspondences exist between the Narrow neurons and interneurons, and 472 

between the Broad Regular neurons and pyramidal cells (Connors and Gutnick, 1990; 473 

McCormick et al., 1985; Nowak et al., 2003). We find significant differences in both the 474 

firing rate (Supp. Figure 2I) and the attentional modulation of firing rates (Figure 3A, D) 475 

between clusters, suggesting their different functional roles in attention-mediated visual 476 

processing. Crucially, these distinct functional roles are reflected by the differences in 477 

contrast dependence of attentional modulation. 478 

 479 
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Relation to prior studies of spatial attention in V4 480 

Prior studies evaluating attention effects on neuronal contrast responses proposed either 481 

contrast-independent scaling of responses, termed as response gain (McAdams and 482 

Maunsell, 1999a; Morrone et al., 2002; Pestilli et al., 2009; Treue and Martinez Trujillo, 483 

1999) or boosting of responses to low contrast stimuli, termed as contrast gain (Li and 484 

Basso, 2008; Li et al., 2008; Martinez-Trujillo and Treue, 2002; Reynolds et al., 2000) or 485 

an intermediate effect between the two (Huang and Dobkins, 2005; Williford and Maunsell, 486 

2006). Although the overall attentional modulation of best-fitting CRF parameters in our 487 

dataset is consistent with the intermediate effect (Figure 1F, G), attention effects on 488 

individual clusters are highly variable: a mixture effect of response gain and contrast gain 489 

is observed for Broad Regular and Broad Bursty units; Medium Bursty cluster shows a 490 

response gain change; Medium Regular and Narrow neurons are only modulated in their 491 

maximum responses (Figure 2F). Furthermore, some clusters, such as Broad Regular 492 

and Broad Bursty neurons, exhibit larger attention-dependent increases in response than 493 

the population mean, especially within the low-contrast range (Figure 3A). These 494 

observations suggest that attentional modulation of firing rate for certain cell classes may 495 

be more robust than that gleaned from previous studies that averaged across the whole 496 

recorded population. These cell-class specific increases in firing rate may significantly 497 

improve the signal-to-noise ratios of individual cell classes, and therefore, act as another 498 

important contributor to the improvement of psychophysical performance due to attention 499 

in addition to reductions in correlations (Cohen and Maunsell, 2009; Mitchell et al., 2009). 500 

 501 

Our interpretation of the normalization model 502 

The predictions from the normalization model (NM) of attention provide one possible 503 

explanation for the diverse contrast modulation patterns across layers. NM assumes both 504 

stimulus parameters and attention condition to contribute to the normalization input to 505 

local excitatory neurons. The stimuli presented in our experiments were optimized for the 506 

recording site and did not change with attention condition, and hence are not assumed to 507 

contribute differentially to the normalization mechanism. NM also assumes the sizes of 508 

attention field of the population to contribute to the normalization input to individual 509 
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neurons. The attention field in NM describes the attention gain for each neuron in the 510 

population and depends on the animal’s attentional strategy employed during the 511 

experiment (Herrmann et al., 2010). The neural substrate for the attention field is 512 

unspecified in the NM, but we assumed the attention field to be constant across the 513 

cortical depth since the data was collected using a fixed experimental paradigm. However, 514 

given a lack of the biophysical mechanism underlying attentional modulation, our 515 

understanding of the attention field may be subject to future revision. The extent of 516 

excitatory receptive field, also termed as the stimulation field, in the NM can be mediated 517 

by various cortical connectivity patterns. While we explored a lateral pooling mechanism 518 

as the determinant of the receptive field extent of neurons, innervation specificity of 519 

feedforward synaptic input could be an alternative mechanism (Bruno and Simons, 2002; 520 

Hubel and Wiesel, 1962).  521 

 522 

The variation in contrast dependence of attentional modulation observed across layers 523 

and cell classes (Figure 3D, E) in our data is explained by the NM in a most parsimonious 524 

way via the variability of the suppressive field size (Figure 4). However, the NM is agnostic 525 

to the neural machinery dedicated to the formation of neuronal tunings or the 526 

implementation of attentional modulation. To explore the implications of its field size 527 

predictions on spike-time correlations in a biophysical model, we considered the model’s 528 

stimulation field as the receptive field of putative excitatory projection neurons in a column, 529 

and its suppressive field as the receptive field of local inhibitory interneurons.  530 

 531 

We implemented a spiking network model to relate the NM’s predictions of variable 532 

suppressive field sizes to variations in spike-time correlations in our data. It is important 533 

to note that our model is not a spiking network implementation of the entirety of attention 534 

computations described by the NM. The suppressive field in NM, which mediates divisive 535 

normalization, is a computation that can be can be implemented through a variety of 536 

mechanisms (see Reynolds and Heeger, 2009 for review). We chose one of the candidate 537 

suppression mechanisms – pooling of lateral inputs by local inhibitory interneurons 538 

(Carandini and Heeger, 1994; Carandini et al., 1997; Troyer et al., 1998). A feedforward 539 
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mechanism of variable suppressive fields would yield a very similar prediction for spike-540 

time correlations between local E and I populations. Our choice was guided by excellent 541 

agreement between the NM model AMI predictions and modulation patterns of related 542 

clusters in the input and deep layers. It is, however, important to note that in the superficial 543 

layers, putative inhibitory neurons (Narrow cluster) lack significant attention modulation 544 

in spite of robust boosting of responses to low contrast stimuli in putative excitatory 545 

neurons (Broad clusters). This does not agree with the predictions of the normalization 546 

model. There are three possible explanations for this observation: 1. Suppressive drive 547 

to broad-spiking neurons in superficial layer is not provided by local inhibitory neurons 548 

within that layer. 2. Superficial layer broad-spiking neurons inherit their contrast 549 

dependent attention modulation from the input layer. 3. Suppressive drive to broad-550 

spiking neurons in the superficial layer is provided by non-PV local inhibitory neurons 551 

within the layer. Since PV neurons are a majority of the local interneuron population which 552 

itself occupies roughly 20% of the total neural population in the cortex, it is highly possible 553 

that our recordings did not sample the other inhibitory neuronal types. Indeed, studies 554 

from the mouse visual cortex suggest that SOM+ neurons play a key role in mediating 555 

lateral inhibition to layer 2/3 pyramidal neurons (Adesnik et al, 2012). Further studies are 556 

needed to distinguish the contributions of local vs feedforward computations to the 557 

attention effects in superficial layers.  558 

 559 

When testing the model’s predictions in our dataset, we ascribed the stimulation field to 560 

any of the non-Narrow clusters, including the Broad Regular cluster identified in our layer-561 

specific CDI analysis (Figure 3E). We ascribed the suppressive field to the receptive field 562 

of the Narrow cluster (putative interneurons). While the experimental data for the Broad 563 

Regular cluster robustly validates the model predictions (Figure 4D), the Broad Bursty 564 

and Medium Regular classes show a comparable trend (Supp. Figure 4D). We could not 565 

perform a robust analysis for the remaining non-Narrow cell classes in a subset of layers 566 

due to a lack of sufficient experimental data (Figure 3E).  567 

 568 

Conclusion 569 
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Attention increases the signal detection abilities of individual neurons. Whether the 570 

attention mediated firing rate variability is unchanged (McAdams and Maunsell, 1999b) 571 

or reduced (Mitchell et al., 2007), the response gain alone results in improved signal-to-572 

noise ratio of individual neurons, and enhances the discriminability of the attended signal 573 

(McAdams and Maunsell, 1999b; Verghese, 2001). Attention mediated increases in 574 

neural responses to low- and intermediate-contrast stimuli can extend the separation 575 

between the neuron’s stimulus-evoked responses and its spontaneous activity, thereby 576 

improving the neuron’s sensitivity to low-contrast stimuli. There has, however, been a 577 

long-standing debate regarding the nature of interactions between attention and visual 578 

scene contrast that mediate object recognition. Previous theoretical studies have sought 579 

to resolve this based on the nature of differences in experimental paradigms (Reynolds 580 

and Heeger, 2009). Our work has exploited advanced experimental techniques to bring 581 

novel understanding of these interactions. Superficial cortical layers in area V4 that 582 

project to higher object recognition stages exhibit enhancement of low contrast stimuli. 583 

Deep layers that project to earlier visual areas exhibit contrast independent attentional 584 

scaling of neuronal responses. By identifying the compartmentalization of attention 585 

modulation among cortical layers, our study has uncovered a new dimension: the nature 586 

of interactions between attention and contrast is aligned with the demands of the visual 587 

processing hierarchy. A previous study has suggested that encoding of scene contrast 588 

and spatial attention by distinct neural populations in area V1 could fulfill its visual 589 

processing demands in the face of contrast dependent attentional feedback (Pooresmaeili 590 

et al., 2010). Our work has revealed an elegant mechanism of meeting these needs via 591 

laminar compartmentalization of attention modulation in area V4 that contributes to this 592 

feedback. Low-frequency synchrony between the thalamus and visual cortex has been 593 

suggested to guide the higher-frequency synchronization of inter-area activity that is 594 

critical to the communication of attention signals between brain areas (Saalmann et al., 595 

2012). A contrast-independent effect of attention in the deep layer of V4 may also drive 596 

alpha rhythms of pulvino-cortical loops irrespective of stimulus conditions and maintain 597 

the transmission of attentional priorities across the cortex. Future studies are needed to 598 
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test these and related hypotheses about the different functional roles of contrast-attention 599 

interactions in different cortical layers.  600 

 601 

FIGURE CAPTIONS 602 

 603 

Figure 1. Attentional modulation of Contrast Response Function 604 
(A) Orientation change detection task. While the monkey maintained fixation, two oriented 605 
Gabor stimuli were flashed on and off at two locations: one within the RF overlap region of the 606 
recorded V4 column and the other at a location of equal eccentricity across the vertical 607 
meridian. The covert attention of the monkey was cued to one of the two locations. One of the 608 
two stimuli changed its orientation at an unpredictable time. The monkey was rewarded for 609 
making a saccade to the location of orientation change (95% probability of change at the cued 610 
location; 5% probability at uncued location [foil trials]). If no change happened (catch trials), the 611 
monkey was rewarded for maintaining fixation. 612 
(B) An example trial showing the single-unit signals in the attend-in condition. The time axis is 613 
referenced to the appearance of the fixation spot. Spikes (vertical ticks) in each channel come 614 
from the single unit with the highest spike rate in this trial. The gray boxes depict stimulus 615 
presentation epochs. In this particular trial, 8 sample stimuli with different contrasts were 616 
presented, followed by a target stimulus flash with an orientation change that the monkey 617 
responded to correctly. Two different waveforms were shown for two single units. 618 
(C) The mathematical function we used to fit neuronal contrast response functions is shown on 619 
the top. Schematics at the bottom show the effect of positive attentional modulation of each 620 
parameter on the contrast response functions.  621 
(D) The best-fitting contrast response functions of three example neurons in “attend in” and 622 
“attend away” conditions. Mean ± SEM. Insets show the attentional modulation indices 623 
calculated as a function of contrast. 624 
(E) The AMI as a function of contrast for each of the 255 visually responsive single units, with 625 
the three example units in (C) highlighted. 626 
(F) Attention effects on the best-fitting parameters of the contrast response function. Each 627 
histogram plots the AMI distribution of a particular parameter across the population, with the 628 
dashed line marking the 0 modulation and the arrow with a number depicting the median AMI 629 
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value. The median AMI is significantly different from zero for all 4 parameters (Mann-Whitney U 630 
test, p < 0.01). 631 
(G) The mean difference of AMI from 0 for the 4 parameters are shown in the Cumming 632 
estimation plot. Mean differences are plotted as bootstrap sampling distributions. Each mean 633 
difference is depicted as a dot. Each 95% confidence interval (CI) is indicated by the ends of the 634 
vertical error bars. The faded color represents that the 95% CI include 0. 635 
 636 
Figure 2. Classification of Single Units Using Electrophysiological Features. 637 
(A) Mean waveforms for all 410 single units recorded. Waveforms were smoothed using spline 638 
interpolation and their heights were normalized to help compare spike widths. 639 
(B) Distribution of all single units in the space of the first two principal components (PCs) of the 640 
waveforms. The non-Gaussian structure implies that spike shape is a viable feature for 641 
classifying single units.  642 
(C) Histogram of the local variation AMI for all units with available local variation (n=341). The 643 
dashed line marks the 0 AMI value. The arrow depicts the median value of the distribution. The 644 
average local variation of the population is not significantly modulated by attention (Mann-645 
Whitney U test, p = 0.37). 646 
(D) k-means clustering of 341 single units based on PTD and spiking variability. Cell classes are 647 
named after their spiking widths (narrow, medium, broad) and their spiking patterns (regular, 648 
bursty). Single units within each range of spike width are highlighted in the component space on 649 
the top. Unclassified units are displayed as black crosses in the feature space. 650 
(E) t-SNE embedding of the same data in (D) in a 2-dimensional space. The number at the left 651 
bottom corner of each panel represents the perplexity parameter of the t-SNE embedding. 652 
(F) The Cumming estimation plot shows the bootstrap sampling distributions of AMIs of CRF 653 
parameters for each cell class. Distributions with CIs including 0 are displayed in faded colors. 654 
The CRF parameters were only available for visually responsive single units.  655 
 656 
Figure 3. Contrast Dependency of AMI is Cell-Class and Layer-Specific 657 
(A) The left panel shows the AMI of contrast responses as a function of contrast averaged 658 
across visually responsive single units in each cluster. Mean ± SEM. The black line indicates 659 
the population mean. The right panel shows the mean AMI averaged across contrast for each 660 
cluster. Asterisk indicates either the distribution is significantly different from zero or two 661 
distributions are significantly different (Mann-Whitney U test, p < 0.05). 662 
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(B) To quantify the contrast dependence of attentional modulation, we averaged the AMI for a 663 
single unit separately within the low-contrast range and the high-contrast range (using the !!" as 664 
the low- to high-contrast threshold). We then defined the contrast dependence index (CDI) as 665 
the difference between the average AMI within the low-contrast range and that within the high-666 
contrast range, normalized by the mean AMI across the whole contrast range. The schematic 667 
shows the interpretation of different ranges of CDI in terms of the AMI. 668 
(C) The Cumming estimation plot shows the raw data of CDIs (left) and the bootstrap sampling 669 
distribution of the mean (right) for each cell class. The plus signs are the outliers within the axis 670 
range, and the arrows depict the outliers outside the axis limit. The number of valid units for 671 
each cell class is shown on the top of the swarm plot. Distributions for cell classes with CIs 672 
inclusive of 0 are shown in faded colors.   673 
(D) Layer-wise AMI (mean ± SEM) of contrast responses for each cell class as a function of 674 
contrast (left) or averaged across contrast (right). Asterisk indicates either the distribution is 675 
significantly different from zero or two distributions are significantly different (Mann-Whitney U 676 
test, p < 0.05). Cell classes that contain fewer than 10 units (including outliers) are excluded.  677 
(E) Layer-wise CDI for five clusters of units, all units, and non-narrow units. The Cumming 678 
estimation plot shows the bootstrap sampling distribution of the mean CDI. Distributions with CIs 679 
inclusive of 0 are illustrated in faded colors. The number of units excluding outliers is shown on 680 
the top of each plot. Distributions for cell classes with CIs inclusive of 0 are shown in faded 681 
colors. For the raw data of the layer-wise CDIs, see Supp. Figure 3B. 682 
 683 
Figure 4. Computational Models Provide A Parsimonious Explanation for the Laminar 684 
Profile of AMI Contrast Dependence 685 
(A) Predictions from the normalization model of attention with different suppressive field sizes or 686 
different excitatory (E) receptive field sizes. The top panel shows contrast response functions for 687 
a simulated neuron in the normalization model, when attending to a stimulus within the neuron's 688 
receptive field (black curve) and when attending toward the opposite hemifield (gray curve). The 689 
orange curve represents the AMI. The black dot shows the inflection point of "attend away" 690 
responses that was used to delimit the low- and high-contrast ranges. The middle panel shows 691 
CDIs for simulated neurons as a function of the E receptive field size and the suppressive field 692 
size while holding the stimulus size and the attention field size fixed. The white rectangles depict 693 
a potential mechanism that leads to the observed variation of CDIs across layers (change in 694 
suppressive field size). The black asterisk corresponds to the model parameters used for the 695 
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simulation above. The bottom panel shows AMIs of suppressive drive as a function of the E 696 
receptive field size and the suppressive field size. For both simulations, the attention field size is 697 
30 and the stimulus size is 5. The normalization model predicts the AMI of the suppressive drive 698 
to be correlated with the CDI of neuronal responses. 699 
(B) Simulations of a conductance-based E-I network with columnized connections. Schematics 700 
of the E-I networks corresponding to the possible mechanism in (A) are shown on top. 800 E 701 
and 200 I units were evenly distributed in 10 columns around a ring. We interpret the 702 
normalization model's suppressive field as the receptive field of inhibitory neurons in the E-I 703 
network model. E and I units from the same column are mutually coupled. We modeled I 704 
receptive field size as the standard deviations ("#) of E-I connections (#$%) across columns 705 
(middle panel, -5 and 5 are the same column). We changed the range of E-I connections across 706 
columns (#$%, shades of green) while keeping other connections the same (gray, including #%%, 707 
#$$, #%$). At the bottom, the raster plot shows the spiking activity for all units organized by their 708 
column IDs (blue, I; red, E) in response to a step input. The box depicts a 200 ms window used 709 
for computing cross-correlations between E and I populations. 710 
(C) Cross-correlograms between E and I populations in the same column with different I 711 
receptive field sizes. Cross-correlations were calculated using the pooled spike trains of E units 712 
and I units from the same column across 500 repeats of identical simulation and averaged 713 
across 10 columns. A larger I receptive field reduces the cross-correlation between local E and I 714 
populations. Mean ± SEM. 715 
(D) Cross-correlograms (mean ± SEM) between Narrow and Broad Regular cell classes in the 716 
superficial, input, and deep layer. Cross-correlations were calculated using the pooled spike 717 
trains of Narrow class (putative inhibitory) neurons and Broad Regular class (putative excitatory) 718 
neurons, and were averaged across sessions. The arrows mark 3 time intervals during which 719 
we averaged the cross-correlations and compared the mean differences between the superficial 720 
(or input) and the deep layers. Asterisk: The mean difference of cross-correlations in the center 721 
interval (-75 ms to 75 ms) has a 95% CI above 0. For the estimation plot, see Supp. Figure 4B. 722 
(E) Proposed E-I networks in V4 accounting for the layer-wise CDI variations. The empirical 723 
data and the model simulations imply a larger inhibitory pooling size in the deep layer than 724 
those in the superficial and input layer. The arrows depict the canonical information flow 725 
pathways in a columnar circuit. 726 
 727 
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Supp. Figure 2. Validations for the Single-unit Classification and the AMI of CRF 728 
Parameters for Each Cell Class 729 
(A) Percentage of classified neurons in the total sample as a function of the number of clusters 730 
(k) input to the k-means clustering algorithm. The 5-cluster result was able to identify the largest 731 
set of distinct clusters while classifying most of the units.  732 
(B) Cross-validation (CV) errors for different numbers of clusters. The 5-cluster result shows the 733 
lowest CV error. 734 
(C) The minimum Jaccard index across clusters for each k from the subsampling analysis. The 735 
analysis was applied to neuronal data from either of the two attention conditions or to combined 736 
data. Clusters that have Jaccard indices above 0.5 are considered as stable. 737 
(D) The cell-wise co-clustering matrix showing the probability of single units belonging to the 738 
same cluster in the subsampling analysis. 739 
(E) In the principal component space of spike shape, we colored single units based on their 740 
spike width range (open circles; narrow, medium, broad). The clusters generated from the peak-741 
to-trough duration were minimally overlapped. 742 
(F) In the principal component space of spike shape, we colored single units either based on 743 
their spike width range (open circles; narrow, medium, broad) or by running the k-means 744 
clustering algorithm with the first 2 PCs (closed circles). The clusters generated from the k-745 
means clustering match the ones grouped by the peak-to-trough duration, suggesting that peak-746 
to-trough duration is an efficient measure to capture the variance in spike shapes.  747 
(G and H) Embedding the data used for the k-means clustering in a 2-dimensional space using 748 
t-SNE (G) or UMAP (H).  749 
(I) Mean firing rate for visually responsive single units split by cell class or by layer. Neuronal 750 
firing rates were calculated from stimulus flashes with the highest common contrast across two 751 
monkey experiments in the "attend away" condition. The number of single units within each 752 
cluster is shown. In each layer, we only analyzed clusters containing more than 10 single units. 753 
Asterisk indicates either the distribution is significantly different from zero or two distributions are 754 
significantly different (Mann-Whitney U test, p < 0.05). Mean ± SEM. 755 
(J) The Cumming estimation plot shows the raw data (left) of AMIs of best-fitting CRF 756 
parameters and the bootstrap sampling distribution of each cell class's mean (right). 757 
 758 
Supp. Figure 3. Raw Data of AMIs and CDIs of AMI for Each cell class 759 
(A) The AMI of firing rate as a function of contrast for single units within each cell class. 760 
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(B) The raw data of cluster-wise CDIs of AMI within each layer. The plus signs are the outliers 761 
within the axis range, and the arrows depict the outliers outside the axis limit. The number of 762 
valid units for each cell class is shown on the top of the swarm plot. 763 
(C) Layer-wise AMI (mean ± SEM) for all units, Narrow unit, and non-narrow units as a function 764 
of contrast (left) or averaged across contrast (right). Asterisk indicates either the distribution is 765 
significantly different from zero or two distributions are significantly different (Mann-Whitney U 766 
test, p < 0.05). 767 
 768 
Supp. Figure 4. Normalization Model of Attention and CCG Analyses Between Cell 769 
Classes 770 
(A) The structure of the normalization model of attention. The left panel shows a pair of 771 
orientated grating stimuli with identical contrasts, acting as input to the model. The central black 772 
dot indicates the fixation point. The dashed red circle indicates the receptive field of the model 773 
neuron centered on the grating stimulus. The stimulus drive shown in the middle panel is a 774 
collection of neural activity driven by the stimuli. Neurons are arranged based on their receptive 775 
field center (horizontal position) and orientation preference (vertical position). The values of the 776 
stimulus drive are shown by brightness. The top panel shows the attention field as a function of 777 
the receptive field center and the orientation preference. In this case, the attention is guided to 778 
the right stimulus position and does not vary with orientation. Gray areas indicate values of 1, 779 
and white areas indicate values greater than 1. The suppressive drive at the bottom is 780 
calculated from the point-by-point product of the stimulus drive and the attention field and then 781 
pooled over space and orientation according to the suppressive field size. The stimulus drive is 782 
multiplied by the attention field and then divided by the suppressive field to generate the output 783 
firing rates of model neurons (right panel).  784 
(B) i, CDIs for simulated neurons in the normalization model with different stimulus sizes and 785 
attention field sizes. In each panel, we vary the E receptive field size relative to the attention 786 
field size (x-axis), and the suppressive field size relative to the E receptive field size (y-axis). 787 
The pattern of CDI holds for a range of values of stimulus size and attention field size. ii, CDIs 788 
for simulated neurons in the normalization model with different types of inputs. We changed the 789 
stimulus drive input to the normalization model to have either a nonlinear or an attention-790 
modulated contrast response function. We tested both the response gain (10% increase in 791 
overall response) and the contrast gain (1% of increase in detected contrast) effects. For these 792 
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simulations, the attention field size is 30 and the stimulus size is 5. The pattern of CDI holds for 793 
different types of inputs. 794 
(C) Changes in E receptive field size (white box) can also lead to the variation of CDIs across 795 
layers (left panel). We tested this hypothesis in the E-I network by adjusting the standard 796 
deviation of between-column E-E connections (#%%) from narrow (green) to broad (orange) while 797 
keeping other connections the same (gray, including #%%, #$$, #$%) (middle panel). Cross-798 
correlograms between E and I populations in the same column suggest that different E 799 
receptive field sizes have little impact on the spike-time correlations of local neural activity 800 
across layers (right panel).  801 
(D) Cross-correlograms (mean ± SEM) between Narrow and 3 other cell classes in the 802 
superficial, input, and deep layer. Cross-correlations were calculated using the pooled spike 803 
trains of Narrow class and the other cell class (Board Bursty, Medium Regular, or Medium 804 
Bursty) and were averaged across sessions. 805 
(E) The Cumming estimation plot shows the mean difference for cell-class specific comparisons 806 
of average cross-correlations between the superficial (Super.) and deep layers or between the 807 
input and deep layers. We picked 3 time intervals to compute the average cross-correlations 808 
(rows). The raw data of average cross-correlations is plotted on the left in each panel. Each 809 
mean difference between layers is plotted on the right as a bootstrap sampling distribution.  810 

 811 

METHODS 812 

Attention Task and Electrophysiological Recording: 813 

Well-isolated single units were recorded from area V4 of two rhesus macaques during an 814 

attention-demanding orientation change detection task (Figure 1A). The task design and 815 

the experimental procedures are described in detail in previous studies (Nandy et al., 816 

2019; Nandy et al., 2017). While the monkey maintained fixation, two oriented Gabor 817 

stimuli were flashed on for 200 ms and off for variable intervals (randomly chosen 818 

between 200 and 400 ms). The contrast of each stimulus was randomly chosen from a 819 

uniform distribution of 6 contrasts (c = [10%, 18%, 26%, 34%, 42%, and 50%]). One of 820 

the stimuli was located at the receptive field overlap region of the recorded neurons and 821 

the other at an equally eccentric location across the vertical meridian. At the beginning of 822 

a block of trials, the monkey was spatially cued to covertly attend to one of the two spatial 823 
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locations using instruction trials in which only one stimulus was presented. One of the two 824 

stimuli changed in orientation at an unpredictable time (minimum 1s, maximum 5s, mean 825 

3s). The monkey was rewarded for making a saccade to the location of orientation change. 826 

95% of the orientation changes occur at the cued location, and 5% occur at the uncued 827 

location (foil trials). We observed impaired performance and slower reaction times for the 828 

foil trials, suggesting that the monkey was indeed using the spatial cue to perform the 829 

task. The difficulty of the task was controlled by changing the degree of orientation change 830 

(randomly chosen from the following: 1°, 2°, 3°, 4°, 6°, 8°, 10°, and 12°). If no change 831 

occurred before 5 s, the monkey was rewarded for holding fixation (catch trial, 13% of 832 

trials).  833 

While the monkey was performing the attention task, we used artificial dura chambers to 834 

facilitate the insertion of 16-channel linear array electrodes (“laminar probes”, Plexon, 835 

Plexon V-probe) or single tungsten microelectrodes (FHC Inc) into cortical sites near the 836 

center of the prelunate gyrus. Neuronal signals were recorded, filtered, and stored using 837 

the Multichannel Acquisition Processor system (Plexon). Neuronal signals were classified 838 

as either isolated single units or multiunit clusters by the Plexon Offline Sorter program. 839 

For the data collected from linear array electrodes, we used current source density 840 

analysis (Mitzdorf, 1985) to identify the superficial (Layers 1-3), input (Layer 4), and deep 841 

(Layers 5 and 6) layers of the cortex based on the second derivative of the flash-triggered 842 

LFPs (Bollimunta et al., 2008; Schroeder and Lakatos, 2009; Schroeder et al., 1998; 843 

Nandy et al., 2019; Nandy et al., 2017). Cell bodies of single units with bi-phasic action 844 

potential waveforms were assigned to the same layer in which the electrode channel was 845 

situated during recordings. Units that had tri-phasic waveforms or other shapes were 846 

excluded from analyses. Extracellular data were collected over 32 sessions (23 sessions 847 

in monkey A, 9 in monkey C) using linear array electrodes and 42 sessions (24 sessions 848 

in monkey A, 18 in monkey C) using single tungsten electrodes, yielding 410 single units 849 

in total (337 units using linear array electrodes and 73 units using single tungsten 850 

electrodes). Unit yield per session was considerably higher in monkey C than monkey A, 851 

resulting in a roughly equal contribution of both monkeys toward the population data. 852 

 853 
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Contrast Response Function (CRF): 854 

Neuronal responses were analyzed only for correctly performed trials, excluding 855 

instruction trials. We restricted all data analysis to non-target stimuli because neuronal 856 

responses to target stimuli were generally affected by the behavioral response or the 857 

reward delivery, which occurs on correct trials after the target's appearance. Moreover, 858 

the larger number of non-target stimuli compared to target stimuli provided a more reliable 859 

response strength measure. For both attention conditions, the firing rate of a single unit 860 

in response to a particular contrast was measured by counting the number of spikes within 861 

a period of 60-260 ms after stimulus onset. Its baseline firing rate in each attention 862 

condition was extracted from a 200 ms window before a stimulus flash. The mean firing 863 

rates and the standard deviations (SDs) were generated across all stimulus flashes. We 864 

considered a neuron as visually responsive if any contrast responses exceeded its 865 

baseline firing rate by 4 SDs for both attention conditions. We found that 255 of 410 single 866 

units were significantly driven by the task stimuli and had valid &'  measures (See 867 

Analysis of Spiking Activity).   868 

We drew 1000 random samples of contrast responses from a normal distribution with the 869 

same mean and standard deviation as the experimental data for each visually responsive 870 

single unit. For each attention condition, we computed the CRF for each random sample 871 

by applying an ordinary least square fit to a hyperbolic ratio function: 872 

 873 

! = 	 !!"# 	 ∙ 	
"(

"( +	"$%
( +# (1) 874 

 875 

where ! is the neuronal response, !!"#  is the maximum attainable response, "  is the 876 

contrast, "$% is the contrast at which response is half-maximal, # is the baseline activity, 877 

and $ describes the steepness of the response function and represents the neuron’s 878 

sensitivity to contrast. This function has been shown to provide a good fit to contrast 879 

response functions from visual cortices in cat and macaque monkey (Albrecht and 880 

Hamilton, 1982; Williford and Maunsell, 2006). We then averaged the best-fitting CRFs 881 
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across random samples to generate the mean CRF for each visually responsive single 882 

unit (Figure 1D).  883 

 884 

Analysis of Spiking Activity: 885 

For every single unit, the spiking variability was measured by the local variation (&'), 886 

which quantifies the average differences between consecutive inter-spike intervals (ISIs).  887 

 888 

&' = 	
3

1 − 2
4

(∆6) −	∆6)*+),

(∆6) +	∆6)*+),

-.+

)/+
(2) 889 

 890 

where ∆6)  is a given ISI and 1 represents the total number of spikes within the time 891 

window. The advantage of &' over other spiking measures such as the Fano factor and 892 

coefficient of variation is that it is more robust to changes in firing rate (Shinomoto et al., 893 

2003). We computed each unit's &'  using its spike train during a stimulus flash and 894 

averaged across all flashes (restricted to non-target stimuli). 895 

For completely Poisson processes (where neuronal firing rates are fixed and spike times 896 

are random) the &' is 1, whereas more regular activity takes values significantly lower 897 

than 1, and bursty spiking takes values significantly larger than 1. 898 

Of 410 single units, we included 341 neurons with enough spikes to compute &' for 899 

further clustering analysis.  900 

 901 

Clustering Analysis: 902 

We used the k-means clustering algorithm (Hartigan and Wong, 1979) to characterize 903 

cell classes upon the space of peak-to-trough duration (PTD) and &'. To estimate a range 904 

of the number of clusters, we used a set of indices that evaluate the quality of clustering 905 

(Halkidi et al., 2001; Jain and Dubes, 1988; Milligan and Cooper, 1985; Vendramin et al., 906 

2010): Rand, Mirkin, Hubert, Silhouette, Davies–Bouldin, Calinski–Harabasz, Hartigan, 907 

Homogeneity and Separation indices. We ran 50 replicates of the k-means clustering for 908 

different numbers of clusters, from k = 1 to k = 40. For each k, we selected the best 909 

replicate according to the minimum squared Euclidean distance from all cluster elements 910 
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to their respective centroids. We also ran 10 identical realizations, each with a random 911 

set of initial centroids to exclude the initialization issues. We evaluated validation indices 912 

for each realization, and due to random initializations, most validation indices showed 913 

increased variability after saturation, suggesting excessive partitions in the clustering 914 

process. Based on this method, a range of 2 to 10 clusters was shown to be proper for 915 

our dataset. 916 

We then used a meta-clustering analysis (Ardid et al., 2015) to select the most appropriate 917 

number of clusters: we ran 500 realizations of the k-means for each k and selected the 918 

best replicate from 50 replicates for each realization. After 500 realizations of each k, we 919 

computed the probability that pairs of neurons belonged to a same cluster. Valid clusters 920 

were identified by setting a probability threshold (p ≥ 0.9). We considered clusters with at 921 

least five single units as reliable. We identified the most appropriate number of clusters 922 

(k = 5) as the largest number of reliable cell classes that classified the most neurons in 923 

the dataset (Supp. Figure 2A).   924 

 925 

Clustering Validation: 926 

We validated our clustering analysis in three ways. First, we applied a data-driven 927 

approach based on a form of cross-validation (Fu and Perry, 2020). We organized our 928 

data into a matrix with each row representing a single unit and each column representing 929 

a feature for clustering. We then randomly partition the rows and columns into 7 and & 930 

subsets, respectively. Each fold is represented by a pair (!, 9)  of integers, with !	 ∈931 

{1, … , 7} and 9	 ∈ {1, … , &}. Fold (!, 9) treats the !th row subset as “test” observations, 932 

and the 9th column subset as “responses”. The remaining (7 − 1) row subsets are “train” 933 

observations, and the (& − 1) column subsets are “predictors”. For our dataset, we take 934 

7 = 5 and & = 2. We applied the same clustering procedures described above to the 935 

“responses” data of “train” observations to generate the cluster labels and cluster means 936 

for “train” observations. Then, we trained a linear discriminant analysis classifier with 937 

equal class priors to predict those cluster labels from the “predictors” data of “train” 938 

observations. The classifier was then applied to the “predictors” data of “test” 939 

observations to generate their predicted cluster labels as well as predicted cluster means. 940 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.431312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

The cross-validation error was then computed by averaging the squared differences 941 

between the “responses” of “test” observations and their predicted cluster means. Using 942 

such a method, we calculated the cross-validation error for each k (from k = 2 to k = 10) 943 

in the k-means clustering results (Supp. Figure 2B), and k = 5 showed the lowest cross-944 

validation error.  945 

Second, we validated the stability of our clustering analysis by subsampling analysis 946 

(Hennig, 2007). We generated 100 random subsamples containing 90% of the trials from 947 

“attend in” or “attend away” or both conditions. We computed the &' for every single unit 948 

in subsamples. Random subsamples were then clustered by the k-means algorithm with 949 

k from 3 to 10. The Jaccard similarities were calculated between original clusters and 950 

clusters from the subsample, and the maximum was found for each original cluster. These 951 

Jaccard similarities were averaged across all subsample runs. Clusters with average 952 

Jaccard similarities below 0.5 were thought to be unstable. We reported the minimum 953 

Jaccard similarity across original clusters for each k (Supp. Figure 2C), and all clusters 954 

when k = 5 were stable. A cell-wise co-clustering matrix was also generated during this 955 

procedure (Supp. Figure 2D), and it also supported our estimation of cluster stability.  956 

Third, we used dimensionality reduction techniques to deal with the concern that cell 957 

classes in our dataset may not be separable by the linear combinations of the two features 958 

we used as input to perform k-means clustering. We applied both the t-distributed 959 

stochastic neighbor embedding (t-SNE; Hinton and Roweis, 2003) algorithm and the 960 

uniform manifold approximation and projection (UMAP; McInnes et al., 2018) algorithm 961 

to our singe-unit data. Within a range of both algorithms' critical parameters, we find that 962 

the clusters from k-means clustering were still well separated (Supp. Figure 2G, H). 963 

 964 

Attentional Modulation Index and its Contrast Dependency: 965 

The attentional modulation index (AMI) of a neuron during the stimulus presentation with 966 

a specific contrast " was calculated using the best-fitting contrast response functions (!) 967 

from both attention conditions: 968 

 969 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 17, 2021. ; https://doi.org/10.1101/2021.02.15.431312doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.15.431312
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

?@A(") =
!(")&- − !(")0102

!(")&- + !(")0102 (3) 970 

 971 

The contrast dependence of the AMI was measured by the contrast dependence index 972 

(CDI): 973 

 974 

BCA =
?@A345DDDDDDDDDD − ?@A6786DDDDDDDDDDD

|?@A"33DDDDDDDDD|
(4) 975 

where ?@A345DDDDDDDDDD and ?@A6786DDDDDDDDDDD are the average AMIs within the low-contrast range and the 976 

high-contrast range, respectively. ?@A"33DDDDDDDDD is the average AMI across all contrasts.  "$% 977 

from the best-fitting CRF during “attend away” condition delimited the range of low 978 

contrast (" < "$%) and the range of high contrast (" ≥ "$%). CDI measures how the AMI of 979 

a neuron fluctuates with the contrast of the stimulus. A zero CDI indicates that the AMI is 980 

independent of the contrast of the stimulus. More robust attentional modulation at the low-981 

contrast range leads to positive CDIs, and more potent attention effects at the high-982 

contrast range result in negative CDIs (Figure 3B). AMI and CDI were only calculated for 983 

those visually responsive neurons whose laminar locations were identified (n = 255).  984 

 985 

Normalization Model Simulations: 986 

We used the normalization model of attention (Reynolds and Heeger, 2009) to explore 987 

the neural mechanisms behind the variety of attentional modulation across layers (Supp. 988 

Figure 4A). The normalization model posits that the resulting firing rate (I ) of the 989 

population of simulated neurons can be produced from a function of the stimulus drive 990 

(J), the attention field (?), and the suppressive drive (K): 991 

 992 

I("; M, N) =
?(M, N)J(M, N; ")

K(M, N; ") + )
(5) 993 

 994 

where M and N represent the receptive field center and orientation preference of each 995 

neuron in the population. "  is stimulus contrast and )  is a constant that controls the 996 

contrast gain of the neurons’ response. The stimulus drive is derived from the stimulus 997 
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and the stimulation field of the model neuron, which is its receptive field in the spatial and 998 

orientational space. The attention field describes the strength of attentional modulation 999 

as a function of receptive field center and orientation preference. The attentional 1000 

modulation is 1 for unattended space and is greater than 1 for a small range of locations 1001 

around the attended stimulus. We computed the suppressive drive by pooling the product 1002 

of the stimulus drive and the attention field over spatial positions and orientations: 1003 

 1004 

K(M, N; ") = 9(M, N) ∗ [?(M, N)J(M, N; ")] (6) 1005 

 1006 

where 9(M, N)  is the suppressive field and ∗  represents convolution. The stimulus, 1007 

stimulation field (excitatory receptive field), attention field, and suppressive field all had 1008 

Gaussian profile in space and orientation.  1009 

 1010 

For simulations in Figure 4A, the stimulus size was 5 and the attention field size was 30. 1011 

The CDI pattern holds for a range of stimulus sizes and attention field sizes (Supp. Figure 1012 

4B). The excitatory receptive field size and the suppressive field size were varied 1013 

according to their ratios relative to the attention field size. For a given pair of stimulus size 1014 

and attention field size, we changed the ratio of the attention field size to the excitatory 1015 

receptive field size from 0.5 to 3 and the ratio of the suppressive field size to the excitatory 1016 

receptive field size from 1 to 6. The orientation tuning width of the excitatory receptive 1017 

field was 60°, and the suppressive field was nonspecific. A baseline activity of 0.5 was 1018 

added after the normalization. For each combination of parameters, the AMIs were 1019 

calculated using the model neuron responses from two attention conditions. The CDIs of 1020 

AMIs were computed from the average AMIs within the low-contrast range and the high-1021 

contrast range delimited by the CRF’s inflection point from the “attend away” condition. 1022 

For simulations in Supp. Figure 4C, we further modified the stimulus drive of the model 1023 

to have either a nonlinear or an attention-modulated contrast response function. The 1024 

nonlinear function was implemented as 1025 

!(") =
"

" + )
 1026 
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where )  is 0.26, matching the average "$%  of our data. We also applied either a 1027 

multiplicative response gain (10% of increase in overall response) or a contrast gain (1% 1028 

of increase in perceived contrast) to test the effects of different attention modulation of 1029 

inputs on the model neurons’ responses.  1030 

 1031 

Computational Model: 1032 

We set up a conductance-based model of 1' excitatory (E) and 1& inhibitory (I) neurons 1033 

with a connection probability of 0.5 (Figure 4B). Neurons were evenly divided into 10 1034 

columns or local E-I sub-networks around a ring with the following within-column synaptic 1035 

weights: 1036 

 1037 

E to E : S'' =
1!!
-!

; I to I : S&& =
1""
-"

; E to I : S&' =
1"!
-!

; I to E : S'& =
1!"
-"

 1038 

 1039 

We only modeled E to I connections and E to E connections between different columns. 1040 

The synaptic weights fell off with column distance following a Gaussian profile: 1041 

 1042 

S)9 =
T

1'
×

1

)√2W
exp[−

1

2
\
])9
)
^
,
_ (7) 1043 

 1044 

where S)9 is the synaptic weight between two columns (S&'
)9  or S''

)9 ) and ])9 represents 1045 

the distance from column a to column b. ) controls the pooling size of the postsynaptic 1046 

inhibitory ()&) or excitatory ()') neuron.  1047 

We simulated models of 1' = 800 excitatory and 1& = 200 inhibitory spiking units. The 1048 

spiking units were modeled as Izhikevich neurons (Izhikevich, 2003) with the following 1049 

dynamics: 1050 

 1051 
]'

]6
= 0.04', + 5' + 140 − f + A (8) 1052 

 1053 
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]f

]6
= g(h' − g) (9) 1054 

 1055 

bj	'	 ≥ 30	#k, 6ℎm$	 n
'	 ← "

f	 ← f + ]
(10) 1056 

 1057 

'  represents the membrane potential of the neuron and f  is a membrane recovery 1058 

variable. A is the current input to the neuron (synaptic and injected DC currents). The 1059 

parameters g, h, ", and ] determine intrinsic firing patterns and were chosen as follows: 1060 

 1061 

Regular spiking excitatory units: g = 0.02, h = 0.2, " = −65, ] = 8 1062 

 1063 

Fast spiking inhibitory units: g = 0.1, h = 0.2, " = −65, ] = 2 1064 

 1065 

Presynaptic excitatory neurons generate fast (AMPA) and slow (NMDA) synaptic currents, 1066 

while presynaptic inhibitory neurons generate fast GABA currents: 1067 

 1068 

A:;( =	4 p0<=0(6)('(6) −	k0<=0)
)

+	4 p-<>0(6)('(6) − k-<>0)
9

+	4 p?0@0(6)('(6) −	k?0@0)
A

(11)
 1069 

 1070 

where k0<=0 = 0, k-<>0 = 0, k?0@0 = −70 are the respective reversal potentials (mV). 1071 

The synaptic time course g(t) was modeled as a difference between exponentials: 1072 

 1073 

p(6) = 	
1

qB − qC
rmMs t−

6 − q3
qB

u − mMs t−
6 − q3
qC

uv (12) 1074 

 1075 

where the parameters qB , qC ,	and q3 are the decay, rise, and latency time constants with 1076 

the following values (Brunel and Wang, 2003): AMPA: qB = 2 ms, qC = 0.5 ms, q3 = 1 ms; 1077 

NMDA: qB = 80  ms, qC = 2  ms, q3 = 1  ms; GABA: qB = 5  ms, qC = 0.5  ms, q3 = 1  ms; 1078 

The AMPA to NMDA ratio is 0.45 (Myme et al., 2003). 1079 
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We simulated the network with a DC step current (A>D = 4) of duration 1.2 s. Synaptic 1080 

noise was sampled from a normal distribution (A:;(.(4):E~x(y = 0, ) = 3)). We pooled 1081 

over spike trains of excitatory units and inhibitory units in each column separately and 1082 

calculated the shuffled-corrected jittered cross-correlations from the two population spike 1083 

trains binned at 1 ms within the 200 ms time window (800-1000 ms) after the initial 1084 

transient response across 500 repeats of the simulation. Cross-correlations for different 1085 

choices of )& or )' were reported as the average across columns (Figure 4C) (Harrison 1086 

et al., 2007; Harrison and Geman, 2009). 1087 

 1088 

Spike Train Cross-correlations: 1089 

The population cross-correlograms in Figure 4 report shuffled-corrected jittered cross-1090 

correlations (Harrison et al., 2007; Harrison and Geman, 2009). We computed the jittered 1091 

cross-correlations by resampling two spike trains within a specific time window such that 1092 

for each spike in the original data, a spike is chosen at random with replacement from 1093 

within the same time window across trials, thus preserving the PSTH at the resolution of 1094 

the jitter window. We computed the jittered cross-correlations with 4, 8, and 16 jitter 1095 

windows, and the results of 8 jitter windows were shown. Shuffled cross-correlations were 1096 

calculated by cross-correlating the first population spike train with the randomly permuted 1097 

second population spike train. Both types of cross-correlations were averaged across 1098 

trials and were further normalized by the geometric mean of the two spike trains' firing 1099 

rates and a triangular function that corrects for the amount of overlap for the different lags. 1100 

The normalized shuffled cross-correlation was then subtracted from the normalized 1101 

jittered cross-correlation to produce the shuffled-corrected jittered cross-correlation. 1102 
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Circles drawn for reference only.

Figure 1. Attentional Modulation of Contrast Response Function
(A) Orientation change detection task. While the monkey maintained fixation, two oriented Gabor stimuli were flashed on and off at two 
locations: one within the RF overlap region of the recorded V4 column and the other at a location of equal eccentricity across the vertical 
meridian. The covert attention of the monkey was cued to one of the two locations. One of the two stimuli changed its orientation at an 
unpredictable time. The monkey was rewarded for making a saccade to the location of orientation change (95% probability of change at 
the cued location; 5% probability at uncued location [foil trials]). If no change happened (catch trials), the monkey was rewarded for 
maintaining fixation. Two different waveforms were shown for two single units. 
(B) An example trial showing the single-unit signals in the attend-in condition. The time axis is referenced to the appearance of the fixation 
spot. Spikes (vertical ticks) in each channel come from the single unit with the highest spike rate in this trial. The gray boxes depict 
stimulus presentation epochs. In this particular trial, 8 sample stimuli with different contrasts were presented, followed by a target stimulus 
flash with an orientation change that the monkey responded to correctly.
(C) The mathematical function we used to fit neuronal contrast response functions is shown on the top. Schematics at the bottom show 
the effect of positive attentional modulation of each parameter on the contrast response function. 
(D) The best-fitting contrast response functions of three example neurons in “attend in” and “attend away” conditions. Mean ± SEM. Insets 
show the attentional modulation indices calculated as a function of contrast.
(E) The AMI as a function of contrast for each of the 255 visually responsive single units, with the three example units in (C) highlighted.
(F) Attention effects on the best-fitting parameters of the contrast response function. Each histogram plots the AMI distribution of a 
particular parameter across the population, with the dashed line marking the 0 modulation and the arrow with a number depicting the 
median AMI value. The median AMI is significantly different from zero for all 4 parameters (Mann-Whitney U test, p < 0.01).
(G) The mean difference of AMI from 0 for the 4 parameters are shown in the Cumming estimation plot. Mean differences are plotted as 
bootstrap sampling distributions. Each mean difference is depicted as a dot. Each 95% confidence interval (CI) is indicated by the ends 
of the vertical error bars. The shaded color represents that the 95% CI does not include 0.
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Figure 2. Classification of Single Units Using Electrophysiological Features.
(A) Mean waveforms for all 410 single units recorded. Waveform heights have been normalized to help com-
pare spike widths.
(B) Distribution of all single units in the space of the first two principal components (PCs) of the waveforms. 
The non-Gaussian structure implies that spike shape is a viable feature for classifying single units. 
(C) Histogram of the local variation AMI for all units with available local variation (n=341). The dashed line 
marks the 0 AMI value. The arrow depicts the median value of the distribution. The average local variation of 
the population is not significantly modulated by attention (Mann-Whitney U test, p = 0.37).
(D) k-means clustering of 341 single units based on PTD and spiking variability. Cell classes are named after 
their spiking widths (narrow, medium, broad) and their spiking patterns (regular, bursty). Single units within 
each range of spike width are highlighted in the component space on the top. Unclassified units are displayed 
as black crosses in the feature space.
(E) t-SNE embedding of the same data in (D) in a 2-dimensional space. The number at the left bottom corner 
of each panel represents the perplexity paramter of the t-SNE embedding.
(F) The Cumming estimation plot shows the bootstrap sampling distributions of AMIs of CRF parameters for 
each cell class. The CRF parameters were only available for visually responsive single units.
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Figure 3. Contrast Dependency of AMI is Cell-Class and Layer-Specific
(A) The left panel shows the AMI of contrast responses as a function of contrast averaged across visually 
responsive single units in each cluster. Mean ± SEM. The black line indicates the population mean. The 
right panel shows the mean AMI averaged across contrast for each cluster. Asterisk indicates either the 
distribution is significantly different from zero or two distributions are significantly different (Mann-Whitney 
U test, p < 0.05).
(B) To quantify the contrast dependence of attentional modulation, we averaged the AMI for a single unit 
separately within the low-contrast range and the high-contrast range (using the c50 as the low- to high-con-
trast threshold). We then defined the contrast dependence index (CDI) as the difference between the aver-
age AMI within the low-contrast range and that within the high-contrast range, normalized by the mean AMI 
across the whole contrast range. The schematic shows the interpretation of different ranges of CDI in terms 
of the AMI.
(C) The Cumming estimation plot shows the raw data of CDIs (left) and the bootstrap sampling distribution 
of the mean (right) for each cell class. The plus signs are the outliers within the axis range, and the arrows 
depict the outliers outside the axis limit. The number of valid units for each cell class is shown on the top of 
the swarm plot. Distributions for cell classes with CIs inclusive of 0 are shown in faded colors.  
(D) Layer-wise AMI (mean ± SEM) of contrast responses for each cell class as a function of contrast (left) 
or averaged across contrast (right). Asterisk indicates either the distribution is significantly different from 
zero or two distributions are significantly different (Mann-Whitney U test, p < 0.05). Cell classes that contain 
fewer than 10 units (including outliers) are excluded. 
(E) Layer-wise CDI for five clusters, all units, and non-narrow units. The Cumming estimation plot shows 
the bootstrap sampling distribution of the mean CDI. Distributions with CIs inclusive of 0 are illustrated in 
faded colors. The number of units excluding outliers is shown on the top of each plot. For the raw data of 
the layer-wise CDIs, see Supp. Figure 3B.
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Figure 4. Computational Models Provide A Parsimonious Explanation for the Laminar Profile of AMI Contrast Dependence
(A) Predictions from the normalization model of attention with different suppressive field sizes or different excitatory (E) receptive field sizes. The 
top panel shows contrast response functions for a simulated neuron in the normalization model, when attending to a stimulus within the neuron's 
receptive field (black curve) and when attending toward the opposite hemifield (gray curve). The aorange curve represents the AMI. The black dot 
shows the inflection point of "attend away" responses that was used to delimit the low- and high-contrast ranges. The middle panel shows CDIs for 
simulated neurons as a function of the E receptive field size and the suppressive field size while holding the stimulus size and the attention field 
size fixed. The white rectangles depict a potential mechanism that leads to the observed variation of CDIs across layers (change in suppressive 
field size). The black asterisk corresponds to the model parameters used for the simulation above. The bottom panel shows AMIs of suppressive 
drive as a function of the E receptive field size and the suppressive field size. For both simulations, the attention field size is 30 and the stimulus 
size is 5. The normalization model predicts the AMI of the suppressive drive to be correlated with the CDI of neuronal responses.
(B) Simulations of a conductance-based E-I network with columnized connections. Schematics of the E-I networks corresponding to the possible 
mechanism in (A) are shown on top. 800 E and 200 I units were evenly distributed in 10 columns around a ring. We interpret the normalization 
model's suppressive field as the receptive field of inhibitory neurons in the E-I network model. E and I units from the same column are mutually 
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E) in response to a step input. The box depicts a 200 ms window used for computing cross-correlations between E and I populations.
(C) Cross-correlograms between E and I populations in the same column with different I receptive field sizes. Cross-correlations were calculated 
using the pooled spike trains of E units and I units from the same column across 500 repeats of identical simulation and averaged across 10 
columns. A larger I receptive field reduces the cross-correlation between local E and I populations. Mean ± SEM.
(D) Cross-correlograms (mean ± SEM) between Narrow and Broad Regular cell classes in the superficial, input, and deep layer. Cross-correla-
tions were calculated using the pooled spike trains of Narrow class (putative inhibitory) neurons and Broad Regular class (putative excitatory) 
neurons, and were averaged across sessions. The arrows mark 3 time intervals during which we averaged the cross-correlations and compared 
the mean differences between the superficial (or input) and the deep layers. Asterisk: The mean difference of cross-correlations in the center 
interval (-75 ms to 75 ms) has a 95% CI above 0. For the estimation plot, see Supp. Figure 4B.
(E) Proposed E-I networks in V4 accounting for the layer-wise CDI variations. The empirical data and the model simulations imply a larger 
inhibitory pooling size in the deep layer than those in the superficial and input layer. The arrows depict the canonical information flow pathways in 
a columnar circuit.
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Supp. Figure 2. Validations for the Single-unit Classification and the AMI of CRF Parameters for Each Cell Class
(A) Percentage of classified neurons in the total sample as a function of the number of clusters (k) input to the k-means clustering 
algorithm. The 5-cluster result was able to identify the largest set of distinct clusters while classifying most of the units. 
(B) Cross-validation (CV) errors for different numbers of clusters. The 5-cluster result shows the lowest CV error.
(C) The minimum Jaccard index across clusters for each k from the subsampling analysis. The analysis was applied to neuronal data from 
either of the two attention conditions or to combined data. Clusters that have Jaccard indices above 0.5 are considered as stable.
(D) The cell-wise co-clustering matrix showing the probability of single units belonging to the same cluster in the subsampling analysis.
(E) In the principal component space of spike shape, we colored single units based on their spike width range (open circles; narrow, 
medium, broad). The clusters generated from the peak-to-trough duration were minimally overlapped.
(F) In the principal component space of spike shape, we colored single units either based on their spike width range (open circles; narrow, 
medium, broad) or by running the k-means clustering algorithm with the first 2 PCs (closed circles). The clusters generated from the 
k-means clustering match the ones grouped by the peak-to-trough duration, suggesting that peak-to-trough duration is an efficient 
measure to capture the variance in spike shapes. 
(G and H) Embedding the data used for the k-means clustering in a 2-dimensional space using t-SNE (G) or UMAP (H). 
(I) Mean firing rate for visually responsive single units split by cell class or by layer. Neuronal firing rates were calculated from stimulus 
flashes with the highest common contrast across two monkey experiments in the "attend away" condition. The number of single units 
within each cluster is shown. In each layer, we only analyzed clusters containing more than 10 single units. Asterisk indicates either the 
distribution is significantly different from zero or two distributions are significantly different (Mann-Whitney U test, p < 0.05). Mean ± SEM.
(J) The Cumming estimation plot shows the raw data (left) of AMIs of best-fitting CRF parameters and the bootstrap sampling distribution 
of each cell class's mean (right).
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Supp. Figure 2. Validations for the Single-unit Classification and the AMI of CRF Parameters for Each Cell Class
(A) Percentage RI classified QHXURQV in the WRWDO VDPSOH as a IXQFWLRQ RI the QXPEHU RI FOXVWHUV (k) LQSXW WR the N�PHDQV FOXVWHULQJ�
DOJRULWKP� 7KH���FOXVWHU�UHVXOW�ZDV�DEOH�WR�LGHQWLI\�WKH�ODUJHVW�VHW�RI�GLVWLQFW�FOXVWHUV�ZKLOH�FODVVLI\LQJ�PRVW�RI�WKH�XQLWV��
�%��&URVV�YDOLGDWLRQ��&9��HUURUV�IRU�GLfIHUHQW�QXPEHUV�RI�FOXVWHUV� 7KH���FOXVWHU�UHVXOW�VKRZV�WKH�ORZHVW�&9�HUURr�
(C) The PLQLPXP Jaccard index DFURVV FOXVWHUV IRU each k IURP the VXEVDPSOLQJ DQDO\VLV� The DQDO\VLV ZDV DSSOLHG WR QHXURQDO data IURP�
HLWKHU�RI�WKH�WZR�DWWHQWLRQ�FRQGLWLRQV�RU�WR�FRPELQHG�GDWD��&OXVWHUV�WKDW�KDYH�-DFFDUG�LQGLFHV�DERYH�����DUH�FRQVLGHUHG�DV�VWDEOH�
(D) 7KH�FHOO�ZLVH�FR�FOXVWHULQJ�PDWUL[�VKRZLQJ�WKH�SUREDELOLW\�RI�VLQJOH�XQLWV�EHORQJLQJ�WR�WKH�VDPH�FOXVWHU�LQ�WKH�VXEVDPSOLQJ�DQDO\VLV�
(E) In the SULQFLSDO FRPSRQHQW VSDFH RI VSLNH VKDSH� ZH FRORUHG single XQLWV EDVHG RQ their VSLNH ZLGWK range �RSHQ circles; QDUURZ��
PHGLXP��EURDG�� 7KH�FOXVWHUV�JHQHUDWHG�IURP�WKH�SHDN�WR�WURXJK�GXUDWLRQ�ZHUH�PLQLPDOO\�RYHUODSSHG�
�)� In the SULQFLSDO FRPSRQHQW VSDFH RI VSLNH VKDSH� ZH FRORUHG single XQLWV either EDVHG RQ their VSLNH ZLGWK range �RSHQ circles; QDUURZ��
PHGLXP� EURDG� RU E\ UXQQLQJ the N�PHDQV FOXVWHULQJ DOJRULWKP ZLWK the first 2 PCs �FORVHG FLUFOHV�� The FOXVWHUV generated IURP the 
N�PHDQV FOXVWHULQJ match the RQHV JURXSHG E\ the SHDN�WR�WURXJK GXUDWLRQ� VXJJHVWLQJ that SHDN�WR�WURXJK GXUDWLRQ is an efficient 
PHDVXUH�WR�FDSWXUH�WKH�YDULDQFH�LQ�VSLNH�VKDSHV��
�*�DQG�+��(PEHGGLQJ�WKH�GDWD�XVHG�IRU�WKH�N�PHDQV�FOXVWHULQJ�LQ�D���GLPHQVLRQDO�VSDFH�XVLQJ�W�61(��*��RU�80$3��+���
(I) Mean firing rate IRU YLVXDOO\ UHVSRQVLYH single XQLWV VSOLW E\ cell class RU E\ OD\Hr� 1HXURQDO firing rates ZHUH FDOFXODWHG IURP VWLPXOXV�
flashes ZLWK the highest FRPPRQ FRQWUDVW DFURVV WZR PRQNH\ H[SHULPHQWV in the "attend DZD\� FRQGLWLRQ� The QXPEHU RI single XQLWV�
ZLWKLQ each FOXVWHU is VKRZQ� In each OD\Hr� ZH RQO\ DQDO\]HG FOXVWHUV FRQWDLQLQJ PRUH than �� single XQLWV� Asterisk indicates either the 
GLVWULEXWLRQ�LV�VLJQLILFDQWO\�GLfIHUHQW�IURP�]HUR�RU�WZR�GLVWULEXWLRQV�DUH�VLJQLILFDQWO\�GLfIHUHQW��0DQQ�:KLWQH\�8�WHVW��S����������0HDQ���6(0�
(J) The &XPPLQJ HVWLPDWLRQ SORW VKRZV the UDZ data (left) RI AMIs RI EHVW�ILWWLQJ &5) SDUDPHWHUV and the ERRWVWUDS VDPSOLQJ GLVWULEXWLRQ�
RI�HDFK�FHOO�FODVV
V�PHDQ��ULJKW��
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Supp. Figure 3. Raw Data of AMIs and CDIs of AMI for Each cell class
(A) The AMI of firing rate as a function of contrast for single units within each cell class.
(B) The raw data of cluster-wise CDIs of AMI within each layer. The plus signs are the outliers within the 
axis range, and the arrows depict the outliers outside the axis limit. The number of valid units for each cell 
class is shown on the top of the swarm plot.
(C) Layer-wise AMI (mean ± SEM) for all units, Narrow unit, and non-narrow units as a function of 
contrast (left) or averaged across contrast (right). Asterisk indicates either the distribution is significantly 
different from zero or two distributions are significantly different (Mann-Whitney U test, p < 0.05).
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Supp. Figure 4. Normalization Model of Attention and CCG Analyses Between Cell Classes
(A) The structure of the normalization model of attention. The left panel shows a pair of orientated grating stimuli with identical contrasts, 
acting as input to the model. The central black dot indicates the fixation point. The dashed red circle indicates the receptive field of the 
model neuron centered on the grating stimulus. The stimulus drive shown in the middle panel is a collection of neural activity driven by 
the stimuli. Neurons are arranged based on their receptive field center (horizontal position) and orientation preference (vertical position). 
The values of the stimulus drive are shown by brightness. The top panel shows the attention field as a function of the receptive field center 
and the orientation preference. In this case, the attention is guided to the right stimulus position and does not vary with orientation. Gray 
areas indicate values of 1, and white areas indicate values greater than 1. The suppressive drive at the bottom is calculated from the 
point-by-point product of the stimulus drive and the attention field and then pooled over space and orientation according to the suppres-
sive field size. The stimulus drive is multiplied by the attention field and then divided by the suppressive field to generate the output firing 
rates of model neurons (right panel). 
(B) i, CDIs for simulated neurons in the normalization model with different stimulus sizes and attention field sizes. In each panel, we vary 
the E receptive field size relative to the attention field size (x-axis), and the suppressive field size relative to the E receptive field size 
(y-axis). The pattern of CDI holds for a range of values of stimulus size and attention field size. ii, CDIs for simulated neurons in the 
normalization model with different types of inputs. We changed the stimulus drive input to the normalization model to have either a nonlin-
ear or an attention-modulated contrast response function. We tested both the response gain (10% increase in overall response) and the 
contrast gain (1% of increase in detected contrast) effects. For these simulations, the attention field size is 30 and the stimulus size is 5. 
The pattern of CDI holds for different types of inputs.
(C) Changes in E receptive field size (white box) can also lead to the variation of CDIs across layers (left panel). We tested this hypothesis 
in the E-I network by adjusting the standard deviation of between-column E-E connections (Wee) from narrow (green) to broad (orange) 
while keeping other connections the same (gray, including Wee, WII, WIe) (middle panel). Cross-correlograms between E and I populations 
in the same column suggest that different E receptive field sizes have little impact on the spike-time correlations of local neural activity 
across layers (right panel).
(D) Cross-correlograms (mean ± SEM) between Narrow and 3 other cell classes in the superficial, input, and deep layer. Cross-correla-
tions were calculated using the pooled spike trains of Narrow class and the other cell class (Board Bursty, Medium Regular, or Medium 
Bursty) and were averaged across sessions.
(E) The Cumming estimation plot shows the mean difference for cell-class specific comparisons of average cross-correlations between 
the superficial (Super.) and deep layers or between the input and deep layers. We picked 3 time intervals to compute the average 
cross-correlations (rows). The raw data of average cross-correlations is plotted on the left in each panel. Each mean difference between 
layers is plotted on the right as a bootstrap sampling distribution. 
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Supp. Figure 4. Normalization Model of Attention and CCG Analyses Between Cell Classes
(A) The structure of the normalization model of attention. The left panel shows a pair of orientated grating stimuli with identical contrasts, 
acting as input to the model. The central black dot indicates the fixation point. The dashed red circle indicates the receptive field of the 
model neuron centered on the grating stimulus. The stimulus drive shown in the middle panel is a collection of neural activity driven by 
the stimuli. Neurons are arranged based on their receptive field center (horizontal position) and orientation preference (vertical position). 
The values of the stimulus drive are shown by brightness. The top panel shows the attention field as a function of the receptive field center 
and the orientation preference. In this case, the attention is guided to the right stimulus position and does not vary with orientation. Gray 
areas indicate values of 1, and white areas indicate values greater than 1. The suppressive drive at the bottom is calculated from the 
point-by-point product of the stimulus drive and the attention field and then pooled over space and orientation according to the suppres-
sive field size. The stimulus drive is multiplied by the attention field and then divided by the suppressive field to generate the output firing 
rates of model neurons (right panel). 
(B) i, CDIs for simulated neurons in the normalization model with different stimulus sizes and attention field sizes. In each panel, we vary 
the E receptive field size relative to the attention field size (x-axis), and the suppressive field size relative to the E receptive field size 
(y-axis). The pattern of CDI holds for a range of values of stimulus size and attention field size. ii, CDIs for simulated neurons in the 
normalization model with different types of inputs. We changed the stimulus drive input to the normalization model to have either a nonlin-
ear or an attention-modulated contrast response function. We tested both the response gain (10% increase in overall response) and the 
contrast gain (1% of increase in detected contrast) effects. For these simulations, the attention field size is 30 and the stimulus size is 5. 
The pattern of CDI holds for different types of inputs.
(C) Changes in E receptive field size (white box) can also lead to the variation of CDIs across layers (left panel). We tested this hypothesis 
in the E-I network by adjusting the standard deviation of between-column E-E connections (Wee) from narrow (green) to broad (orange) 
while keeping other connections the same (gray, including Wee, WII, WIe) (middle panel). Cross-correlograms between E and I populations 
in the same column suggest that different E receptive field sizes have little impact on the spike-time correlations of local neural activity 
across layers (right panel).
(D) Cross-correlograms (mean ± SEM) between Narrow and 3 other cell classes in the superficial, input, and deep layer. Cross-correla-
tions were calculated using the pooled spike trains of Narrow class and the other cell class (Board Bursty, Medium Regular, or Medium 
Bursty) and were averaged across sessions.
(E) The Cumming estimation plot shows the mean difference for cell-class specific comparisons of average cross-correlations between 
the superficial (Super.) and deep layers or between the input and deep layers. We picked 3 time intervals to compute the average 
cross-correlations (rows). The raw data of average cross-correlations is plotted on the left in each panel. Each mean difference between 
layers is plotted on the right as a bootstrap sampling distribution. 
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Supp. Figure 4. Normalization Model of Attention and CCG Analyses Between Cell Classes
(A) The structure of the normalization model of attention. The left panel shows a pair of orientated grating stimuli with identical contrasts, acting as input to the model. 
The central black dot indicates the fixation point. The dashed red circle indicates the receptive field of the model neuron centered on the grating stimulus. The stimulus 
drive shown in the middle panel is a collection of neural activity driven by the stimuli. Neurons are arranged based on their receptive field center (horizontal position) and 
orientation preference (vertical position). The values of the stimulus drive are shown by brightness. The top panel shows the attention field as a function of the receptive 
field center and the orientation preference. In this case, the attention is guided to the right stimulus position and does not vary with orientation. Gray areas indicate values 
of �� and white areas indicate values greater than �� The suppressive drive at the bottom is calculated from the point-by-point product of the stimulus drive and the 
attention field and then pooled over space and orientation according to the suppressive field size. The stimulus drive is multiplied by the attention field and then divided 
by the suppressive field to generate the output firing rates of model neurons (right panel). 
(B) i, CDIs for simulated neurons in the normalization model with different stimulus sizes and attention field sizes. In each panel, we vary the E receptive field size relative 
to the attention field size (x-axis), and the suppressive field size relative to the E receptive field size (y-axis). The pattern of CDI holds for a range of values of stimulus 
size and attention field size. ii, CDIs for simulated neurons in the normalization model with different types of inputs. We changed the stimulus drive input to the normaliza-
tion model to have either a nonlinear or an attention-modulated contrast response function. We tested both the response gain ���� increase in overall response) and 
the contrast gain ��� of increase in detected contrast) effects. For these simulations, the attention field size is 30 and the stimulus size is 5. The pattern of CDI holds for 
different types of inputs.
(C) Changes in E receptive field size (white box) can also lead to the variation of CDIs across layers (left panel). We tested this hypothesis in the E-I network by adjusting 
the standard deviation of between-column E-E connections (Wee) from narrow (green) to broad (orange) while keeping other connections the same (gray, including Wee, 
WII, WIe) (middle panel). Cross-correlograms between E and I populations in the same column suggest that different E receptive field sizes have little impact on the 
spike-time correlations of local neural activity across layers (right panel).
(D) Cross-correlograms (mean ± SEM) between Narrow and 3 other cell classes in the superficial, input, and deep layer. Cross-correlations were calculated using the 
pooled spike trains of Narrow class and the other cell class (Board Bursty, Medium Regular, or Medium Bursty) and were averaged across sessions.
(E) The Cumming estimation plot shows the mean difference for cell-class specific comparisons of average cross-correlations between the superficial (Super.) and deep 
layers or between the input and deep layers. We picked 3 time intervals to compute the average cross-correlations (rows). The raw data of average cross-correlations is 
plotted on the left in each panel. Each mean difference between layers is plotted on the right as a bootstrap sampling distribution. 
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