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ABSTRACT10

Dimensionality reduction is crucial for the visualization and interpretation of the high-dimensional single-cell RNA sequencing
(scRNA-seq) data. However, preserving topological structure among cells to low dimensional space remains a challenge. Here,
we present the single-cell graph autoencoder (scGAE), a dimensionality reduction method that preserves topological structure
in scRNA-seq data. scGAE builds a cell graph and uses a multitask-oriented graph autoencoder to preserve topological
structure information and feature information in scRNA-seq data simultaneously. We further extended scGAE for scRNA-seq
data visualization, clustering, and trajectory inference. Analyses of simulated data showed that scGAE accurately reconstructs
developmental trajectory and separates discrete cell clusters under different scenarios, outperforming recently developed deep
learning methods. Furthermore, implementation of scGAE on empirical data showed scGAE provided novel insights into cell
developmental lineages and preserved inter-cluster distances.

11

Introduction12

Single-cell RNA sequencing (scRNA-seq) is an ideal approach for investigating cell-cell variation. Conventional dimensionality13

reduction techniques such as principal component analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)1
14

were implemented on scRNA-seq data for visualization and downstream analyses, significantly increasing our understanding15

of cellular heterogeneity and development progress. The recent emergence of massively parallel scRNA-seq such as droplet16

platforms enabled interrogation of millions of cells in complex biological systems2–5, which provide a fantastic potential for17

dissection of tissue and cellular microenvironment, identification of rare/new cell types, inference of developmental lineages,18

and elucidation of the mechanism of cellular response to stimulations6. However, the data generated by massively parallel19

scRNA-seq are of high dropout and high noise with complex structure, which posed a series of challenges on dimensionality20

reduction. Particularly, it is a big challenge to preserve the complex topological structure among cells.21

Many dimensionality reduction methods have been developed or introduced for scRNA-seq data analyses in the past22

several years. Recently developed competitive methods include DCA7, SCVI8, scDeepCluster9, PHATE10, SAUCIE11, and23

Ivis12. Among them, deep learning showed the greatest potentials. For instance, DCA, scDeepCluster, Ivis, and SAUCIE24

adapted the autoencoder to denoise, visualize and cluster the scRNA-seq data. However, these deep learning-based models only25

embedded the distinct cell features while ignoring the cell-cell relationships, which limited their ability to reveal the complex26

topological structure among cells and made them difficult to elucidate the developmental trajectory. The recently proposed27

graph autoencoder13 is very promising as it preserves the long-distance relationships among data in a latent space. In this study,28

we developed the single-cell graph autoencoder (scGAE). It improved the graph autoencoder to preserving global topological29

structure among cells. We further extended the scGAE for visualization, trajectory inference, and clustering. Analyses of30

simulated data and empirical data showed that scGAE outperformed the other competitive methods.31

Results32

The Model architecture of scGAE33

scGAE combines the advantage of the deep autoencoder and graphical model to embed the topological structure of high-34

dimensional scRNA-seq data to a low-dimensional space (Fig1). After getting the normalized count matrix, scGAE builds the35

adjacency matrix among cells by K-nearest-neighbor algorithm. The encoder maps the count matrix to a low-dimensional latent36
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Figure 1. The Model architecture of scGAE. The normalized count matrix represents the gene expression level in each cell.
The adjacency matrix is constructed by connecting each cell to its K nearest neighbors. The encoder takes the count matrix and
the adjacency matrix as inputs and generates low-dimensional latent variables. The feature decoder reconstructs the count
matrix. The graph decoder reconstructs the adjacency matrix. Clustering is performed on the latent variables.

space by graph attentional layers14. scGAE decodes the embedded data with a feature decoder and a graph decoder. The feature37

decoder reconstructs the count matrix to preserve the feature information; The graph decoder recovers the adjacency matrix and38

preserves the topological structure information. It decodes the embedded data to the spaces with the same dimension as original39

data by minimizing the distance between the input data and the reconstructed data (see Methods). We use deep clustering to40

learn the data embedding and do cluster assignment simultaneously15, generating a clustering-friendly latent representation.41

The implementation and usage of scGAE can be found on Github: https://github.com/ZixiangLuo1161/scGAE.42

Visualization of scGAE embedded data and comparison to other methods43

To systematically evaluate the performance of scGAE, we summarized four representative scenarios (scenario1: cells in44

continuous differentiation lineages; scenario2: cells in differentiation lineages where cells concentrate at the center of each45

branch; scenario3: distinct cell populations with apparent differences; and scenario4: distinct cell populations with small46

population differences) (Fig2 left). We used Splatter16 and PROSSTT17 to simulate scRNA-seq data for scenario1, scenario2,47

scenario3, and scenario4. The latent embedding inferred by scGAE was visualized by tSNE. In scenario1 and secnario2, scGAE48

almost entirely reproduced the differentiation lineages (Fig2a, 2b), while other methods only revealed some local structures and49

failed to exhibit the overall structure of simulated data (Fig2a, 2b). The results of tSNE and SAUCIE exhibited distinct clusters50

but lost lineage relationship in scenario2 (Fig2b). In scenario3 and secnario4, scGAE almost perfectly preserved the compact51

cell clusters and inter-cluster distances in the simulated data, while the clusters inferred by other methods are dispersed, and the52

topological structure among these clusters was not preserved (Fig2c, 2d, Supplemental figure 1). Only scGAE separated all the53

clusters while the other methods mixed different types of cells when the differences between clusters are small (Fig 2d). Based54

on these observations, scGAE perfectly reproduced the differentiation lineages and distinct clusters in the simulated data (Fig2),55

indicating scGAE outperforms other competitive methods in restoring the relationship between cells.56

Trajectory inference and cell clustering based on scGAE embedded data57

We further quantitatively evaluated the performance of scGAE for trajectory inference tasks. The scGAE and several other58

competitive methods were used to perform dimensionality reduction on the simulated lineages (simulated by PROSSTT)59

(scenario1 and 2). We conducted trajectory inference on these embedded data using DPT18. The Kendall correlation coefficient19
60

between the inferred trajectories and the ground truth was calculated to measure their similarity. The results showed that61

scGAE and SCVI better recovered the original trajectory than the other competitive methods on both scenario1 and 2 (Fig3a,62

Fig3b). Next, we evaluated the performance of scGAE on cell clustering tasks. Simulated data with cell clusters (simulated by63

Splatter) (scenario3 and 4) were analyzed by scGAE and other competitive methods. We performed Louvain clustering on64
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Figure 2. Visualization of the four simulated datasets by scGAE, tSNE, SAUCIE, Ivis, and PHATE. Each color
represents a cell subpopulation in the simulated dataset. (a) scenario1: cells in continuous differentiation lineages. (b)
scenario2: cells in differentiation lineages where cells concentrate at the center of each branch. (c) scenario3: distinct cell
populations with apparent population differences. (d)scenario4: distinct cell populations with small population differences.

these embedded data. Normalized mutual information (NMI) was used to measure the difference between inferred clusters65

and ground truth. The results showed that scGAE was the best among these methods (Fig3c, Fig3d). Although SCVI is the66

second-best performed for trajectory inference (Fig3a, Fig3b), it is the worst performed for cell clustering (Fig3c, Fig3d). On67

the other hand, PCA is the second-best method for cell clustering (Fig3c, Fig3d), while it does not perform well for trajectory68

inference. Overall, scGAE performed best for both trajectory inference and cell clustering.69

scGAE identified novel subpopulations that shaped hematopoietic lineage relationship70

Single cell analysis of hematopoietic stem and progenitor cells (HSPCs) have significantly increased our understanding of the71

early cell subpopulations and developmental trajectory during hematopoiesis5, 20–25.We further used scGAE to analyze HSPCs72

scRNA-seq data from our previous study5 (Fig4a). We found the previous identified Basophil/Eosinophil/Mast progenitors73

(Ba/Eo/MaP) has been classified into multiple subpopulations (Fig4b). It indicates that the cells in Ba/Eo/MaP may have74

different differentiation potentials at early phase. While the other competitive methods did not identify the subpopulations in75

Ba/Eo/MaP (Supplemental figure 2), supporting scGAE has the highest statistical power to identify the substructure in the76

scRNA-seq data.77

scGAE preserved topological structure among human pancreatic cells populations78

The function of the pancreas hinges on complex interactions among distinct cell types and cell populations. We re-analyzed79

the scRNA-seq data of human pancreatic cells from Baron et al.26. Although the pancreatic cell subpopulations identified80

by scGAE are the same as the original study, we found the distances and topological structures among cell types inferred by81

scGAE better fit our knowledge (Fig4c). For instance, the activated stellate and quiescent stellate showed similar expression82

profiles and are very close to each other27, which is recovered by scGAE while not recovered by other methods (Fig4d and83

Supplemental figure 2). scGAE also preserved the short distance between two ductal subtypes, while other methods did not84

(Fig4d and Supplemental figure 2). Overall, scGAE preserved the topological structure among different cell populations, which85

greatly benefit our understanding of the cellular relationships.86

Discussion87

Because of the high noises of scRNA-seq data and complicated cellular relationships, preserving the topological structure of88

scRNA-seq data in low-dimensional space is still a challenge. We proposed scGAE which is a promising topology-preserving89

dimensionality reduction method. It generates a low-dimensional representation that better preserves both the global structure90
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Figure 3. Quantitative evaluation of scGAE and several other competitive methods on clustering and trajectory
inference tasks. In scenario1 (a) and scenario2 (b), the Kendall correlation between the ground truth and inferred trajectory
was calculated. In scenario3 (c) and scenario4 (d), the normalized mutual information (NMI) measures the difference between
the ground truth and the inferred clusters.

and local structure of the high-dimensional scRNA-seq data. The key innovation of scGAE is to embed the structure information91

and feature information simultaneously using a multitask graph autoencoder. It is suitable for analyzing the data both in92

lineages and clusters. The learned latent representation benefits various downstream analyses, including clustering, trajectory93

inference, and visualization. The analyses on both simulated data and empirical data suggested scGAE accurately preserved the94

topological structures of data.95

As the first study adapting graph autoencoder for dimensionality reduction of scRNA-seq data, this approach is likely96

to be significantly improved in the future. Firstly, because the complex data structure is hard to be directly embedded into97

two-dimensional space by graph autoencoder, we embedded the scRNA-seq data into an intermediate dimension and used98

tSNE to visualize the embedded data into a two-dimensional space. However, the tSNE focuses more on local information, and99

it sometimes fails to correctly recover the global structure, which may distort the topological structure in the data. A better100

visualization method is needed to preserve the topological structure of scRNA-seq data. Secondly, the graph in scGAE is101

constructed by the K-nearest neighbor (KNN) algorithm that relies on a predefined parameter K. However, the optimal K varies102

among different datasets and different parts of a dataset. Constructing an optimal graph is challenging due to the difficulty in103

determining a suitable K, which could be our potential future endeavors.104

Methods105

Joint graph autoencoder106

The graph autoencoder is a type of artificial neural network for unsupervised representation learning on graph-structured data13.
The graph autoencoder often has a low-dimensional bottleneck layer so that it can be used as a model for dimensionality
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Figure 4. Analyses of two real datasets. (a)Visualization of HSPC cells by scGAE and tSNE (b) scGAE identified the
multiple subpopulations in previous reported Ba/Eo/MaP. (c) Visualization of pancreases cells by scGAE and tSNE. (d) The
close distance between two stellate states and the short distance between ductal subtypes recovered by scGAE.

reduction. Let the inputs be single-cell graphs of node matrices X and adjacency matrices A. In our joint graph autoencoders28,
there is one encoder E for the whole graph and two decoders DX and DA for nodes and edges respectively. In practice, we first
encode the input graph into a latent variable h = E(X ,A), and then we decode h into the reconstructed node matrix Xr = DX (h)
and the reconstructed adjacency matrix Ar = DA(h). The objective of learning process is to minimize the the reconstruction loss

Lr = λ ‖X−Xr‖2
2 +(1−λ )‖A−Ar‖2

2 ,

where the weight λ is a hyper-parameter. In our experiments, λ is set to be 0.6.107

We used the Python package Spektral29 to implement our model. There are many types of graph neural networks that108

can be used as the encoder or decoder. Hereby, to extract the features of a node with the aid of its neighbors, we apply graph109

attention layers as default in the encoder. Other graph neural networks such as GCN30, GraphSAGE31 and TAGCN32 can also110

be implemented as the encoder in scGAE. The feature decoder DX is a four-layer fully connected neural network with 64, 256,111

512 nodes in hidden layers.112

The edge decoder consists of a fully connected layer followed by the composition of quadratization and activation:

Ar = DA(h) = σ(ZZ>),

where Z = σ(Wh) arises as an output of a fully connected layer with the weight matrix W , and σ(x) = max(0,x) is the rectified113

linear unit.114

Deep-clustering embedding115

Motivated by Yang et al33, we use a two-stage method. The first stage is to pre-train scGAE by minimizing Lr. The resulting
neural network parameters are set as the initialization of the second stage, which we call alter-training. The loss function in the
alter-training stage compromises both reconstruction error Lr and clustering cost Lc = Lc(h,µ):

L = Lr + γLc,

where µ is a collection of clustering centroids, and γ is a hyper-parameter set as 2.5 in our experiments.116

The alter-training consists of doing the following two steps alternately:117

1. Given a collection of clustering centroids µ , update network parameters by minimizing L;118

2. Compute the embedded data h using the updated network, and do clustering in the embedded space to obtain new119

centroids µ;120

In experiments, we use the pre-trained network to generate the initial embedded data which are clustered to obtain the initial121

centroids by Louvain34. There are various choices for the loss Lc and the clustering algorithm in the second step15. In practice,122

we compute the new centroids µ by minimizing Lc using the stochastic gradient descent. A good choice of Lc is the soft123

assignment loss35, which is the KL divergence of empirical clustering assignment distribution Q from a target distribution P.124
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Given an embedded point hi and a centroid µ j, Q is defined as Student’s t-distribution qi j =

(
1+‖hi−µ j‖2

)−1

∑ j′

(
1+
∥∥∥hi−µ j′

∥∥∥2
)−1 . An ideal target125

distribution should have the following properties: (1) improve cluster purity, (2) put more emphasis on data points assigned126

with high confidence, and (3) prevent large clusters from distorting the hidden feature space. In experiments, we choose P as127

pi j =
q2

i j/∑i qi j

∑ j′ q
2
i j′/∑i qi j′

.128

Evaluation metric129

Clustering results are measured by Normalized Mutual Information (NMI)36. Given the knowledge of the ground truth class
assignments U and our clustering algorithm assignment V on n data points, NMI measures the agreement of the two assignment,
ignoring permutations. NMI is defined as

NMI(U,V ) =
1

mean(H(U),H(V ))

|U |

∑
i=1

|V |

∑
j=1

∣∣Ui∩Vj
∣∣

N
log

(
n
∣∣Ui∩Vj

∣∣
|Ui|
∣∣Vj
∣∣
)
,

where H(U) =−∑
|U |
i=1
|Ui|
n log( |Ui|

n ) is the entropy.130

Trajectory inference results are measured by Kendall correlation coefficient. We define an order among the set of131

observations (x1,y1),(x2,y2), . . . ,(xn,yn): any pair of observations (xi,yi) and (x j,y j), where i < j are said to be concordant132

if either both xi > x j and yi > y j hold or both xi < x j and yi < y j hold; otherwise they are said to be discordant. Denote the133

number of concordant pairs as Nconco and the number of discordant pairs as Ndiscon, Kendall correlation coefficient is defined as134

τ =
2(Nconco−Ndiscon)

n(n−1)
.

Data simulation135

We simulated five scRNA-seq datasets using Splatter R package (data1, data3, and data4) and PROSSTT Python package (data2136

and data5). The cells in data1 and data5 are in the linear distribution along the developmental trajectory. The cells in data2137

have a skewed distribution where cells concentrate at the center of each branch. The cells in data3 and data4 are in distinct138

clusters with moderate and small cluster differences, respectively. All datasets have 2000 cells and 5000 genes. Data1, data2,139

data3, and data4 were simulated for scenario1 to scenario4 for data visualization. Data5, data2, data3, and data4 are used for140

the evaluation of scGAE on trajectory inference and cell clustering tasks.141

Data preprocessing142

The scRNA-seq data preprocessing was conducted using scTransform37 in The Seurat package38. The pre-processed count143

matrix was used to construct the single-cell graph, where the nodes represent cells, and the edges represent the relationships144

between cells. The cell graph is built by the K-nearest neighbor (KNN) algorithm39 in the Scikit-learn Python package40. The145

default K is predefined as 35 in this study and adjusted according to the datasets in our experiments. The generated adjacency146

matrix is a 0-1 matrix, where 1 represents being connected, and 0 represents no connection.147

Empirical scRNA-seq data148

We analyzed two different scRNA-seq datasets, namely HSPCs data and pancreatic cells data. HSPCs data and pancreatic149

cells data represent cells showing lineages relationship and cells showing distinct clusters, respectively. The HSPCs data are150

single-cell transcriptome data of FACS sorted CD34+ cells from human bone marrow mononuclear cells, accessible in the151

national genomics data center (HRA000084) and described in our previous study5. The pancreases cells data contains 10,000152

single-cell transcriptomes with 14 distinct cell clusters, download from GEO (GSE84133)26.153

Competitive methods154

Seven competitive methods, namely scDeepCluster, DCA, SCVI, PCA, Ivis, SAUCIE, and PHATE, were compared with155

scGAE. Among these methods, scDeepCluster, DCA, SCVI, Ivis, and SAUCIE are deep learning based and showed the greatest156

potential. These methods usually generate hidden variables for downstream analysis, including visualization, clustering, and157

trajectory inference. The raw count matrix was used as input for DCA, SCVI, and scDeepCluster. For methods that take158

normalized data as input (scGAE, SAUCIE, PCA, Ivis, and PHATE), scTransform was used for data preprocessing. Each159

software was run following its manual and with default parameters. For DCA, PCA was conducted to reduce the DCA-denoised160

data to 32 PCs. For SAUCIE and Ivis, PCA reduced the preprocessed data to 100 PCs and 50 PCs, respectively. Ivis, SAUCIE,161

and PHATE directly generate the 2-dimensional embeddings. The cell clustering and trajectory inference were performed on162
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the two-dimensional embeddings. Both scGAE and PCA embedded simulated data to 10 dimensions and embedded empirical163

data to 20 dimensions due to the complex structure of the empirical data.164
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